TWI696193B - Body shape prediction system - Google Patents
Body shape prediction system Download PDFInfo
- Publication number
- TWI696193B TWI696193B TW108125888A TW108125888A TWI696193B TW I696193 B TWI696193 B TW I696193B TW 108125888 A TW108125888 A TW 108125888A TW 108125888 A TW108125888 A TW 108125888A TW I696193 B TWI696193 B TW I696193B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- body shape
- physiological data
- predicted
- physiological
- Prior art date
Links
- 230000037237 body shape Effects 0.000 title claims abstract description 113
- 230000008859 change Effects 0.000 claims abstract description 35
- 238000013480 data collection Methods 0.000 claims abstract description 14
- 238000004458 analytical method Methods 0.000 claims description 13
- 210000002414 leg Anatomy 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 10
- 210000000689 upper leg Anatomy 0.000 claims description 8
- 210000000577 adipose tissue Anatomy 0.000 claims description 7
- 210000003205 muscle Anatomy 0.000 claims description 7
- 210000001015 abdomen Anatomy 0.000 claims description 4
- 210000000038 chest Anatomy 0.000 claims description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 4
- 210000003739 neck Anatomy 0.000 claims description 4
- 239000013074 reference sample Substances 0.000 claims description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 3
- 239000011707 mineral Substances 0.000 claims description 3
- 102000004169 proteins and genes Human genes 0.000 claims description 3
- 108090000623 proteins and genes Proteins 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 208000008589 Obesity Diseases 0.000 claims description 2
- 239000008280 blood Substances 0.000 claims description 2
- 210000004369 blood Anatomy 0.000 claims description 2
- 230000036772 blood pressure Effects 0.000 claims description 2
- 235000012000 cholesterol Nutrition 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 235000020824 obesity Nutrition 0.000 claims description 2
- 210000003734 kidney Anatomy 0.000 claims 1
- 238000013473 artificial intelligence Methods 0.000 abstract description 8
- 230000035479 physiological effects, processes and functions Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 208000016261 weight loss Diseases 0.000 description 4
- 230000004580 weight loss Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 210000001217 buttock Anatomy 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000037213 diet Effects 0.000 description 3
- 235000005911 diet Nutrition 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 206010033307 Overweight Diseases 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000008450 motivation Effects 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 208000001145 Metabolic Syndrome Diseases 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- 208000037063 Thinness Diseases 0.000 description 1
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 206010048828 underweight Diseases 0.000 description 1
Images
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
本發明為一種身形變化預測系統,該系統利用一身形三維掃描裝置收集個人身體不同部位的身形數據、一生理數據採集單元收集個人之生理數據,該些收集得到的身形數據及生理數據利用一人工智慧運算主機進行學習運算,產生將來身形改變後的預測身形數據與生理數據,並轉化為一數位三維人像模型而呈現在一顯示介面上供個人觀看參考。The invention is a body shape change prediction system, which uses a body shape three-dimensional scanning device to collect body shape data of different parts of an individual's body, a physiological data collection unit to collect individual physiological data, the collected body shape data and physiology The data is processed by an artificial intelligence computing host to generate predicted body shape data and physiological data after body shape changes in the future, and converted into a digital three-dimensional portrait model and presented on a display interface for personal viewing reference.
Description
本發明關於一種人體身形變化預測技術,尤指一種根據人體生理特徵參數預測身形樣貌變化之預測系統。The invention relates to a technology for predicting changes in human body shape, in particular to a prediction system for predicting changes in body shape and appearance according to human physiological characteristic parameters.
無論是出於健康或美感考量,擁有理想的體態是多數人追求的目標之一。研究顯示,人體過胖或過瘦均有可能成為許多慢性疾病的元兇,例如過胖時發生糖尿病、代謝症候群、心血管疾病等的風險均高於正常人數倍;另一方面,體重不足亦會容易導致疲倦、抑鬱、肌肉無力,更甚時可能會降低人體免疫能力,因此,許多人透過各種途徑試圖有效率控制自己的體態。Whether it is for health or aesthetic considerations, having an ideal posture is one of the goals pursued by most people. Studies have shown that being overweight or too thin may become the culprit of many chronic diseases. For example, the risk of diabetes, metabolic syndrome, cardiovascular disease, etc. when overweight is higher than the normal number of people; on the other hand, underweight It is easy to cause fatigue, depression, muscle weakness, and may even reduce the body's immune ability. Therefore, many people try to control their posture effectively through various channels.
