TWI610581B - Smart data pricing method carried out based on sdn - Google Patents
Smart data pricing method carried out based on sdn Download PDFInfo
- Publication number
- TWI610581B TWI610581B TW106117113A TW106117113A TWI610581B TW I610581 B TWI610581 B TW I610581B TW 106117113 A TW106117113 A TW 106117113A TW 106117113 A TW106117113 A TW 106117113A TW I610581 B TWI610581 B TW I610581B
- Authority
- TW
- Taiwan
- Prior art keywords
- network
- expressed
- data
- data fusion
- degree
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 75
- 230000004927 fusion Effects 0.000 claims abstract description 55
- 239000011159 matrix material Substances 0.000 claims abstract description 22
- 238000012544 monitoring process Methods 0.000 claims abstract description 22
- 238000005516 engineering process Methods 0.000 claims description 17
- 238000007499 fusion processing Methods 0.000 claims description 3
- 238000004088 simulation Methods 0.000 abstract description 3
- 238000012795 verification Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 101100532801 Caenorhabditis elegans sdn-1 gene Proteins 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
本發明係屬於網路服務與計費管理之技術領域,尤指能夠根據網路交通狀態及使用頻寬而適當地調整每個地區網路流量與頻寬的一種透過軟體定義網路技術實現的智慧型資料計費方法。 The present invention belongs to the technical field of network service and billing management, and particularly relates to a network-defined network technology that can appropriately adjust network traffic and bandwidth in each area according to network traffic status and usage bandwidth. Smart data billing method.
網際網路(Internet)的出現徹底的改變了人們既有的生活及交往方式。進一步地,雲端服務與大數據的出現更令人們無時無刻需要使用網路服務。基於這樣的理由,對於網路資源進行有效管理以及提供用戶(client)良好的網路服務品質成為非常重要的課題。另一方面,有鑑於高昂的存取網際網路成本,部分的人們仍舊無法完全享受或使用行動網際網路(mobile Internet)所帶來的便利性;簡單的說,需求與成本兩者之間的矛盾在一定程度上阻礙了行動網際網路的推廣與發展。是以,如何基於用戶的網路服務需求及其網際網路存取模式進以因時地宜地控制並分 配網路流量遂成為非常重要的課題。 The emergence of the Internet has completely changed the way people live and interact. Further, the emergence of cloud services and big data makes people need to use network services all the time. For this reason, effective management of network resources and provision of good network service quality by users have become very important issues. On the other hand, in view of the high cost of accessing the Internet, some people still cannot fully enjoy or use the convenience of the mobile Internet; in short, between demand and cost The contradiction has hindered the promotion and development of the mobile Internet to a certain extent. Therefore, how to control and divide users based on their network service requirements and their Internet access modes Network traffic is a very important issue.
網路服務業者(Internet Service Provider,ISP)通常係利用分時計費(Smart Data Pricing,SDP)的方法來根據不同用戶的網路使用量(usage)訂出不同的計價方案,達到鼓勵用戶調整其網際網路存取模式之目的,進而能夠緩解尖峰時段網路壅塞之問題,並同時維持一定程度的網路服務品質。分時計費方法的效能決定於網路頻寬使用量的量測穩定度與精確度;然而,受到網路交通流複雜度的影響,想要無時無刻精準地掌握不同地區的網路使用量與交通狀態並非一件易事。 Internet Service Providers (ISPs) usually use the Smart Data Pricing (SDP) method to set different pricing plans according to different users' network usage, so as to encourage users to adjust their The purpose of the Internet access model is to alleviate the problem of network congestion during peak hours while maintaining a certain level of network service quality. The effectiveness of the time-sharing method depends on the measurement stability and accuracy of the network bandwidth usage; however, due to the complexity of the network traffic flow, it is necessary to grasp the network usage and traffic in different regions all the time and accurately. The status is not an easy task.
