TWI767415B - Automatic blood analysis system and automatic blood analysis method - Google Patents
Automatic blood analysis system and automatic blood analysis method Download PDFInfo
- Publication number
- TWI767415B TWI767415B TW109140383A TW109140383A TWI767415B TW I767415 B TWI767415 B TW I767415B TW 109140383 A TW109140383 A TW 109140383A TW 109140383 A TW109140383 A TW 109140383A TW I767415 B TWI767415 B TW I767415B
- Authority
- TW
- Taiwan
- Prior art keywords
- blood
- image
- hemagglutination
- sample
- dimensional
- Prior art date
Links
- 238000004159 blood analysis Methods 0.000 title claims abstract description 150
- 238000000034 method Methods 0.000 title claims description 65
- 210000004369 blood Anatomy 0.000 claims abstract description 377
- 239000008280 blood Substances 0.000 claims abstract description 377
- 230000035931 haemagglutination Effects 0.000 claims abstract description 175
- 238000012360 testing method Methods 0.000 claims abstract description 104
- 238000007781 pre-processing Methods 0.000 claims abstract description 48
- 229940079593 drug Drugs 0.000 claims abstract description 13
- 239000003814 drug Substances 0.000 claims abstract description 13
- 238000012545 processing Methods 0.000 claims abstract description 12
- 238000009826 distribution Methods 0.000 claims description 167
- 230000004520 agglutination Effects 0.000 claims description 114
- 238000013528 artificial neural network Methods 0.000 claims description 89
- 238000006243 chemical reaction Methods 0.000 claims description 64
- 238000004458 analytical method Methods 0.000 claims description 49
- 230000003068 static effect Effects 0.000 claims description 31
- 210000000601 blood cell Anatomy 0.000 claims description 26
- 238000012549 training Methods 0.000 claims description 24
- 238000000611 regression analysis Methods 0.000 claims description 23
- 239000003153 chemical reaction reagent Substances 0.000 claims description 21
- 238000012706 support-vector machine Methods 0.000 claims description 21
- 238000011156 evaluation Methods 0.000 claims description 18
- 230000009977 dual effect Effects 0.000 claims description 17
- 238000003384 imaging method Methods 0.000 claims description 13
- 230000000007 visual effect Effects 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000007477 logistic regression Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 22
- 239000002245 particle Substances 0.000 description 14
- 210000003743 erythrocyte Anatomy 0.000 description 13
- 238000001514 detection method Methods 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 210000002966 serum Anatomy 0.000 description 11
- 230000035945 sensitivity Effects 0.000 description 7
- 206010018910 Haemolysis Diseases 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 230000008588 hemolysis Effects 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 3
- 239000010836 blood and blood product Substances 0.000 description 3
- 229940125691 blood product Drugs 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000002955 immunomodulating agent Substances 0.000 description 3
- 229940121354 immunomodulator Drugs 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000023555 blood coagulation Effects 0.000 description 2
- 238000010241 blood sampling Methods 0.000 description 2
- 238000012864 cross contamination Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 206010039238 Rouleaux formation Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 208000003441 Transfusion reaction Diseases 0.000 description 1
- 230000004523 agglutinating effect Effects 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 230000035606 childbirth Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000002949 hemolytic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003189 isokinetic effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本發明是有關於一種醫療資訊分析系統與方法,特別是關於一種自動化血液分析系統與自動化血液分析方法。The present invention relates to a medical information analysis system and method, in particular to an automatic blood analysis system and an automatic blood analysis method.
肇因於手術、意外事故、燒傷、生產、癌症化學治療的大量失血情形或貧血等其他疾病,都可能需要以輸血的方式提供患者來自外源的血液,以減緩症狀或挽救性命。當需要進行輸血治療時,醫師將抽取患者之血液與血庫中的血品進行交叉試驗(Cross-Matching Test)以確定患者和供血者之間的血液相容性,以預防溶血性輸血反應的發生。Mass blood loss from surgery, accident, burns, childbirth, cancer chemotherapy, or other conditions such as anemia may require transfusions of blood from a patient's source to relieve symptoms or save lives. When blood transfusion treatment is required, the physician will draw the patient's blood and the blood in the blood bank for a cross-matching test to determine the blood compatibility between the patient and the blood donor to prevent the occurrence of hemolytic transfusion reactions .
現行的交叉試驗多由血庫醫檢師以人工方式進行實驗,是以在血液樣本的前處理作業與後續的試藥實驗方面常因不同醫檢師的操作習慣差異而呈現不同的態樣,進而影響後續分析判讀的結果。因此,為了確保患者的血液樣本與供血者的血液樣本在樣本處理上的一致性,患者的血液樣本與供血者的血液樣本需由同一位血庫醫檢師進行處理與分析,如此一來,患者的血液樣本與供血者的血液樣本勢必需要依序進行前處理作業,進而導致檢測速度較為緩慢而影響後續血品配發作業的進行。再者,交叉試驗的結果須由血庫醫檢師進行判讀,且須經過二位以上的血庫醫檢師交叉核對判讀的結果之後始可發出合血評估報告。然而,同一患者的血液樣本與同一供血者的血液樣本進行交叉試驗的結果常因不同血庫醫檢師的主觀判讀習慣而有所不同,如此一來恐導致依據人工判讀的交叉試驗結果的準確度與一致性與實際情形出現落差。The current cross-experiments are mostly performed manually by the blood bank medical examiners. Therefore, the pre-processing of blood samples and the subsequent drug experiments often show different appearances due to differences in the operating habits of different medical examiners. Affect the results of subsequent analysis and interpretation. Therefore, in order to ensure the consistency of sample processing between the patient's blood sample and the donor's blood sample, the patient's blood sample and the donor's blood sample need to be processed and analyzed by the same blood bank medical examiner. The blood samples and blood samples of the blood donors must be pre-processed in sequence, which will lead to a slow detection speed and affect the subsequent blood product distribution operations. Furthermore, the results of the cross-test must be interpreted by the blood bank medical examiners, and the combined blood assessment report can only be issued after two or more blood bank medical examiners cross-check the interpretation results. However, the results of the cross-test between the blood samples of the same patient and the blood samples of the same blood donor are often different due to the subjective interpretation habits of different blood bank medical examiners, which may lead to the accuracy of the cross-test results based on manual interpretation. There is a gap between the consistency and the actual situation.
有鑑於此,市面上推出一種自動化血液分析系統,其係自動地吸取患者的血液樣本與供血者的血液樣本至一血型管柱卡中,並以前述之血型管柱卡為載體進行交叉試驗。在完成反應後,習知的自動化血液分析系統將會擷取血型管柱卡中混合血液樣本的二維血球凝集影像資料,並以前述之二維血球凝集影像資料作為交叉試驗結果的判讀依據。然而,習知的自動化血液分析系統在擷取二維血球凝集影像資料時僅能擷取與判定血型管柱卡中的上層管柱之二維影像,並無法擷取甚至精確判定沉降至管柱底部與邊緣的影像。再者,當患者的血液樣本與供血者的血液樣本的凝集價數較低或具有較高的溶血價數時,或是患者正服用癌症標靶藥物或免疫調節劑等特殊藥物時,習知的自動化血液分析系統同樣無法依據二維血球凝集影像資料而達成精確的判定。In view of this, an automated blood analysis system is introduced on the market, which automatically draws blood samples from patients and blood donors into a blood group column card, and uses the aforementioned blood group column card as a carrier for cross-examination. After the reaction is completed, the conventional automated blood analysis system will capture the two-dimensional hemagglutination image data of the mixed blood samples in the blood group column card, and use the aforementioned two-dimensional hemagglutination image data as the interpretation basis of the cross-experiment result. However, the conventional automated blood analysis system can only capture and determine the 2D image of the upper column in the blood group column card when capturing 2D hemagglutination image data, and cannot capture or even accurately determine the sedimentation to the column Bottom and edge images. Furthermore, when the patient's blood sample and the blood donor's blood sample have a low agglutination valence or a high hemolytic valence, or when the patient is taking special drugs such as cancer-targeted drugs or immunomodulators, it is known that The automated blood analysis system also cannot achieve accurate judgment based on two-dimensional hemagglutination image data.
因此,如何發展出一種快速、低成本且具有高度檢測準確度之自動化血液分析系統與方法,實為一具有臨床應用價值之技術課題。Therefore, how to develop a fast, low-cost and highly accurate automated blood analysis system and method is a technical subject with clinical application value.
本發明之一態樣在於提供一種自動化血液分析系統,包含一上樣平台、一試驗平台以及一處理器。前述之上樣平台包含一樣本上樣裝置及一血品上樣裝置。樣本上樣裝置用以對一受試者之一血液樣本進行上樣前處理,以得一受試血液樣本。血品上樣裝置用以對一供血者之一血液樣本進行上樣前處理,以得一目標血液樣本。試驗平台鄰設於前述之上樣平台,其中試驗平台包含一試藥反應裝置及一影像擷取裝置。試藥反應裝置用以混合前述之受試血液樣本與前述之目標血液樣本,以得一混合血液樣本,並對前述之混合血液樣本進行一血液交叉試驗,以得一反應後混合血液樣本。影像擷取裝置用以擷取前述之反應後混合血液樣本的一三維血球凝集影像資料。處理器電訊連接前述之影像擷取裝置,其中前述之處理器包含一血液交叉試驗評估程式,且血液交叉試驗評估程式包含一第一影像前處理模組、一第一訓練模組及一第一判斷模組。第一影像前處理模組用以調整前述之三維血球凝集影像資料的一影像大小與一背景值,以得一處理後三維血球凝集影像資料。第一訓練模組係利用一第一神經網路分類器訓練前述之處理後三維血球凝集影像資料至收斂,以得一影像特徵值。第一判斷模組係利用前述之第一神經網路分類器根據前述之影像特徵值輸出一凝集判讀結果。其中,前述之凝集判讀結果包含一血液凝集價數判讀結果與一血球凝集型態判讀結果。One aspect of the present invention is to provide an automated blood analysis system, which includes a sample loading platform, a testing platform and a processor. The aforementioned sample loading platform includes a sample loading device and a blood sample loading device. The sample loading device is used for pre-processing a blood sample of a subject to obtain a test blood sample. The blood sample loading device is used for pre-loading a blood sample of a blood donor to obtain a target blood sample. The test platform is adjacent to the above-mentioned sample platform, wherein the test platform includes a reagent reaction device and an image capture device. The reagent reaction device is used for mixing the test blood sample and the target blood sample to obtain a mixed blood sample, and performing a blood cross test on the mixed blood sample to obtain a mixed blood sample after reaction. The image capturing device is used for capturing a three-dimensional hemagglutination image data of the mixed blood sample after the reaction. The processor is telecommunicationly connected to the aforementioned image capturing device, wherein the aforementioned processor includes a blood cross test evaluation program, and the blood cross test evaluation program includes a first image preprocessing module, a first training module and a first Judgment module. The first image preprocessing module is used for adjusting an image size and a background value of the aforementioned three-dimensional hemagglutination image data, so as to obtain a processed three-dimensional hemagglutination image data. The first training module uses a first neural network classifier to train the aforementioned processed 3D hemagglutination image data to converge to obtain an image feature value. The first judgment module utilizes the aforementioned first neural network classifier to output an agglutination judgment result according to the aforementioned image feature value. Wherein, the aforementioned agglutination interpretation result includes a blood agglutination valence interpretation result and a blood agglutination type interpretation result.
依據前述之自動化血液分析系統,其中前述之混合血液樣本可置於一離心管中進行血液交叉試驗,且前述之影像擷取裝置可擷取所述之反應後混合血液樣本於所述之離心管中的三維血球凝集影像資料。According to the aforementioned automated blood analysis system, the aforementioned mixed blood sample can be placed in a centrifuge tube to perform a blood cross test, and the aforementioned image capture device can capture the mixed blood sample after the reaction in the centrifuge tube Three-dimensional hemagglutination imaging data in .
依據前述之自動化血液分析系統,其中前述之影像擷取裝置可包含一光源以及一相機模組。光源用以投射一散射光或一直射光至前述之反應後混合血液樣本。相機模組包含一低倍率取像模組及一高倍率取像模組。According to the aforementioned automated blood analysis system, the aforementioned image capturing device may include a light source and a camera module. The light source is used for projecting a scattered light or direct light to the mixed blood sample after the reaction. The camera module includes a low-magnification imaging module and a high-magnification imaging module.
依據前述之自動化血液分析系統,其中前述之三維血球凝集影像資料可包含至少一動態三維血球凝集影像資料以及至少一靜態三維血球凝集影像資料。According to the aforementioned automated blood analysis system, the aforementioned three-dimensional hemagglutination image data may include at least one dynamic three-dimensional hemagglutination image data and at least one static three-dimensional hemagglutination image data.
依據前述之自動化血液分析系統,其中前述之第一神經網路分類器可為一支援向量機(support vector machine, SVM)神經網路分類器。According to the aforementioned automated blood analysis system, the aforementioned first neural network classifier may be a support vector machine (SVM) neural network classifier.
依據前述之自動化血液分析系統,其中前述之影像擷取裝置可更擷取所述之反應後混合血液樣本的一高倍率三維血球凝集影像資料,且前述之血液交叉試驗評估程式可更包含一第二影像前處理模組、一第二訓練模組以及一第二判斷模組。第二影像前處理模組可用以對前述之高倍率三維血球凝集影像資料進行前處理,以得至少一影像像素分布資料。第二訓練模組可利用一迴歸分析演算模組分析所述之影像像素分布資料後,再以一第二神經網路分類器訓練所述之影像像素分布資料至收斂,以得一二重影像特徵值權重數據。第二判斷模組可利用前述之第二神經網路分類器根據所述之二重影像特徵值權重數據而輸出一二重凝集判讀結果。其中,前述之二重凝集判讀結果可包含一二重血液凝集價數判讀結果與一二重血球凝集型態判讀結果。According to the aforementioned automated blood analysis system, the aforementioned image capture device can further capture a high-magnification three-dimensional hemagglutination image data of the mixed blood sample after the reaction, and the aforementioned blood cross test evaluation program can further include a first Two image preprocessing modules, a second training module and a second judgment module. The second image preprocessing module can be used for preprocessing the aforementioned high-magnification three-dimensional hemagglutination image data to obtain at least one image pixel distribution data. The second training module can use a regression analysis algorithm module to analyze the image pixel distribution data, and then use a second neural network classifier to train the image pixel distribution data to converge to obtain a double image Eigenvalue weight data. The second judgment module can utilize the aforementioned second neural network classifier to output a double agglutination interpretation result according to the weight data of the double image feature value. Wherein, the aforementioned double agglutination interpretation result may include a double blood agglutination valence interpretation result and a double blood agglutination type interpretation result.
依據前述之自動化血液分析系統,其中前述之高倍率三維血球凝集影像資料可包含至少一動態高倍率三維血球凝集影像資料以及至少一靜態高倍率三維血球凝集影像資料,前述之影像像素分布資料可包含一單視野畫素分布波峰數量資訊、一單視野畫素分布波間峰數資訊、一單視野畫素分布面積資訊以及一單視野畫素分布平均波峰距離資訊。According to the aforementioned automated blood analysis system, the aforementioned high-magnification 3D hemagglutination image data may include at least one dynamic high-magnification 3D hemagglutination image data and at least one static high-magnification 3D hemagglutination image data, and the aforementioned image pixel distribution data may include Information on the number of peaks of pixel distribution in a single field of view, information on the number of peaks between waves in pixel distribution in a single field of view, information on the distribution area of pixels in a single field of view, and information on an average peak distance of pixel distribution in a single field of view.
依據前述之自動化血液分析系統,其中前述之迴歸分析演算模組可為羅吉斯迴歸(Logistic regression)演算模組。According to the aforementioned automated blood analysis system, the aforementioned regression analysis calculation module may be a Logistic regression calculation module.
依據前述之自動化血液分析系統,其中前述之第二神經網路分類器可為一支援向量機神經網路分類器。According to the aforementioned automated blood analysis system, the aforementioned second neural network classifier may be a support vector machine neural network classifier.
依據前述之自動化血液分析系統,其中前述之血液交叉試驗評估程式可更包含一合血評估模組。合血評估模組可將前述之凝集判讀結果的一副本以一第三神經網路分類器進行訓練至收斂,以輸出一血液相合性評估結果。According to the aforementioned automated blood analysis system, the aforementioned blood cross-test evaluation program may further include a combined blood evaluation module. The blood compatibility assessment module can train a third neural network classifier to converge a copy of the aforementioned agglutination interpretation result to output a blood compatibility assessment result.
依據前述之自動化血液分析系統,其中前述之第三神經網路分類器可為一支援向量機神經網路分類器。According to the aforementioned automated blood analysis system, the aforementioned third neural network classifier may be a support vector machine neural network classifier.
藉此,透過上樣平台自動地對受試者之血液樣本及供血者之血液樣本分別進行上樣前處理,並混合受試者之血液樣本及供血者之血液樣本而進行血液交叉試驗,接著將反應後混合血液樣本的三維血球凝集影像資料以第一神經網路分類器自動地進行分析與訓練,而後進一步根據所得之影像特徵值輸出血液凝集價數判讀結果與血球凝集型態判讀結果,本發明之自動化血液分析系統不僅可達成血品處理之一致性,以大幅降低不同血庫醫檢師的主觀判讀習慣所致之交叉試驗結果誤差以及提升檢測效率,並可快速地進行多批次的血液交叉試驗以及大幅增進交叉試驗的判讀準確度,進而使本發明之自動化血液分析系統具有相關領域之應用潛力。In this way, the subject's blood sample and the donor's blood sample are automatically pre-loaded through the sample loading platform, and the subject's blood sample and the donor's blood sample are mixed to conduct a blood cross test, and then The three-dimensional hemagglutination image data of the mixed blood sample after the reaction is automatically analyzed and trained by the first neural network classifier, and then the blood agglutination valence interpretation result and the hemagglutination type interpretation result are further output according to the obtained image feature values. The automated blood analysis system of the present invention can not only achieve the consistency of blood product processing, greatly reduce the error of cross-test results caused by the subjective interpretation habits of different blood bank medical examiners, and improve the detection efficiency, but also can quickly carry out multi-batch analysis. The blood cross test and the interpretation accuracy of the cross test are greatly improved, so that the automated blood analysis system of the present invention has application potential in related fields.
本發明之另一態樣提供一種自動化血液分析方法,包含下述步驟。提供一受試者之一血液樣本。提供一供血者之一血液樣本。進行一樣本前處理步驟,其係對前述之受試者之血液樣本進行上樣前處理,以得一受試血液樣本,並對前述之供血者之血液樣本進行上樣前處理,以得一目標血液樣本。進行一試藥反應步驟,其係混合前述之受試血液樣本與前述之目標血液樣本,以得一混合血液樣本,並對所述之混合血液樣本進行一血液交叉試驗,以得一反應後混合血液樣本。進行一影像擷取步驟,其係擷取前述之反應後混合血液樣本的一三維血球凝集影像資料。進行一影像前處理步驟,其係調整前述之三維血球凝集影像資料的一影像大小與一背景值,以得一處理後三維血球凝集影像資料。進行一分析判斷步驟,其係利用一第一神經網路分類器訓練前述之處理後三維血球凝集影像資料至收斂,以得一影像特徵值,並利用所述之第一神經網路分類器根據前述之影像特徵值輸出一凝集判讀結果。其中,前述之凝集判讀結果包含一血液凝集價數判讀結果與一血球凝集型態判讀結果。Another aspect of the present invention provides an automated blood analysis method, comprising the following steps. A blood sample from a subject is provided. Provide a blood sample from one of the donors. A sample pre-processing step is performed, which is to perform pre-loading pre-processing on the aforementioned subject's blood sample to obtain a test blood sample, and perform the aforementioned pre-loading pre-processing on the blood sample of the blood donor to obtain a sample pre-processing step. target blood sample. A test drug reaction step is performed, which is to mix the aforementioned test blood sample and the aforementioned target blood sample to obtain a mixed blood sample, and perform a blood cross test on the mixed blood sample to obtain a post-reaction mixing blood sample. An image capture step is performed, which captures a three-dimensional hemagglutination image data of the mixed blood sample after the reaction. An image preprocessing step is performed, which adjusts an image size and a background value of the aforementioned three-dimensional hemagglutination image data, so as to obtain a processed three-dimensional hemagglutination image data. An analysis and judgment step is performed, which uses a first neural network classifier to train the aforesaid processed 3D hemagglutination image data to converge to obtain an image feature value, and uses the first neural network classifier according to The aforementioned image feature value outputs an agglutination judgment result. Wherein, the aforementioned agglutination interpretation result includes a blood agglutination valence interpretation result and a blood agglutination type interpretation result.
依據前述之自動化血液分析方法,其中前述之混合血液樣本可置於一離心管中進行血液交叉試驗,且前述之三維血球凝集影像資料可為反應後混合血液樣本於離心管中的三維血球凝集影像資料。According to the aforementioned automated blood analysis method, wherein the aforementioned mixed blood sample can be placed in a centrifuge tube to perform a blood cross test, and the aforementioned three-dimensional hemagglutination image data can be a three-dimensional hemagglutination image of the mixed blood sample after reaction in the centrifuge tube material.
依據前述之自動化血液分析方法,其中前述之三維血球凝集影像資料可包含至少一動態三維血球凝集影像資料以及至少一靜態三維血球凝集影像資料。According to the aforementioned automated blood analysis method, the aforementioned three-dimensional hemagglutination image data may include at least one dynamic three-dimensional hemagglutination image data and at least one static three-dimensional hemagglutination image data.
依據前述之自動化血液分析方法,其中前述之第一神經網路分類器可為一支援向量機神經網路分類器。According to the aforementioned automated blood analysis method, the aforementioned first neural network classifier may be a support vector machine neural network classifier.
依據前述之自動化血液分析方法,可更包含進行一二重分析判斷步驟,二重分析判斷步驟可包含下述步驟。進行一二重影像擷取步驟,其可擷取所述之反應後混合血液樣本的一高倍率三維血球凝集影像資料。進行一二重影像前處理步驟,其可對前述之高倍率三維血球凝集影像資料進行前處理,以得至少一影像像素分布資料。進行一二重分析步驟,其可利用一迴歸分析演算模組分析所述之影像像素分布資料後,再以一第二神經網路分類器訓練所述之影像像素分布資料至收斂,以得一二重影像特徵值權重數據。進行一二重判斷步驟,其可利用前述之第二神經網路分類器根據所述之二重影像特徵值權重數據而輸出一二重凝集判讀結果。其中,前述之二重凝集判讀結果可包含一二重血液凝集價數判讀結果與一二重血球凝集型態判讀結果。According to the above-mentioned automated blood analysis method, it may further include a double analysis and judgment step, and the double analysis and judgment step may include the following steps. A double image capture step is performed, which can capture a high-magnification three-dimensional hemagglutination image data of the mixed blood sample after the reaction. A double image preprocessing step is performed, which can perform preprocessing on the aforementioned high-magnification three-dimensional hemagglutination image data, so as to obtain at least one image pixel distribution data. A double analysis step is performed, which can use a regression analysis algorithm module to analyze the image pixel distribution data, and then use a second neural network classifier to train the image pixel distribution data to convergence, so as to obtain a Double image eigenvalue weight data. A double judgment step is performed, which can output a double agglutination judgment result according to the weight data of the double image feature value by using the second neural network classifier. Wherein, the aforementioned double agglutination interpretation result may include a double blood agglutination valence interpretation result and a double blood agglutination type interpretation result.
依據前述之自動化血液分析方法,其中前述之高倍率三維血球凝集影像資料可包含至少一動態高倍率三維血球凝集影像資料以及至少一靜態高倍率三維血球凝集影像資料,前述之影像像素分布資料可包含一單視野畫素分布波峰數量資訊、一單視野畫素分布波間峰數資訊、一單視野畫素分布面積資訊以及一單視野畫素分布平均波峰距離資訊。According to the aforementioned automated blood analysis method, the aforementioned high-magnification 3D hemagglutination image data may include at least one dynamic high-magnification 3D hemagglutination image data and at least one static high-magnification 3D hemagglutination image data, and the aforementioned image pixel distribution data may include Information on the number of peaks of pixel distribution in a single field of view, information on the number of peaks between waves in pixel distribution in a single field of view, information on the distribution area of pixels in a single field of view, and information on an average peak distance of pixel distribution in a single field of view.
依據前述之自動化血液分析方法,其中前述之迴歸分析演算模組可為羅吉斯迴歸演算模組,前述之第二神經網路分類器可為一支援向量機神經網路分類器。According to the aforementioned automated blood analysis method, the aforementioned regression analysis algorithm module can be a Logis regression algorithm module, and the aforementioned second neural network classifier can be a support vector machine neural network classifier.
依據前述之自動化血液分析方法,可更包含進行一合血評估步驟,其可將前述之凝集判讀結果的一副本以一第三神經網路分類器進行訓練至收斂,以輸出一血液相合性評估結果。According to the aforementioned automated blood analysis method, it may further include a step of performing a blood compatibility assessment, which can train a copy of the aforementioned agglutination interpretation result with a third neural network classifier to convergence, so as to output a blood compatibility assessment result.
依據前述之自動化血液分析方法,其中前述之第三神經網路分類器為一支援向量機神經網路分類器。According to the aforementioned automated blood analysis method, wherein the aforementioned third neural network classifier is a support vector machine neural network classifier.
藉此,透過混合受試者之血液樣本及供血者之血液樣本並進行血液交叉試驗,並將所得之三維血球凝集影像資料自動地以第一神經網路分類器進行分析與訓練而輸出血液凝集價數判讀結果與血球凝集型態判讀結果,本發明之自動化血液分析方法不僅可大幅降低不同血庫醫檢師的主觀判讀習慣所致之交叉試驗結果誤差以及提升檢測效率,亦可根據血液之三維血球凝集影像資料快速地進行交叉試驗的結果分析,以有效地提升交叉試驗的判讀準確度並利於後續醫療措施的施行,進而使本發明之自動化血液分析方法具有相關領域之應用潛力。Thereby, by mixing the blood samples of the subjects and the blood samples of the donors and performing the blood cross test, the obtained three-dimensional hemagglutination image data is automatically analyzed and trained by the first neural network classifier to output the blood agglutination. The automated blood analysis method of the present invention can not only greatly reduce the error of cross-test results caused by the subjective interpretation habits of different blood bank medical examiners and improve the detection efficiency, but also based on the three-dimensional blood The hemagglutination image data can be quickly analyzed for the results of the cross-test, so as to effectively improve the interpretation accuracy of the cross-test and facilitate the implementation of subsequent medical measures, so that the automated blood analysis method of the present invention has application potential in related fields.
下述將更詳細討論本發明各實施方式。然而,此實施方式可為各種發明概念的應用,可被具體實行在各種不同的特定範圍內。特定的實施方式是僅以說明為目的,且不受限於揭露的範圍。Various embodiments of the present invention are discussed in greater detail below. However, this embodiment can be an application of various inventive concepts and can be embodied in various specific scopes. The specific embodiments are for illustrative purposes only, and are not intended to limit the scope of the disclosure.
[本發明之自動化血液分析系統][Automated blood analysis system of the present invention]
請參照第1圖與第2圖,第1圖係繪示本發明一實施方式之自動化血液分析系統100的架構示意圖,第2圖係繪示第1圖之自動化血液分析系統100的處理器130的架構示意圖。自動化血液分析系統100包含一上樣平台110、一試驗平台120以及一處理器130。Please refer to FIGS. 1 and 2. FIG. 1 is a schematic diagram of the structure of an automated
上樣平台110包含一樣本上樣裝置111以及一血品上樣裝置112。樣本上樣裝置111用以對一受試者之一血液樣本進行上樣前處理,以得一受試血液樣本,而血品上樣裝置112則用以對一供血者之一血液樣本進行上樣前處理,以得一目標血液樣本。詳細而言,受試血液樣本可為受試者之血液樣本的血清或血球,而目標血液樣本則可為供血者之血液樣本的血清或血球。舉例來說,在對患者實施輸血治療前,血庫醫檢師將會抽取患者(即受血者)的血液樣本並分別對患者的血液樣本以及供血者的血液樣本進行離心,並取得患者之血液樣本的血清與供血者之血液樣本的紅血球進行大交叉試驗(Major Cross Matching Test),以確認患者血液與供血者血液的相合性,並根據大交叉試驗的結果來決定供血者的血液是否適合患者輸用。同樣地,在第1圖的實施方式中,樣本上樣裝置111以及血品上樣裝置112可分別對受試者之血液樣本與供血者之血液樣本進行離心而取得其血清或血球,以避免血液樣品在離心或吸取血清或血球的過程中因操作手法所致之交叉污染的情事發生。再者,血品上樣裝置112更可自動地將供血者之血液樣本的紅血球以3%至5%的生理食鹽水進行泡製,以避免紅血球樣本的濃度過高或過低而影響後續交叉試驗的準確度。另外,上樣平台110的樣本上樣裝置111以及血品上樣裝置112更可分別地對患者的血液樣本與供血者的血液樣本同時地進行前處理,以大幅節省處理時間及人力成本而提升檢測的速率。The
試驗平台120鄰設於上樣平台110,且試驗平台120包含一試藥反應裝置121以及一影像擷取裝置122。試藥反應裝置121用以混合前述之受試血液樣本與目標血液樣本,以得一混合血液樣本,並對混合血液樣本進行一血液交叉試驗,以得一反應後混合血液樣本。影像擷取裝置122用以擷取反應後混合血液樣本的一三維血球凝集影像資料,以利於後續的結果判讀。具體來說,混合血液樣本係置於一離心管中進行血液交叉試驗,且影像擷取裝置122係擷取反應後混合血液樣本於離心管中的三維血球凝集影像資料,以避免習知以血型管柱卡做為試藥反應載體所致之沉降顆粒不易觀察等問題。The
詳細而言,在本發明之自動化血液分析系統100中,試藥反應裝置121將進一步自動地對混合血液樣本進行手工凝聚胺法(Manual polybrene method)、傳統三相法(Antiglobulin Test)或其他血液交叉試驗,此時試藥反應裝置121將會以自動移液器或其他可用以進行液體轉移之儀器吸取適量之混合血液樣本與試劑進行混合,並以自動震盪裝置等儀器進行等速搖晃而使離心管均勻受力而完成試藥反應,藉以避免以人力進行手工搖晃所致之反應不均勻等問題而影響血液凝集價數判讀結果與血球凝集型態判讀結果。In detail, in the automated
另外,在第1圖的實施方式中,影像擷取裝置122可包含一光源123以及一相機模組124。光源123可用以投射一散射光或一直射光至反應後混合血液樣本,而相機模組124則可包含一低倍率取像模組(圖未繪示)及一高倍率取像模組(圖未繪示)。詳細而言,光源123可投射散射光至反應後混合血液樣本而利於相機模組124以低倍率取像模組或高倍率取像模組擷取用以判讀血液凝集價數之三維血球凝集影像資料,並可投射直射光至反應後混合血液樣本而利於相機模組124以低倍率取像模組或高倍率取像模組擷取用以判讀血球凝集型態之三維血球凝集影像資料。再者,本發明之影像擷取裝置122所擷取的三維血球凝集影像資料可包含至少一動態三維血球凝集影像資料以及至少一靜態三維血球凝集影像資料,以利於後續的分析。In addition, in the embodiment of FIG. 1 , the
另外,在此須說明的是,本發明之上樣平台110與試驗平台120可視本發明之自動化血液分析系統100所欲處理的樣本數量或不同的檢驗需求而分別或共同配置不同規格的離心機、不同規格的自動移液器與機械夾爪,或配置樣本輸送軌道等其他設備,以利於離心與試藥試驗之用,但本發明並不以圖式所揭露的內容為限。In addition, it should be noted here that the
處理器130電訊連接影像擷取裝置122,其中處理器130包含一血液交叉試驗評估程式131。如第2圖所示,血液交叉試驗評估程式131包含一第一影像前處理模組140、一第一訓練模組150以及一第一判斷模組160。The
第一影像前處理模組140用以調整前述之三維血球凝集影像資料的一影像大小與一背景值,以得一處理後三維血球凝集影像資料。詳細而言,第一影像前處理模組140將進一步調整三維血球凝集影像資料的影像大小為1920像素(pixel)×1080像素(200倍放大),並移除三維血球凝集影像資料中非血球的背景影像資訊,以降低習知交叉試驗結果判讀時因背景溶血或脂血,或是患者服用癌症標靶藥物或免疫調節劑等特殊藥物所致的干擾,進而提升本發明之自動化血液分析系統100的結果判讀正確性。The first
另外,第一影像前處理模組140可為Image J影像分析軟體,但本發明並不以此為限。In addition, the first
第一訓練模組150係利用一第一神經網路分類器訓練處理後三維血球凝集影像資料至收斂,以得一影像特徵值。詳細而言,本發明之自動化血液分析系統100可利用血液交叉試驗評估程式131的第一神經網路分類器自動地對處理後三維血球凝集影像資料的影像資訊進行分析,並自動提取對應的影像特徵值,藉以增進本發明之自動化血液分析系統100的評估效率。再者,前述之第一神經網路分類器可為一支援向量機(support vector machine, SVM)神經網路分類器,但本發明並不以此為限。The
第一判斷模組160係利用第一神經網路分類器根據前述之影像特徵值輸出一凝集判讀結果。其中,凝集判讀結果包含血液凝集價數判讀結果與血球凝集型態判讀結果。詳細而言,請參考表一,表一係現行臨床用以判斷血液凝集強度的判別標準,而本發明之自動化血液分析系統100則是根據現行臨床之血液凝集強度判別標準進行血液凝集價數結果與血球凝集型態的判讀,以符合現行臨床之診斷依據並利於後續輸血治療之便。
請同時參照第1圖與第3圖,第3圖係繪示第1圖之自動化血液分析系統100的另一處理器130a的架構示意圖。詳細而言,處理器130a包含一血液交叉試驗評估程式131a,而血液交叉試驗評估程式131a則包含一第一影像前處理模組140a、一第一訓練模組150a、一第一判斷模組160a、一第二影像前處理模組170a、一第二訓練模組180a以及一第二判斷模組190a,其中第一影像前處理模組140a、第一訓練模組150a與第一判斷模組160a與第2圖之第一影像前處理模組140、第一訓練模組150與第一判斷模組160相同,在此將不再贅述。Please refer to FIG. 1 and FIG. 3 at the same time. FIG. 3 is a schematic structural diagram of another
在第3圖的實施方式中,影像擷取裝置122更擷取反應後混合血液樣本的一高倍率三維血球凝集影像資料進行後續的評估。詳細而言,影像擷取裝置122係以相機模組124的高倍率取像模組擷取反應後混合血液樣本的一高倍率三維血球凝集影像資料。在現行臨床實務上,當血液凝集價數判讀結果為+1以下時需進一步以人工方式透過顯微鏡進行鏡檢而確認並判讀血液凝集結果。另外,緡錢狀紅血球凝集(Rouleaux Formation)同樣也需透過顯微鏡進行鏡檢與判讀。如此一來,不僅容易因為不同血庫醫檢師的主觀判讀習慣而造成血液凝集價數與血球凝集型態判讀結果的誤差,在檢測效率上亦不甚理想。有鑑於此,本發明之自動化血液分析系統100進一步以高倍率取像模組拍攝由第一判斷模組160a判讀為血液凝集價數為+1以下之混合血液樣本的高倍率三維血球凝集影像資料,並根據前述之高倍率三維血球凝集影像資料進行更精細的分析與判讀。In the embodiment of FIG. 3 , the
第二影像前處理模組170a用以對前述之高倍率三維血球凝集影像資料進行前處理,以得至少一影像像素分布資料。詳細而言,本發明之高倍率三維血球凝集影像資料可包含至少一動態高倍率三維血球凝集影像資料以及至少一靜態高倍率三維血球凝集影像資料,而第二影像前處理模組170a將進一步以影像處理軟體框選動態高倍率三維血球凝集影像資料以及靜態高倍率三維血球凝集影像資料的一個或多個待測視野,並增加流速及曝光軌跡等參數而分析其像素分布資訊,以輸出至少一影像像素分布資料,其中影像像素分布資料可進一步包含一單視野畫素分布波峰數量資訊、一單視野畫素分布波間峰數資訊、一單視野畫素分布面積資訊或一單視野畫素分布平均波峰距離資訊,以進行後續的分析。The second
具體而言,若動態高倍率三維血球凝集影像資料及靜態高倍率三維血球凝集影像資料的待測視野為無凝集的單顆細胞的影像,其影像像素分布資料的單視野畫素分布波峰資訊包含波峰數等訊息,而單視野畫素分布波峰資訊的圖形下面積即為單視野畫素分布面積資訊;若動態高倍率三維血球凝集影像資料及靜態高倍率三維血球凝集影像資料的待測視野為細胞凝集團塊的影像,其影像像素分布資料的單視野畫素分布波峰資訊同樣包含波峰數等訊息,而單視野畫素分布波峰資訊的圖形下面積即為單視野畫素分布面積資訊。Specifically, if the field to be tested of the dynamic high-magnification 3D hemagglutination image data and the static high-magnification 3D hemagglutination image data is an image of a single cell without agglutination, the single-field pixel distribution peak information of the image pixel distribution data includes: Information such as the number of wave peaks, and the area under the graph of the single-field pixel distribution peak information is the single-field pixel distribution area information; if the dynamic high-magnification 3D hemagglutination image data and the static high-magnification 3D hemagglutination image data The field of view to be measured is In the image of cell aggregates, the single-view pixel distribution peak information of the image pixel distribution data also includes information such as the number of peaks, and the area under the graph of the single-view pixel distribution peak information is the single-view pixel distribution area information.
另外,第二影像前處理模組170a可為Image J影像分析軟體,但本發明並不以此為限。In addition, the second
第二訓練模組180a係利用一迴歸分析演算模組分析影像像素分布資料後,再以一第二神經網路分類器訓練影像像素分布資料至收斂,以得一二重影像特徵值權重數據。The
詳細而言,本發明之第二影像前處理模組170a所輸出的影像像素分布資料包含靜態高倍率三維血球凝集影像資料的單視野畫素分布波峰資訊與單視野畫素分布面積資訊以及動態高倍率三維血球凝集影像資料的單視野畫素分布波峰數量資訊、單視野畫素分布波間峰數資訊、單視野畫素分布面積資訊與單視野畫素分布平均波峰距離資訊,此時第二訓練模組180a將會自動以迴歸分析演算模組對前述之單視野畫素分布波峰數量資訊、單視野畫素分布波間峰數資訊、單視野畫素分布面積資訊以及單視野畫素分布平均波峰距離資訊進行分析,並根據迴歸分析演算模組的參照資料庫中之參考影像資料(紅血球單顆無凝集與血球3至5顆凝集)來對影像像素分布資料進行歸類,以判斷待測視野下是否有肉眼無法偵測之微細凝集。Specifically, the image pixel distribution data output by the second
接著,第二訓練模組180a將視迴歸分析演算模組對影像像素分布資料的歸類結果自動地調整第二神經網路分類器的參數設定,而後再以設定完成之第二神經網路分類器訓練影像像素分布資料至收斂而得二重影像特徵值權重數據,並進一步根據前述之二重影像特徵值權重數據輸出二重凝集判讀結果,而二重凝集判讀結果則可包含二重血液凝集價數判讀結果與血球凝集型態判讀結果,以提升本發明之自動化血液分析系統100的分析準確度與分析完整度。Next, the
具體而言,前述之迴歸分析演算模組可為羅吉斯迴歸(Logistic regression)演算模組,而第二神經網路分類器則可為支援向量機神經網路分類器。Specifically, the aforementioned regression analysis algorithm module can be a Logistic regression algorithm module, and the second neural network classifier can be a support vector machine neural network classifier.
請再同時參照第1圖與第4圖,第4圖係繪示第1圖之自動化血液分析系統100的又一處理器130b的架構示意圖。詳細而言,處理器130b包含一血液交叉試驗評估程式131b,而血液交叉試驗評估程式131b則包含一第一影像前處理模組140b、一第一訓練模組150b、一第一判斷模組160a以及一合血評估模組170b,其中第一影像前處理模組140b、第一訓練模組150b與第一判斷模組160b與第2圖之第一影像前處理模組140、第一訓練模組150與第一判斷模組160相同,在此將不再贅述。Please refer to FIG. 1 and FIG. 4 at the same time. FIG. 4 is a schematic structural diagram of another
在第4圖的實施方式中,合血評估模組170b係將第一判斷模組160b輸出之凝集判讀結果的一副本以一第三神經網路分類器進行訓練至收斂,以輸出一血液相合性評估結果,而血液相合性評估結果將進一步說明受試者之血液樣本與供血者之血液樣本之間的血液凝集結果為陽性或陰性,以利於後續血庫配發血液與輸血治療之便。具體而言,第三神經網路分類器可為一支援向量機神經網路分類器。In the embodiment shown in FIG. 4 , the combined
藉此,本發明之自動化血液分析系統100透過上樣平台110自動地對受試者之血液樣本及供血者之血液樣本分別進行上樣前處理並進行血液交叉試驗,以達成血品處理之一致性,並將反應後混合血液樣本的三維血球凝集影像資料以第一神經網路分類器自動地進行分析與訓練,而後進一步根據所得之影像特徵值輸出血液凝集價數判讀結果與血球凝集型態判讀結果,以大幅降低不同血庫醫檢師的主觀判讀習慣所致之交叉試驗結果誤差,並可降低習知交叉試驗結果判讀時因溶血、脂血或藥物的干擾。再者,本發明之自動化血液分析系統100更可進一步以第二神經網路分類器與第三神經網路分類器對混合血液樣本的三維血球凝集影像資料或其高倍率三維血球凝集影像資料進行訓練與分類,以免去習知以顯微鏡進行人工判讀所致之誤差及人力損耗,藉以提升檢測效率並可快速進行多批次的血液交叉試驗,進而使本發明之自動化血液分析系統100在高度使用便利性與高度檢測效率的前提下同時具有優異的判讀準確度,並具有相關領域之應用潛力。Thereby, the automated
[本發明之自動化血液分析方法][Automated blood analysis method of the present invention]
請參照第5圖,其係繪示本發明另一實施方式之自動化血液分析方法200的步驟流程圖。自動化血液分析方法200包含步驟210、步驟220、步驟230、步驟240、步驟250、步驟260以及步驟270。Please refer to FIG. 5 , which is a flowchart illustrating the steps of an automated
步驟210為提供一受試者之一血液樣本。Step 210 is to provide a blood sample from a subject.
步驟220為提供一供血者之一血液樣本。Step 220 is to provide a blood sample from a blood donor.
步驟230為進行一樣本前處理步驟,其係對受試者之血液樣本進行上樣前處理,以得一受試血液樣本,並對供血者之血液樣本進行上樣前處理,以得一目標血液樣本。詳細而言,受試血液樣本可為受試者之血液樣本的血清或血球,而目標血液樣本則可為供血者之血液樣本的血清或血球,且本發明之自動化血液分析方法200可分別對受試者之血液樣本與供血者之血液樣本進行離心而取得其血清或血球,以避免血液樣品在離心或吸取血清或血球時因操作手法所致之交叉污染的情事發生。Step 230 is to perform a sample pre-processing step, which is to perform pre-loading processing on the blood sample of the subject to obtain a test blood sample, and perform pre-loading processing on the blood sample of the blood donor to obtain a target. blood sample. In detail, the test blood sample can be serum or blood cells of the blood sample of the subject, and the target blood sample can be serum or blood cells of the blood sample of the donor, and the automated
步驟240為進行一試藥反應步驟,其係混合受試血液樣本與目標血液樣本,以得一混合血液樣本,並對混合血液樣本進行一血液交叉試驗,以得一反應後混合血液樣本。具體來說,試藥反應步驟是自動地對混合血液樣本進行手工凝聚胺法、傳統三相法或其他血液交叉試驗,且混合血液樣本係置於一離心管中進行前述之血液交叉試驗,以避免習知以血型管柱卡做為試藥反應載體所致之沉降顆粒不易觀察等問題。Step 240 is to perform a reagent reaction step, which is to mix the test blood sample and the target blood sample to obtain a mixed blood sample, and perform a blood cross test on the mixed blood sample to obtain a mixed blood sample after reaction. Specifically, the reagent reaction step is to automatically perform manual polybrene method, traditional three-phase method or other blood cross test on the mixed blood sample, and the mixed blood sample is placed in a centrifuge tube to carry out the aforementioned blood cross test, so that To avoid the conventional problem that the sediment particles are not easy to observe due to the conventional use of blood group column card as the reagent reaction carrier.
步驟250為進行一影像擷取步驟,其係擷取反應後混合血液樣本的一三維血球凝集影像資料。具體來說,由於混合血液樣本係置於離心管中進行血液交叉試驗,故影像擷取步驟係擷取反應後混合血液樣本於離心管中的一三維血球凝集影像資料,以清楚觀察離心管中不同部位的血球凝集情形。再者,三維血球凝集影像資料可包含至少一動態三維血球凝集影像資料以及至少一靜態三維血球凝集影像資料,以利於後續的分析。Step 250 is to perform an image capture step, which is to capture a three-dimensional hemagglutination image data of the mixed blood sample after the reaction. Specifically, since the mixed blood sample is placed in a centrifuge tube for the blood crossover test, the image capture step is to capture a three-dimensional hemagglutination image data of the mixed blood sample in the centrifuge tube after the reaction, so as to clearly observe the inside of the centrifuge tube. Hemagglutination at different sites. Furthermore, the three-dimensional hemagglutination image data may include at least one dynamic three-dimensional hemagglutination image data and at least one static three-dimensional hemagglutination image data, so as to facilitate subsequent analysis.
步驟260為進行一影像前處理步驟,其係調整三維血球凝集影像資料的一影像大小與一背景值,以得一處理後三維血球凝集影像資料。詳細而言,三維血球凝集影像資料的影像大小將進一步被調整為1920像素(pixel)×1080像素(200倍放大)並移除三維血球凝集影像資料中非血球的背景影像資訊,以降低習知交叉試驗結果判讀時因溶血或脂血,或是患者服用癌症標靶藥物或免疫調節劑等特殊藥物所致的干擾,進而提升本發明之自動化血液分析方法200的結果判讀正確性。Step 260 is an image preprocessing step of adjusting an image size and a background value of the three-dimensional hemagglutination image data to obtain a processed three-dimensional hemagglutination image data. Specifically, the image size of the 3D hemagglutination image data will be further adjusted to 1920 pixels (pixel) × 1080 pixels (200 times magnification) and the background image information of non-blood cells in the 3D hemagglutination image data will be removed to reduce the known Interference caused by hemolysis or lipidemia, or the patient taking special drugs such as cancer target drugs or immunomodulators in the interpretation of the cross-experiment results, further improves the accuracy of interpretation of the results of the automated
步驟270為進行一分析判斷步驟,其係利用一第一神經網路分類器訓練處理後三維血球凝集影像資料至收斂,以得一影像特徵值,並利用前述之第一神經網路分類器根據影像特徵值輸出一凝集判讀結果。詳細而言,第一神經網路分類器將自動地對處理後三維血球凝集影像資料的影像資訊進行分析,並自動提取對應的影像特徵值,並以前述之影像特徵值續行分析而輸出凝集判讀結果,其中,凝集判讀結果包含血液凝集價數判讀結果與血球凝集型態判讀結果,以在符合現行臨床之血液凝集強度的判別標準的前提下達成準確判讀的訴求。再者,前述之第一神經網路分類器可為一支援向量機神經網路分類器,但本發明並不以此為限。Step 270 is to perform an analysis and judgment step, which is to use a first neural network classifier to train the processed 3D hemagglutination image data to converge to obtain an image feature value, and use the aforementioned first neural network classifier according to The image feature value outputs an agglutination interpretation result. Specifically, the first neural network classifier will automatically analyze the image information of the processed three-dimensional hemagglutination image data, and automatically extract the corresponding image feature values, and continue the analysis with the aforementioned image feature values to output agglutination. Interpretation results, among which, the agglutination interpretation results include blood agglutination valence interpretation results and hemagglutination type interpretation results, so as to meet the requirements of accurate interpretation under the premise of meeting the current clinical judgment criteria for blood agglutination intensity. Furthermore, the aforementioned first neural network classifier may be a support vector machine neural network classifier, but the present invention is not limited thereto.
請參照第6圖與第7圖,第6圖係繪示本發明又一實施方式之自動化血液分析方法200a的步驟流程圖,而第7圖係繪示第6圖之自動化血液分析方法200a的二重分析判斷步驟的步驟流程圖。自動化血液分析方法200a包含步驟210a、步驟220a、步驟230a、步驟240a、步驟250a、步驟260a、步驟270a以及步驟280a,其中步驟210a、步驟220a、步驟230a、步驟240a、步驟250a、步驟260a以及步驟270a與第5圖之步驟210、步驟220、步驟230、步驟240、步驟250、步驟260以及步驟270相同,在此將不再贅述。Please refer to FIG. 6 and FIG. 7. FIG. 6 is a flowchart showing the steps of the automated
在第6圖與第7圖的實施例中,步驟280a為進行一二重分析判斷步驟,二重分析判斷步驟包含步驟281、步驟282、步驟283及步驟284。In the embodiment shown in FIG. 6 and FIG. 7 , step 280 a is to perform a dual analysis and determination step, and the dual analysis determination step includes
步驟281為進行一二重影像擷取步驟,其係擷取反應後混合血液樣本的一高倍率三維血球凝集影像資料,以進一步確認當第一神經網路分類器分析前述之混合血液樣本之三維血球凝集影像資料所得之凝集判讀結果為+1以下時的詳細血球凝集情形。Step 281 is to perform a double image capture step, which is to capture a high magnification three-dimensional hemagglutination image data of the mixed blood sample after the reaction, so as to further confirm when the first neural network classifier analyzes the three-dimensional image of the mixed blood sample. The detailed hemagglutination situation when the agglutination interpretation result obtained from the hemagglutination image data is less than +1.
步驟282為進行一二重影像前處理步驟,其係對前述之高倍率三維血球凝集影像資料進行前處理,以得至少一影像像素分布資料。詳細而言,本發明之高倍率三維血球凝集影像資料可包含至少一動態高倍率三維血球凝集影像資料以及至少一靜態高倍率三維血球凝集影像資料,而二重影像前處理步驟將進一步以影像處理軟體框選動態高倍率三維血球凝集影像資料以及靜態高倍率三維血球凝集影像資料的一個或多個待測視野,並增加流速及曝光軌跡等參數以分析其像素分布資訊,並輸出至少一影像像素分布資料,其中影像像素分布資料則可進一步包含一單視野畫素分布波峰數量資訊、一單視野畫素分布波間峰數資訊、一單視野畫素分布面積資訊以及一單視野畫素分布平均波峰距離資訊,以進行後續的分析。Step 282 is to perform a double image preprocessing step, which is to perform preprocessing on the aforementioned high-magnification three-dimensional hemagglutination image data to obtain at least one image pixel distribution data. Specifically, the high-magnification 3D hemagglutination image data of the present invention may include at least one dynamic high-magnification 3D hemagglutination image data and at least one static high-magnification 3D hemagglutination image data, and the double image preprocessing step will further use image processing The software frame selects the dynamic high-magnification 3D hemagglutination image data and one or more fields to be tested for the static high-magnification 3D hemagglutination image data, and adds parameters such as flow velocity and exposure trajectory to analyze the pixel distribution information, and outputs at least one image pixel Distribution data, wherein the image pixel distribution data may further include information on the number of peaks of pixel distribution in a single field of view, information on the number of peaks between pixel distribution in a single field of view, information on the distribution area of pixels in a single field of view, and an average peak in pixel distribution in a single field of view distance information for subsequent analysis.
步驟283為進行一二重分析步驟,其係利用一迴歸分析演算模組分析影像像素分布資料後,再以一第二神經網路分類器訓練影像像素分布資料至收斂,以得一二重影像特徵值權重數據。詳細而言,迴歸分析演算模組將先根據一閾值對影像像素分布資料進行歸類,接著再視迴歸分析演算模組對影像像素分布資料的歸類結果自動地調整第二神經網路分類器的參數設定,並以設定完成之第二神經網路分類器訓練影像像素分布資料至收斂而輸出二重影像特徵值權重數據。具體而言,前述之迴歸分析演算模組可為羅吉斯迴歸演算模組,而第二神經網路分類器則可為支援向量機神經網路分類器。Step 283 is to perform a double analysis step, which uses a regression analysis algorithm module to analyze the image pixel distribution data, and then uses a second neural network classifier to train the image pixel distribution data to converge to obtain a double image Eigenvalue weight data. Specifically, the regression analysis algorithm module will first classify the image pixel distribution data according to a threshold, and then automatically adjust the second neural network classifier according to the classification result of the regression analysis algorithm module on the image pixel distribution data. The parameters are set, and the set second neural network classifier is used to train the image pixel distribution data to converge to output dual image feature value weight data. Specifically, the aforementioned regression analysis algorithm module can be a Logis regression algorithm module, and the second neural network classifier can be a support vector machine neural network classifier.
步驟284為進行一二重判斷步驟,其係利用第二神經網路分類器根據前述之二重影像特徵值權重數據而輸出一二重血球凝集判讀結果。其中,二重凝集判讀結果則可包含二重血液凝集價數判讀結果與二重血球凝集型態判讀結果。Step 284 is to perform a double judgment step, which utilizes the second neural network classifier to output a double hemagglutination interpretation result according to the aforementioned double image feature value weight data. Wherein, the double agglutination interpretation result may include the double blood agglutination valence interpretation result and the double blood agglutination type interpretation result.
詳細而言,本發明之影像像素分布資料包含高倍率三維血球凝集影像資料的單視野畫素分布波峰數量資訊、單視野畫素分布波間峰數資訊、單視野畫素分布面積資訊以及單視野畫素分布平均波峰距離資訊,而前述之單視野畫素分布波峰資訊、單視野畫素分布面積資訊以及單視野畫素分布平均波峰距離資訊將會自動地以迴歸分析演算模組進行分析,並根據迴歸分析演算模組的參照資料庫中之參考影像資料(血球單顆無凝集與血球3至5顆凝集)來對影像像素分布資料進行歸類,以判斷待測視野下是否有肉眼無法偵測之微細凝集。Specifically, the image pixel distribution data of the present invention includes information on the number of peaks of pixel distribution in a single field of view, information on the number of peaks between pixels in a single field of view, pixel distribution area information in a single field of view, and information on the area of pixel distribution in a single field of view of the high-magnification three-dimensional hemagglutination image data. The pixel distribution average peak distance information, and the aforementioned single-view pixel distribution peak information, single-view pixel distribution area information, and single-view pixel distribution average peak distance information will be automatically analyzed by the regression analysis algorithm module. The reference image data in the reference database of the regression analysis algorithm module (no agglutination of a single blood cell and agglutination of 3 to 5 blood cells) are used to classify the image pixel distribution data to determine whether there is any undetectable field of view that cannot be detected by the naked eye. of fine agglomeration.
接著,第二神經網路分類器將根據迴歸分析演算模組對影像像素分布資料的歸類結果自動地調整其參數設定,而後再以設定完成之第二神經網路分類器訓練影像像素分布資料至收斂而得二重影像特徵值權重數據,並進一步根據前述之二重影像特徵值權重數據輸出二重凝集判讀結果,而二重凝集判讀結果則可包含二重血液凝集價數判讀結果與二重血球凝集型態判讀結果,以提升本發明之自動化血液分析方法200a的分析準確度與分析完整度。Next, the second neural network classifier will automatically adjust its parameter settings according to the classification result of the image pixel distribution data by the regression analysis algorithm module, and then use the second neural network classifier that has been set to train the image pixel distribution data The double image eigenvalue weight data is obtained until convergence, and the double agglutination interpretation result is output according to the aforementioned double image eigenvalue weight data. The result of the hemagglutination pattern interpretation is used to improve the analysis accuracy and analysis integrity of the automated
請參照第8圖,其係繪示本發明再一實施方式之自動化血液分析方法200b的步驟流程圖。自動化血液分析方法200b包含步驟210b、步驟220b、步驟230b、步驟240b、步驟250b、步驟260b、步驟270b以及步驟280b,其中步驟210b、步驟220b、步驟230b、步驟240b、步驟250b、步驟260b以及步驟270b與第5圖之步驟210、步驟220、步驟230、步驟240、步驟250、步驟260以及步驟270相同,在此將不再贅述。Please refer to FIG. 8 , which is a flowchart showing the steps of an automated
在第8圖的實施例中,步驟280b為進行一合血評估步驟,其係將凝集判讀結果的一副本以一第三神經網路分類器進行訓練至收斂,以輸出一血液相合性評估結果,而血液相合性評估結果將進一步說明受試者之血液樣本與供血者之血液樣本之間的血液凝集結果為陽性或陰性,以利於後續血庫配發血液與輸血治療之便。具體而言,第三神經網路分類器可為一支援向量機神經網路分類器。In the embodiment of FIG. 8,
藉此,本發明之自動化血液分析方法200、自動化血液分析方法200a與自動化血液分析方法200b透過混合受試者之血液樣本及供血者之血液樣本並進行血液交叉試驗,並將所得之三維血球凝集影像資料自動地以第一神經網路分類器進行分析與訓練而輸出血液凝集價數判讀結果與血球凝集型態判讀結果,不僅可大幅降低不同血庫醫檢師的主觀判讀習慣所致之交叉試驗結果誤差以及提升檢測效率,亦可根據血液之三維血球凝集影像資料快速地進行交叉試驗的結果分析,以有效地提升交叉試驗的判讀準確度並利於後續醫療措施的施行,進而使本發明之自動化血液分析方法200、自動化血液分析方法200a與自動化血液分析方法200b具有相關領域之應用潛力。再者,本發明之自動化血液分析方法200a與自動化血液分析方法200b更可進一步以第二神經網路分類器或第三神經網路分類器對混合血液樣本的三維血球凝集影像資料或高倍率三維血球凝集影像資料進行訓練與分類,以免去習知以顯微鏡進行人工判讀所致之誤差及人力損耗,以提升檢測效率並可快速進行多批次的血液交叉試驗,進而使本發明之自動化血液分析方法200、自動化血液分析方法200a與自動化血液分析方法200b在高度使用便利性與檢測效率的前提下同時具有優異的判讀準確度,並具有相關領域之應用潛力。Thereby, the automated
[實施例][Example]
請參照第9圖,其係繪示本發明一實施方式之一實施例的自動化血液分析系統300的示意圖。自動化血液分析系統300包含一上樣平台310、一試驗平台320以及一處理器330。Please refer to FIG. 9 , which is a schematic diagram of an automated
上樣平台310包含樣本上樣裝置311、血品上樣裝置312、離心機313以及機械夾爪302,試驗平台320則包含試藥反應裝置321以及影像擷取裝置322。具體來說,在第9圖的實施例中,樣本上樣裝置311可包含一樣本上樣軌道,而血品上樣裝置312則可包含一血品上樣抽屜,但本發明並不以圖式揭露的內容為限。The
舉例而言,在以本發明之自動化血液分析系統300對受試者之血液樣本以及血庫儲存之供血者之血液樣本進行手工凝聚胺法分析時,盛裝受試者之血液樣本的採血管(未繪示)將置於樣本上樣裝置311的樣本上樣軌道上,以利於樣本上樣軌道將採血管送入自動化血液分析系統300進行處理,而供血者之血液樣本則以另一採血管(未繪示)盛裝並放入血品上樣裝置312的血品上樣抽屜中。接著,使用者將可透過使用者操作介面301操作上樣平台310的機械夾爪302,以將前述之二採血管轉移至離心機313中進行離心而取得受試者之血液樣本的血清以及供血者之血液樣本的血球。接著,受試者之血液樣本的血清以及供血者之血液樣本的血球將分別利用穿刺式自動移液器303而從未開蓋的採血管中移至放置於處理後樣本放置平台314的一離心管(未繪示)中,並由另一機械夾爪304將前述之離心管移置試藥反應裝置321中添加凝聚胺試劑,以得一混合血液樣本。接著,前述之裝有混合血液樣本的離心管將於37°C之反應槽中進行反應。在反應完成後,機械夾爪304將會快速地將離心管移至自動離心管震盪裝置323而以穩定力道進行均勻搖晃後進行離心。接著,機械夾爪304將會再次將前述之離心管轉移至影像擷取裝置322的視野範圍內,以拍攝反應後混合血液樣本的三維血球凝集影像資料,其中影像擷取裝置322係持續拍攝15秒,以得離心管中段的三維血球凝集影像資料,且影像擷取裝置322的鏡頭與離心管之間的角度約為70~90度。接著,三維血球凝集影像資料中前10秒的影像資料將被傳輸至處理器330進行後續分析,其中處理器330的血液交叉試驗評估程式可為第1圖實施方式之血液交叉試驗評估程式131、第3圖實施方式之血液交叉試驗評估程式131a或第4圖實施方式之血液交叉試驗評估程式131b,是以相關細節請參前段所述,在此將不再贅述。在完成影像分析與判讀後,凝集判讀結果、二重凝集判讀結果與血液相合性評估結果將會進一步顯示於使用者操作介面301,以利於後續血庫配發血液與輸血治療之便。For example, when the automated
然而,在此須說明的是,本發明之自動化血液分析系統300所列示之細部結構與元件設置均可視需求而進行配置,例如,機械夾爪304的數量可配置為單個或多個,離心機313的數量亦可配置為單個或多個,而因應不同類型之交叉試驗需求,亦可進一步增設其它可達成樣本上樣、試藥反應或分析之設備,但本發明並不以圖式揭露的內容為限。However, it should be noted here that the detailed structure and component arrangement shown in the automated
請參照第10A圖與第10B圖,第10A圖係本發明之一靜態三維血球凝集影像資料,第10B圖係本發明之一動態三維血球凝集影像資料。詳細而言,本發明之自動化血液分析系統的影像擷取裝置可擷取低倍率之靜態三維血球凝集影像資料與低倍率之動態三維血球凝集影像資料進行後續之影像分析,並可有效地移除呈現動態或靜態之三維血球凝集影像資料中非血球背景的影像資訊,並可進一步分辨不同程度之血球凝集狀態(如第10A圖與第10B圖中紅圈所示之處),以降低習知交叉試驗結果判讀時因背景溶血、脂血或部分藥物所造成的干擾,並可精準判定離心管中血液凝集價數小於+1的血液凝集反應。Please refer to Figure 10A and Figure 10B, Figure 10A is a static three-dimensional hemagglutination image data of the present invention, and Figure 10B is a dynamic three-dimensional hemagglutination image data of the present invention. In detail, the image capture device of the automated blood analysis system of the present invention can capture low-magnification static three-dimensional hemagglutination image data and low-magnification dynamic three-dimensional hemagglutination image data for subsequent image analysis, and can effectively remove the image data. Present the image information of the non-blood cell background in the dynamic or static 3D hemagglutination image data, and can further distinguish the different degrees of hemagglutination status (as shown by the red circle in Figure 10A and Figure 10B), so as to reduce the known Interference caused by background hemolysis, lipemia or some drugs in the interpretation of cross-test results can accurately determine blood agglutination reactions with blood agglutination valence less than +1 in the centrifuge tube.
具體而言,第10A圖之靜態三維血球凝集影像資料在經本發明之自動化血液分析系統與自動化血液分析方法分析後判讀為血液凝集價數+1而背景脂血價數+3,而第10B圖之動態三維血球凝集影像資料在經本發明之自動化血液分析系統與自動化血液分析方法分析後則判讀為血液凝集價數+1而背景溶血價數+2,且前述之判讀結果皆與臨床上之判讀結果相符,顯示本發明之自動化血液分析系統與自動化血液分析方法具有優異之血液分析準確度,並可免去習知以顯微鏡進行人工判讀所致之誤差及人力損耗,以提升檢測效率並可快速進行多批次的血液交叉試驗,並具有相關領域之應用潛力。Specifically, the static three-dimensional hemagglutination image data in Figure 10A is interpreted as the blood agglutination valence +1 and the background lipid valence +3 after being analyzed by the automated blood analysis system and automated blood analysis method of the present invention, while Figure 10B The dynamic three-dimensional hemagglutination image data is interpreted as the blood agglutination value +1 and the background hemolysis value +2 after being analyzed by the automatic blood analysis system and the automatic blood analysis method of the present invention, and the above-mentioned interpretation results are all consistent with clinical interpretation. The results are consistent, showing that the automated blood analysis system and the automated blood analysis method of the present invention have excellent blood analysis accuracy, and can avoid the conventional error and labor loss caused by manual interpretation with a microscope, so as to improve the detection efficiency and quickly Carry out multiple batches of blood cross-tests, and have application potential in related fields.
請參照第11圖、第12A圖與第12B圖,第11圖係本發明之一高倍率靜態三維血球凝集影像資料,第12A圖係第11圖之高倍率靜態三維血球凝集影像資料之單凝集顆粒的單視野畫素分布波峰資訊分析圖,第12B圖係第11圖之高倍率靜態三維血球凝集影像資料之多凝集顆粒的單視野畫素分布面積資訊分析圖。詳細而言,當本發明之第一神經網路分類器分析混合血液樣本之三維血球凝集影像資料所得之凝集判讀結果為+1以下時,影像擷取裝置將進一步擷取混合血液樣本的靜態高倍率三維血球凝集影像資料,以進一步提取其影像像素分布資料進行後續分析。Please refer to Fig. 11, Fig. 12A and Fig. 12B. Fig. 11 is a high-magnification static three-dimensional hemagglutination image data of the present invention, and Fig. 12A is a single agglutination of the high-magnification static three-dimensional hemagglutination image data of Fig. 11 The single-field pixel distribution peak information analysis diagram of the particles, Figure 12B is the single-field pixel distribution area information analysis diagram of the multi-agglutinated particles in the high-magnification static three-dimensional hemagglutination image data of Figure 11. Specifically, when the agglutination interpretation result obtained by the first neural network classifier of the present invention by analyzing the three-dimensional hemagglutination image data of the mixed blood sample is below +1, the image capture device will further capture the static high value of the mixed blood sample. The magnification three-dimensional hemagglutination image data can be extracted to further extract the image pixel distribution data for subsequent analysis.
如第11圖、第12A圖與第12B圖所示,影像擷取裝置的影像處理軟體將自動地框選靜態高倍率三維血球凝集影像資料中單顆血球且無凝集之視野,並增加流速及曝光軌跡等參數而分析該視野下的單凝集顆粒的單視野畫素分布波峰資訊(第12A圖),並自動地框選靜態高倍率三維血球凝集影像資料中血球具有微細凝集之視野,以及增加流速及曝光軌跡等參數而分析該視野下的多凝集顆粒的單視野畫素分布面積資訊(第12B圖),接著根據迴歸分析演算模組的參照資料庫中之參考影像資料(血球單顆無凝集與血球3至5顆凝集)對單視野畫素分布波峰資訊與單視野畫素分布面積資訊進行歸類,以判斷待測視野下是否有肉眼無法偵測之微細凝集,而後再以第二神經網路分類器訓練前述之影像像素分布資料至收斂而得二重影像特徵值權重數據,並進一步根據前述之二重影像特徵值權重數據輸出二重凝集判讀結果。As shown in Fig. 11, Fig. 12A and Fig. 12B, the image processing software of the image capture device will automatically select the field of view of a single blood cell without agglutination in the static high-magnification 3D hemagglutination image data, and increase the flow rate and Exposure trajectory and other parameters to analyze the single-field pixel distribution peak information of single agglutinated particles in the field of view (Fig. 12A), and automatically select the field of view with fine agglutination of blood cells in the static high-magnification 3D hemagglutination image data, and increase the Flow velocity and exposure trajectory and other parameters to analyze the pixel distribution area information of the multi-aggregated particles in the field of view (Fig. 12B), and then calculate the reference image data in the reference database of the module according to the regression analysis (a single blood cell has no Agglutination and agglutination of 3 to 5 blood cells) classify the peak information of the pixel distribution in the single field and the distribution area information of the pixel in the single field to determine whether there is a fine agglutination that cannot be detected by the naked eye in the field of view to be tested, and then use the second The neural network classifier trains the aforementioned image pixel distribution data to converge to obtain double image feature value weight data, and further outputs a double agglutination interpretation result according to the aforementioned double image feature value weight data.
再者,請參照第13A圖、第13B圖、第14A圖、第14B圖、第14C圖、第15A圖、第15B圖與第15C圖。第13A圖係本發明之一無發生凝集反應之高倍率動態三維血球凝集影像資料,第13B圖係本發明之一發生凝集反應之高倍率動態三維血球凝集影像資料,第14A圖係第13A圖之高倍率動態三維血球凝集影像資料之單凝集顆粒的單視野影像在10秒內的影像變化圖,第14B圖係第14A圖的影像變化圖所對應之8秒內的單視野影像的單視野畫素分布波峰資訊分析圖,第14C圖係第14B圖中第4秒之單視野影像的單視野畫素分布波峰資訊分析圖的放大圖,第15A圖係第13B圖之高倍率動態三維血球凝集影像資料之多凝集顆粒的單視野影像在10秒內的影像變化圖,第15B圖係第15A圖的影像變化圖所對應之8秒內的單視野影像的單視野畫素分布波峰資訊分析圖,第15C圖係第15B圖中第5秒之單視野影像的單視野畫素分布波峰資訊分析圖的放大圖。Furthermore, please refer to Fig. 13A, Fig. 13B, Fig. 14A, Fig. 14B, Fig. 14C, Fig. 15A, Fig. 15B and Fig. 15C. Fig. 13A is the high-magnification dynamic three-dimensional hemagglutination image data of the present invention without agglutination reaction, Fig. 13B is the high-magnification dynamic three-dimensional hemagglutination image data of the present invention with agglutination reaction, and Fig. 14A is Fig. 13A The high-magnification dynamic three-dimensional hemagglutination image data of the single-field image of a single-field image of agglutinated particles within 10 seconds. Figure 14B is a single-field image of the single-field image within 8 seconds corresponding to the image change map of Figure 14A. Pixel distribution peak information analysis diagram, Figure 14C is an enlarged view of the single-field pixel distribution peak information analysis diagram of the single-field image at the 4th second in Figure 14B, and Figure 15A is the high-magnification dynamic three-dimensional blood cell in Figure 13B. The image change diagram of the single-field image of multiple agglutinated particles within 10 seconds of agglutination image data. Figure 15B is the single-field image pixel distribution peak information analysis of the single-field image within 8 seconds corresponding to the image change diagram of Figure 15A. Fig. 15C is an enlarged view of the single-field pixel distribution peak information analysis graph of the single-field image at the 5th second in Fig. 15B.
如第13A圖、第14A圖、第14B圖與第14C圖所示,當本發明之第一神經網路分類器分析混合血液樣本之三維血球凝集影像資料所得之凝集判讀結果為+1以下時,為了進行更加準確地評估血液凝集情形,影像擷取裝置將進一步擷取混合血液樣本持續15秒變化的動態高倍率三維血球凝集影像資料(第14A圖),且影像擷取裝置的影像處理軟體將自動地框選動態高倍率三維血球凝集影像資料中單顆血球且無凝集之視野,並增加流速及曝光軌跡等參數而分析該視野下10秒內的不同單凝集顆粒的單視野畫素分布波峰數量資訊(第14B圖)與單視野畫素分布波間峰數資訊(第14C圖中的圓圈標示的個數總合代表第4秒之單視野影像的單視野畫素分布波間峰數資訊,而第14C圖中相鄰之任二圓圈標示的距離之平均則為單視野畫素分布平均波峰距離資訊),並自動計算曲線下的單視野畫素分布面積資訊,接著根據迴歸分析演算模組的參照資料庫中之參考影像資料對單視野畫素分布波峰數量資訊、單視野畫素分布波間峰數資訊、單視野畫素分布面積資訊與單視野畫素分布平均波峰距離資訊分別進行歸類,以判斷待測視野下是否有肉眼無法偵測之微細凝集,而後再以第二神經網路分類器訓練影像像素分布資料至收斂而得二重影像特徵值權重數據,並進一步根據前述之二重影像特徵值權重數據輸出二重凝集判讀結果。As shown in Fig. 13A, Fig. 14A, Fig. 14B and Fig. 14C, when the first neural network classifier of the present invention analyzes the three-dimensional hemagglutination image data of the mixed blood sample, the agglutination interpretation result obtained is +1 or less , in order to more accurately assess the blood agglutination situation, the image capture device will further capture the dynamic high-magnification 3D hemagglutination image data (Fig. 14A) of the mixed blood sample that changes continuously for 15 seconds, and the image processing software of the image capture device The field of view of a single blood cell without agglutination in the dynamic high-magnification 3D hemagglutination image data will be automatically framed, and parameters such as flow velocity and exposure trajectory will be added to analyze the single-field pixel distribution of different single agglutinated particles within 10 seconds in the field of view. The peak number information (Fig. 14B) and the single-view pixel distribution inter-wave peak number information (the sum of the numbers indicated by the circles in Fig. 14C represents the single-view pixel distribution inter-wave peak number information of the single-view image in the 4th second, The average of the distances marked by any two adjacent circles in Figure 14C is the information on the average peak distance of the single-view pixel distribution), and the single-view pixel distribution area information under the curve is automatically calculated, and then the module is calculated according to the regression analysis. The reference image data in the reference database categorizes the information on the number of peaks of pixel distribution in a single field of view, the information on the number of peaks between pixels in a single field of view, the area information of pixel distribution in a single field of view, and the information on the average peak distance of pixel distribution in a single field of view. , to determine whether there is a fine agglutination that cannot be detected by the naked eye in the field of view to be tested, and then use the second neural network classifier to train the image pixel distribution data to converge to obtain dual image eigenvalue weight data, and further according to the aforementioned two The double agglutination interpretation result is output from the weighted data of the eigenvalues of the double image.
再者,如第13B圖、第15A圖、第15B圖與第15C圖所示,當本發明之第一神經網路分類器分析混合血液樣本之三維血球凝集影像資料所得之凝集判讀結果為+1以下,但三維血球凝集影像資料呈現細微凝集時,為了進行更加準確地評估血液凝集情形,影像擷取裝置將進一步擷取混合血液樣本持續15秒變化的動態高倍率三維血球凝集影像資料(第15A圖),且影像擷取裝置的影像處理軟體將自動地框選動態高倍率三維血球凝集影像資料中血球具有微細凝集之視野,並增加流速及曝光軌跡等參數而分析該視野下10秒內的不同多凝集顆粒的單視野畫素分布波峰數量資訊(第15B圖)與單視野畫素分布波間峰數資訊(第15C圖中的圓圈標示的個數總合代表第5秒之單視野影像的單視野畫素分布波間峰數資訊,而第15C圖中相鄰之任二圓圈標示的距離之平均則為單視野畫素分布平均波峰距離資訊),並自動計算曲線下的單視野畫素分布面積資訊,接著根據迴歸分析演算模組的參照資料庫中之參考影像資料單視野畫素分布波峰數量資訊、單視野畫素分布波間峰數資訊、單視野畫素分布面積資訊與單視野畫素分布平均波峰距離資訊分別進行歸類,以判斷待測視野下是否有其他肉眼無法偵測之微細凝集,而後再以第二神經網路分類器訓練影像像素分布資料至收斂而得二重影像特徵值權重數據,並進一步根據前述之二重影像特徵值權重數據輸出二重凝集判讀結果。Furthermore, as shown in Fig. 13B, Fig. 15A, Fig. 15B and Fig. 15C, when the first neural network classifier of the present invention analyzes the three-dimensional hemagglutination image data of the mixed blood sample, the agglutination interpretation result obtained is + 1 or less, but when the 3D hemagglutination image data shows fine agglutination, in order to evaluate the blood agglutination more accurately, the image capture device will further capture the dynamic high-magnification 3D hemagglutination image data of the mixed blood sample that lasts for 15 seconds (No. 15A), and the image processing software of the image capture device will automatically select the field of view where blood cells have fine agglutination in the dynamic high-magnification 3D hemagglutination image data, and increase the parameters such as flow rate and exposure trajectory to analyze the field of view within 10 seconds The information on the number of peaks in the pixel distribution of different polyagglutinated particles (Fig. 15B) and the information on the number of peaks in the pixel distribution in a single field of view (the sum of the numbers indicated by the circles in Fig. 15C represents the single-field image in the 5th second). The information on the number of peaks in the single-view pixel distribution between waves, and the average of the distances marked by any two adjacent circles in Figure 15C is the single-view pixel distribution average peak distance information), and the single-view pixel under the curve is automatically calculated. Distribution area information, and then according to the reference image data in the reference database of the regression analysis algorithm module, the single-view pixel distribution peak number information, the single-view pixel distribution peak number information, the single-view pixel distribution area information, and the single-view image The average peak distance information of the pixel distribution is classified separately to determine whether there are other fine agglutinations that cannot be detected by the naked eye in the field of view to be tested, and then use the second neural network classifier to train the image pixel distribution data to converge to obtain a double image. Eigenvalue weight data, and further output a dual agglutination interpretation result according to the aforementioned dual image eigenvalue weight data.
請參照第16圖、第17圖與第18圖,第16圖係繪示本發明之自動化血液分析系統以單視野畫素分布面積資訊進行分析之接收者操作特徵曲線(receiver operating characteristic curve,ROC)圖,第17圖係繪示本發明之自動化血液分析系統以單視野影像的單視野畫素分布波間峰數資訊進行分析之接收者操作特徵曲線圖,第18圖係繪示本發明之自動化血液分析系統以單視野畫素分布平均波峰距離資訊進行分析之接收者操作特徵曲線圖。Please refer to Fig. 16, Fig. 17 and Fig. 18. Fig. 16 shows the receiver operating characteristic curve (ROC) analyzed by the automated blood analysis system of the present invention using single-view pixel distribution area information. ), Figure 17 is a graph showing the receiver operating characteristic curve of the automated blood analysis system of the present invention using the single-field image pixel distribution peak number information of the single-field image to analyze, and Figure 18 is an automated blood analysis system of the present invention. The blood analysis system analyzes the receiver operating characteristic curve based on the average peak distance information of the pixel distribution of the single field of view.
如第16圖所示,當以本發明之自動化血液分析系統進行受試者之血液樣本與供血者之血液樣本的交叉試驗並以其單視野畫素分布面積資訊進行分析時,其接收者操作特徵曲線之曲線下面積(Area Under the Receiver Operating Characteristic curve,AUROC)可高達0.993,其評估靈敏度(Sensitivity)為96.67%至100.00%,其評估特異度(Specificity)為80.00%至100.00%,而以單視野畫素分布面積資訊進行分析的相關標準值(associated criterion value)則為大於9519至12738。As shown in Fig. 16, when the automated blood analysis system of the present invention is used to perform a cross-experiment between the blood sample of the subject and the blood sample of the donor and analyze the information of the pixel distribution area of the single field of view, the receiver operates The Area Under the Receiver Operating Characteristic curve (AUROC) of the characteristic curve can be as high as 0.993, its evaluation sensitivity (Sensitivity) is 96.67% to 100.00%, and its evaluation specificity (Specificity) is 80.00% to 100.00%. The associated criterion value for analyzing the pixel distribution area information of the single field of view is greater than 9519 to 12738.
如第17圖所示,當以本發明之自動化血液分析系統進行受試者之血液樣本與供血者之血液樣本的交叉試驗並以其單視野畫素分布波間峰數資訊進行分析時,其接收者操作特徵曲線之曲線下面積可高達0.962,其評估靈敏度為96.67%至100.00%,其評估特異度為63.33%至93.33%,而以單視野畫素分布波間峰數資訊進行分析的相關標準值則為小於68至75。As shown in Fig. 17, when the automated blood analysis system of the present invention is used to perform a cross-experiment between the blood sample of the subject and the blood sample of the donor and analyze the information on the peak number between the single-field pixel distributions, it receives The area under the curve of the operator's operating characteristic curve can be as high as 0.962, its evaluation sensitivity is 96.67% to 100.00%, its evaluation specificity is 63.33% to 93.33%, and the relevant standard value of the single-field pixel distribution peak number information for analysis is less than 68 to 75.
再者,如第18圖所示,當以本發明之自動化血液分析系統進行受試者之血液樣本與供血者之血液樣本的交叉試驗並以其單視野畫素分布平均波峰距離資訊進行分析時,其接收者操作特徵曲線之曲線下面積可高達0.964,其評估靈敏度為86.67%至93.33%,其評估特異度為90.00%至96.67%,而以單視野畫素分布平均波峰距離資訊進行分析的相關標準值則為大於14.6至15.2。Furthermore, as shown in FIG. 18, when the automated blood analysis system of the present invention is used to perform a cross-experiment between the blood sample of the subject and the blood sample of the donor, and analyze the average peak distance information of the pixel distribution of the single field of view. , the area under the curve of the receiver operating characteristic curve can be as high as 0.964, its assessment sensitivity is 86.67% to 93.33%, and its assessment specificity is 90.00% to 96.67%. The relevant normative value is greater than 14.6 to 15.2.
再者,本發明之自動化血液分析系統更進一步根據單視野畫素分布波峰數量資訊、單視野畫素分布面積資訊、單視野畫素分布波間峰數資訊以及單視野畫素分布平均波峰距離資訊所呈現的結果推算而得一決斷參數A(Cut score A)以及一決斷參數B(Cut score B),以進一步評估本發明之自動化血液分析系統的血球凝集判讀準確度,其中決斷參數A是以下述之式(I)計算而得,決斷參數B則是以下述之式(II)計算而得。 決斷參數A = (0.00075 × 單視野畫素分布面積資訊) + (2.27 × 單視野畫素分布波間峰數資訊) + (14.88 × 單視野畫素分布平均波峰距離資訊)…式(I)。 決斷參數B = (0.00075 × 單視野畫素分布面積資訊) + (2.27 × 單視野畫素分布波間峰數資訊) + (14.88 × 單視野畫素分布平均波峰距離資訊) – (4.11 × 單視野畫素分布波峰數量資訊)…式(II)。 Furthermore, the automated blood analysis system of the present invention is further based on information on the number of peaks of pixel distribution in a single field of view, information on the distribution area of pixels in a single field of view, information on the number of peaks between pixels in a single field of view, and information on the average peak distance of pixel distribution in a single field of view. The presented results are calculated to obtain a decision parameter A (Cut score A) and a decision parameter B (Cut score B) to further evaluate the accuracy of hemagglutination interpretation of the automated blood analysis system of the present invention, wherein the decision parameter A is the following The formula (I) is calculated, and the decision parameter B is calculated by the following formula (II). The decision parameter A = (0.00075 × information on the pixel distribution area of a single field of view) + (2.27 × information on the number of peaks of the pixel distribution in a single field of view) + (14.88 × information on the average peak distance of the pixel distribution in a single field of view)… Equation (I). Decision parameter B = (0.00075 × single-view pixel distribution area information) + (2.27 × single-view pixel distribution peak number information) + (14.88 × single-view pixel distribution average peak distance information) – (4.11 × single-view pixel distribution information) information on the number of peaks in the prime distribution)… Equation (II).
請參考第19圖與第20圖,第19圖係繪示本發明之自動化血液分析系統進行分析所輸出的決斷參數A的接收者操作特徵曲線圖,第20圖係繪示本發明之自動化血液分析系統進行分析所輸出的決斷參數B的接收者操作特徵曲線圖。如第19圖所示,以決斷參數B進行分析的接收者操作特徵曲線之曲線下面積可高達0.991,其評估靈敏度為96.67%至100.00%,其評估特異度為73.33%至100.00%,而其相關標準值則為大於385至394,而如第20圖所示,以決斷參數B進行分析的接收者操作特徵曲線之曲線下面積可高達0.991,其評估靈敏度為90.00%至100.00%,其評估特異度為80.00%至100.00%,而其相關標準值則為大於381至390,顯示本發明之自動化血液分析系統及自動化血液分析方法具有優異的血球凝集判讀準確度。Please refer to Fig. 19 and Fig. 20. Fig. 19 shows the receiver operating characteristic curve of the decision parameter A output by the automated blood analysis system of the present invention, and Fig. 20 depicts the automated blood analysis system of the present invention. The analysis system analyzes the receiver operating characteristic curve graph of the output decision parameter B. As shown in Figure 19, the area under the curve of the receiver operating characteristic curve analyzed with the decision parameter B can be as high as 0.991, its assessment sensitivity is 96.67% to 100.00%, its assessment specificity is 73.33% to 100.00%, and its The relevant standard value is greater than 385 to 394, and as shown in Figure 20, the area under the curve of the receiver operating characteristic curve analyzed with the decision parameter B can be as high as 0.991, and its evaluation sensitivity is 90.00% to 100.00%. The specificity is 80.00% to 100.00%, and the relative standard value is greater than 381 to 390, indicating that the automated blood analysis system and the automated blood analysis method of the present invention have excellent hemagglutination interpretation accuracy.
另外,當本發明之自動化血液分析系統及自動化血液分析方法血庫完成分析後,將可進一步輸出單視野畫素分布波峰數量資訊、單視野畫素分布面積資訊的相關標準值、單視野畫素分布波間峰數資訊的相關標準值、單視野畫素分布平均波峰距離資訊的相關標準值以及前述之決斷參數A或決斷參數B的數值,以供醫檢師進一步進行分析與判斷。In addition, when the automated blood analysis system and automated blood analysis method of the present invention completes the analysis, the blood bank can further output information on the number of peaks in the pixel distribution of the single field of view, the relevant standard value of the pixel distribution area information in the single field of view, and the pixel distribution in the single field of view. The relevant standard value of the information on the number of peaks between waves, the relevant standard value of the information on the average peak distance of the single-field pixel distribution, and the value of the aforementioned decision parameter A or decision parameter B are for further analysis and judgment by the medical examiner.
請參照第21圖與第22圖,第21圖係繪示本發明之自動化血液分析系統所輸出的未發生凝集之單視野畫素分布面積資訊、單視野畫素分布平均波峰距離資訊以及決斷參數B的三維相關性分布圖,第22圖係繪示本發明之自動化血液分析系統所輸出的發生凝集之單視野畫素分布面積資訊、單視野畫素分布平均波峰距離資訊以及決斷參數B的三維相關性分布圖。如第21圖與第22圖所示,未發生凝集的血液交叉試驗組別與發生凝集的血液交叉試驗組別可以明顯地被區分(請參考第21圖與第22圖的座標分布範圍),其更加顯示本發明之自動化血液分析系統及自動化血液分析方法具有優異的血球凝集判讀準確度,並具有相關市場的應用潛力。Please refer to Fig. 21 and Fig. 22. Fig. 21 shows the pixel distribution area information of a single visual field without agglutination, the average peak distance information of the single visual field pixel distribution, and the decision parameter output by the automated blood analysis system of the present invention. The three-dimensional correlation distribution diagram of B, Fig. 22 shows the information of the single-field pixel distribution area information of agglutination, the average peak distance information of the single-field pixel distribution and the three-dimensional determination parameter B output by the automated blood analysis system of the present invention. Correlation distribution map. As shown in Fig. 21 and Fig. 22, the blood cross-test group without agglutination and the blood cross-test group with agglutination can be clearly distinguished (please refer to the coordinate distribution range of Fig. 21 and Fig. 22), It further shows that the automated blood analysis system and the automated blood analysis method of the present invention have excellent hemagglutination interpretation accuracy, and have application potential in the relevant market.
由上述結果所示,本發明之自動化血液分析系統及自動化血液分析方法用於進行受試者之血液樣本與供血者之血液樣本的交叉試驗並分析其結果的正確度、靈敏度及特異度均優異,顯示本發明之自動化血液分析系統及自動化血液分析方法可精準地以交叉試驗中反應後混合血液樣本之三維血球凝集影像資料判讀血液凝集價數判讀與血球凝集型態判讀,以達成血品處理之一致性,並可大幅降低不同血庫醫檢師的主觀判讀習慣所致之交叉試驗結果誤差以及提升檢測效率。As shown by the above results, the automated blood analysis system and the automated blood analysis method of the present invention are used for cross-experiment of blood samples of subjects and blood samples of donors, and the accuracy, sensitivity and specificity of the results are excellent. , it shows that the automated blood analysis system and the automated blood analysis method of the present invention can accurately interpret blood agglutination valence and hemagglutination pattern according to the three-dimensional hemagglutination image data of the mixed blood samples after the reaction in the cross-experiment, so as to achieve blood processing. It can greatly reduce the error of cross-test results caused by the subjective interpretation habits of different blood bank medical examiners and improve the detection efficiency.
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be determined by the scope of the appended patent application.
100,300:自動化血液分析系統
110,310:上樣平台
111,311:樣本上樣裝置
112,312:血品上樣裝置
120,320:試驗平台
121,321:試藥反應裝置
122,322:影像擷取裝置
123:光源
124:相機模組
130,130a,130b,330:處理器
131,131a,131b:血液交叉試驗評估程式
140,140a,140b:第一影像前處理模組
150,150a,150b:第一訓練模組
160,160a,160b:第一判斷模組
170a:第二影像前處理模組
170b:合血評估模組
180a:第二訓練模組
190a:第二判斷模組
200,200a,200b:自動化血液分析方法
210,210a,210b,220,220a,220b,230,230a,230b,240,240a,240b,250,250a,250b,260,260a,260b,270,270a,270b,280a,280b,281,282,283,284:步驟
301:使用者操作介面
302,304:機械夾爪
303:穿刺式自動移液器
313:離心機
314:樣本放置平台
323:自動離心管震盪裝置
100,300: Automated blood analysis system
110,310: Loading platform
111,311: Sample loading device
112,312: Blood sample loading device
120,320: Testbed
121,321: Reagent reaction device
122,322: Image capture device
123: light source
124:
第1圖係繪示本發明一實施方式之自動化血液分析系統的架構示意圖; 第2圖係繪示第1圖之自動化血液分析系統的處理器的架構示意圖; 第3圖係繪示第1圖之自動化血液分析系統的另一處理器的架構示意圖; 第4圖係繪示第1圖之自動化血液分析系統的又一處理器的架構示意圖; 第5圖係繪示本發明另一實施方式之自動化血液分析方法的步驟流程圖; 第6圖係繪示本發明又一實施方式之自動化血液分析方法的步驟流程圖; 第7圖係繪示第6圖之自動化血液分析方法的二重分析判斷步驟的步驟流程圖; 第8圖係繪示本發明再一實施方式之自動化血液分析方法的步驟流程圖; 第9圖係繪示本發明一實施方式之一實施例的自動化血液分析系統的示意圖; 第10A圖係本發明之一靜態三維血球凝集影像資料; 第10B圖係本發明之一動態三維血球凝集影像資料; 第11圖係本發明之一高倍率靜態三維血球凝集影像資料; 第12A圖係第11圖之高倍率靜態三維血球凝集影像資料之單凝集顆粒的單視野畫素分布波峰資訊分析圖; 第12B圖係第11圖之高倍率靜態三維血球凝集影像資料之多凝集顆粒的單視野畫素分布面積資訊分析圖; 第13A圖係本發明之一無發生凝集反應之高倍率動態三維血球凝集影像資料; 第13B圖係本發明之一發生凝集反應之高倍率動態三維血球凝集影像資料; 第14A圖係第13A圖之高倍率動態三維血球凝集影像資料之單凝集顆粒的單視野影像在10秒內的影像變化圖; 第14B圖係第14A圖的影像變化圖所對應之8秒內的單視野影像的單視野畫素分布波峰資訊分析圖; 第14C圖係第14B圖中第4秒之單視野影像的單視野畫素分布波峰資訊分析圖的放大圖; 第15A圖係第13B圖之高倍率動態三維血球凝集影像資料之多凝集顆粒的單視野影像在10秒內的影像變化圖; 第15B圖係第15A圖的影像變化圖所對應之8秒內的單視野影像的單視野畫素分布波峰資訊分析圖; 第15C圖係第15B圖中第5秒之單視野影像的單視野畫素分布波峰資訊分析圖的放大圖; 第16圖係繪示本發明之自動化血液分析系統以單視野畫素分布面積資訊進行分析之接收者操作特徵曲線(receiver operating characteristic curve,ROC)圖; 第17圖係繪示本發明之自動化血液分析系統以單視野影像的單視野畫素分布波間峰數資訊進行分析之接收者操作特徵曲線圖; 第18圖係繪示本發明之自動化血液分析系統以單視野畫素分布平均波峰距離資訊進行分析之接收者操作特徵曲線圖; 第19圖係繪示本發明之自動化血液分析系統進行分析所輸出的決斷參數A(Cut score A)的接收者操作特徵曲線圖; 第20圖係繪示本發明之自動化血液分析系統進行分析所輸出的決斷參數B(Cut score B)的接收者操作特徵曲線圖; 第21圖係繪示本發明之自動化血液分析系統所輸出的未發生凝集之單視野畫素分布面積資訊、單視野畫素分布平均波峰距離資訊以及決斷參數B的三維相關性分布圖;以及 第22圖係繪示本發明之自動化血液分析系統所輸出的發生凝集之單視野畫素分布面積資訊、單視野畫素分布平均波峰距離資訊以及決斷參數B的三維相關性分布圖。 FIG. 1 is a schematic diagram showing the structure of an automated blood analysis system according to an embodiment of the present invention; FIG. 2 is a schematic structural diagram of the processor of the automated blood analysis system of FIG. 1; FIG. 3 is a schematic structural diagram of another processor of the automated blood analysis system of FIG. 1; FIG. 4 is a schematic structural diagram of another processor of the automated blood analysis system of FIG. 1; FIG. 5 is a flowchart showing the steps of an automated blood analysis method according to another embodiment of the present invention; FIG. 6 is a flowchart showing the steps of an automated blood analysis method according to another embodiment of the present invention; Fig. 7 is a flow chart showing the steps of the double analysis and determination steps of the automated blood analysis method of Fig. 6; FIG. 8 is a flow chart showing the steps of an automated blood analysis method according to still another embodiment of the present invention; FIG. 9 is a schematic diagram illustrating an automated blood analysis system according to an example of an embodiment of the present invention; Figure 10A is a static three-dimensional hemagglutination image data of the present invention; Figure 10B is a dynamic three-dimensional hemagglutination image data of the present invention; Figure 11 is a high-magnification static three-dimensional hemagglutination image data of the present invention; Fig. 12A is an analysis of the peak information of the pixel distribution of the single-field pixel distribution of the single agglutinated particle in the high-magnification static three-dimensional hemagglutination image data of Fig. 11; Figure 12B is an analysis of the single-field pixel distribution area information of polyagglutinated particles in the high-magnification static three-dimensional hemagglutination image data of Figure 11; Figure 13A is a high-magnification dynamic three-dimensional hemagglutination image data of the present invention without agglutination; Figure 13B is a high-magnification dynamic three-dimensional hemagglutination image data of an agglutination reaction of the present invention; Fig. 14A is a graph of image changes within 10 seconds of the single-field image of a single agglutinated particle in the high-magnification dynamic three-dimensional hemagglutination image data of Fig. 13A; Fig. 14B is an analysis diagram of peak information of single-view pixel distribution of a single-view image within 8 seconds corresponding to the image change chart of Fig. 14A; Fig. 14C is an enlarged view of the single-view pixel distribution peak information analysis graph of the single-view image at the 4th second in Fig. 14B; Fig. 15A is a graph of the image change within 10 seconds of the single-field image of polyagglutinated particles in the high-magnification dynamic three-dimensional hemagglutination image data of Fig. 13B; Fig. 15B is an analysis diagram of peak information of single-view pixel distribution of a single-view image within 8 seconds corresponding to the image change chart of Fig. 15A; Fig. 15C is an enlarged view of the single-view pixel distribution peak information analysis graph of the single-view image at the 5th second in Fig. 15B; FIG. 16 is a receiver operating characteristic curve (ROC) diagram of the automated blood analysis system of the present invention that analyzes the pixel distribution area information in a single field of view; Fig. 17 is a graph showing the receiver operating characteristic curve of the automated blood analysis system of the present invention, which analyzes the peak number information of the single-view pixel distribution of the single-view image; Fig. 18 is a graph showing the receiver operating characteristic curve of the automated blood analysis system of the present invention that analyzes the average peak distance information of the pixel distribution in a single field of view; Fig. 19 is a graph showing the receiver operating characteristic curve of the decision parameter A (Cut score A) output by the automated blood analysis system of the present invention; Fig. 20 is a graph showing the receiver operating characteristic curve of the decision parameter B (Cut score B) output by the automated blood analysis system of the present invention; FIG. 21 is a three-dimensional correlation distribution diagram of the single-field pixel distribution area information without agglutination, the single-field pixel distribution average peak distance information, and the decision parameter B output by the automated blood analysis system of the present invention; and FIG. 22 is a three-dimensional correlation distribution diagram of the single-field pixel distribution area information of agglutination, the single-field pixel distribution average peak distance information and the decision parameter B output by the automated blood analysis system of the present invention.
100:自動化血液分析系統 110:上樣平台 111:樣本上樣裝置 112:血品上樣裝置 120:試驗平台 121:試藥反應裝置 122:影像擷取裝置 123:光源 124:相機模組 130:處理器 100: Automated Blood Analysis System 110: Loading platform 111: Sample loading device 112: Blood sample loading device 120: Testbed 121: Reagent reaction device 122: Image capture device 123: light source 124: Camera Module 130: Processor
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW109140383A TWI767415B (en) | 2020-11-18 | 2020-11-18 | Automatic blood analysis system and automatic blood analysis method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW109140383A TWI767415B (en) | 2020-11-18 | 2020-11-18 | Automatic blood analysis system and automatic blood analysis method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202221324A TW202221324A (en) | 2022-06-01 |
| TWI767415B true TWI767415B (en) | 2022-06-11 |
Family
ID=83062472
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW109140383A TWI767415B (en) | 2020-11-18 | 2020-11-18 | Automatic blood analysis system and automatic blood analysis method |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI767415B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW429262B (en) * | 1993-12-06 | 2001-04-11 | Novartis Ag | C5a receptor antagonists having substantially no agonist activity |
| US20040142463A1 (en) * | 2001-10-11 | 2004-07-22 | George Walker | Methods, compositions, and automated systems for separating rare cells from fluid samples |
| TW201831881A (en) * | 2012-07-25 | 2018-09-01 | 美商提拉諾斯股份有限公司 | Image analysis and measurement of biological samples |
-
2020
- 2020-11-18 TW TW109140383A patent/TWI767415B/en active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW429262B (en) * | 1993-12-06 | 2001-04-11 | Novartis Ag | C5a receptor antagonists having substantially no agonist activity |
| US20040142463A1 (en) * | 2001-10-11 | 2004-07-22 | George Walker | Methods, compositions, and automated systems for separating rare cells from fluid samples |
| TW201831881A (en) * | 2012-07-25 | 2018-09-01 | 美商提拉諾斯股份有限公司 | Image analysis and measurement of biological samples |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202221324A (en) | 2022-06-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106525666B (en) | Blood analysis device, blood analysis method and information processing unit | |
| WO2016106688A1 (en) | Nucleated red blood cell warning method and device, and flow cytometer | |
| US11125687B2 (en) | Method and device for identifying fragmented red blood cells, blood cell analyzer and analysis method | |
| Ge et al. | A system for counting fetal and maternal red blood cells | |
| CN104422646B (en) | Method of sample analysis and device for analyzing samples | |
| KR20130018405A (en) | Method and system for analyzing a blood sample | |
| TWI767415B (en) | Automatic blood analysis system and automatic blood analysis method | |
| US12287273B2 (en) | Method for optimising the concentration of elements of interest for visual measurement on a biological sample | |
| Cruz et al. | Microscopic image analysis and counting of red blood cells and white blood cells in a urine sample | |
| WO2010147146A1 (en) | Method for detecting target cell | |
| US20240353311A1 (en) | Blood cell analyzer, method and use of infection marker parameter | |
| WO2023056712A1 (en) | Blood analysis apparatus and blood analysis method for animals | |
| CN111239027A (en) | Blood particle detection method and blood analyzer | |
| CN114324888A (en) | Micro-column agglutination method indirect anti-human globulin test method | |
| EP1849125B1 (en) | Method and apparatus for analyzing body fluids | |
| CN112924452A (en) | Blood examination auxiliary system | |
| WO2023125940A1 (en) | Hematology analyzer, method, and use of infection marker parameter | |
| CN1904618A (en) | Method of implementing erythrocyte blood group antigen detection on haemocyte analysis instrument | |
| CN116615653A (en) | Sample analysis system, sample image analysis system, blood analyzer, and sample analysis method | |
| Villalba et al. | Low haptoglobin in pregnancy: physiological or intravascular hemolysis? | |
| CN115704763B (en) | Identification method and device for red blood cell fragments | |
| Ferraz et al. | Automatic Determination of Human Blood Types using Image Processing Techniques. | |
| US20250095148A1 (en) | Method for providing image analysis information of blood sample | |
| US20120171700A1 (en) | Cell identifying apparatus and cell identifying method | |
| US12078631B2 (en) | Sample analysis apparatus and sample analysis method |