[go: up one dir, main page]

TWI610581B - Smart data pricing method carried out based on sdn - Google Patents

Smart data pricing method carried out based on sdn Download PDF

Info

Publication number
TWI610581B
TWI610581B TW106117113A TW106117113A TWI610581B TW I610581 B TWI610581 B TW I610581B TW 106117113 A TW106117113 A TW 106117113A TW 106117113 A TW106117113 A TW 106117113A TW I610581 B TWI610581 B TW I610581B
Authority
TW
Taiwan
Prior art keywords
network
expressed
data
data fusion
degree
Prior art date
Application number
TW106117113A
Other languages
Chinese (zh)
Other versions
TW201902238A (en
Inventor
林風
林弘文
胡萬勳
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW106117113A priority Critical patent/TWI610581B/en
Application granted granted Critical
Publication of TWI610581B publication Critical patent/TWI610581B/en
Publication of TW201902238A publication Critical patent/TW201902238A/en

Links

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

The present invention implements a plurality of different data fusion model methods in a software-defined network (SDN), thereby completing a smart data charging method of the present invention, which includes: an average data fusion model method (average Method data fusion model, AM model method, population weighted average method data fusion model (PWAM model method) and relational matrix data fusion model (RM model method) . The results of the simulation verification show that the smart data charging method of the present invention can accurately monitor the network traffic state of the terminal network devices at different locations (areas) and the bandwidth thereof. By applying the smart data charging method of the present invention to the network system, the Internet Provider (ISP) can appropriately adjust the network of each area according to the manner of monitoring the traffic state of the network and the bandwidth used. Road traffic and bandwidth to solve the problem of network congestion or insufficient bandwidth.

Description

透過軟體定義網路技術實現的智慧型資料計費方法 Intelligent data charging method realized by software-defined network technology

本發明係屬於網路服務與計費管理之技術領域,尤指能夠根據網路交通狀態及使用頻寬而適當地調整每個地區網路流量與頻寬的一種透過軟體定義網路技術實現的智慧型資料計費方法。 The present invention belongs to the technical field of network service and billing management, and particularly relates to a network-defined network technology that can appropriately adjust network traffic and bandwidth in each area according to network traffic status and usage bandwidth. Smart data billing method.

網際網路(Internet)的出現徹底的改變了人們既有的生活及交往方式。進一步地,雲端服務與大數據的出現更令人們無時無刻需要使用網路服務。基於這樣的理由,對於網路資源進行有效管理以及提供用戶(client)良好的網路服務品質成為非常重要的課題。另一方面,有鑑於高昂的存取網際網路成本,部分的人們仍舊無法完全享受或使用行動網際網路(mobile Internet)所帶來的便利性;簡單的說,需求與成本兩者之間的矛盾在一定程度上阻礙了行動網際網路的推廣與發展。是以,如何基於用戶的網路服務需求及其網際網路存取模式進以因時地宜地控制並分 配網路流量遂成為非常重要的課題。 The emergence of the Internet has completely changed the way people live and interact. Further, the emergence of cloud services and big data makes people need to use network services all the time. For this reason, effective management of network resources and provision of good network service quality by users have become very important issues. On the other hand, in view of the high cost of accessing the Internet, some people still cannot fully enjoy or use the convenience of the mobile Internet; in short, between demand and cost The contradiction has hindered the promotion and development of the mobile Internet to a certain extent. Therefore, how to control and divide users based on their network service requirements and their Internet access modes Network traffic is a very important issue.

網路服務業者(Internet Service Provider,ISP)通常係利用分時計費(Smart Data Pricing,SDP)的方法來根據不同用戶的網路使用量(usage)訂出不同的計價方案,達到鼓勵用戶調整其網際網路存取模式之目的,進而能夠緩解尖峰時段網路壅塞之問題,並同時維持一定程度的網路服務品質。分時計費方法的效能決定於網路頻寬使用量的量測穩定度與精確度;然而,受到網路交通流複雜度的影響,想要無時無刻精準地掌握不同地區的網路使用量與交通狀態並非一件易事。 Internet Service Providers (ISPs) usually use the Smart Data Pricing (SDP) method to set different pricing plans according to different users' network usage, so as to encourage users to adjust their The purpose of the Internet access model is to alleviate the problem of network congestion during peak hours while maintaining a certain level of network service quality. The effectiveness of the time-sharing method depends on the measurement stability and accuracy of the network bandwidth usage; however, due to the complexity of the network traffic flow, it is necessary to grasp the network usage and traffic in different regions all the time and accurately. The status is not an easy task.

有鑑於此,史丹佛大學的教授Nick Mckeown提出一個新的網路管理概念:軟體定義網路(Software Defined Network,SDN)。其中,軟體定義網路之技術主要係透過將控制層獨立出來之方式,達到能夠更靈活管理網路行為模式之目的。圖1係顯示軟體定義網路的架構圖。如圖1所示,軟體定義網路1'(下簡稱SDN 1')的架構包括:應用層11'、控制層12'與資料層13'。值得說明的是,SDN 1'的架構允許使用者於應用層11'內自行編撰網路應用程式(application,APP)111';並且,網路應用程式111'可以透過北向應用程式介面(Northbound API)14'取得控制層12'所傳遞的相關資料,進以執行相關應用。同時,控制層12'中的一至多個控制器121'會透過南向應用程式介面(Southbound API)15'告知資料層13'內的交換機131'所需要執行的動作。 In view of this, Stanford University professor Nick Mckeown proposed a new network management concept: Software Defined Network (SDN). Among them, the software-defined network technology mainly achieves the purpose of more flexible management of network behavior patterns by separating the control layer. Figure 1 shows the architecture of a software-defined network. As shown in FIG. 1, the architecture of the software definition network 1' (hereinafter referred to as SDN 1') includes an application layer 11', a control layer 12' and a data layer 13'. It is worth noting that the architecture of SDN 1' allows the user to compile a web application (application, APP) 111' in the application layer 11'; and the web application 111' can pass the northbound application interface (Northbound API) 14' takes the relevant information transmitted by the control layer 12' to perform related applications. At the same time, one or more controllers 121' in the control layer 12' will pass through the southbound application interface (Southbound The API) 15' informs the switch 131' in the data layer 13' of the actions that need to be performed.