有鑑於此,史丹佛大學的教授Nick Mckeown提出一個新的網路管理概念:軟體定義網路(Software Defined Network,SDN)。其中,軟體定義網路之技術主要係透過將控制層獨立出來之方式,達到能夠更靈活管理網路行為模式之目的。圖1係顯示軟體定義網路的架構圖。如圖1所示,軟體定義網路1'(下簡稱SDN 1')的架構包括:應用層11'、控制層12'與資料層13'。值得說明的是,SDN 1'的架構允許使用者於應用層11'內自行編撰網路應用程式(application,APP)111';並且,網路應用程式111'可以透過北向應用程式介面(Northbound API)14'取得控制層12'所傳遞的相關資料,進以執行相關應用。同時,控制層12'中的一至多個控制器121'會透過南向應用程式介面(Southbound API)15'告知資料層13'內的交換機131'所需要執行的動作。 In view of this, Stanford University professor Nick Mckeown proposed a new network management concept: Software Defined Network (SDN). Among them, the software-defined network technology mainly achieves the purpose of more flexible management of network behavior patterns by separating the control layer. Figure 1 shows the architecture of a software-defined network. As shown in FIG. 1, the architecture of the software definition network 1' (hereinafter referred to as SDN 1') includes an application layer 11', a control layer 12' and a data layer 13'. It is worth noting that the architecture of SDN 1' allows the user to compile a web application (application, APP) 111' in the application layer 11'; and the web application 111' can pass the northbound application interface (Northbound API) 14' takes the relevant information transmitted by the control layer 12' to perform related applications. At the same time, one or more controllers 121' in the control layer 12' will pass through the southbound application interface (Southbound The API) 15' informs the switch 131' in the data layer 13' of the actions that need to be performed.
開放流(OpenFlow)即為一種南向應用程式介面,屬於由控制層12'向下指定至資料層13'的一種協定。這樣的協定方式使得控制器和交換機131'之間的溝通有了一個標準且公開的準則;如此,網路管理者便可以自行撰寫或是優化控制器的各種應用(applications),進而達到具多功能性的網路管理模式。舉例而言,網路管理者可以透過SDN 1'的架構來監控網路頻寬使用量與網路交通狀態。 OpenFlow is a southbound application interface that belongs to a protocol that is assigned down to the data layer 13' by the control layer 12'. This type of agreement provides a standard and open standard for communication between the controller and the switch 131'; thus, the network administrator can write or optimize various applications of the controller, thereby achieving more Functional network management mode. For example, network administrators can monitor network bandwidth usage and network traffic status through the SDN 1' architecture.
然而,由於網路交通狀態係根據區域差異而有有所不同,如何獲得全球網路狀態(global network status)便成為一件具挑戰性的工作。 However, since the state of the Internet traffic varies according to regional differences, how to obtain global network status becomes a challenging task.
有鑑於此,本案發明人乃亟思加以改良創新,並經多年苦心孤詣潛心研究後,終於透過結合該SDN 1'與數據融合(data fusion)的方式,設計並研發出一種透過軟體定義網路技術實現的智慧型資料計費方法。 In view of this, the inventor of the case was improved and innovated, and after years of painstaking research, he finally designed and developed a software-defined network technology through the combination of the SDN 1' and data fusion. Achieved smart data billing method.
本發明之主要目的在於提供一種透過軟體定義網路技術實現的智慧型資料計費方法。於本發明中,係將多個不同的資料融合模型方法實現於軟體定義網路(software-defined network,SDN),進而完成本發明之一種智慧型資料計費方法,其係包括:平均資料融合模型方法 (average method data fusion model,AM模型方法)、人口加權平均資料融合模型方法(population weighted average method data fusion model,PWAM模型方法)以及關係矩陣資料融合模型方法(relation-matrix method data fusion model,RM模型方法)。進一步地,為了驗證此智慧型資料計費方法的可行性,本案發明人係於商用網路模擬器之中佈署5個OpenFlow控制器,並同時對應於不同終端網路裝置之5個預設位置而佈署40個OpenFlow交換機。模擬驗證的結果顯示,本發明之智慧型資料計費方法的確能夠精準地監控處於不同位置(地區)之終端網路裝置的網路交通狀態及其使用頻寬。可想而知,網路提供業者(ISP)只要將本發明之智慧型資料計費方法應用至網路系統之中,便能夠根據監測網路交通狀態及使用頻寬的方式,進而適當地調整每個地區的網路流量與頻寬,藉此解決網路壅塞或使用頻寬不足之問題。 The main purpose of the present invention is to provide a smart data charging method implemented by software-defined network technology. In the present invention, a plurality of different data fusion model methods are implemented in a software-defined network (SDN), thereby completing a smart data charging method of the present invention, which includes: average data fusion Model approach (average method data fusion model, AM model method), population weighted average method data fusion model (PWAM model method) and relational matrix data fusion model (relation-matrix method data fusion model) method). Further, in order to verify the feasibility of the smart data charging method, the inventor of the present invention deploys five OpenFlow controllers in a commercial network simulator, and simultaneously corresponds to five presets of different terminal network devices. Location and deployment of 40 OpenFlow switches. The results of the simulation verification show that the intelligent data charging method of the present invention can accurately monitor the network traffic state of the terminal network devices in different locations (areas) and the bandwidth thereof. It is conceivable that an Internet provider (ISP) can appropriately adjust the network traffic status and the bandwidth according to the method of monitoring the smart data charging method of the present invention. Network traffic and bandwidth in each region to address network congestion or insufficient bandwidth usage.
