TWI761671B - 活體偵測方法與活體偵測系統 - Google Patents
活體偵測方法與活體偵測系統 Download PDFInfo
- Publication number
- TWI761671B TWI761671B TW108111598A TW108111598A TWI761671B TW I761671 B TWI761671 B TW I761671B TW 108111598 A TW108111598 A TW 108111598A TW 108111598 A TW108111598 A TW 108111598A TW I761671 B TWI761671 B TW I761671B
- Authority
- TW
- Taiwan
- Prior art keywords
- features
- living body
- data
- sample data
- initial training
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/103—Static body considered as a whole, e.g. static pedestrian or occupant recognition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1116—Determining posture transitions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/117—Identification of persons
- A61B5/1171—Identification of persons based on the shapes or appearances of their bodies or parts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
- G01S7/352—Receivers
- G01S7/354—Extracting wanted echo-signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/415—Identification of targets based on measurements of movement associated with the target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/417—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section involving the use of neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2505/00—Evaluating, monitoring or diagnosing in the context of a particular type of medical care
- A61B2505/07—Home care
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0228—Microwave sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
- G01S7/352—Receivers
- G01S7/356—Receivers involving particularities of FFT processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
- G01S7/352—Receivers
- G01S7/358—Receivers using I/Q processing
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- General Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Artificial Intelligence (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Physiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Electromagnetism (AREA)
- Evolutionary Biology (AREA)
- Mathematical Physics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Multimedia (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Fuzzy Systems (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
Abstract
本發明提出一種活體偵測方法與活體偵測系統。接收測試活體所反射的射頻信號,並產生射頻信號的多筆原始取樣資料。依據原始取樣資料進行特徵擷取處理而產生多個樣本資料組的多筆初始訓練特徵,其中初始訓練特徵分別對應至多個特徵產生規則。依據測試活體的姿勢以及初始訓練特徵建立分類預測模型,並獲取初始訓練特徵各自對應的多筆相關權重因子。依據相關權重因子自初始訓練特徵挑選出對應至特徵產生規則至少其中之一的多個優選特徵。依據測試活體的姿勢與優選特徵建立另一分類預測模型。基於另一分類預測模型判斷偵測活體的姿勢。
Description
本發明是有關於一種活體偵測方法與活體偵測系統,且特別是有關於一種基於機器學習的活體偵測方法與活體偵測系統。
近幾年,非接觸感測模組應用於量測人體生理資訊以協助進行人體心跳與呼吸狀況,其具有可即時、非接觸式、長時間、連續監測的優點。詳細而言,人體無時無刻都會產生微幅的生理運動,像是心跳及肺部呼吸造成胸腔的週期性等。如果藉由雷達以電磁波照射人體,根據都卜勒效應,這些人體肌肉收縮與擴張運動,將會造成電磁波在反射時發生相位改變。因此,依據雷達的發射射頻信號與反射人體而產生的反射射頻信號之間的差異資訊,非接觸感測模組可偵測出人體生理資訊。
發射射頻信號與反射射頻信號之間的差異資訊不僅僅可用以偵側人體的心跳、脈搏、呼吸等生理資訊,更可用以偵測人體的肢體動作或姿勢。然而,為了依據反射人體而產生的反射射頻信號來偵測多變的肢體動作或姿勢,除了硬體上的考量之外,如何建立一種準確與且有效率的分析演算法來判斷人體的肢體動作或姿勢也實為本領域技術人員所關心的議題。
有鑑於此,本發明提供一種活體偵測方法與活體偵測系統,其可降低依據射頻信號與機器學習偵測活體姿勢的計算複雜度。
本發明的實施例提出一種活體偵測方法,所述方法包括下列步驟。接收測試活體所反射的射頻信號,並產生射頻信號的多筆原始取樣資料。依據原始取樣資料進行特徵擷取處理而產生多個樣本資料組的多筆初始訓練特徵,其中初始訓練特徵分別對應至多個特徵產生規則。依據測試活體的姿勢以及初始訓練特徵建立分類預測模型,並獲取初始訓練特徵各自對應的多筆相關權重因子。依據相關權重因子自初始訓練特徵挑選出對應至特徵產生規則至少其中之一的多個優選特徵。依據測試活體的姿勢與優選特徵建立另一分類預測模型。基於另一分類預測模型判斷偵測活體的姿勢。
從另一觀點來看,本發明的實施例提出一種活體偵測系統,其包括一天線、一射頻信號處理電路、一儲存電路以及一處