開放流(OpenFlow)即為一種南向應用程式介面,屬於由控制層12'向下指定至資料層13'的一種協定。這樣的協定方式使得控制器和交換機131'之間的溝通有了一個標準且公開的準則;如此,網路管理者便可以自行撰寫或是優化控制器的各種應用(applications),進而達到具多功能性的網路管理模式。舉例而言,網路管理者可以透過SDN 1'的架構來監控網路頻寬使用量與網路交通狀態。 OpenFlow is a southbound application interface that belongs to a protocol that is assigned down to the data layer 13' by the control layer 12'. This type of agreement provides a standard and open standard for communication between the controller and the switch 131'; thus, the network administrator can write or optimize various applications of the controller, thereby achieving more Functional network management mode. For example, network administrators can monitor network bandwidth usage and network traffic status through the SDN 1' architecture.

然而,由於網路交通狀態係根據區域差異而有有所不同,如何獲得全球網路狀態(global network status)便成為一件具挑戰性的工作。 However, since the state of the Internet traffic varies according to regional differences, how to obtain global network status becomes a challenging task.

有鑑於此,本案發明人乃亟思加以改良創新,並經多年苦心孤詣潛心研究後,終於透過結合該SDN 1'與數據融合(data fusion)的方式,設計並研發出一種透過軟體定義網路技術實現的智慧型資料計費方法。 In view of this, the inventor of the case was improved and innovated, and after years of painstaking research, he finally designed and developed a software-defined network technology through the combination of the SDN 1' and data fusion. Achieved smart data billing method.

本發明之主要目的在於提供一種透過軟體定義網路技術實現的智慧型資料計費方法。於本發明中,係將多個不同的資料融合模型方法實現於軟體定義網路(software-defined network,SDN),進而完成本發明之一種智慧型資料計費方法,其係包括:平均資料融合模型方法 (average method data fusion model,AM模型方法)、人口加權平均資料融合模型方法(population weighted average method data fusion model,PWAM模型方法)以及關係矩陣資料融合模型方法(relation-matrix method data fusion model,RM模型方法)。進一步地,為了驗證此智慧型資料計費方法的可行性,本案發明人係於商用網路模擬器之中佈署5個OpenFlow控制器,並同時對應於不同終端網路裝置之5個預設位置而佈署40個OpenFlow交換機。模擬驗證的結果顯示,本發明之智慧型資料計費方法的確能夠精準地監控處於不同位置(地區)之終端網路裝置的網路交通狀態及其使用頻寬。可想而知,網路提供業者(ISP)只要將本發明之智慧型資料計費方法應用至網路系統之中,便能夠根據監測網路交通狀態及使用頻寬的方式,進而適當地調整每個地區的網路流量與頻寬,藉此解決網路壅塞或使用頻寬不足之問題。 The main purpose of the present invention is to provide a smart data charging method implemented by software-defined network technology. In the present invention, a plurality of different data fusion model methods are implemented in a software-defined network (SDN), thereby completing a smart data charging method of the present invention, which includes: average data fusion Model approach (average method data fusion model, AM model method), population weighted average method data fusion model (PWAM model method) and relational matrix data fusion model (relation-matrix method data fusion model) method). Further, in order to verify the feasibility of the smart data charging method, the inventor of the present invention deploys five OpenFlow controllers in a commercial network simulator, and simultaneously corresponds to five presets of different terminal network devices. Location and deployment of 40 OpenFlow switches. The results of the simulation verification show that the intelligent data charging method of the present invention can accurately monitor the network traffic state of the terminal network devices in different locations (areas) and the bandwidth thereof. It is conceivable that an Internet provider (ISP) can appropriately adjust the network traffic status and the bandwidth according to the method of monitoring the smart data charging method of the present invention. Network traffic and bandwidth in each region to address network congestion or insufficient bandwidth usage.

為了達成上述本發明之主要目的,本案之發明人係提出所述之透過軟體定義網路技術實現的智慧型資料計費方法的一實施例,係包括:一網路流量監控單元,係於一區域內的複數個位置使用至少一種網路服務之時監測複數條網路交通流,以獲取一筆或多筆位元組與一總網路流量;其中,每個位置包括一個或多個交換機,且該複數條網路交通流之監測係基於 該網路流量監控單元與該交換機之間的開放流(OpenFlow)協定而實現;一資料融合單元,係基於至少一資料融合模型而對該網路流量監控單元透過該些交換機所監測到的數據資料執行一資料融合處理,進而獲得一融合網路壅塞程度;以及一計價單元,係根據該資料融合單元所獲得之該融合網路壅塞程度而計算出一計價率,並進一步地根據該計價率計算出該區域內的每個用戶的一應付網路使用費。 In order to achieve the above-mentioned primary object of the present invention, the inventor of the present invention proposes an embodiment of the smart data charging method implemented by the software-defined network technology, which includes: a network traffic monitoring unit, which is A plurality of locations within the area monitor a plurality of network traffic flows using at least one network service to obtain one or more bytes and a total network traffic; wherein each location includes one or more switches, And the monitoring of the plurality of network traffic flows is based on The network traffic monitoring unit and the switch are implemented by an OpenFlow protocol; a data fusion unit is configured to monitor the data monitored by the network traffic monitoring unit through the switches based on at least one data fusion model. The data is executed by a data fusion process to obtain a degree of convergence of the converged network; and a pricing unit calculates a denomination rate based on the degree of congestion of the converged network obtained by the data fusion unit, and further calculates the denomination rate according to the denomination rate Calculate a payable network usage fee for each user in the area.