為了達成上述本發明之主要目的,本案之發明人係提出所述之透過軟體定義網路技術實現的智慧型資料計費方法的一實施例,係包括:一網路流量監控單元,係於一區域內的複數個位置使用至少一種網路服務之時監測複數條網路交通流,以獲取一筆或多筆位元組與一總網路流量;其中,每個位置包括一個或多個交換機,且該複數條網路交通流之監測係基於 該網路流量監控單元與該交換機之間的開放流(OpenFlow)協定而實現;一資料融合單元,係基於至少一資料融合模型而對該網路流量監控單元透過該些交換機所監測到的數據資料執行一資料融合處理,進而獲得一融合網路壅塞程度;以及一計價單元,係根據該資料融合單元所獲得之該融合網路壅塞程度而計算出一計價率,並進一步地根據該計價率計算出該區域內的每個用戶的一應付網路使用費。 In order to achieve the above-mentioned primary object of the present invention, the inventor of the present invention proposes an embodiment of the smart data charging method implemented by the software-defined network technology, which includes: a network traffic monitoring unit, which is A plurality of locations within the area monitor a plurality of network traffic flows using at least one network service to obtain one or more bytes and a total network traffic; wherein each location includes one or more switches, And the monitoring of the plurality of network traffic flows is based on The network traffic monitoring unit and the switch are implemented by an OpenFlow protocol; a data fusion unit is configured to monitor the data monitored by the network traffic monitoring unit through the switches based on at least one data fusion model. The data is executed by a data fusion process to obtain a degree of convergence of the converged network; and a pricing unit calculates a denomination rate based on the degree of congestion of the converged network obtained by the data fusion unit, and further calculates the denomination rate according to the denomination rate Calculate a payable network usage fee for each user in the area.
1'‧‧‧軟體定義網路 1'‧‧‧Software Definition Network
11'‧‧‧應用層 11'‧‧‧Application layer
111'‧‧‧網路應用程式 111'‧‧‧Web application
12'‧‧‧控制層 12'‧‧‧Control layer
121'‧‧‧控制器 121'‧‧‧ Controller
13'‧‧‧資料層 13'‧‧‧data layer
131'‧‧‧交換機 131'‧‧‧Switch
14'‧‧‧北向應用程式介面 14'‧‧‧Northbound Application Interface
15'‧‧‧南向應用程式介面 15'‧‧‧Southward application interface
1‧‧‧智慧型資料計費方法 1‧‧‧Smart data billing method
11‧‧‧網路流量監控單元 11‧‧‧Network Traffic Monitoring Unit
111‧‧‧開放流控制器 111‧‧‧Open flow controller
112‧‧‧計數器 112‧‧‧ counter
12‧‧‧資料融合單元 12‧‧‧Data Fusion Unit
13‧‧‧計價單元 13‧‧‧Price unit
2‧‧‧區域 2‧‧‧ Area
21‧‧‧位置 21‧‧‧ position
22‧‧‧交換機 22‧‧‧Switch
請參閱有關本發明之詳細說明及其附圖,將可進一步瞭解本發明之技術內容及其目的功效;有關附圖為:圖1係顯示軟體定義網路的架構圖;圖2係本發明之一種透過軟體定義網路技術實現的智慧型資料計費方法的運行架構圖;圖3係顯示時間相對於網路交通流量的曲線圖;以及圖4係顯示時間相對於網路交通流量的曲線圖。 The technical contents of the present invention and the effects of the objects of the present invention will be further understood by referring to the detailed description of the present invention and the accompanying drawings. FIG. 1 is a structural diagram showing a software-defined network; FIG. 2 is a schematic diagram of the present invention. An operational architecture diagram of a smart data billing method implemented by software-defined network technology; Figure 3 is a graph showing time versus network traffic flow; and Figure 4 is a graph showing time versus network traffic flow .