理器。天線接收測試活體所反射的射頻信號。射頻信號處理電路耦接天線,並產生射頻信號的多筆原始取樣資料。儲存電路儲存多個模組。處理器耦接儲存電路與射頻信號處理電路,存取儲存電路中的模組以執行下列步驟。依據原始取樣資料進行特徵擷取處理而產生多個樣本資料組的多筆初始訓練特徵,其中初始訓練特徵分別對應至多個特徵產生規則。依據測試活體的姿勢以及初始訓練特徵建立分類預測模型,並獲取初始統計特徵各自對應的多筆相關權重因子。依據相關權重因子自初始統計特徵挑選出對應至特徵產生規則至少其中之一的多個優選特徵。依據測試活體的姿勢與優選特徵建立另一分類預測模型。基於另一分類預測模型判斷偵測活體的姿勢。
基於上述,本發明實施例可依據機器學習所訓練出來的分類預測模型而準確判斷出人體的姿勢。此外,本發明實施例可在確保分類預測模型的分類準確度到達一定程度的情況下,彈性地選擇部份可用特徵而降低資料計算量,有助於降低機器學習所需的計算量並實現快速偵測。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
10:活體偵測系統
101:天線
102:射頻信號處理電路
103:儲存電路
104:處理器
102_1:收發器
102_2:類比數位轉換器
STX、SRX:射頻信號
D’:原始取樣資料
SQ:正交極化信號
DQ:正交極化離散資料
SI:同相極化信號
DI:同相極化離散資料
S310~S360、S410~S470、S411~S412、S431~S437、S451~S452、S471~S473:步驟
圖1是依照本發明一實施例所繪示之活體偵測系統的示意
圖。
圖2是依照本發明一實施例所繪示之射頻信號處理電路的示意圖。
圖3是依照本發明一實施例所繪示之活體偵測方法的流程圖。
圖4A與圖4B是依照本發明一實施例所繪示之活體偵測方法的流程圖。
本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的活體偵測方法與系統的範例。
圖1是依照本發明一實施例所繪示之活體偵測系統10的示意圖。請參照圖1,活體偵測系統10包括天線101、射頻信號處理電路102、儲存電路103以及處理器104。於本實施例中,活體偵測系統10可依據雷達感測技術來偵測人體的姿勢或是其他具有生命徵象之活體的姿勢。活體偵測系統10可包括連續波(Continuous waveform,CW)雷達,以朝活體發射為連續波的發射射頻信號並接收由活體反射此發射射頻信號而產生的反射射頻信號。在另一實施例中,活體偵測系統10之雷達可採用超寬頻
(Ultra-wideband,UWB)雷達或是頻率調變連續波(Frequency modulated continuous waveform,FMCW)雷達,並置換對應的天線架構。
詳細而言,天線101用以發射與/或接收無線射頻信號。需說明的是,本發明對於天線的數量並不加以限制。於本發明實施例中,天線101可接收測試活體Obj1所反射的射頻信號SRX。測試活體Obj1可以是人體或是其他具有生命徵象的生物,本發明對此不限制。更詳細而言,由天線101或其他天線朝測試活體Obj1發射射頻信號STX,而天線101將接收由測試活體Obj1反射射頻信號STX而產生的射頻信號SRX。由於射頻信號STX受到測試活體Obj1的呼吸或心跳起伏或肢體動作之影響,因此反射回來的射頻信號SRX的相位與射頻信號STX的相位將有所差異。
射頻信號處理電路102耦接天線101,其對天線101所接收的射頻信號SRX進行處理,並產生射頻信號SRX的多筆原始取樣資料D’。詳細而言,圖2是依照本發明一實施例所繪示之射頻信號處理電路的示意圖。請參照圖2,射頻信號處理電路102可包括收發器102_1與類比數位轉換器(ADC)102_2。收發器102_1耦接天線101,可根據射頻信號SRX產生基頻輸出信號。接著,收發器102_1產生的基頻輸出信號將轉換為數位資料。於本實施例中,收發器102_1可包括具有混頻器與振盪器的正交解調變器,射頻信號SRX會通過在正交解調變器中之混合程序而被降頻變換為同相通道(I-channel)的同相極化信號SI與正交通道
(Q-channel)的正交極化信號SQ。接著,類比數位轉換器102_2可分別對同相極化信號SI與正交極化信號SQ進行取樣而產生同相極化離散資料DI與正交極化離散資料DQ。亦即,射頻信號處理電路102產生的原始取樣資料D’可包括同相極化離散資料DI與正交極化離散資料DQ。
儲存電路103例如是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)、硬碟或其他類似裝置或這些裝置的組合,而可用以記錄多個程式碼或模組。
處理器104耦接於儲存電路103以及射頻信號處理電路102,並接收由射頻信號處理電路102提供的原始取樣資料D’。於本發明的實施例中,於訓練分類預測模型的階段,處理器104可先依據關聯於測試活體Obj1的原始取樣資料D’與已知的測試活體Obj1的姿勢來訓練分類預測模型。之後,於實際偵測的應用階段,處理器104就可依據訓練出來的分類預測模型與由偵測活體所反射的射頻信號來進行姿勢偵測。處理器104可為一般用途處理器、特殊用途處理器、傳統的處理器、數位訊號處理器、多個微處理器(microprocessor)、一個或多個結合數位訊號處理器核心的微處理器、控制器、微控制器、特殊應用集成電路(Application Specific Integrated Circuit,ASIC)、場可程式閘陣列電路(Field Programmable Gate Array,FPGA)、任何其他種類的積體電路、狀
態機、基於進階精簡指令集機器(Advanced RISC Machine,ARM)的處理器以及類似品。在本發明的實施例中,處理器104可載入儲存電路103中所記錄的程式碼或模組以執行本發明提出的活體偵測方法,後續將搭配流程圖作進一步說明。
在本發明的另一實施例中,活體偵測系統10更可包含通訊界面(communication interface),其可將射頻信號處理電路102產生的原始取樣資料D’,藉由網路(例如網際網路)傳送至分析器。上述通訊界面可以是有線通訊界面如通用非同步接收發送器(UART)/積體電路匯流排(I2C)/串列週邊界面(SPI)/控制器區域網(Controller Area Network,CAN)/建議標準(RS)232/建議標準(RS)422等界面,也可以是無線通訊界面如無線感測網路(例,EnOcean/藍芽(Bluetooth)/網蜂(ZigBee))、蜂巢式網路(2G/3G/長期演進技術(LTE)/5G)、無線區域網路(例,無線區域網路(WLAN)/全球微波連接互通(WiMAX))、短距離點對點通訊(例,射頻識別(RFID)/EnOcean/近場通訊(NFC))等界面,但不限定於此。上述分析器可以是雲端伺服器、資料運算中心等,但不限定於此。如此,上述分析器即可收集來自不同活體偵測系統10所偵測不同的測試活體Obj1對應的原始取樣資料D’,並執行本發明的活體偵測方法處理上述多筆原始取樣資料D’。
圖3是依照本發明一實施例所繪示之活體偵測方法的流程圖。請參圖1與圖3,本實施例的方式適用於上述實施例中的活體偵測系統10,以下即搭配活體偵測系統10中的各項元件說明本
實施例之活體偵測方法的詳細步驟。
於步驟S310,天線101接收測試活體Obj1所反射的射頻信號SRX,並由射頻信號處理電路102產生射頻信號SRX的多筆原始取樣資料D’。射頻信號處理電路102將射頻信號SRX降頻為基頻信號後進行取樣而產生多筆原始取樣資料D’。若射頻信號處理電路102將射頻信號SRX解調為同相極化信號與正交極化信號,則原始取樣資料D’可包括對應至同相通道的同相極化離散資料與對應至正交通道的正交極化離散資料。