1'‧‧‧軟體定義網路 1'‧‧‧Software Definition Network

11'‧‧‧應用層 11'‧‧‧Application layer

111'‧‧‧網路應用程式 111'‧‧‧Web application

12'‧‧‧控制層 12'‧‧‧Control layer

121'‧‧‧控制器 121'‧‧‧ Controller

13'‧‧‧資料層 13'‧‧‧data layer

131'‧‧‧交換機 131'‧‧‧Switch

14'‧‧‧北向應用程式介面 14'‧‧‧Northbound Application Interface

15'‧‧‧南向應用程式介面 15'‧‧‧Southward application interface

1‧‧‧智慧型資料計費方法 1‧‧‧Smart data billing method

11‧‧‧網路流量監控單元 11‧‧‧Network Traffic Monitoring Unit

111‧‧‧開放流控制器 111‧‧‧Open flow controller

112‧‧‧計數器 112‧‧‧ counter

12‧‧‧資料融合單元 12‧‧‧Data Fusion Unit

13‧‧‧計價單元 13‧‧‧Price unit

2‧‧‧區域 2‧‧‧ Area

21‧‧‧位置 21‧‧‧ position

22‧‧‧交換機 22‧‧‧Switch

請參閱有關本發明之詳細說明及其附圖,將可進一步瞭解本發明之技術內容及其目的功效;有關附圖為:圖1係顯示軟體定義網路的架構圖;圖2係本發明之一種透過軟體定義網路技術實現的智慧型資料計費方法的運行架構圖;圖3係顯示時間相對於網路交通流量的曲線圖;以及圖4係顯示時間相對於網路交通流量的曲線圖。 The technical contents of the present invention and the effects of the objects of the present invention will be further understood by referring to the detailed description of the present invention and the accompanying drawings. FIG. 1 is a structural diagram showing a software-defined network; FIG. 2 is a schematic diagram of the present invention. An operational architecture diagram of a smart data billing method implemented by software-defined network technology; Figure 3 is a graph showing time versus network traffic flow; and Figure 4 is a graph showing time versus network traffic flow .

為了能夠更清楚地描述本發明所提出之一種透過軟體定義網路技術實現的智慧型資料計費方法,以下將配合圖示,詳盡說明之。 In order to more clearly describe the smart data charging method implemented by the software-defined network technology proposed by the present invention, the following will be described in detail with reference to the drawings.

請參閱圖2,係顯示本發明之一種透過軟體定義網路技術實現的智慧型資料計費方法的運行架構圖。請同時搭配參閱圖1,本發明之透過軟體定義網路技術實現的智慧型資料計費方法1(下簡稱智慧型資料計費方法1)可以編撰成為如圖1所示的網路應用程式(application,APP)111',進而實現於軟體定義網路(Software Defined Network,SDN)的基礎架構中。如圖2所示,本發明之智慧型資料計費方法1係於運行架構上主要包括:一網路流量監控單元11、一資料融合單元12、與一計價單元13。 Referring to FIG. 2, an operational architecture diagram of a smart data charging method implemented by a software-defined network technology according to the present invention is shown. Please refer to FIG. 1 together, and the smart data charging method 1 (hereinafter referred to as smart data charging method 1) implemented by the software-defined network technology of the present invention can be compiled into a web application as shown in FIG. 1 ( The application, APP) 111' is implemented in the infrastructure of the Software Defined Network (SDN). As shown in FIG. 2, the smart data charging method 1 of the present invention mainly includes a network traffic monitoring unit 11, a data fusion unit 12, and a pricing unit 13.

於本發明的運行架構中,當區域(zone)2內的複數個位置(location)21之中的用戶(client)使用至少一種網路服務(即,進行存取網際網路行為)之時,網路流量監控單元11便會監測由該存取網際網路行為所產生的複數條網路交通流(Internet traffic flows),然後自該網路交通流中獲取一筆或多筆位元組(bytes)與一總網路流量(Yk,l,m,total bytes)。值得說明的是,每個位置21內會具有一個或多個交換機22,且該複數條網路交通流之監測係基於該網路流量監控單元11與該交換機22之間的開放流(OpenFlow)協定而實現。為了更加清楚地解釋網路流量監控單元11之功能,在此先將後續說明之中會出現的參數整理於下表(1)之中。 In the operational architecture of the present invention, when a user (client) in a plurality of locations 21 in a zone 2 uses at least one network service (ie, accesses Internet behavior), The network traffic monitoring unit 11 monitors a plurality of Internet traffic flows generated by the access network behavior, and then obtains one or more bytes from the network traffic flow (bytes) ) with a total network traffic (Y k, l, m , total bytes). It should be noted that each location 21 will have one or more switches 22, and the monitoring of the plurality of network traffic flows is based on the open flow between the network traffic monitoring unit 11 and the switch 22 (OpenFlow). Realized by agreement. In order to explain the function of the network traffic monitoring unit 11 more clearly, the parameters that will appear in the following description are first organized in the following table (1).

Figure TWI610581BD00001
Figure TWI610581BD00001
Figure TWI610581BD00002
Figure TWI610581BD00002

如圖2所示,該網路流量監控單元11係包括一個或一個以上的開放流控制器(OpenFlow controller)111與一計數器112;其中,該開放流控制器111係基於開放流協定控制該些交換機22,並取得該一個或多個位元組與該總網路流量(Y k,l,m )。另一方面,計數器112則是用以計數該些位元組之一位元組總數量(a i,j )。必須特別說明的是,該網路流量監控單元11係將一天24小時分割成複數個時間槽(t k,l,m ),並基於以下數學式(1)與(2)分別獲得該總網路流量 (Y k,l,m )與地區2(或位置21)內使用網路服務的用戶總數(N k,l,m ):

Figure TWI610581BD00003
As shown in FIG. 2, the network traffic monitoring unit 11 includes one or more OpenFlow controllers 111 and a counter 112. The OpenFlow controller 111 controls the OpenFlow controllers based on the OpenFlow protocol. The switch 22 obtains the one or more bytes and the total network traffic ( Y k , l , m ). On the other hand, the counter 112 is used to count the total number of bytes ( a i , j ) of the bytes. It should be particularly noted that the network traffic monitoring unit 11 divides a plurality of time slots ( t k , l , m ) into 24 hours a day, and obtains the total network based on the following mathematical formulas (1) and (2), respectively. The total number of users ( N k , l , m ) using network services in traffic ( Y k , l , m ) and region 2 (or location 21):
Figure TWI610581BD00003

Figure TWI610581BD00004
Figure TWI610581BD00004

中華電信所提供統計數據顯示,每個用戶存取網際網路所使用的網路流量平均為5.5GB;因此,基於將一個月設定為30天的條件下,吾人可以計算出每個用戶於單一時間槽內所使用的網路流量為7.641x106。簡單地說,本發明係透藉由將所監測到的總網路流量(Y k,l,m )除以7.641x106的方式,估算出使用網路服務的用戶總數(N k,l,m )。 The statistics provided by Chunghwa Telecom show that the average network traffic used by each user to access the Internet is 5.5GB; therefore, based on the setting of one month to 30 days, we can calculate each user in a single The network traffic used in the time slot is 7.641x10 6 . Briefly, the present invention estimates the total number of users using network services ( N k , l , by dividing the total network traffic ( Y k , l , m ) monitored by 7.641× 10 6 . m ).