為了能夠更清楚地描述本發明所提出之一種透過軟體定義網路技術實現的智慧型資料計費方法,以下將配合圖示,詳盡說明之。 In order to more clearly describe the smart data charging method implemented by the software-defined network technology proposed by the present invention, the following will be described in detail with reference to the drawings.
請參閱圖2,係顯示本發明之一種透過軟體定義網路技術實現的智慧型資料計費方法的運行架構圖。請同時搭配參閱圖1,本發明之透過軟體定義網路技術實現的智慧型資料計費方法1(下簡稱智慧型資料計費方法1)可以編撰成為如圖1所示的網路應用程式(application,APP)111',進而實現於軟體定義網路(Software Defined Network,SDN)的基礎架構中。如圖2所示,本發明之智慧型資料計費方法1係於運行架構上主要包括:一網路流量監控單元11、一資料融合單元12、與一計價單元13。 Referring to FIG. 2, an operational architecture diagram of a smart data charging method implemented by a software-defined network technology according to the present invention is shown. Please refer to FIG. 1 together, and the smart data charging method 1 (hereinafter referred to as smart data charging method 1) implemented by the software-defined network technology of the present invention can be compiled into a web application as shown in FIG. 1 ( The application, APP) 111' is implemented in the infrastructure of the Software Defined Network (SDN). As shown in FIG. 2, the smart data charging method 1 of the present invention mainly includes a network traffic monitoring unit 11, a data fusion unit 12, and a pricing unit 13.
於本發明的運行架構中,當區域(zone)2內的複數個位置(location)21之中的用戶(client)使用至少一種網路服務(即,進行存取網際網路行為)之時,網路流量監控單元11便會監測由該存取網際網路行為所產生的複數條網路交通流(Internet traffic flows),然後自該網路交通流中獲取一筆或多筆位元組(bytes)與一總網路流量(Yk,l,m,total bytes)。值得說明的是,每個位置21內會具有一個或多個交換機22,且該複數條網路交通流之監測係基於該網路流量監控單元11與該交換機22之間的開放流(OpenFlow)協定而實現。為了更加清楚地解釋網路流量監控單元11之功能,在此先將後續說明之中會出現的參數整理於下表(1)之中。 In the operational architecture of the present invention, when a user (client) in a plurality of locations 21 in a zone 2 uses at least one network service (ie, accesses Internet behavior), The network traffic monitoring unit 11 monitors a plurality of Internet traffic flows generated by the access network behavior, and then obtains one or more bytes from the network traffic flow (bytes) ) with a total network traffic (Y k, l, m , total bytes). It should be noted that each location 21 will have one or more switches 22, and the monitoring of the plurality of network traffic flows is based on the open flow between the network traffic monitoring unit 11 and the switch 22 (OpenFlow). Realized by agreement. In order to explain the function of the network traffic monitoring unit 11 more clearly, the parameters that will appear in the following description are first organized in the following table (1).
如圖2所示,該網路流量監控單元11係包括一個或一個以上的開放流控制器(OpenFlow controller)111與一計數器112;其中,該開放流控制器111係基於開放流協定控制該些交換機22,並取得該一個或多個位元組與該總網路流量(Y k,l,m )。另一方面,計數器112則是用以計數該些位元組之一位元組總數量(a i,j )。必須特別說明的是,該網路流量監控單元11係將一天24小時分割成複數個時間槽(t k,l,m ),並基於以下數學式(1)與(2)分別獲得該總網路流量
(Y k,l,m )與地區2(或位置21)內使用網路服務的用戶總數(N k,l,m ):
中華電信所提供統計數據顯示,每個用戶存取網際網路所使用的網路流量平均為5.5GB;因此,基於將一個月設定為30天的條件下,吾人可以計算出每個用戶於單一時間槽內所使用的網路流量為7.641x106。簡單地說,本發明係透藉由將所監測到的總網路流量(Y k,l,m )除以7.641x106的方式,估算出使用網路服務的用戶總數(N k,l,m )。 The statistics provided by Chunghwa Telecom show that the average network traffic used by each user to access the Internet is 5.5GB; therefore, based on the setting of one month to 30 days, we can calculate each user in a single The network traffic used in the time slot is 7.641x10 6 . Briefly, the present invention estimates the total number of users using network services ( N k , l , by dividing the total network traffic ( Y k , l , m ) monitored by 7.641× 10 6 . m ).