例如透過持續地運動、健身、專業的營養管理等計劃,達到降低體脂、增加肌肉的目的,達到雕塑身形的功效。前述各種身形管理是屬於漸進式改變的,因此需要當事人持續性地付出行動,才能看出成果。For example, through continuous exercise, fitness, professional nutrition management and other programs, the purpose of reducing body fat and increasing muscles can be achieved, and the effect of sculpting can be achieved. The aforementioned various types of body management are gradual changes, so the parties need to continue to take action to see the results.
但是在最初制定身形管理計劃時,所擬定的計劃可能僅是一種期望的數值(例如體重、體脂率),當事人並無法得知自己在計劃過程中可能發生的身形變化及最終樣貌,故不易令當事人產生積極行動的動力,多數計劃可能因此半途而廢。However, when the body shape management plan was originally formulated, the plan may only be a desired value (such as weight and body fat rate), and the parties could not know their body shape changes and final appearance during the planning process. Therefore, it is not easy for the parties to generate motivation for positive action, and most plans may be abandoned halfway.
本發明的主要目的是提供一種身形變化趨勢預測系統,根據持續採集之個人生理特徵參數預測個人體態變化。The main purpose of the present invention is to provide a system for predicting changes in body shape, which predicts changes in individual posture based on the continuously collected personal physiological characteristic parameters.
為了達成前述目的,本發明的「身形變化趨勢預測系統」主要包含有: 一身形三維掃描裝置,用於掃描個人身形以得到身體不同部位的身形數據; 一生理數據採集單元,用於量測個人之生理數據; 一人工智慧運算主機,包含: 一資料庫,係儲存不同個人利用該身形三維掃描裝置及該生理數據採集單元量測到之身形數據及生理數據; 一學習引擎,係存取該資料庫中所記錄之身形數據及生理數據,以根據個人測得之身形數據及該生理數據學習產生預測身形數據; 一顯示介面,係輸出該學習引擎產生之預測身形數據,其中,該顯示介面根據該預測身形數據顯示一數位三維人像模型。 In order to achieve the aforementioned objective, the "body change trend prediction system" of the present invention mainly includes: A body shape three-dimensional scanning device, used to scan the body shape to obtain body shape data of different parts of the body; A physiological data collection unit, used to measure personal physiological data; An artificial intelligence computing host, including: A database, which stores body shape data and physiological data measured by different individuals using the body three-dimensional scanning device and the physiological data collection unit; A learning engine accesses the body shape data and physiological data recorded in the database to learn and generate predicted body shape data based on the measured body shape data and the physiological data of the individual; A display interface outputs predicted figure data generated by the learning engine, wherein the display interface displays a digital three-dimensional portrait model based on the predicted figure data.
藉由上述本發明的身形變化預測系統,透過收集個人身形數據及生理數據即可估測其未來可能的身形變化量,例如應用於有意透過運動健身、飲食調整或其它方式規劃改變自我身形之使用者,在規劃初期便可得知將來之可能樣貌以作為目標。With the above-mentioned body shape prediction system of the present invention, it is possible to estimate the amount of possible body shape changes in the future by collecting personal body shape data and physiological data, for example, it is used to intentionally change oneself through sports fitness, diet adjustment or other methods The users of the figure can know the possible future appearance as the goal at the early stage of planning.
更進一步,本發明藉由逐次記錄相同個人身形數據及生理數據的變化,能不斷更新該個人身形之變化態樣,提供更即時性的參考資訊。Furthermore, the present invention can continuously update the changes of the personal shape by sequentially recording the changes of the same personal shape data and physiological data to provide more real-time reference information.
請參考圖1,本發明是一種身形變化趨勢預測系統,包含有一身形三維掃描裝置10、一生理數據採集單元20及一人工智慧運算主機30。針對有計劃改變自我身形之當事人,例如該當事人欲透過手術減重(如胃繞道手術)、飲食控制或運動等漸進式行動達到改變目的,本發明可藉由量測當事人的相關數據而為其預測將來改變後之體態趨勢,提供未來之可能樣貌的變化趨勢以作為參考。Please refer to FIG. 1, the present invention is a body shape change trend prediction system, which includes a body three-
該身形三維掃描裝置10用於掃描個人的身形,以得到身體不同部位的身形數據,例如臉部、頸部、胸部、腹部、臀部、右臂、左臂、右大腿、左大腿等各身體部位的圍度,根據該些不同部位的身形數據能建立出代表當事人的一數位三維身形模型。The body shape three-
該生理數據採集單元20用於量測個人之生理數據,所包含之量測項目包含但不限於以下參數:
該生理數據採集單元20可包含固定式量測儀器或穿戴式量測儀器,在較佳實施例中,所採用的量測儀器以非侵入式的量測技術測得人體的生理數據。其中,人體的總體重主要由總水重、礦物質重、蛋白質重、體脂肪重四類重量組成。部位別肌肉分析用於測量身體各部位所佔據的肌肉量或比率,請參考圖2所示,主要測得右臂A、左臂B、軀幹C、右腿D、左腿E之肌肉量;同理,部位別脂肪分析用於測量身體各部位所佔據的脂肪量或比率,上述生理數據均與個人身形數據之改變有密切關聯。The physiological
該人工智慧運算主機30根據該身形三維掃描裝置10測得的不同部位的身形數據,以及該生理數據採集單元20得到的生理數據,分析出當事人未來的身形。The artificial
該人工智慧運算主機30包含一資料庫31及一學習引擎32,其中該資料庫31儲存不同個人的身形數據及生理數據,這些數據不僅包含同一個人最近一次測得的最新身形數據/最新生理數據,還包括以往歷次測得的歷史身形數據/歷史生理數據;隨著資料庫31中儲存的個人數量增加,可漸漸累積出不同身形及生理數據的巨量數據資料,使學習引擎32的預測精確性逐漸提高。The artificial
該學習引擎32係參考該資料庫31中身形數據及生理數據,學習產生出個人之預測身形數據及預測生理數據。舉例而言,使用者A透過前述身形三維掃描裝置10及生理數據採集單元20量測後得最新身形數據/最新生理數據,該學習引擎32從資料庫31中可找出與該使用者A之數據最接近的一參考者R,根據該參考者R在資料庫31中所紀錄留存的身形變化數據,運算產出該使用者A在一段時期(如3個月、6個月等)後的預測身形數據及預測生理數據,根據該預測身形數據及預測生理數據建立一數位三維人像模型50。該數位三維人像模型50可進一步輸出至一顯示介面40供使用者觀看參考。The
參考圖3所示,若使用者為首次進行身形預測時,其測得之各項數據作為原始數據而存入至該資料庫31,該學習引擎32可進一步根據使用者設定的一正向變化參數或一反向變化參數而決定身形的變化趨勢,該正向變化參數係代表使用者預期希望變瘦以降低身形數據,當指定為正向變化時,該學習引擎32運算出之預測身形數據為變瘦後之目標值。反之,該反向變化參數係代表使用者預期希望增壯以提高身形數據,當指定為反向變化時,該學習引擎32運算出之預測身形數據為增壯後之目標值。當學習引擎32考量該正向變化參數或反向變化參數時,可參照資料庫31中所記錄之不同個人的歷史身形數據/歷史生理數據,決定正向變化後或反向變化後的預測數據。Referring to FIG. 3, if the user performs body shape prediction for the first time, the data measured by the user is stored as the original data in the
如圖4所示,為該學習引擎32根據當事人的原始數據產生該預測身形數據及預測生理數據的步驟流程圖,包含有下列步驟:As shown in FIG. 4, it is a flow chart of steps for the
S41:取得當事人原始身形數據及原始生理數據。此步驟是透過該身形三維掃描裝置10及該生理數據採集單元20,對當事人進行首次掃描及測量後得到的原始身形數據及原始生理數據,該學習引擎32接收該些原始身形數據及該原始生理數據以執行後續運算。S41: Obtain the original body shape data and original physiological data of the parties. This step is to use the body shape three-
S42:根據當事人性別從資料庫31取用相當性別之數據。考量到男性與女性之身形有明顯差異,例如胸圍、臀圍的數據普遍有明顯不同,因此該學習引擎32會從該資料庫31中選用與當事人相同性別的資料作為後續運算的基礎。S42: According to the sex of the client, data from the
S43:取得當事人之身形計畫目標值。當事人在進行改變身形的行動之前,可以先設定希望達成的身形計畫目標值,例如希望減重成功後可以得到各部位身形數據,作為該身形計畫目標值,並將該身形計畫目標值匯入至學習引擎32。該學習引擎32在運算該預測身形數據的過程中,將參考該擬訂的身形計畫目標值進行運算。其中,該身形計畫目標值在制定時,可進一步判斷該當事人的身形計畫目標值是否在合理的人體安全範圍內,若是超出安全範圍而對人體健康有傷害之虞,該學習引擎32可以提供建議的數據供當事人參考。S43: Obtain the target value of the person's figure plan. The parties can set the desired body shape target value before carrying out the action of changing their body shape. For example, they hope to obtain the body shape data of each part after successful weight loss as the body shape target value, and use the body shape The shape plan target value is imported into the
S44:於資料庫中篩選出相對應的參考樣本。該學習引擎32係根據當事人的基本資訊及身形計畫目標值,從該資料庫31中取用相對應的參考樣本,例如根據當事人的身高、年齡或其它基本資訊,從該資料庫31中篩選出對應該基本資訊的他人數據作為參考樣本,假設當事人的身高為172cm,可以從資料庫31找出身高介於171~175cm的樣本,再從當中進一步過濾出相近年齡的他人數據作為參考樣本以供後續進行學習運算。該學習引擎32還可更進一步依據當事人所採取的身形改變方式,如手術減重、飲食控制或運動,篩選出符合該方式的參考樣本。S44: Screen out the corresponding reference samples in the database. The
S45:識別身體各部位特徵。學習引擎32根據在步驟S41取得的原始身形數據,可以識別出身體各部位例如臉部、頸部、胸部、腹部、臀部、右臂、左臂、右大腿、左大腿的圍度值,這每一個部位的圍度值即作為一個特徵值。S45: Identify the characteristics of various parts of the body. The
S46:運算與調變身體各部位特徵值,產生該預測身形數據。該學習引擎32根據從資料庫31中篩選出來的參考樣本,運算當事人各身體部位特徵值在未來不同的變化趨勢。在較佳實施例中,該學習引擎32會運算出各部位特徵值在未來不同時間點的預測數值,例如計算未來第1個月、第3個月、第6個月、第9個月、第12個月的可能數值,得到不同時間階段的多組預測數值。當該學習引擎32在運算預測數值時,其中一種方式是根據該些參考樣本中之對應身體部位的數值變化率,計算出當事人的預測數值,舉例而言,根據篩選出的參考樣本中腹圍數據於一段時間內的改變量(如平均每個月下降2%)作為基準,運算出當事人腹圍在未來不同時間點的預測數據,前述舉例方法僅是其中一種,該學習引擎32可以採用其它不同學習方式進行運算。S46: Calculate and adjust the feature values of each part of the body to generate the predicted figure data. The
S47:運算與調變生理數據,產生生理預測數據。該學習引擎32在前述步驟S46計算出各部位特徵值在未來不同時間點的預測數值後,同樣參照該些參考樣本的資料,從原始生理數據推算出不同時間階段的生理數據,產生預測生理數據。S47: Calculate and modulate physiological data to generate physiological prediction data. The learning
使用者在進行首次身形預測後,可在經過一定時間後(例如每間隔1至2個月),再次透過前述身形三維掃描裝置10及生理數據採集單元20量測最新身形數據/最新生理數據,該些最新數據係存入至資料庫31。該學習引擎32與原預測數據進行比對,判斷本次身形數據之變化量以及與目標值之差異。具體流程請參考圖5所示,包含有以下步驟:After the user’s first body shape prediction, the user can measure the latest body shape data/newest data through the body shape three-
S51:取得當事人最新身形數據/最新生理數據。此步驟是透過該身形三維掃描裝置10及該生理數據採集單元20,對當事人進行掃描及測量後得到的最新數據。S51: Obtain the latest body shape data/latest physiological data of the person concerned. This step is the latest data obtained by scanning and measuring the person through the
S52:比較該最新身形數據與預測身形數據,得到差異量。該學習引擎32將最新身形數據與原先運算出的預測身形數據相互比對,在比對時,會採用相同時期的預測身形數據作為基礎,即當事人若是在計畫開始後的第3個月量測得到最新數據,該最新數據也會與第3個月之預測數據相互比對。S52: Compare the latest body shape data with the predicted body shape data to obtain the difference. The learning
S53:判斷該差異量是否在一設定範圍內。該學習引擎32根據一預設的設定範圍,判斷該差異量是否在該設定範圍內,若是,則代表當事人目前與預測身形相近,若否,則代表當事人目前與預測身形不相近。S53: Determine whether the difference is within a set range. The learning
S54:若差異量在該設定範圍內,將該當事人的最新身形數據/最新生理數據存入至該資料庫31。S54: If the difference is within the set range, store the latest body shape data/latest physiological data of the person in the
S55:若差異量超出該設定範圍內,該學習引擎32會重新識別身體各部位特徵值,即識別出身體各部位例如臉部、頸部、胸部、腹部、臀部、右臂、左臂、右大腿、左大腿的最新數值。根據該重新識別出的最新數據,運算各部位的形變參數,運算作業包含計算目前身形各部位的形變比率,並根據運算後的各部位數據重新計算出生理數據。S55: If the difference exceeds the set range, the learning
S56:儲存最新身形數據及最新生理數據。因為差異量起出該設定範圍內,代表當事人目前身形與預測身形不相近,該學習引擎32將本次測得的各種最新數據視為是新的一組可用資料增加至該資料庫31中,以增加該資料庫31中的樣本,擴充該資料庫31的可用資訊。S56: Store the latest body shape data and the latest physiological data. Because the difference is within the set range, the current body of the representative is not close to the predicted body. The learning
本發明之身形變化趨勢預測系統根據個人之身形數據及生理數據即可估測未來之身形變化,該人工智慧運算主機30依據測得之數據,參照該資料庫31中儲存之巨量數據而產生預測身形。在實際應用時,醫師、營養師或專業人員可使用本發明,針對有意改變自我身形之使用者預測其將來改變後之體態,令當事人可預先得知其未來之可能樣貌,提高當事人持續行動之動機;而在過程當中,透過定期追蹤個人之身形數據及生理數據的改變,可隨時更新未來身形之變化數據。The body shape change trend prediction system of the present invention can estimate future body shape changes based on personal body shape data and physiological data. The artificial
10:身形三維掃描裝置 20:生理數據採集單元 30:人工智慧運算主機 31:資料庫 32:學習引擎 40:顯示介面 50:數位三維人像模型10: Figure 3D scanning device 20: physiological data acquisition unit 30: Artificial intelligence computing host 31: Database 32: Learning engine 40: Display interface 50: digital 3D portrait model
圖1:本發明身形變化趨勢預測系統的架構方塊圖。 圖2:本發明中的部位別肌肉分析的示意圖。 圖3:本發明預測個人身形正向變化或反向變化的示意圖。 圖4:本發明學習引擎產生預測身形數據的流程圖。 圖5:本發明學習引擎比對最新數據與原始預測數據的流程圖。 Fig. 1: Block diagram of the architecture of the body shape trend prediction system of the present invention. Figure 2: Schematic diagram of site-specific muscle analysis in the present invention. Figure 3: A schematic diagram of the present invention predicting the forward or reverse change of a person's figure. Fig. 4: Flow chart of the prediction engine of the present invention for generating body shape data. Figure 5: A flowchart of the comparison between the latest data and the original predicted data of the learning engine of the present invention.
10:身形三維掃描裝置 10: Figure 3D scanning device
20:生理數據採集單元 20: physiological data acquisition unit
30:人工智慧運算主機 30: Artificial intelligence computing host
31:資料庫 31: Database
32:學習引擎 32: Learning engine
40:顯示介面 40: Display interface
50:數位三維人像模型 50: digital 3D portrait model
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108125888A TWI696193B (en) | 2019-07-22 | 2019-07-22 | Body shape prediction system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108125888A TWI696193B (en) | 2019-07-22 | 2019-07-22 | Body shape prediction system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI696193B true TWI696193B (en) | 2020-06-11 |
| TW202105409A TW202105409A (en) | 2021-02-01 |
Family
ID=72176342
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW108125888A TWI696193B (en) | 2019-07-22 | 2019-07-22 | Body shape prediction system |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI696193B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI235041B (en) * | 2004-12-09 | 2005-07-01 | Univ Tsinghua | Characteristic points automatically identification method for three-dimensional space scanning data of human body |
| TWI383776B (en) * | 2010-01-22 | 2013-02-01 | Univ Nat Yang Ming | Weight prediction system and method thereof |
| US10321728B1 (en) * | 2018-04-20 | 2019-06-18 | Bodygram, Inc. | Systems and methods for full body measurements extraction |
| US10339706B2 (en) * | 2008-08-15 | 2019-07-02 | Brown University | Method and apparatus for estimating body shape |
-
2019
- 2019-07-22 TW TW108125888A patent/TWI696193B/en not_active IP Right Cessation
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI235041B (en) * | 2004-12-09 | 2005-07-01 | Univ Tsinghua | Characteristic points automatically identification method for three-dimensional space scanning data of human body |
| US10339706B2 (en) * | 2008-08-15 | 2019-07-02 | Brown University | Method and apparatus for estimating body shape |
| TWI383776B (en) * | 2010-01-22 | 2013-02-01 | Univ Nat Yang Ming | Weight prediction system and method thereof |
| US10321728B1 (en) * | 2018-04-20 | 2019-06-18 | Bodygram, Inc. | Systems and methods for full body measurements extraction |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202105409A (en) | 2021-02-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107077523B (en) | Health risk indicator determination | |
| US10971271B2 (en) | Method and system for personalized blood flow modeling based on wearable sensor networks | |
| CN118280520B (en) | Orthopedic rehabilitation training data model construction method | |
| CN113160921A (en) | Construction method and application of digital human cardiovascular system based on hemodynamics | |
| US9984588B1 (en) | Method for showing a visual change to a human body shape | |
| CN105962918A (en) | Human body health evaluation method based on physical health indexes | |
| CN112309575A (en) | Body shape change prediction system | |
| JP2020017153A (en) | Health condition diagnosis system | |
| CN118448006B (en) | A method and system for recommending patient rehabilitation programs for orthopedics | |
| JP7515077B2 (en) | Fatigue estimation system, fatigue estimation method, and program | |
| CN103699769A (en) | Physiological and motion management system taking weight difference and motion heartbeat rate as calculation references | |
| CN110575178B (en) | Diagnosis and monitoring integrated medical system for judging motion state and judging method thereof | |
| TWI696193B (en) | Body shape prediction system | |
| CN109196592A (en) | Health state evaluation system, health state evaluation device and health state evaluation method | |
| CN113221012A (en) | Community fitness activity recommendation method based on group portrait | |
| CN119560161A (en) | A method and system for assessing pain in patients | |
| JP2022164013A (en) | Health check system, health check result processing program, and health check result processing method | |
| Voisard et al. | Semiogram: a Visual Tool for Gait Quantification in Routine Neurological Follow-Up | |
| CN110074770B (en) | Method and device for evaluating aerobic exercise target intensity | |
| CN114176532A (en) | Clinical verification method for determining cfPWV parameters and application system thereof | |
| CN119446501B (en) | A method and system for auxiliary diagnosis and treatment of sarcopenia | |
| US20250364141A1 (en) | Smart lactation and parenting assistant system | |
| WO2020044366A1 (en) | System and method for determining type of body of a user and a nature of imbalance therein | |
| CN121148595A (en) | Personalized Rehabilitation Exercise Methods for Rheumatoid Arthritis Patients Based on BCW Theory | |
| Borror | A mathematical model for predicting maximal heart rate, maximal oxygen uptake, and oxygen uptake kinetics during walking and running at varied intensities |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Annulment or lapse of patent due to non-payment of fees |