繼續地參閱圖2。於本發明中,資料融合單元12係設計用以基於至少一資料融合模型方法而對網路流量監控單元11透過該些交換機22所監測到的數據資料執行一資料融合處理,進而獲得一融合網路壅塞程度

Figure TWI610581BD00005
。值得說明的是,該方法可以是平均資料融合模型方法(average method data fusion nodel);並且,透過該方法計算獲得之融合網路壅塞程度
Figure TWI610581BD00006
係為一平均融合網路壅塞程度
Figure TWI610581BD00007
。其中,該平均資料融合模型方法由以下數學式(3)與(4)所表示:
Figure TWI610581BD00008
Continue to refer to Figure 2. In the present invention, the data fusion unit 12 is designed to perform a data fusion process on the data data monitored by the network traffic monitoring unit 11 through the switches 22 based on at least one data fusion model method, thereby obtaining a fusion network. Road congestion level
Figure TWI610581BD00005
. It should be noted that the method may be an average method data fusion node (algorge method data fusion node); and the degree of convergence of the network obtained by the method is calculated.
Figure TWI610581BD00006
Is an average convergence network congestion level
Figure TWI610581BD00007
. The average data fusion model method is represented by the following mathematical formulas (3) and (4):
Figure TWI610581BD00008

1≦m≦M....................................................(4) 1≦ m ≦M................................................ .......(4)

式(3)中的x k,l,m 表示為未進行資料融合的網路壅塞程度,可透過以下數學式(3-1)計算獲得:

Figure TWI610581BD00009
The x k , l , m in equation (3) is expressed as the degree of network congestion without data fusion, which can be calculated by the following mathematical formula (3-1):
Figure TWI610581BD00009

並且,觀察式(3)與式(3-1)可以發現,資料融合前的網路壅塞程度以符號表式為x k,l,m ,而資料融合後的網路壅塞程度則以符號表式為

Figure TWI610581BD00010
;這表示監測自多個位置21的數據資料已經透過特定的資料融合模型方法完成資料融合之數據處理。 Moreover, by observing equations (3) and (3-1), it can be found that the degree of network congestion before data fusion is represented by the symbolic expression x k , l , m , and the degree of network congestion after data fusion is represented by a symbol table. Formula
Figure TWI610581BD00010
This means that data from multiple locations 21 has been monitored for data processing through data fusion through a specific data fusion model approach.

此外,該方法也可以是一人口加權平均資料融合模型方法(population weighted average method data fusion model);並且,透過該方法計算獲得之融合網路壅塞程度

Figure TWI610581BD00011
係為一人口加權平均融合網路壅塞程度
Figure TWI610581BD00012
。其中,該人口加權平均資料融合模型方法由以下數學式(5)與(6)所表示:
Figure TWI610581BD00013
In addition, the method may also be a population weighted average method data fusion model; and the degree of convergence of the network obtained by the method is calculated.
Figure TWI610581BD00011
a population-weighted average converged network congestion
Figure TWI610581BD00012
. Among them, the population weighted average data fusion model method is represented by the following mathematical formulas (5) and (6):
Figure TWI610581BD00013

Figure TWI610581BD00014
Figure TWI610581BD00014

式(5)中的γ k,l,m表示為人口權重,可透過以下數學式(5-1)計算獲得:

Figure TWI610581BD00015
γ k,l,m in equation (5) is expressed as population weight and can be calculated by the following mathematical formula (5-1):
Figure TWI610581BD00015

值得說明的是,於設計資料融合模型方法之時還必須同時考慮兩件事:(1)一天之中必定存在網路交通流量的尖峰時段;以及(2)在非尖峰時段,同一地區2內的不同位置 21會顯示出不同的網路交通狀態。因此,在計算融合網路壅塞程度

Figure TWI610581BD00016
之時便需要將不同位置21彼此間的網路交通狀態的關聯性一併考慮進來。為了更清楚地解釋這部分,在此先將後續說明之中會出現的參數整理於下表(2)之中。 It is worth noting that two things must be considered at the same time when designing the data fusion model method: (1) there must be a peak period of network traffic flow during the day; and (2) during the non-peak period, within the same area 2 The different locations 21 will show different network traffic conditions. Therefore, in calculating the degree of congested network congestion
Figure TWI610581BD00016
At that time, it is necessary to take into account the correlation of the network traffic states of the different locations 21 with each other. In order to explain this part more clearly, the parameters that will appear in the following description are first organized in the following table (2).

Figure TWI610581BD00017
Figure TWI610581BD00017

如圖2所示,由於一個區域2內包含多個位置21,因此吾人可以基於表(2)所列的各個參數而進一步地獲得該些位置21的一距離矩陣(Dk,l)。該距離矩陣(Dk,l)由以下數學式(I)所表示:

Figure TWI610581BD00018
As shown in FIG. 2, since a region 2 contains a plurality of locations 21, one can further obtain a distance matrix (D k,l ) of the locations 21 based on the various parameters listed in Table (2). The distance matrix (D k,l ) is represented by the following mathematical formula (I):
Figure TWI610581BD00018

並且,吾人可以進一步地獲得類似距離矩陣(Dk,l)的一關聯性矩陣(relation matrix)。該關聯性矩陣(Rk,l)由以下數 學式(II)所表示:

Figure TWI610581BD00019
Moreover, we can further obtain a relation matrix similar to the distance matrix (D k, l ). The correlation matrix (R k,l ) is represented by the following mathematical formula (II):
Figure TWI610581BD00019

可想而知,關聯性矩陣內的關聯性矩陣元素

Figure TWI610581BD00020
即用以表示同一地區2內的任兩個位置21之間的網路交通狀態的關聯性。並且,該關聯性矩陣元素
Figure TWI610581BD00021
與該距離矩 陣元素
Figure TWI610581BD00022
可由以下數學式(III)所表示:
Figure TWI610581BD00023
It is conceivable that the correlation matrix elements in the correlation matrix
Figure TWI610581BD00020
That is, it is used to indicate the association of the network traffic state between any two locations 21 in the same area 2. And the associated matrix element
Figure TWI610581BD00021
Matrix element with the distance
Figure TWI610581BD00022
It can be expressed by the following formula (III):
Figure TWI610581BD00023