繼續地參閱圖2。於本發明中,資料融合單元12係設計用以基於至少一資料融合模型方法而對網路流量監控單元11透過該些交換機22所監測到的數據資料執行一資料融合處理,進而獲得一融合網路壅塞程度。值得說明的是,該方法可以是平均資料融合模型方法(average method data fusion nodel);並且,透過該方法計算獲得之融合網路壅塞程度係為一平均融合網路壅塞程度。其中,該平均資料融合模型方法由以下數學式(3)與(4)所表示:
1≦m≦M....................................................(4) 1≦ m ≦M................................................ .......(4)
式(3)中的x k,l,m 表示為未進行資料融合的網路壅塞程度,可透過以下數學式(3-1)計算獲得:
並且,觀察式(3)與式(3-1)可以發現,資料融合前的網路壅塞程度以符號表式為x k,l,m ,而資料融合後的網路壅塞程度則以符號表式為;這表示監測自多個位置21的數據資料已經透過特定的資料融合模型方法完成資料融合之數據處理。 Moreover, by observing equations (3) and (3-1), it can be found that the degree of network congestion before data fusion is represented by the symbolic expression x k , l , m , and the degree of network congestion after data fusion is represented by a symbol table. Formula This means that data from multiple locations 21 has been monitored for data processing through data fusion through a specific data fusion model approach.
此外,該方法也可以是一人口加權平均資料融合模型方法(population weighted average method data fusion model);並且,透過該方法計算獲得之融合網路壅塞程度係為一人口加權平均融合網路壅塞程度。其中,該人口加權平均資料融合模型方法由以下數學式(5)與(6)所表示:
式(5)中的γ k,l,m表示為人口權重,可透過以下數學式(5-1)計算獲得:
值得說明的是,於設計資料融合模型方法之時還必須同時考慮兩件事:(1)一天之中必定存在網路交通流量的尖峰時段;以及(2)在非尖峰時段,同一地區2內的不同位置 21會顯示出不同的網路交通狀態。因此,在計算融合網路壅塞程度之時便需要將不同位置21彼此間的網路交通狀態的關聯性一併考慮進來。為了更清楚地解釋這部分,在此先將後續說明之中會出現的參數整理於下表(2)之中。 It is worth noting that two things must be considered at the same time when designing the data fusion model method: (1) there must be a peak period of network traffic flow during the day; and (2) during the non-peak period, within the same area 2 The different locations 21 will show different network traffic conditions. Therefore, in calculating the degree of congested network congestion At that time, it is necessary to take into account the correlation of the network traffic states of the different locations 21 with each other. In order to explain this part more clearly, the parameters that will appear in the following description are first organized in the following table (2).
如圖2所示,由於一個區域2內包含多個位置21,因此吾人可以基於表(2)所列的各個參數而進一步地獲得該些位置21的一距離矩陣(Dk,l)。該距離矩陣(Dk,l)由以下數學式(I)所表示:
並且,吾人可以進一步地獲得類似距離矩陣(Dk,l)的一關聯性矩陣(relation matrix)。該關聯性矩陣(Rk,l)由以下數
學式(II)所表示:
可想而知,關聯性矩陣內的關聯性矩陣元素即用以表示同一地區2內的任兩個位置21之間的網路交通狀態的關聯性。並且,該關聯性矩陣元素與該距離矩
陣元素可由以下數學式(III)所表示:
透過關聯性矩陣(Rk,l)之建立,任兩個位置21之間的網路交通狀態的相互影響力的強度便可以被估算而得。如此,基於該關聯性矩陣,一關係矩陣資料融合模型方法便可以接續著被建立。值得說明的是,透過該方法計算獲得之該融合網路壅塞程度係為一關係矩陣融合網路壅塞程度。其中,該關係矩陣資料融合模型方法由以下數學式(7)與(8)所表示:
式(7)-(8)中的表示為M個維度(即,區域2中的m 個位置21)的支援比率向量。 In equations (7)-(8) A support ratio vector expressed as M dimensions (ie, m positions 21 in region 2).
繼續地參閱圖2。於本發明中,計價單元13係根據該資料融合單元12所獲得之該融合網路壅塞程度而計算出一計價率(α k,l),並進一步地根據該計價率計算出區域2內的每個用戶(client)的一應付網路使用費(Z*)。為了更加清楚地解釋計價單元13之功能,在此先將後續說明之中會出現的參數整理於下表(3)之中。 Continue to refer to Figure 2. In the present invention, the pricing unit 13 is based on the degree of congestion of the converged network obtained by the data fusion unit 12. A rate of valuation ( α k,l ) is calculated, and a payable network usage fee (Z * ) for each client in the area 2 is further calculated based on the rate. In order to explain the function of the pricing unit 13 more clearly, the parameters that will appear in the subsequent description are first organized in the following table (3).
如圖2所示,由於自一天24小時所分割出來的時間槽係總共K個,因此吾人可以基於表(3)所列的各個參數而進一步地獲得在一時間槽內根據資料融合後的網路壅塞程度所計算而得的計價率(α k,l)。該計價率(α k,l)係透過以下數學式(9)與(10)而獲得:
必須補充說明的是,於月份中的第1天,該計價率為1。另一方面,於月份中的其它天,該計價率(α k,l)則必須透過上述式(9)與(10)計算獲得。接續著,計價單元13便可以基於以下數學式(11)計算出每個用戶(client)的應付網路使用費(Z*):Z *=Σ k,l,m α k,l Z k,l,m ................................................(11)。 It must be added that the rate is 1 on the first day of the month. On the other hand, on other days in the month, the pricing rate ( α k,l ) must be calculated by the above equations (9) and (10). Next, the pricing unit 13 can calculate the payable network usage fee (Z * ) of each user (client) based on the following mathematical formula (11): Z * = Σ k , l , m α k , l Z k , l , m ............................................... (11).
值得說明的是,該應付網路使用費係基於用戶在不同位置21與不同時間槽內所使用的不同網路流量而算得;因此,用戶有可能會為了減少應付網路使用費而改變其使用網路服務之習慣,例如:變更存取網際網路的時段。為了證實這部分,本案發明人係利用SDN模擬器EstiNetTM進行了相關實驗。在實驗設計上,參考圖2之架構圖,發明人係對應於不同終端網路裝置之5個位置21而佈署40個交換機22。同時,將一個月設定為30天且一天分為24個時間槽(亦即L=30,K=24)。 It is worth noting that the payable network usage fee is calculated based on the different network traffic used by the user in different locations 21 and different time slots; therefore, the user may change its usage in order to reduce the network usage fee. The habit of Internet services, such as changing the time period for accessing the Internet. To confirm this section, the inventors using SDN-based simulator EstiNet TM conducted experiments. In the experimental design, referring to the architecture diagram of FIG. 2, the inventors deployed 40 switches 22 corresponding to five locations 21 of different terminal network devices. At the same time, one month is set to 30 days and the day is divided into 24 time slots (ie, L=30, K=24).
承上述,為了減少應付網路使用費,用戶在不同位置21或不同時間槽內可能改變其存取網際網路之行為模式。因此為了模擬這部分,吾人設計了一個激勵函數
(incentive function),且該激勵函數由下數學式(a)與(b)所表示:
並且,與激勵函數有關的一些參數係整理於下表(4)之中。 Moreover, some parameters related to the excitation function are organized in the following table (4).
請參閱圖3,係顯示時間相對於網路交通流量的曲線圖。其中,圖3中的4條資料曲線的有關資訊係整理於下表(5)之中。 See Figure 3 for a graph showing time versus network traffic. Among them, the information about the four data curves in Figure 3 is organized in the following table (5).
比較曲線A、曲線B、曲線C、與曲線D可以發現,台北市的用戶存取網際網路的尖峰時段係自12-16位移至14-18;這樣的結果係顯示位於台北市的大部分用戶係的確受到激勵而改變其存取網際網路的時段。 Comparing curve A, curve B, curve C, and curve D, it can be found that the peak time of users accessing the Internet in Taipei City has shifted from 12-16 to 14-18; this result shows that most of the Taipei city is located. The user system is indeed motivated to change the time period during which it accesses the Internet.
請再繼續參閱圖4,係顯示時間相對於網路交通流量的曲線圖。其中,圖4中的4條資料曲線的有關資訊係整理於下表(6)之中。 Please continue to refer to Figure 4, which shows a graph of time versus network traffic. Among them, the information about the four data curves in Figure 4 is organized in the following table (6).
比較曲線A'與曲線B'可以發現,於本發明之智慧型資料計費方法實施的初期,基隆市的用戶係首先改變其存取網際網路的行為模式,以降低其網路使用流量。接著,比較曲線B'、曲線C'與曲線D'可以發現,基隆市的用戶存取網際網路的尖峰時段係自14-16位移至15-18。因此,圖3與圖4的模擬實驗數據係證實,本發明之智慧型資料計費方法的實施係的確能夠精準地監控處於不同位置(地區) 之終端網路裝置的網路交通狀態及其使用頻寬。 Comparing the curve A' with the curve B', it can be found that in the early stage of implementation of the smart data charging method of the present invention, the Keelung user first changed the behavior mode of accessing the Internet to reduce the network usage traffic. Next, comparing the curve B', the curve C' and the curve D', it can be found that the peak period of the user accessing the Internet in Keelung is shifted from 14-16 to 15-18. Therefore, the simulation experimental data of FIG. 3 and FIG. 4 confirm that the implementation of the intelligent data charging method of the present invention can accurately monitor different locations (regions). The network traffic status of the terminal network device and its usage bandwidth.
特點及功效 Features and effects
由上述關於本發明所提出的透過軟體定義網路技術實現的智慧型資料計費方法的詳細說明,相信熟悉網路通信技術的工程人員以及電信營運商能夠輕易地發現本發明係於實務應用上顯現出下列特點及功效:(1)不同於習知的分時計費方法(smart data pricing,SDP)容易受到網路交通流複雜度的影響而無法因時地宜地精準掌握處於不同位置(地區)的終端網路裝置之網路交通狀態,本發明之智慧型資料計費方法藉由結合SDN與資料融合模型方法,完成了能夠基於所監測的網路交通狀態及使用頻寬而適當地區域性調整網路流量與頻寬的一種高效能智慧型資料計費方法;(2)藉由本發明之實施,網路提供業者(ISP)除了能夠緩解網路壅塞或使用頻寬不足之問題以外,同時也能夠根據不同用戶的網路使用習慣而適應性地建立適合的計價方案。 Based on the above detailed description of the intelligent data charging method implemented by the software-defined network technology proposed by the present invention, it is believed that engineers and telecommunication operators familiar with network communication technologies can easily find that the present invention is applied to practical applications. The following characteristics and effects are manifested: (1) Unlike the traditional smart data pricing (SDP), which is susceptible to the complexity of the network traffic flow, it is not possible to accurately grasp the different locations in time (regions). The network traffic state of the terminal network device, the smart data charging method of the present invention completes the appropriate region based on the monitored network traffic state and usage bandwidth by combining the SDN and data fusion model methods. A high-performance intelligent data charging method for adjusting network traffic and bandwidth; (2) by implementing the present invention, an Internet Provider (ISP) can not only alleviate the problem of network congestion or insufficient bandwidth usage, At the same time, it is also possible to adaptively establish a suitable pricing plan according to the network usage habits of different users.
特別說明的是,上列詳細說明乃針對本發明之一可行實施例進行具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 It is to be understood that the foregoing detailed description of the preferred embodiments of the present invention , should be included in the scope of the patent in this case.
綜上所述,本案不僅於技術思想上確屬創新, 並具備習用之傳統方法所不及之上述多項功效,已充分符合新穎性及進步性之法定發明專利要件,爰依法提出申請,懇請 貴局核准本件發明專利申請案,以勵發明,至感德便。 In summary, this case is not only innovative in terms of technical thinking, And with the above-mentioned multiple functions that are not in the traditional methods of the past, it has fully complied with the statutory invention patents of novelty and progressiveness. If you apply in accordance with the law, you are requested to approve the application for the invention patent, so as to invent the invention. .