於步驟S320,處理器104依據原始取樣資料進行特徵擷取處理而產生多個樣本資料組的多筆初始訓練特徵。需說明的是,處理器104可將一連串的原始取樣資料D’樣本化為多個樣本資料組,這些樣本資料組可各自包括相同數量的原始取樣資料D’。例如,這些樣本資料組可各自包括250筆的原始取樣資料D’,但不限於此。此外,取樣時間相鄰的兩組樣本資料組內的原始取樣資料將部份重疊。處理器104將依據各個樣本資料組內的原始取樣資料進行特徵擷取處理,以針對各個樣本資料組產生多筆初始訓練特徵。這些初始訓練特徵將分別對應至多個特徵產生規則。換言之,處理器104可依據預先定義的多種特徵產生規則來為各個樣本資料組產生這些初始訓練特徵。
於步驟S330,處理器104依據測試活體Obj1的姿勢以及初始訓練特徵建立分類預測模型,並獲取初始訓練特徵各自對應的多筆相關權重因子。於本實施例中,處理器104可將測試活體
Obj1的姿勢以及初始訓練特徵作為監督式學習演算法的訓練資料而建立分類預測模型。上述之監督式學習演算法例如是支援向量機(support vector machine,SVM)演算法。詳細而言,在分類預測模型的訓練階段,處理器104可基於測試活體Obj1的姿勢來標記這些樣本資料組,並將這些已標記的樣本資料組的初始訓練特徵作為機器學習的訓練素材。
於此,初始訓練特徵各自對應的相關權重因子是基於監督式學習演算法所搭配的核(Kernel)函數而產生。核函數例如是進行降維映射的徑向基函數核(Radial basis function kernel)函數,本發明對此不限制。詳細而言,當處理器104利用核函數與監督式學習演算法訓練分類預測模型時,各個初始訓練特徵的相關權重因子(feature weighting)也將一併產生。各個初始訓練特徵的重要性直接體現在相關權重因子內。具體而言,相關權重因子的絕對值越大,表示初始訓練特徵的代表性越高。
於步驟S340,處理器104依據相關權重因子自初始訓練特徵挑選出對應至特徵產生規則至少其中之一的多個優選特徵。可知的,相關權重因子的絕對值越大,代表對應初始訓練特徵對於正確分類越為重要。因此,處理器104可依據相關權重因子來挑選出部份的初始訓練特徵作優選特徵,以進一步刪除較為不必要的特徵。接著,於步驟S350,處理器104依據測試活體Obj1的姿勢與所挑選的優選特徵建立另一分類預測模型。也就是說,藉由監督式學習演算法,處理器104可依據挑選出來的優選特徵
與測試活體Obj1的姿勢再次訓練出另一分類預測模型。
基此,於步驟S360,處理器104基於另一分類預測模型判斷偵測活體的姿勢。具體而言,處理器104可將另一分類預測模型應用於實際偵測場合,並依據偵測活體所反射的射頻信號與基於另一分類預測模型來判別偵測活體的姿勢。可知的,由於訓練另一分類預測模型的優選特徵是經過篩選而產生的,因而處理器104僅需要依據優選特徵的特徵產生規則來產生用以偵測活體姿勢的特徵,從而降低資料計算成本。
需說明的是,圖3所示之實施例係以對初始訓練特徵進行一次性的篩選為例。然而,於其他實施例中,處理器140可重複執行分類預測模型的訓練與優選特徵的篩選,以產生最終應用於實際偵測場合的分類預測模型。舉例來說,在執行步驟S350而再次訓練出另一分類預測模型之後,處理器104可獲取優選特徵各自對應的相關權重因子。接著,處理器104可依據優選特徵各自對應的相關權重因子再次進行特徵挑選,並再次建立又一分類預測模型,以將又一分類預測模型應用於實際偵測場合。
以下將以圖4A與圖4B來針對上述流程與實施方式的細節加以闡明。圖4A與圖4B是依照本發明一實施例所繪示之活體偵測方法的流程圖。本實施例的應用情境可為嬰幼兒的安全監測或病人的護理照顧,活體偵測系統10可用以偵測嬰幼兒或病人的睡眠姿勢為正躺或趴躺,但不限定於此。活體偵測系統10的天線101適於設置於居家環境、醫院、照護中心的床舖上方或鄰近床舖
的位置,以達到安全監控的目的。
請同時參照圖1、圖2以及圖4A,於步驟S410,射頻信號處理電路102接收測試活體Obj1所反射的射頻信號SRX,並產生射頻信號SRX的多筆原始取樣資料D’。測試活體Obj1可以是躺在床舖上的人體。詳細而言,於本實施例中,於步驟S411,射頻信號處理電路102的收發機102_1依據射頻信號SRX產生同相極化信號SI與正交極化信號SQ。於步驟S412,ADC 102_2分別取樣同相極化信號SI與正交極化信號SQ而產生多筆同相極化離散資料DI與多筆正交極化離散資料DQ。
處理器104將接收來自射頻信號處理電路102的多筆同相極化離散資料DI與多筆正交極化離散資料DQ。於步驟S420,處理器104依據視窗長度、樣本尺寸與樣本重疊時間擷取原始取樣資料而產生樣本資料組。也就是說,處理器104將依據視窗長度、樣本尺寸與樣本重疊時間樣本化同相極化離散資料DI與正交極化離散資料DQ,而產生包括同相極化離散資料DI與正交極化離散資料DQ的樣本資料組。
這些樣本資料組包括擷取時間相鄰的第一樣本資料組與第二樣本資料組。換言之,基於樣本化先後順序,第二樣本資料組可為第一樣本資料組的下一組樣本化內容。第一樣本資料組內的原始取樣資料與第二樣本資料組內的原始取樣資料部份重疊。第一樣本資料組的擷取時間與第二樣本資料組的擷取時間相差一預設時間間隔,而預設時間間隔是依據樣本尺寸與樣本重疊時間
而定。表1為依據本發明一實施例的樣本資料組的樣本化範例。於此假設1秒可取樣50筆原始取樣資料,但本發明並不以此為限。
於步驟S430,處理器104依據原始取樣資料進行特徵擷取處理而產生多個樣本資料組的多筆初始訓練特徵。於本實施例中,處理器104可藉由特徵擷取處理中的統計與積分處理、時域轉頻域處理、以及預處理而獲取對應至不同特徵產生規則的初始訓練特徵。於本實施例中,對應至不同特徵產生規則的初始訓練
特徵可包括第一統計特徵、第二統計特徵、第三統計特徵、第四統計特徵、第一頻域特徵以及第二頻域特徵。另外需說明的是,處理器104也將對包括同相極化離散資料DI與正交極化離散資料DQ的樣本資料組以及包括有的樣本資料組進行特徵擷取處理,而產生關聯於同相通道資料的初始訓練特徵與關聯於正交通道資料的初始訓練特徵。
詳細而言,於步驟S431,處理器104分別對樣本資料組內的原始取樣資料進行統計與積分處理而產生樣本資料組的多個第一統計特徵。上述的統計與積分處理可包括平均運算、取最大值、取最小值、標準差運算、峰度運算、偏斜值運算、取四分位數、平均絕對偏差(mean absolute deviation,MAD)運算、依據Trapz函數計算面積,以及依據Trapz函數計算面積平方其中之一或其組合。舉例而言,處理器104可分別對各樣本資料組內的原始取樣資料進行平均處理與取最大值,以將各樣本資料組中原始取樣資料的平均值與最大值作為第一統計特徵。又或者,處理器104可分別對各樣本資料組內的原始取樣資料進行標準差運算、偏斜值運算以及依據Trapz函數計算面積,以將各樣本資料組中原始取樣資料的標準差、偏斜值以及Trapz函數的輸出面積作為第一統計特徵。換言之,第一統計特徵是基於統計與積分處理而產生。
於步驟S432,處理器104分別對樣本資料組內的原始取樣資料進行時域轉頻域處理而產生多筆第一離散頻域資料,以自第一離散頻域資料獲取樣本資料組的多個第一頻域特徵。時域轉
頻域處理可以為離散傅立葉轉換(Discrete Fourier Transform,DFT)。對樣本資料組內的原始取樣資料進行離散傅立葉轉換後,處理器104可獲取用以表示多個頻率成份的多筆第一離散頻域資料,第一離散頻域資料包括離散傅立葉係數,處理器104可取第一離散頻域資料中的部份的離散傅立葉係數與其對應頻率作為第一頻域特徵。處理器104也可依據第一離散頻域資料產生加權平均頻率(weighted nmean frequency)而作為第一頻域特徵。換言之,第二頻域特徵基於時域轉頻域處理而產生。