透過關聯性矩陣(Rk,l)之建立,任兩個位置21之間的網路交通狀態的相互影響力的強度便可以被估算而得。如此,基於該關聯性矩陣,一關係矩陣資料融合模型方法便可以接續著被建立。值得說明的是,透過該方法計算獲得之該融合網路壅塞程度

Figure TWI610581BD00024
係為一關係矩陣融合網路壅塞程度
Figure TWI610581BD00025
。其中,該關係矩陣資料融合模型方法由以下數學式(7)與(8)所表示:
Figure TWI610581BD00026
Through the establishment of the correlation matrix (R k,l ), the strength of the mutual influence of the network traffic state between the two locations 21 can be estimated. Thus, based on the correlation matrix, a relational matrix data fusion model method can be established. It is worth noting that the degree of congestion of the converged network is calculated by this method.
Figure TWI610581BD00024
Is a relationship matrix fusion network congestion degree
Figure TWI610581BD00025
. The relation matrix data fusion model method is represented by the following mathematical formulas (7) and (8):
Figure TWI610581BD00026

Figure TWI610581BD00027
Figure TWI610581BD00027

式(7)-(8)中的

Figure TWI610581BD00028
表示為M個維度(即,區域2中的m 個位置21)的支援比率向量。 In equations (7)-(8)
Figure TWI610581BD00028
A support ratio vector expressed as M dimensions (ie, m positions 21 in region 2).

繼續地參閱圖2。於本發明中,計價單元13係根據該資料融合單元12所獲得之該融合網路壅塞程度

Figure TWI610581BD00029
而計算出一計價率(α k,l),並進一步地根據該計價率計算出區域2內的每個用戶(client)的一應付網路使用費(Z*)。為了更加清楚地解釋計價單元13之功能,在此先將後續說明之中會出現的參數整理於下表(3)之中。 Continue to refer to Figure 2. In the present invention, the pricing unit 13 is based on the degree of congestion of the converged network obtained by the data fusion unit 12.
Figure TWI610581BD00029
A rate of valuation ( α k,l ) is calculated, and a payable network usage fee (Z * ) for each client in the area 2 is further calculated based on the rate. In order to explain the function of the pricing unit 13 more clearly, the parameters that will appear in the subsequent description are first organized in the following table (3).

Figure TWI610581BD00030
Figure TWI610581BD00030

如圖2所示,由於自一天24小時所分割出來的時間槽係總共K個,因此吾人可以基於表(3)所列的各個參數而進一步地獲得在一時間槽內根據資料融合後的網路壅塞程度

Figure TWI610581BD00031
所計算而得的計價率(α k,l)。該計價率(α k,l)係透過以下數學式(9)與(10)而獲得:
Figure TWI610581BD00032
As shown in Fig. 2, since there are a total of K time slots divided from 24 hours a day, we can further obtain the network based on data fusion in a time slot based on the parameters listed in Table (3). Road congestion level
Figure TWI610581BD00031
The calculated pricing rate ( α k,l ). The pricing rate ( α k,l ) is obtained by the following mathematical formulas (9) and (10):
Figure TWI610581BD00032

Figure TWI610581BD00033
Figure TWI610581BD00033

必須補充說明的是,於月份中的第1天,該計價率為1。另一方面,於月份中的其它天,該計價率(α k,l)則必須透過上述式(9)與(10)計算獲得。接續著,計價單元13便可以基於以下數學式(11)計算出每個用戶(client)的應付網路使用費(Z*):Z * k,l,m α k,l Z k,l,m ................................................(11)。 It must be added that the rate is 1 on the first day of the month. On the other hand, on other days in the month, the pricing rate ( α k,l ) must be calculated by the above equations (9) and (10). Next, the pricing unit 13 can calculate the payable network usage fee (Z * ) of each user (client) based on the following mathematical formula (11): Z * = Σ k , l , m α k , l Z k , l , m ............................................... (11).

值得說明的是,該應付網路使用費係基於用戶在不同位置21與不同時間槽內所使用的不同網路流量而算得;因此,用戶有可能會為了減少應付網路使用費而改變其使用網路服務之習慣,例如:變更存取網際網路的時段。為了證實這部分,本案發明人係利用SDN模擬器EstiNetTM進行了相關實驗。在實驗設計上,參考圖2之架構圖,發明人係對應於不同終端網路裝置之5個位置21而佈署40個交換機22。同時,將一個月設定為30天且一天分為24個時間槽(亦即L=30,K=24)。 It is worth noting that the payable network usage fee is calculated based on the different network traffic used by the user in different locations 21 and different time slots; therefore, the user may change its usage in order to reduce the network usage fee. The habit of Internet services, such as changing the time period for accessing the Internet. To confirm this section, the inventors using SDN-based simulator EstiNet TM conducted experiments. In the experimental design, referring to the architecture diagram of FIG. 2, the inventors deployed 40 switches 22 corresponding to five locations 21 of different terminal network devices. At the same time, one month is set to 30 days and the day is divided into 24 time slots (ie, L=30, K=24).

承上述,為了減少應付網路使用費,用戶在不同位置21或不同時間槽內可能改變其存取網際網路之行為模式。因此為了模擬這部分,吾人設計了一個激勵函數 (incentive function),且該激勵函數由下數學式(a)與(b)所表示:

Figure TWI610581BD00034
In view of the above, in order to reduce the network usage fee, the user may change the behavior mode of accessing the Internet in different locations 21 or different time slots. So in order to simulate this part, we have designed an incentive function, and the excitation function is represented by the following mathematical formulas (a) and (b):
Figure TWI610581BD00034

Figure TWI610581BD00035
Figure TWI610581BD00035

並且,與激勵函數有關的一些參數係整理於下表(4)之中。 Moreover, some parameters related to the excitation function are organized in the following table (4).

Figure TWI610581BD00036
Figure TWI610581BD00036

請參閱圖3,係顯示時間相對於網路交通流量的曲線圖。其中,圖3中的4條資料曲線的有關資訊係整理於下表(5)之中。 See Figure 3 for a graph showing time versus network traffic. Among them, the information about the four data curves in Figure 3 is organized in the following table (5).