1‧‧‧智慧型資料計費方法 1‧‧‧Smart data billing method
11‧‧‧網路流量監控單元 11‧‧‧Network Traffic Monitoring Unit
111‧‧‧開放流控制器 111‧‧‧Open flow controller
112‧‧‧計數器 112‧‧‧ counter
12‧‧‧資料融合單元 12‧‧‧Data Fusion Unit
13‧‧‧計價單元 13‧‧‧Price unit
2‧‧‧區域 2‧‧‧ Area
21‧‧‧位置 21‧‧‧ position
22‧‧‧交換機 22‧‧‧Switch
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW106117113A TWI610581B (en) | 2017-05-24 | 2017-05-24 | Smart data pricing method carried out based on sdn |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW106117113A TWI610581B (en) | 2017-05-24 | 2017-05-24 | Smart data pricing method carried out based on sdn |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI610581B true TWI610581B (en) | 2018-01-01 |
| TW201902238A TW201902238A (en) | 2019-01-01 |
Family
ID=61728340
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW106117113A TWI610581B (en) | 2017-05-24 | 2017-05-24 | Smart data pricing method carried out based on sdn |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI610581B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI692987B (en) * | 2019-10-04 | 2020-05-01 | 中華電信股份有限公司 | Charging method for sdn or nfv network |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101442489A (en) * | 2008-12-30 | 2009-05-27 | 北京畅讯信通科技有限公司 | Method for recognizing flux based on characteristic library |
| US7792963B2 (en) * | 2003-09-04 | 2010-09-07 | Time Warner Cable, Inc. | Method to block unauthorized network traffic in a cable data network |
| US7970713B1 (en) * | 2000-05-10 | 2011-06-28 | OIP Technologies, Inc. | Method and apparatus for automatic pricing in electronic commerce |
| TWI408976B (en) * | 2010-06-29 | 2013-09-11 | Chunghwa Telecom Co Ltd | The method of accounting control information when the heterogeneous network is handed down |
| CN103684803A (en) * | 2013-12-11 | 2014-03-26 | 中国联合网络通信集团有限公司 | Flow collecting device and system and method for directional flow accounting |
| TW201534078A (en) * | 2014-02-14 | 2015-09-01 | Ericsson Telefon Ab L M | PCRF assisted APN selection |
-
2017
- 2017-05-24 TW TW106117113A patent/TWI610581B/en not_active IP Right Cessation
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7970713B1 (en) * | 2000-05-10 | 2011-06-28 | OIP Technologies, Inc. | Method and apparatus for automatic pricing in electronic commerce |
| US7792963B2 (en) * | 2003-09-04 | 2010-09-07 | Time Warner Cable, Inc. | Method to block unauthorized network traffic in a cable data network |
| CN101442489A (en) * | 2008-12-30 | 2009-05-27 | 北京畅讯信通科技有限公司 | Method for recognizing flux based on characteristic library |
| TWI408976B (en) * | 2010-06-29 | 2013-09-11 | Chunghwa Telecom Co Ltd | The method of accounting control information when the heterogeneous network is handed down |
| CN103684803A (en) * | 2013-12-11 | 2014-03-26 | 中国联合网络通信集团有限公司 | Flow collecting device and system and method for directional flow accounting |
| TW201534078A (en) * | 2014-02-14 | 2015-09-01 | Ericsson Telefon Ab L M | PCRF assisted APN selection |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201902238A (en) | 2019-01-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kim et al. | Automated and Scalable QoS Control for Network Convergence. | |
| Persico et al. | Measuring network throughput in the cloud: The case of Amazon EC2 | |
| Leung et al. | Adaptive proportional delay differentiated services: Characterization and performance evaluation | |
| McCabe | Network analysis, architecture, and design | |
| Liu et al. | eBA: Efficient bandwidth guarantee under traffic variability in datacenters | |
| Reddy et al. | On optimization efficiency of scalability and availability of cloud-based software services using scale rate limiting algorithm | |
| CN110650032A (en) | A method for building a QoS-based application optimization deployment scheme in a multi-cloud environment | |
| CN106161285B (en) | A kind of network resource allocation method and device | |
| Dhamdhere et al. | Can ISPs be profitable without violating “network neutrality”? | |
| TWI610581B (en) | Smart data pricing method carried out based on sdn | |
| Korcak et al. | Competition and regulation in a wireless operator market: An evolutionary game perspective | |
| Cano-Cano et al. | A methodology to enable QoS provision on InfiniBand hardware: J. Cano-Cano et al. | |
| CN103825963A (en) | Virtual service transition method | |
| CN108933737A (en) | Load-balancing method and device | |
| Metzger et al. | Context monitoring for improved system performance and qoe | |
| Lutu et al. | An economic side-effect for prefix deaggregation | |
| Grønsund et al. | A solution for SGi-LAN services virtualization using NFV and SDN | |
| Gharakheili | The role of SDN in broadband networks | |
| US20220141093A1 (en) | Network bandwidth apportioning | |
| Huang et al. | A new mechanism for SDN network virtualization service | |
| Liantoni et al. | Queue Tree Implementation for Bandwidth Management in Modern Campus Network Architecture | |
| HRP20250369T1 (en) | NETWORK AWARE ELEMENT AND METHOD OF USING IT | |
| Ilie et al. | On designing a cost-aware virtual CDN for the federated cloud | |
| Adhari et al. | Transport layer fairness revisited | |
| Barreto et al. | Modeling and accomplishing the BEREC network neutrality policy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Annulment or lapse of patent due to non-payment of fees |