於步驟S433,處理器104分別對第一離散頻域資料進行統計與積分處理而產生樣本資料組的多個第二統計特徵。也就是說,處理器104可進一步處理離散傅立葉轉換所產生的第一離散頻域資料而產生第二統計特徵。步驟S433所執行的統計與積分處理可相同或相異於步驟S431所執行的統計與積分處理。例如,處理器104可對各樣本資料組中原始取樣資料的第一離散頻域資料進行平均處理,以將第一離散頻域資料的平均值作為第二統計特徵。處理器104將先進行時域轉頻域處理後再進行統計與積分處理,而產生樣本資料組的多個第二統計特徵。換言之,第二統計特徵基於時域轉頻域處理以及統計與積分處理而產生。
於步驟S434,處理器104分別對樣本資料組內的原始取樣資料進行預處理而產生多筆經預處理資料。上述的預處理例如是加加速度(Jerk)運算,而處理器104可分別對樣本資料組內的原始取樣資料進行Jerk運算而將各樣本資料組的原始取樣資料轉
換為多筆加加速度資料。
於步驟S435,處理器104分別對樣本資料組的經預處理資料進行統計與積分處理而產生樣本資料組的多個第三統計特徵。步驟S435所執行的統計與積分處理可相同或相異於步驟S431所執行的統計與積分處理。處理器104將先進行預處理後再進行統計與積分處理,而產生樣本資料組的多個第三統計特徵。換言之,第三統計特徵基於預處理以及統計與積分處理而產生。
於步驟S436,處理器104分別對樣本資料組的經預處理資料進行時域轉頻域處理而產生多筆第二離散頻域資料,以自第二離散頻域資料獲取樣本資料組的多個第二頻域特徵。處理器104將先進行預處理後再進行時域轉頻域處理,而產生樣本資料組的多個第二頻域特徵。換言之,第二頻域特徵基於預處理以及時域轉頻域處理而產生。
於步驟S437,處理器104分別對第二離散頻域資料進行統計與積分處理而產生樣本資料組的多個第四統計特徵。換言之,處理器104將先進行預處理與時域轉頻域處理後再進行統計與積分處理,而產生樣本資料組的多個第四統計特徵。換言之,第四統計特徵基於預處理、時域轉頻域處理以及統計與積分處理而產生。
假設統計與積分處理可包括10種運算,其分別為平均運算、取最大值、取最小值、標準差運算、峰度運算、偏斜值運算、取四分位數、平均絕對偏差運算、依據Trapz函數計算面積,以及
依據Trapz函數計算面積平方。並且,假設處理器104係取加權平均頻率、前五個離散傅立葉係數,以及離散傅立葉係數中的前五個本地最大值與其對應的頻率作為頻域特徵。並且,假設預處理為Jerk運算。表2為依據上述假設而產生之初始訓練特徵的範例。
接著,請參照圖4B,於步驟S440,處理器104將測試活體的姿勢以及初始訓練特徵作為監督式學習演算法的訓練資料而建立分類預測模型。於本實施例中,處理器104可基於人體的姿勢為「趴躺」或「正躺」來標記這些樣本資料組,並依據這些已標記的樣本資料組與對應的初始訓練特徵訓練出一個分類預測模型。當處理器104利用核函數與監督式學習演算法訓練分類預測模型時,各個初始訓練特徵的相關權重因子也將一併產生。舉例而言,表3為依據表2所示之初始訓練特徵進行機器學習而產生的相關權重因子。
於步驟S450,處理器104依據相關權重因子自初始訓練特徵挑選出多個優選特徵。詳細而言,於步驟S451,基於初始訓練特徵的特徵產生規則,處理器104對初始訓練特徵的相關權重因子進行統計處理,而產生分別對應於這些特徵產生規則的多個評斷數值。也就是說,處理器104將對對應至同一特徵產生規則
的初始訓練特徵的相關權重因子進行統計處理。此外,關聯於同相通道資料的初始訓練特徵的相關權重因子與關聯於正交通道資料的初始訓練特徵的相關權重因子也將分開進行統計處理。以表3為例,編號為特徵編號0-9對應至相同的特徵產生規則,而處理器104將編號為特徵編號0-9的初始訓練特徵的相關權重因子W0-W9進行統計處理以產生一個評斷數值。於本實施例中,上述的統計處理可以為先對相關權重因子取絕對值後再取平均。也就是說,依據公式(1),處理器104可對對應至同一特徵產生規則的初始訓練特徵的相關權重因子進行統計處理。
評斷數值=avg(abs(Wi)) 公式(1)其中,avg(‧)為取平均值,abs(‧)為取絕對值,而Wi為相關權重因子。以表3為例,處理器104將編號為特徵編號0-9的初始訓練特徵的相關權重因子W0-W9代入公式(1),可產生一個評斷數值為0.66515。處理器104將編號為特徵編號10-19的初始訓練特徵的相關權重因子W10-W19代入公式(1),可產生另一個評斷數值0.896。
於步驟S452,處理器104判斷評斷數值是否符合選取條件,而自初始訓練特徵挑選出優選特徵。於一實施例中,處理器104可判斷這些評斷數值是否大於一臨界值而判斷評斷數值是否符合選取條件。若有一個評斷數值大於臨界值,處理器104判斷此評斷數值符合選取條件而挑選出此評斷數值所關聯之部份的初始訓練特徵作為優選特徵。上述之臨界值可以為一預定數值或基
於計算出來的所有評斷數值而產生。舉例而言,處理器104可將依據公式(1)所產生的所有評斷數值相加後乘以一個百分比數值(例如20%)而產生上述臨界值。
以表3的範例為例,假設處理器104對所有的初始訓練特徵的相關權重因子W0-W143進行統計計算後可產生分別對應至12組相關權重因子W0-W9、W10-W19、W20-W29、W30-W39、W40-W49、W66-W75、W92-W101、W118-W127、W50-W65、W102-W117、W76-W91、W128-W143的12個評斷數值A1~A12。處理器104可先將評斷數值A1~A12相加後再乘上20%而產生臨界值TH。接著,處理器104可依序判斷評斷數值A1~A12是否大於臨界值TH,以決定是否將關聯於評斷數值A1~A12的初始訓練特徵挑選出來作為優選特徵。例如,若基於特徵編號92-101的初始訓練特徵的相關權重因子W92-101所產生的評斷數值A7大於臨界值TH,特徵編號92-101的初始訓練特徵將被挑選出來作為優選特徵。
值得一提的是,於一實施例中,符合選取條件之評斷數值所關聯的初始訓練特徵可能包括基於同相通道資料與正交通道資料所產生的初始訓練特徵,而處理器104可從中選擇關聯於同相極化離散資料或正交極化離散資料的優選特徵。換言之,處理器104可選擇對應至同相通道資料與正交通道資料其中之一的初始訓練特徵作為優選特徵,藉此以降低後續利用分類預測模型偵測活體姿勢的資料處理量。
在挑選出優選特徵之後,於步驟S460,處理器104依據
測試活體的姿勢與優選特徵建立另一分類預測模型。步驟S460的操作相似於步驟S440,不同點在於進行模型訓練的特徵數目。進一步來說,步驟S460是依據篩選出來的優選特徵來訓練出另一分類預測模型。於此,處理器104可對另一分類預測模型進行測試以判斷另一分類預測模型的分類準確度是否足夠,以決定是否再次進行特徵的篩選與模型訓練。或者,處理器104可對另一分類預測模型進行測試以判斷另一分類預測模型的分類準確度是否足夠,以決定是否從初始訓練特徵挑選其他額外的優選條件。
於實際偵測的應用階段,於步驟S470,處理器104基於另一分類預測模型判斷偵測活體的姿勢。偵測活體同樣為躺在床舖上的人體。詳細而言,於步驟S471,天線101接收偵測活體所反射的另一射頻信號,並由射頻信號處理電路102獲取另一射頻信號的多筆其他原始取樣資料。於步驟S472,處理器104基於優選特徵的特徵產生規則而依據其他原始取樣資料產生多個偵測特徵。相較於步驟S330,處理器104可依據較低的資料處理量產生數量較少的特徵,並將數量經過篩檢的特徵輸入至分類器來判別人體的姿勢為正躺或趴躺。於步驟S473,處理器104將偵測特徵輸入至另一分類預測模型而判斷偵測活體的姿勢。
綜上所述,本發明實施例可藉由雷達感測技術與機器學習來偵測出具備生命徵象之偵測活體的姿勢。此外,本發明實施例可在確保分類預測模型的分類準確度到達一定程度的情況下,彈性地選擇部份可用特徵而降低資料計算量,有助於降低機器學
習所需的計算量並實現快速偵測。此外,本發明活體偵測方法所採用的機器學習演算法不限定於前述支援向量機演算法。例如,在本發明另一實施例中,則是採用長短期記憶(Long Short Term Memory,LSTM)的一種特別的時間遞歸神經網路(Recurrent Neural Networks,RNN),以加強動態識別的辨識準確度。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
S310~S360:步驟
Claims (24)
- 一種活體偵測方法,所述方法包括:接收一測試活體所反射的一雷達射頻信號,並產生該雷達射頻信號的多筆原始取樣資料;依據該些原始取樣資料進行特徵擷取處理而產生多個樣本資料組的多筆初始訓練特徵,其中該些初始訓練特徵分別對應至多個特徵產生規則;依據該測試活體的姿勢以及該些初始訓練特徵建立一分類預測模型,並獲取該些初始訓練特徵各自對應的多筆相關權重因子;依據該些相關權重因子自該些初始訓練特徵挑選出對應至該些特徵產生規則至少其中之一的多個優選特徵;藉由將該測試活體的姿勢以及該些優選特徵作為一監督式學習演算法的訓練資料,依據該測試活體的姿勢與該些優選特徵建立另一分類預測模型;以及基於該另一分類預測模型判斷一偵測活體的姿勢,其中接收該測試活體所反射的該雷達射頻信號,並獲取該雷達射頻信號的該些原始取樣資料的步驟包括:依據該雷達射頻信號產生一同相極化信號與一正交極化信號;以及分別取樣該同相極化信號與該正交極化信號而產生多筆同相極化離散資料與多筆正交極化離散資料,其中該些原始取樣資料包括該些同相極化離散資料與該些正交極化離散資料。
- 如申請專利範圍第1項所述的活體偵測方法,其中在接收該測試活體所反射的該雷達射頻信號,並獲取該雷達射頻信號的該些原始取樣資料的步驟之後,所述方法更包括:依據一視窗長度、一樣本尺寸與一樣本重疊時間擷取該些原始取樣資料而產生該些樣本資料組,其中該些樣本資料組各自包括該視窗長度內符合該樣本尺寸的該些原始取樣資料。
- 如申請專利範圍第2項所述的活體偵測方法,其中該些樣本資料組包括一第一樣本資料組與一第二樣本資料組,該第一樣本資料組內的該些原始取樣資料與該第二樣本資料組內的該些原始取樣資料部份重疊,該第一樣本資料組的擷取時間與該第二樣本資料組的擷取時間相差一預設時間間隔,該預設時間間隔依據該樣本尺寸與樣本重疊時間而定。
- 如申請專利範圍第1項所述的活體偵測方法,其中依據該些原始取樣資料進行特徵擷取處理而產生該些樣本資料組的該些初始訓練特徵的步驟包括:分別對該些樣本資料組內的該些原始取樣資料進行統計與積分處理而產生該些樣本資料組的多個第一統計特徵;分別對該些樣本資料組內的該些原始取樣資料進行時域轉頻域處理而產生多筆第一離散頻域資料,以自該些第一離散頻域資料獲取該些樣本資料組的多個第一頻域特徵;以及分別對該些第一離散頻域資料進行統計與積分處理而產生該些樣本資料組的多個第二統計特徵。
- 如申請專利範圍第4項所述的活體偵測方法,其中依據該些原始取樣資料進行特徵擷取處理而產生該些樣本資料組的該些初始訓練特徵的步驟更包括:分別對該些樣本資料組內的該些原始取樣資料進行一預處理而產生多筆經預處理資料;分別對該些樣本資料組的該些經預處理資料進行統計與積分處理而產生該些樣本資料組的多個第三統計特徵;分別對該些樣本資料組的該些經預處理資料進行時域轉頻域處理而產生多筆第二離散頻域資料,以自該些第二離散頻域資料獲取該些樣本資料組的多個第二頻域特徵;以及分別對該些第二離散頻域資料進行統計與積分處理而產生該些樣本資料組的多個第四統計特徵。
- 如申請專利範圍第1項所述的活體偵測方法,其中依據該測試活體的姿勢以及該些初始訓練特徵建立該分類預測模型,並獲取該些初始訓練特徵各自對應的該些相關權重因子的步驟包括:將該測試活體的姿勢以及該些初始訓練特徵作為該監督式學習演算法的訓練資料而建立該分類預測模型,其中該些初始訓練特徵各自對應的該些相關權重因子基於該監督式學習演算法所搭配的一核函數而產生。
- 如申請專利範圍第1項所述的活體偵測方法,其中依據該些相關權重因子自該些初始訓練特徵挑選出該些優選特徵的步驟包括:基於該些初始訓練特徵的該些特徵產生規則,對該些初始特徵的該些相關權重因子進行統計處理,而產生多個評斷數值;以及判斷該些評斷數值是否符合一選取條件,而自該些初始訓練特徵挑選出該些優選特徵。
- 如申請專利範圍第7項所述的活體偵測方法,其中該選取條件包括該些評斷數值是否大於一臨界值,而該臨界值是將該些評斷數值相加後乘以一個百分比數值而產生。
- 如申請專利範圍第7項所述的活體偵測方法,其中該些原始取樣資料包括該些同相極化離散資料與該些正交極化離散資料,而判斷該些評斷數值是否符合該選取條件,而自該些初始訓練特徵挑選出該些優選特徵選取條件的步驟更包括:選擇關聯於該些同相極化離散資料或該些正交極化離散資料的該些優選特徵。
- 如申請專利範圍第1項所述的活體偵測方法,其中基於該另一分類預測模型判斷該偵測活體的姿勢的步驟包括:接收該偵測活體所反射的另一雷達射頻信號,並獲取該另一雷達射頻信號的多筆其他原始取樣資料;基於該些優選特徵的該些特徵產生規則其中之至少一而依據 該些其他原始取樣資料產生多個偵測特徵;以及將該些偵測特徵輸入至該另一分類預測模型而判斷該偵測活體的姿勢。
- 一種活體偵測系統,所述活體偵測系統包括:一天線,接收一測試活體所反射的一雷達射頻信號;一射頻信號處理電路,耦接該天線,產生該雷達射頻信號的多筆原始取樣資料,其中該射頻信號處理電路依據該雷達射頻信號產生一同相極化信號與一正交極化信號,並分別取樣該同相極化信號與該正交極化信號而產生多筆同相極化離散資料與多筆正交極化離散資料,其中該些原始取樣資料包括該些同相極化離散資料與該些正交極化離散資料;一儲存電路,儲存多個模組;以及一處理器,耦接該儲存電路與該射頻信號處理電路,存取該些模組以執行下列步驟:依據該些原始取樣資料進行特徵擷取處理而產生多個樣本資料組的多筆初始訓練特徵,其中該些初始訓練特徵分別對應至多個特徵產生規則;依據該測試活體的姿勢以及該些初始訓練特徵建立一分類預測模型,並獲取該些初始訓練特徵各自對應的多筆相關權重因子;依據該些相關權重因子自該些初始訓練特徵挑選出對應 至該些特徵產生規則至少其中之一的多個優選特徵;藉由將該測試活體的姿勢以及該些優選特徵作為一監督式學習演算法的訓練資料,依據該測試活體的姿勢與該些優選特徵建立另一分類預測模型;以及基於該另一分類預測模型判斷一偵測活體的姿勢。
- 如申請專利範圍第11項所述的活體偵測系統,其中該處理器更經配置以:依據一視窗長度、一樣本尺寸與一樣本重疊時間擷取該些原始取樣資料而產生該些樣本資料組,其中該些樣本資料組各自包括該視窗長度內符合該樣本尺寸的該些原始取樣資料。
- 如申請專利範圍第12項所述的活體偵測系統,其中該些樣本資料組包括一第一樣本資料組與一第二樣本資料組,該第一樣本資料組內的該些原始取樣資料與該第二樣本資料組內的該些原始取樣資料部份重疊,該第一樣本資料組的擷取時間與該第二樣本資料組的擷取時間相差一預設時間間隔,該預設時間間隔依據該樣本尺寸與該樣本重疊時間而定。
- 如申請專利範圍第11項所述的活體偵測系統,其中該處理器更經配置以:分別對該些樣本資料組內的該些原始取樣資料進行統計與積分處理而產生該些樣本資料組的多個第一統計特徵;分別對該些樣本資料組內的該些原始取樣資料進行時域轉頻域處理而產生多筆第一離散頻域資料,以自該些第一離散頻域資 料獲取該些樣本資料組的多個第一頻域特徵;以及分別對該些第一離散頻域資料進行統計與積分處理而產生該些樣本資料組的多個第二統計特徵。
- 如申請專利範圍第14項所述的活體偵測系統,其中該處理器更經配置以:分別對該些樣本資料組內的該些原始取樣資料進行一預處理而產生多筆經預處理資料;分別對該些樣本資料組的該些經預處理資料進行統計與積分處理而產生該些樣本資料組的多個第三統計特徵;分別對該些樣本資料組的該些經預處理資料進行時域轉頻域處理而產生多筆第二離散頻域資料,以自該些第二離散頻域資料獲取該些樣本資料組的多個第二頻域特徵;以及分別對該些第二離散頻域資料進行統計與積分處理而產生該些樣本資料組的多個第四統計特徵。
- 如申請專利範圍第11項所述的活體偵測系統,其中該處理器更經配置以:將該測試活體的姿勢以及該些初始訓練特徵作為監督式學習演算法的訓練資料而建立該分類預測模型,其中該些初始訓練特徵各自對應的該些相關權重因子基於該監督式學習演算法所搭配的一核函數而產生。
- 如申請專利範圍第11項所述的活體偵測系統,其中該處理器更經配置以: 基於該些初始訓練特徵的該些特徵產生規則,對該些初始訓練特徵的該些相關權重因子進行統計處理,而產生多個評斷數值;以及判斷該些評斷數值是否符合一選取條件,而自該些初始訓練特徵挑選出該些優選特徵。
- 如申請專利範圍第17項所述的活體偵測系統,其中該選取條件包括該些評斷數值是否大於一臨界值,而該臨界值是將該些評斷數值相加後乘以一個百分比數值而產生。
- 如申請專利範圍第17項所述的活體偵測系統,其中該些原始取樣資料包括該些同相極化離散資料與該些正交極化離散資料,而該處理器更經配置以:選擇關聯於該些同相極化離散資料或該些正交極化離散資料的該些優選特徵。
- 如申請專利範圍第11項所述的活體偵測系統,其中該處理器更經配置以:接收該偵測活體所反射的另一雷達射頻信號,並獲取該另一雷達射頻信號的多筆其他原始取樣資料;基於該些優選特徵的該些特徵產生規則其中之至少一而依據該些其他原始取樣資料產生多個偵測特徵;以及將該些偵測特徵輸入至該另一分類預測模型而判斷該偵測活體的姿勢。
- 一種活體偵測方法,所述方法包括: 接收一測試活體所反射的一射頻信號,並產生該射頻信號的多筆原始取樣資料;依據該些原始取樣資料進行特徵擷取處理而產生多個樣本資料組的多筆初始訓練特徵,其中該些初始訓練特徵分別對應至多個特徵產生規則;依據該測試活體的姿勢以及該些初始訓練特徵建立一分類預測模型,並獲取該些初始訓練特徵各自對應的多筆相關權重因子;依據該些相關權重因子自該些初始訓練特徵挑選出對應至該些特徵產生規則至少其中之一的多個優選特徵;藉由將該測試活體的姿勢以及該些優選特徵作為一監督式學習演算法的訓練資料,依據該測試活體的姿勢與該些優選特徵建立另一分類預測模型;以及基於該另一分類預測模型判斷一偵測活體的姿勢,其中依據該些相關權重因子自該些初始訓練特徵挑選出該些優選特徵的步驟包括:基於該些初始訓練特徵的該些特徵產生規則,對該些初始特徵的該些相關權重因子進行統計處理,而產生多個評斷數值;以及判斷該些評斷數值是否符合一選取條件,而自該些初始訓練特徵挑選出該些優選特徵,其中該選取條件包括該些評斷數值是否大於一臨界值,而該臨界值是將該些評斷數值相加後乘以一個百分比數值而產 生。
- 一種活體偵測系統,所述活體偵測系統包括:一天線,接收一測試活體所反射的一射頻信號;一射頻信號處理電路,耦接該天線,產生該射頻信號的多筆原始取樣資料;一儲存電路,儲存多個模組;以及一處理器,耦接該儲存電路與該射頻信號處理電路,存取該些模組以執行下列步驟:依據該些原始取樣資料進行特徵擷取處理而產生多個樣本資料組的多筆初始訓練特徵,其中該些初始訓練特徵分別對應至多個特徵產生規則;依據該測試活體的姿勢以及該些初始訓練特徵建立一分類預測模型,並獲取該些初始訓練特徵各自對應的多筆相關權重因子;依據該些相關權重因子自該些初始訓練特徵挑選出對應至該些特徵產生規則至少其中之一的多個優選特徵;藉由將該測試活體的姿勢以及該些優選特徵作為一監督式學習演算法的訓練資料,依據該測試活體的姿勢與該些優選特徵建立另一分類預測模型;以及基於該另一分類預測模型判斷一偵測活體的姿勢,其中該處理器更經配置以:基於該些初始訓練特徵的該些特徵產生規則,對該些初 始訓練特徵的該些相關權重因子進行統計處理,而產生多個評斷數值;以及判斷該些評斷數值是否符合一選取條件,而自該些初始訓練特徵挑選出該些優選特徵,其中該選取條件包括該些評斷數值是否大於一臨界值,而該臨界值是將該些評斷數值相加後乘以一個百分比數值而產生。
- 一種活體偵測方法,所述方法包括:接收一測試活體所反射的一射頻信號,並產生該射頻信號的多筆原始取樣資料;依據該些原始取樣資料進行特徵擷取處理而產生多個樣本資料組的多筆初始訓練特徵,其中該些初始訓練特徵分別對應至多個特徵產生規則;依據該測試活體的姿勢以及該些初始訓練特徵建立一分類預測模型,並獲取該些初始訓練特徵各自對應的多筆相關權重因子;依據該些相關權重因子自該些初始訓練特徵挑選出對應至該些特徵產生規則至少其中之一的多個優選特徵;藉由將該測試活體的姿勢以及該些優選特徵作為一監督式學習演算法的訓練資料,依據該測試活體的姿勢與該些優選特徵建立另一分類預測模型;以及基於該另一分類預測模型判斷一偵測活體的姿勢,其中依據該些原始取樣資料進行特徵擷取處理而產生該些樣 本資料組的該些初始訓練特徵的步驟更包括:分別對該些樣本資料組內的該些原始取樣資料進行一預處理而產生多筆經預處理資料;分別對該些樣本資料組的該些經預處理資料進行統計與積分處理而產生該些樣本資料組的多個第三統計特徵;分別對該些樣本資料組的該些經預處理資料進行時域轉頻域處理而產生多筆第二離散頻域資料,以自該些第二離散頻域資料獲取該些樣本資料組的多個第二頻域特徵;以及分別對該些第二離散頻域資料進行統計與積分處理而產生該些樣本資料組的多個第四統計特徵。
- 一種活體偵測系統,所述活體偵測系統包括:一天線,接收一測試活體所反射的一射頻信號;一射頻信號處理電路,耦接該天線,產生該射頻信號的多筆原始取樣資料;一儲存電路,儲存多個模組;以及一處理器,耦接該儲存電路與該射頻信號處理電路,存取該些模組以執行下列步驟:依據該些原始取樣資料進行特徵擷取處理而產生多個樣本資料組的多筆初始訓練特徵,其中該些初始訓練特徵分別對應至多個特徵產生規則;依據該測試活體的姿勢以及該些初始訓練特徵建立一分類預測模型,並獲取該些初始訓練特徵各自對應的多筆相關權重 因子;依據該些相關權重因子自該些初始訓練特徵挑選出對應至該些特徵產生規則至少其中之一的多個優選特徵;藉由將該測試活體的姿勢以及該些優選特徵作為一監督式學習演算法的訓練資料,依據該測試活體的姿勢與該些優選特徵建立另一分類預測模型;以及基於該另一分類預測模型判斷一偵測活體的姿勢,其中該處理器更經配置以:分別對該些樣本資料組內的該些原始取樣資料進行一預處理而產生多筆經預處理資料;分別對該些樣本資料組的該些經預處理資料進行統計與積分處理而產生該些樣本資料組的多個第三統計特徵;分別對該些樣本資料組的該些經預處理資料進行時域轉頻域處理而產生多筆第二離散頻域資料,以自該些第二離散頻域資料獲取該些樣本資料組的多個第二頻域特徵;以及分別對該些第二離散頻域資料進行統計與積分處理而產生該些樣本資料組的多個第四統計特徵。
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108111598A TWI761671B (zh) | 2019-04-02 | 2019-04-02 | 活體偵測方法與活體偵測系統 |
| CN201910387794.4A CN111759305B (zh) | 2019-04-02 | 2019-05-10 | 活体检测方法与活体检测系统 |
| US16/429,079 US11023718B2 (en) | 2019-04-02 | 2019-06-03 | Living body detection method and living body detection system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108111598A TWI761671B (zh) | 2019-04-02 | 2019-04-02 | 活體偵測方法與活體偵測系統 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202038141A TW202038141A (zh) | 2020-10-16 |
| TWI761671B true TWI761671B (zh) | 2022-04-21 |
Family
ID=72663581
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW108111598A TWI761671B (zh) | 2019-04-02 | 2019-04-02 | 活體偵測方法與活體偵測系統 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US11023718B2 (zh) |
| CN (1) | CN111759305B (zh) |
| TW (1) | TWI761671B (zh) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11852750B2 (en) * | 2019-06-28 | 2023-12-26 | Smart Radar System, Inc. | Method and apparatus for radar signal processing using recurrent neural network |
| CN112444785B (zh) * | 2019-08-30 | 2024-04-12 | 华为技术有限公司 | 一种目标行为识别的方法、装置和雷达系统 |
| US20210239828A1 (en) * | 2020-02-03 | 2021-08-05 | Veev Group, Inc. | System, method and computer program product for improved radar-based object recognition |
| CN112686191B (zh) * | 2021-01-06 | 2024-05-03 | 中科海微(北京)科技有限公司 | 基于人脸三维信息的活体防伪方法、系统、终端及介质 |
| TWI810548B (zh) * | 2021-04-15 | 2023-08-01 | 臺灣網路認證股份有限公司 | 整合影像處理及深度學習之活體辨識系統及其方法 |
| CN114004255A (zh) * | 2021-10-25 | 2022-02-01 | 中国科学技术大学 | 姿势检测方法、姿势检测装置、电子设备及可读存储介质 |
| TWI845871B (zh) * | 2021-10-29 | 2024-06-21 | 緯創資通股份有限公司 | 資料前處理方法與運動生理感測雷達 |
| CN114246582B (zh) * | 2021-12-20 | 2025-02-18 | 杭州慧光健康科技有限公司 | 基于长短期记忆神经网络的卧床人员检测系统及方法 |
| CN114333019B (zh) * | 2021-12-30 | 2025-08-19 | 恒生电子股份有限公司 | 活体检测模型的训练方法、活体检测方法及相关装置 |
| TWI794045B (zh) * | 2022-03-11 | 2023-02-21 | 雷穎科技股份有限公司 | 多雷達感測系統 |
| CN114970616B (zh) * | 2022-05-16 | 2025-01-07 | 煤炭科学研究总院有限公司 | 生命体征信号提取模型的训练方法及其装置 |
| CN116616747A (zh) * | 2022-09-08 | 2023-08-22 | 深圳绿米联创科技有限公司 | 姿态识别方法、装置、电子设备及存储介质 |
| CN119165462B (zh) * | 2024-11-19 | 2025-02-14 | 中国计量大学 | 一种基于pinn的液体干扰去除方法及电子设备 |
| CN120561662B (zh) * | 2025-07-31 | 2025-10-28 | 山东建筑大学 | 基于信道状态信息的人体行为识别方法及系统 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1713274A (zh) * | 2004-06-15 | 2005-12-28 | 黄怡舜 | 信号处理方法及其模组 |
| CN103606248A (zh) * | 2013-09-30 | 2014-02-26 | 广州市香港科大霍英东研究院 | 一种人体摔倒自动检测方法及系统 |
| CN104208865A (zh) * | 2013-06-03 | 2014-12-17 | 飞比特公司 | 具有高度计的健身监视装置 |
| TW201727439A (zh) * | 2015-10-30 | 2017-08-01 | 傲思丹度科技公司 | 用於身體手勢介面及投影顯示器之系統及方法 |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8450592B2 (en) * | 2006-09-18 | 2013-05-28 | Circle Consult Aps | Method and a system for providing sound generation instructions |
| US10270642B2 (en) * | 2012-12-05 | 2019-04-23 | Origin Wireless, Inc. | Method, apparatus, and system for object tracking and navigation |
| US10742475B2 (en) * | 2012-12-05 | 2020-08-11 | Origin Wireless, Inc. | Method, apparatus, and system for object tracking sensing using broadcasting |
| US10397039B2 (en) * | 2012-12-05 | 2019-08-27 | Origin Wireless, Inc. | Apparatus, systems and methods for fall-down detection based on a wireless signal |
| CN106156807B (zh) * | 2015-04-02 | 2020-06-02 | 华中科技大学 | 卷积神经网络模型的训练方法及装置 |
| CN105260747B (zh) * | 2015-09-30 | 2019-07-23 | 广东工业大学 | 基于衣物共现信息与多任务学习的衣物识别方法 |
| CN105933080B (zh) * | 2016-01-20 | 2020-11-03 | 北京大学 | 一种跌倒检测方法和系统 |
| US20170311901A1 (en) * | 2016-04-18 | 2017-11-02 | Massachusetts Institute Of Technology | Extraction of features from physiological signals |
| WO2018126275A1 (en) * | 2016-12-30 | 2018-07-05 | Dirk Schneemann, LLC | Modeling and learning character traits and medical condition based on 3d facial features |
| US10408913B2 (en) * | 2017-08-09 | 2019-09-10 | Swfl, Inc. | Systems and methods for physical detection using radio frequency noise floor signals and deep learning techniques |
| US10769788B2 (en) * | 2017-09-12 | 2020-09-08 | Nantomics, Llc | Few-shot learning based image recognition of whole slide image at tissue level |
| CN108509910B (zh) * | 2018-04-02 | 2021-09-28 | 重庆邮电大学 | 基于fmcw雷达信号的深度学习手势识别方法 |
| CN108509935B (zh) * | 2018-04-12 | 2020-01-03 | 电子科技大学 | 一种基于随机森林算法的雷达工作模式识别方法 |
| CN109002810A (zh) * | 2018-08-01 | 2018-12-14 | 西南交通大学 | 模型评价方法、雷达信号识别方法及对应装置 |
-
2019
- 2019-04-02 TW TW108111598A patent/TWI761671B/zh active
- 2019-05-10 CN CN201910387794.4A patent/CN111759305B/zh active Active
- 2019-06-03 US US16/429,079 patent/US11023718B2/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1713274A (zh) * | 2004-06-15 | 2005-12-28 | 黄怡舜 | 信号处理方法及其模组 |
| CN104208865A (zh) * | 2013-06-03 | 2014-12-17 | 飞比特公司 | 具有高度计的健身监视装置 |
| CN103606248A (zh) * | 2013-09-30 | 2014-02-26 | 广州市香港科大霍英东研究院 | 一种人体摔倒自动检测方法及系统 |
| TW201727439A (zh) * | 2015-10-30 | 2017-08-01 | 傲思丹度科技公司 | 用於身體手勢介面及投影顯示器之系統及方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202038141A (zh) | 2020-10-16 |
| US20200320286A1 (en) | 2020-10-08 |
| US11023718B2 (en) | 2021-06-01 |
| CN111759305B (zh) | 2023-08-25 |
| CN111759305A (zh) | 2020-10-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI761671B (zh) | 活體偵測方法與活體偵測系統 | |
| CN111142102B (zh) | 一种呼吸数据计算方法以及相关设备 | |
| RU2678494C1 (ru) | Устройство и способ для биометрической идентификации пользователя с использованием рч (радиочастотного) радара | |
| CN113439218A (zh) | 在存在身体运动的情况下检测人体生命体征的基于智能设备的雷达系统 | |
| CN108968970A (zh) | 一种多普勒毫米波雷达检测人体跌倒的方法、装置和雷达系统 | |
| JP2018173285A (ja) | 行動認識システム、及び行動認識方法 | |
| US11690563B2 (en) | Methods and systems for remote sleep monitoring | |
| JP7308470B2 (ja) | 信号処理システム、センサシステム、信号処理方法、及びプログラム | |
| Zhang et al. | Estimation of human body vital signs based on 60 GHz Doppler radar using a bound-constrained optimization algorithm | |
| US11399723B2 (en) | Non-contact method of physiological characteristic detection | |
| Hu et al. | A wireless self-service system for library using commodity RFID devices | |
| JP2015119770A (ja) | 生体情報測定装置及び生体情報測定方法 | |
| Uysal et al. | A new RF sensing framework for human detection through the wall | |
| CN112327268A (zh) | 基于毫米波信号的危险目标识别方法、装置、系统及介质 | |
| Zhang et al. | WiFi-based indoor human activity sensing: A selective sensing strategy and a multilevel feature fusion approach | |
| Buttar et al. | Noncontact monitoring of dehydration using RF data collected off the chest and the hand | |
| Hayajneh et al. | Channel state information based device free wireless sensing for IoT devices employing TinyML | |
| Zhang et al. | Complex motion detection based on channel state information and lstm-rnn | |
| Sitar IV et al. | A millimeter-wave wireless sensing approach for at-home exercise recognition | |
| JP5383890B1 (ja) | 物体数検知装置及びプログラム | |
| CN117892202B (zh) | 基于毫米波信号的护理动作监测方法及电子设备 | |
| JP7556803B2 (ja) | 電子機器、電子機器の制御方法、及びプログラム | |
| Cho et al. | Novel design for heart rate detection using UWB impulse radar on Android platform | |
| CN109965847B (zh) | 服务器和信号分析系统 | |
| Shah et al. | Advanced sensing techniques for intelligent human activity recognition using machine learning |