Figure TWI610581BD00037
Figure TWI610581BD00037
Figure TWI610581BD00038
Figure TWI610581BD00038

比較曲線A、曲線B、曲線C、與曲線D可以發現,台北市的用戶存取網際網路的尖峰時段係自12-16位移至14-18;這樣的結果係顯示位於台北市的大部分用戶係的確受到激勵而改變其存取網際網路的時段。 Comparing curve A, curve B, curve C, and curve D, it can be found that the peak time of users accessing the Internet in Taipei City has shifted from 12-16 to 14-18; this result shows that most of the Taipei city is located. The user system is indeed motivated to change the time period during which it accesses the Internet.

請再繼續參閱圖4,係顯示時間相對於網路交通流量的曲線圖。其中,圖4中的4條資料曲線的有關資訊係整理於下表(6)之中。 Please continue to refer to Figure 4, which shows a graph of time versus network traffic. Among them, the information about the four data curves in Figure 4 is organized in the following table (6).

Figure TWI610581BD00039
Figure TWI610581BD00039

比較曲線A'與曲線B'可以發現,於本發明之智慧型資料計費方法實施的初期,基隆市的用戶係首先改變其存取網際網路的行為模式,以降低其網路使用流量。接著,比較曲線B'、曲線C'與曲線D'可以發現,基隆市的用戶存取網際網路的尖峰時段係自14-16位移至15-18。因此,圖3與圖4的模擬實驗數據係證實,本發明之智慧型資料計費方法的實施係的確能夠精準地監控處於不同位置(地區) 之終端網路裝置的網路交通狀態及其使用頻寬。 Comparing the curve A' with the curve B', it can be found that in the early stage of implementation of the smart data charging method of the present invention, the Keelung user first changed the behavior mode of accessing the Internet to reduce the network usage traffic. Next, comparing the curve B', the curve C' and the curve D', it can be found that the peak period of the user accessing the Internet in Keelung is shifted from 14-16 to 15-18. Therefore, the simulation experimental data of FIG. 3 and FIG. 4 confirm that the implementation of the intelligent data charging method of the present invention can accurately monitor different locations (regions). The network traffic status of the terminal network device and its usage bandwidth.

特點及功效 Features and effects

由上述關於本發明所提出的透過軟體定義網路技術實現的智慧型資料計費方法的詳細說明,相信熟悉網路通信技術的工程人員以及電信營運商能夠輕易地發現本發明係於實務應用上顯現出下列特點及功效:(1)不同於習知的分時計費方法(smart data pricing,SDP)容易受到網路交通流複雜度的影響而無法因時地宜地精準掌握處於不同位置(地區)的終端網路裝置之網路交通狀態,本發明之智慧型資料計費方法藉由結合SDN與資料融合模型方法,完成了能夠基於所監測的網路交通狀態及使用頻寬而適當地區域性調整網路流量與頻寬的一種高效能智慧型資料計費方法;(2)藉由本發明之實施,網路提供業者(ISP)除了能夠緩解網路壅塞或使用頻寬不足之問題以外,同時也能夠根據不同用戶的網路使用習慣而適應性地建立適合的計價方案。 Based on the above detailed description of the intelligent data charging method implemented by the software-defined network technology proposed by the present invention, it is believed that engineers and telecommunication operators familiar with network communication technologies can easily find that the present invention is applied to practical applications. The following characteristics and effects are manifested: (1) Unlike the traditional smart data pricing (SDP), which is susceptible to the complexity of the network traffic flow, it is not possible to accurately grasp the different locations in time (regions). The network traffic state of the terminal network device, the smart data charging method of the present invention completes the appropriate region based on the monitored network traffic state and usage bandwidth by combining the SDN and data fusion model methods. A high-performance intelligent data charging method for adjusting network traffic and bandwidth; (2) by implementing the present invention, an Internet Provider (ISP) can not only alleviate the problem of network congestion or insufficient bandwidth usage, At the same time, it is also possible to adaptively establish a suitable pricing plan according to the network usage habits of different users.

特別說明的是,上列詳細說明乃針對本發明之一可行實施例進行具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 It is to be understood that the foregoing detailed description of the preferred embodiments of the present invention , should be included in the scope of the patent in this case.

綜上所述,本案不僅於技術思想上確屬創新, 並具備習用之傳統方法所不及之上述多項功效,已充分符合新穎性及進步性之法定發明專利要件,爰依法提出申請,懇請 貴局核准本件發明專利申請案,以勵發明,至感德便。 In summary, this case is not only innovative in terms of technical thinking, And with the above-mentioned multiple functions that are not in the traditional methods of the past, it has fully complied with the statutory invention patents of novelty and progressiveness. If you apply in accordance with the law, you are requested to approve the application for the invention patent, so as to invent the invention. .

1‧‧‧智慧型資料計費方法 1‧‧‧Smart data billing method

11‧‧‧網路流量監控單元 11‧‧‧Network Traffic Monitoring Unit

111‧‧‧開放流控制器 111‧‧‧Open flow controller

112‧‧‧計數器 112‧‧‧ counter

12‧‧‧資料融合單元 12‧‧‧Data Fusion Unit

13‧‧‧計價單元 13‧‧‧Price unit

2‧‧‧區域 2‧‧‧ Area

21‧‧‧位置 21‧‧‧ position

22‧‧‧交換機 22‧‧‧Switch

Claims (6)

一種透過軟體定義網路技術實現的智慧型資料計費方法,係實現於一軟體定義網路的架構中;該智慧型資料計費方法係於架構上包括:一網路流量監控單元,係於一區域(zone)內的複數個位置使用至少一種網路服務之時監測複數條網路交通流(Internet traffic flow),以獲取一筆或多筆位元組(bytes)與一總網路流量(Y k,l,m ,total bytes);其中,每個位置包括一個或多個交換機,且所述複數條網路交通流之監測係基於該網路流量監控單元與該交換機之間的開放流(OpenFlow)協定而實現;一資料融合單元,係基於至少一資料融合模型而對該網路流量監控單元透過該些交換機所監測到的數據資料執行一資料融合處理,進而獲得一融合網路壅塞程度;以及一計價單元,係根據該資料融合單元所獲得之該融合網路壅塞程度而計算出一計價率(α k,l ),並進一步地根據該計價率計算出該區域(zone)內的每個用戶(client)的一應付網路使用費(Z *);該網路流量監控單元進一步包括:一個或一個以上的開放流控制器(OpenFlow controller),係用以基於開放流協定控制該些交換機, 並取得該一個或多個位元組(bytes)與該總網路流量;及一計數器,係用以計數該些位元組(bytes)之一位元組總數量(a i,j );其中,該網路流量監控單元係將一天24小時分割成複數個時間槽(t k,l,m ),並基於以下數學式(1)與(2)分別獲得該總網路流量(Y k,l,m )與一用戶總數(number of clients): 其中:Y k,l,m 表示為該總網路流量;N k,l,m 表示為該用戶總數;a i.j 表示為該位元組總數量;V表示為於任一位置內受到該開放流控制器所控制的該些交換器之集合;Z表示為該開放流控制器所控制的複數個網路交通流之集合;i為整數;j為整數;k表示為該複數個時間槽之中的任一個;l表示為月份中的任一天;m表示為該些位置之中的任一個。 A smart data charging method implemented by a software-defined network technology is implemented in a software-defined network architecture; the smart data charging method includes: a network traffic monitoring unit, Multiple locations within a zone monitor multiple Internet traffic flows while using at least one network service to obtain one or more bytes and a total network traffic ( Y k , l , m , total bytes); wherein each location includes one or more switches, and the monitoring of the plurality of network traffic flows is based on an open flow between the network traffic monitoring unit and the switch (OpenFlow) protocol implementation; a data fusion unit, based on at least one data fusion model, performs a data fusion process on the data data monitored by the network traffic monitoring unit through the switches, thereby obtaining a converged network congestion degree And a pricing unit based on the degree of congestion of the converged network obtained by the data fusion unit Calculating a pricing rate ( α k , l ), and further calculating a payable network usage fee ( Z * ) for each user (client) in the zone according to the pricing rate; the network The traffic monitoring unit further includes: one or more OpenFlow controllers, configured to control the switches based on the OpenFlow protocol, and obtain the one or more bytes and the total network And a counter for counting a total number of bytes ( a i , j ) of the bytes; wherein the network traffic monitoring unit divides the time into a plurality of times 24 hours a day The slots ( t k , l , m ) are obtained based on the following mathematical formulas (1) and (2) respectively for the total network traffic ( Y k , l , m ) and a number of clients: Where: Y k , l , m is expressed as the total network traffic; N k , l , m is expressed as the total number of users; a i . j is expressed as the total number of the bytes; V is expressed as being in any position a set of the switches controlled by the open flow controller; Z represents a set of a plurality of network traffic flows controlled by the open flow controller; i is an integer; j is an integer; k is expressed as the plurality of times Any one of the slots; l is represented as any day of the month; m is represented as any of the locations. 如申請專利範圍第1項所述之透過軟體定義網路技術實現的智慧型資料計費方法,其中,該方法為一平均資料融合模型方法;並且,透過該方法計算獲得之該融合網路壅塞程度係為一平均融合網路壅塞程度; 其中該平均資料融合模型方法由以下數學式(3)與(4)所表示: 1≦m≦M........................................................(4);其中:表示為該平均融合網路壅塞程度;x k,l,m 表示為在第m個位置中,於月份中的第l天於第k個時間槽所獲得的該網路壅塞程度;M為整數。 For example, the smart data charging method implemented by the software-defined network technology described in claim 1 is an average data fusion model method; and the fusion network congestion obtained by the method is calculated. degree It is an average fusion network congestion degree; wherein the average data fusion model method is represented by the following mathematical formulas (3) and (4): 1≦ m ≦M................................................ ...........(4); Expressed as the average convergence network congestion degree; x k , l , m is expressed as the degree of network congestion obtained in the kth time slot on the lth day of the month in the mth position; M is an integer . 如申請專利範圍第1項所述之透過軟體定義網路技術實現的智慧型資料計費方法,其中,該方法為一人口加權平均資料融合模型方法;並且,透過該方法計算獲得之該融合網路壅塞程度係為一人口加權平均融合網路壅塞程度;其中該人口加權平均資料融合模型方法由以下數學式(5)與(6)所表示: 其中:表示為該人口加權平均融合網路壅塞程度;γ k,l,m 表示為在在第m個位置中,於月份中的第l天於第k個時間槽所獲得的一人口權重。 For example, the smart data charging method implemented by the software-defined network technology described in claim 1 is a population-weighted average data fusion model method; and the fusion network obtained by the method is calculated. Road congestion level It is a population-weighted average fusion network congestion degree; the population weighted average data fusion model method is represented by the following mathematical formulas (5) and (6): among them: Expressed as the population-weighted average converged network congestion degree; γ k , l , m is expressed as a population weight obtained in the kth time slot on the lth day of the month in the mth position. 如申請專利範圍第1項所述之透過軟體定義網路技術實現的智慧型資料計費方法,其中,該方法為一關係矩陣資料融合模型方法;並且,透過該方法計算獲得之該融合網路壅塞程度係為一關係矩陣融合網路壅塞程 度;其中該關係矩陣資料融合模型方法由以下數學式(7)與(8)所表示: 其中:表示為該關係矩陣融合網路壅塞程度;表示為在m個位置之中的一支援比率向量;表示為在m個位置之中的一網路壅塞關聯性;表示為該區域(zone)內的該複數個位置之一關聯性矩陣。 For example, the smart data charging method implemented by the software-defined network technology described in the first application of the patent scope, wherein the method is a relational matrix data fusion model method; and the fusion network obtained by the method is calculated. Degree of congestion It is a relationship matrix fusion network congestion degree; the relation matrix data fusion model method is represented by the following mathematical formulas (7) and (8): among them: Expressed as the degree of convergence of the relationship matrix fusion network; Expressed as a support ratio vector among m positions; Expressed as a network congestion correlation among m locations; Represented as an affinity matrix for the plurality of locations within the zone. 如申請專利範圍第1項所述之透過軟體定義網路技術實現的智慧型資料計費方法,其中,於月份中的第1天,該計價率(α k,1)為1;並且,於月份中的其它天,該計價率(α k,l )係透過以下數學式(9)與(10)而獲得: 其中:L q 表示為最小計價率;L Q 表示為最大計價率;δ q 表示為最小門限值;δ Q 表示為最大門限值;σ l-1表示為於月份中的第l天的該融合網路壅塞程度的一平均值; u=(L q -L Q )/(δ q -δ Q )。 The smart data charging method implemented by the software-defined network technology described in claim 1 of the patent application, wherein the pricing rate ( α k , 1 ) is 1 on the first day of the month; On other days of the month, the valuation rate ( α k , l ) is obtained by the following mathematical formulas (9) and (10): Wherein: L q ratio is expressed as the minimum pricing; L Q represents the maximum rate pricing; δ q represents a minimum threshold; δ Q represents a maximum threshold value; σ l -1 l expressed as to the first day of the month in the fusion An average of the degree of network congestion; u = ( L q - L Q ) / ( δ q - δ Q ). 如申請專利範圍第5項所述之透過軟體定義網路技術實現的智慧型資料計費方法,其中,基於以下數學式(11),該計價單元係能夠根據該計價率(α k,l )而計算出該應付網路使用費(Z*):Z*=Σ k,l,m α k,l Z k,l,m ..............................................(11);其中:Z *表示為該應付網路使用費;α k,l 表示為該計價率;Z k,l,m 表示為在第m個位置中,於月份中的第l天於第k個時間槽所獲得的該些網路交通流。 The smart data charging method implemented by the software-defined network technology described in claim 5, wherein the pricing unit is capable of being based on the pricing rate ( α k , l ) based on the following mathematical formula (11) And calculate the payable network usage fee ( Z *): Z *=Σ k , l , m α k , l Z k , l , m ................. .............................(11); where: Z * is expressed as the payable network usage fee; α k , l Expressed as the valuation rate; Z k , l , m are expressed as the network traffic flows obtained in the kth time slot on the lth day of the month in the mth position.
TW106117113A 2017-05-24 2017-05-24 Smart data pricing method carried out based on sdn TWI610581B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106117113A TWI610581B (en) 2017-05-24 2017-05-24 Smart data pricing method carried out based on sdn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106117113A TWI610581B (en) 2017-05-24 2017-05-24 Smart data pricing method carried out based on sdn

Publications (2)

Publication Number Publication Date
TWI610581B true TWI610581B (en) 2018-01-01
TW201902238A TW201902238A (en) 2019-01-01

Family

ID=61728340

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106117113A TWI610581B (en) 2017-05-24 2017-05-24 Smart data pricing method carried out based on sdn

Country Status (1)

Country Link
TW (1) TWI610581B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692987B (en) * 2019-10-04 2020-05-01 中華電信股份有限公司 Charging method for sdn or nfv network

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442489A (en) * 2008-12-30 2009-05-27 北京畅讯信通科技有限公司 Method for recognizing flux based on characteristic library
US7792963B2 (en) * 2003-09-04 2010-09-07 Time Warner Cable, Inc. Method to block unauthorized network traffic in a cable data network
US7970713B1 (en) * 2000-05-10 2011-06-28 OIP Technologies, Inc. Method and apparatus for automatic pricing in electronic commerce
TWI408976B (en) * 2010-06-29 2013-09-11 Chunghwa Telecom Co Ltd The method of accounting control information when the heterogeneous network is handed down
CN103684803A (en) * 2013-12-11 2014-03-26 中国联合网络通信集团有限公司 Flow collecting device and system and method for directional flow accounting
TW201534078A (en) * 2014-02-14 2015-09-01 Ericsson Telefon Ab L M PCRF assisted APN selection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7970713B1 (en) * 2000-05-10 2011-06-28 OIP Technologies, Inc. Method and apparatus for automatic pricing in electronic commerce
US7792963B2 (en) * 2003-09-04 2010-09-07 Time Warner Cable, Inc. Method to block unauthorized network traffic in a cable data network
CN101442489A (en) * 2008-12-30 2009-05-27 北京畅讯信通科技有限公司 Method for recognizing flux based on characteristic library
TWI408976B (en) * 2010-06-29 2013-09-11 Chunghwa Telecom Co Ltd The method of accounting control information when the heterogeneous network is handed down
CN103684803A (en) * 2013-12-11 2014-03-26 中国联合网络通信集团有限公司 Flow collecting device and system and method for directional flow accounting
TW201534078A (en) * 2014-02-14 2015-09-01 Ericsson Telefon Ab L M PCRF assisted APN selection

Also Published As

Publication number Publication date
TW201902238A (en) 2019-01-01

Similar Documents

Publication Publication Date Title
Kim et al. Automated and Scalable QoS Control for Network Convergence.
Persico et al. Measuring network throughput in the cloud: The case of Amazon EC2
Leung et al. Adaptive proportional delay differentiated services: Characterization and performance evaluation
McCabe Network analysis, architecture, and design
Liu et al. eBA: Efficient bandwidth guarantee under traffic variability in datacenters
Reddy et al. On optimization efficiency of scalability and availability of cloud-based software services using scale rate limiting algorithm
CN110650032A (en) A method for building a QoS-based application optimization deployment scheme in a multi-cloud environment
CN106161285B (en) A kind of network resource allocation method and device
Dhamdhere et al. Can ISPs be profitable without violating “network neutrality”?
TWI610581B (en) Smart data pricing method carried out based on sdn
Korcak et al. Competition and regulation in a wireless operator market: An evolutionary game perspective
Cano-Cano et al. A methodology to enable QoS provision on InfiniBand hardware: J. Cano-Cano et al.
CN103825963A (en) Virtual service transition method
CN108933737A (en) Load-balancing method and device
Metzger et al. Context monitoring for improved system performance and qoe
Lutu et al. An economic side-effect for prefix deaggregation
Grønsund et al. A solution for SGi-LAN services virtualization using NFV and SDN
Gharakheili The role of SDN in broadband networks
US20220141093A1 (en) Network bandwidth apportioning
Huang et al. A new mechanism for SDN network virtualization service
Liantoni et al. Queue Tree Implementation for Bandwidth Management in Modern Campus Network Architecture
HRP20250369T1 (en) NETWORK AWARE ELEMENT AND METHOD OF USING IT
Ilie et al. On designing a cost-aware virtual CDN for the federated cloud
Adhari et al. Transport layer fairness revisited
Barreto et al. Modeling and accomplishing the BEREC network neutrality policy

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees