TWI684959B - Mouth and nose occluded detecting method and system thereof - Google Patents
Mouth and nose occluded detecting method and system thereof Download PDFInfo
- Publication number
- TWI684959B TWI684959B TW107140918A TW107140918A TWI684959B TW I684959 B TWI684959 B TW I684959B TW 107140918 A TW107140918 A TW 107140918A TW 107140918 A TW107140918 A TW 107140918A TW I684959 B TWI684959 B TW I684959B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- mouth
- nose
- detection
- foreign body
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 77
- 238000001514 detection method Methods 0.000 claims description 130
- 230000000873 masking effect Effects 0.000 claims description 81
- 238000000605 extraction Methods 0.000 claims description 31
- 238000011176 pooling Methods 0.000 claims description 31
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 210000002569 neuron Anatomy 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 208000033748 Device issues Diseases 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 26
- 230000001815 facial effect Effects 0.000 description 16
- 230000007613 environmental effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000010606 normalization Methods 0.000 description 6
- 238000003672 processing method Methods 0.000 description 2
- 206010003497 Asphyxia Diseases 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
本發明是關於一種口鼻異物遮蔽檢測方法及其系統,特別是關於一種透過卷積神經網路進行判斷之口鼻異物遮蔽檢測方法及其系統。 The invention relates to a method and a system for masking detection of foreign body of mouth and nose, in particular to a method and system for masking detection of foreign body of mouth and nose by judging by convolutional neural network.
由於照護者不可能隨侍在側,為避免受照護者的口鼻因異物遮蔽而導致受照護者窒息,因此照護者往往會透過口鼻異物遮蔽檢測系統協助照護,以減輕負擔,然傳統的口鼻異物檢測系統會因為環境的光線或受照護者的衣物顏色而導致口鼻異物遮蔽檢測系統判斷異常。 Since the caregiver cannot be on the side, in order to avoid the suffocation of the caregiver's mouth and nose due to the foreign body shielding, the caregiver often assists the care through the mouth and nose foreign body shielding detection system to reduce the burden, but the traditional The mouth and nose foreign body detection system will cause the mouth and nose foreign body shadow detection system to judge abnormally due to the ambient light or the color of the caregiver's clothing.
有鑑於此,發展一種不會受到環境光線或受照護者的衣物顏色影響的口鼻因異物遮蔽檢測方法及其系統是非常重要的。 In view of this, it is very important to develop a method and system for shielding the mouth and nose due to foreign objects that will not be affected by ambient light or the color of the caregiver's clothing.
因此,本發明之目的在於提供一種不受環境因素影響的口鼻異物遮蔽檢測方法及其系統,其透過將嘴部影像輸入至異物遮蔽卷積神經網路進行判斷,以降低影像資料中 的環境因素造成口鼻異物遮蔽檢測方法及其系統所發生之誤判。 Therefore, the object of the present invention is to provide an oral and nose foreign body masking detection method and system that are not affected by environmental factors, which judges by inputting the mouth image to the foreign body masking convolutional neural network to reduce image data The environmental factors have caused misjudgment in the detection method and system of foreign body and nose masking.
依據本發明的方法態樣之一實施方式提供一種口鼻異物遮蔽檢測方法,其包含偵測步驟及警示步驟。偵測步驟包含臉部偵測步驟、影像提取步驟及異物遮蔽判斷步驟。臉部偵測步驟係透過影像擷取裝置擷取影像資料,再將影像資料進行臉部偵測而得到臉部影像,影像提取步驟係利用影像提取法提取臉部影像之嘴部區域以形成嘴部影像,異物遮蔽判斷步驟係將嘴部影像輸入至異物遮蔽卷積神經網路以產生判斷結果,判斷結果分為無異物狀態或有異物狀態。警示步驟係根據判斷結果以發出警示。當判斷結果為無異物狀態時,則執行偵測步驟,當判斷結果為有異物狀態時,則發出警示。 According to one embodiment of the method aspect of the present invention, there is provided a masking detection method for foreign body of nose and nose, which includes a detection step and a warning step. The detection step includes a face detection step, an image extraction step, and a foreign object occlusion judgment step. The face detection step is to capture image data through an image capture device, and then perform face detection on the image data to obtain a face image. The image extraction step uses image extraction to extract the mouth area of the face image to form a mouth In the image, the foreign body shadowing judgment step is to input the mouth image to the foreign body shadowing convolutional neural network to generate a judgment result, and the judgment result is classified into a state without foreign matter or a state with foreign matter. The warning step is to issue a warning based on the judgment result. When the judgment result is in the state of no foreign objects, the detection step is executed, and when the judgment result is in the state of foreign objects, a warning is issued.
藉此,本發明的口鼻異物遮蔽檢測方法利用將嘴部影像輸入至異物遮蔽卷積神經網路以降低影像資料中的環境因素所造成之檢測誤判。而且當異物遮蔽卷積神經網路判斷受照護者的口鼻為有異物狀態時,可發出警示提醒照護者盡速處理。 In this way, the mouth and nose foreign body shielding detection method of the present invention utilizes the input of the mouth image to the foreign body shielding convolutional neural network to reduce the detection misjudgment caused by environmental factors in the image data. Moreover, when the foreign body shielding convolutional neural network determines that the mouth and nose of the care recipient are in a state of foreign body, a warning can be issued to remind the care recipient to deal with it as soon as possible.
根據前段所述的口鼻異物遮蔽檢測方法,其更包含建模步驟。建模步驟包含資料庫建立步,驟、影像處理步驟及資料訓練步驟。資料庫建立步驟係建立異物遮蔽檢測資料庫,異物遮蔽檢測資料庫中包含複數異物遮蔽影像及複數正常影像,影像處理步驟係將各異物遮蔽影像及各正常影像進行影像處理以形成處理後異物遮蔽檢測影像並存入異物 遮蔽檢測資料庫,資料訓練步驟係利用異物遮蔽檢測資料庫中之異物遮蔽影像、正常影像及處理後異物遮蔽檢測影像訓練異物遮蔽卷積神經網路。 According to the masking detection method for foreign body of nose and nose as described in the previous paragraph, it further includes a modeling step. The modeling steps include database creation step, image processing step and data training step. The database creation step is to create a foreign object obscuration detection database. The foreign object obscuration detection database includes a plurality of foreign object obscuration images and a plurality of normal images. The image processing step performs image processing on each foreign object obscuration image and each normal image to form a processed foreign object obscuration Detect images and deposit foreign objects Occlusion detection database, the data training step is to train the foreign object masking convolutional neural network by using the foreign object masking image in the foreign object masking detection database, the normal image and the processed foreign object masking detection image.
根據前段所述的口鼻異物遮蔽檢測方法,其中影像處理可為圖像翻轉、直方圖等化、對數轉換、伽瑪處理或拉普拉斯處理。 According to the masking detection method for foreign body of nose and nose as described in the preceding paragraph, the image processing may be image inversion, histogram equalization, logarithmic conversion, gamma processing or Laplace processing.
根據前段所述的口鼻異物遮蔽檢測方法,其中異物遮蔽卷積神經網路可包含六卷積層、三池化層、一隱藏層及一輸出層。 According to the mouth and nose foreign body shielding detection method described in the preceding paragraph, the foreign body shielding convolutional neural network may include six convolutional layers, three pooling layers, a hidden layer, and an output layer.
根據前段所述的口鼻異物遮蔽檢測方法,其中卷積層包含複數卷積核,其中卷積核之大小為3×3,且卷積核之步幅為1。 According to the masking detection method for foreign body of nose and nose as described in the preceding paragraph, the convolutional layer includes complex convolution kernels, wherein the size of the convolution kernel is 3×3, and the step size of the convolution kernel is 1.
根據前段所述的口鼻異物遮蔽檢測方法,其中各卷積層使用填充法,以調整各卷積層輸出之複數特徵圖之特徵圖大小。 According to the masking detection method for foreign body of nose and nose as described in the previous paragraph, each convolution layer uses a filling method to adjust the size of the feature map of the complex feature map output by each convolution layer.
根據前段所述的口鼻異物遮蔽檢測方法,其中各池化層是採用最大池化法,各池化層可包含池化濾波器,池化濾波器之大小為2×2,且池化濾波器之步幅為2。 According to the masking detection method for foreign body of nose and nose as described in the previous paragraph, each pooling layer adopts the maximum pooling method, each pooling layer may include a pooling filter, the size of the pooling filter is 2×2, and the pooling filter The pace of the device is 2.
根據前段所述的口鼻異物遮蔽檢測方法,其中隱藏層包含全連接層,且全連接層之神經元數量為128。 According to the masking detection method for foreign body of nose and nose as described in the preceding paragraph, the hidden layer includes a fully connected layer, and the number of neurons in the fully connected layer is 128.
根據前段所述的口鼻異物遮蔽檢測方法,其中影像提取法為將臉部影像執行九宮格化,以產生臉部九宮格影像,並提取臉部九宮格影像之下方三格的部分影像,以產生嘴部影像。 According to the mouth and nose foreign body occlusion detection method described in the previous paragraph, the image extraction method is to perform nine-grid lattice on the face image to generate the facial nine-grid image, and extract the partial images of the lower three grids of the facial nine-grid image to generate the mouth image.
根據前段所述的口鼻異物遮蔽檢測方法,其中臉部偵測是採用多工聯集卷積神經網路,以偵測影像資料之臉部位置。 According to the mouth and nose foreign body masking detection method described in the previous paragraph, the face detection uses a multiplexed convolutional neural network to detect the face position of the image data.
根據前段所述的口鼻異物遮蔽檢測方法,其中異物遮蔽卷積神經網路包含歸一化指數層,歸一化指數層包含影像狀態、嘴部影像、影像狀態參數、影像狀態機率以及影像狀態機率集合,其中y (i)為影像狀態,k為影像狀態數量,x (i)為嘴部影像,θ 1,θ 2...,θ K 為影像狀態參數,p(y (i)=k|x (i);θ)為影像狀態機率,h θ (x (i))為影像狀態機率集合,T為轉置矩陣,歸一化指數層符合下式:
依據本發明的結構態樣之一實施方式提供一種口鼻異物遮蔽檢測系統,其包含影像擷取裝置、處理器及警示裝置。影像擷取裝置用以擷取影像資料。處理器包含臉部偵測模組、影像提取模組及異物遮蔽判斷模組。臉部偵測模組電性連接影像擷取裝置,臉部偵測模組透過影像擷取裝置擷取影像資料,並將影像資料進行臉部偵測而得到臉部影像。影像提取模組電性連接臉部偵測模組,影像提取模組利用影像提取法提取臉部影像之嘴部區域以形成嘴部影像。異物遮蔽判斷模組電性連接影像提取模組,異物遮蔽判斷模組將嘴部影像輸入至異物遮蔽卷積神經網路以產生判斷結果。警示裝置訊號連接處理器,警示裝置根據判斷結果以發 出警示,當判斷結果為無異物狀態時,則執行偵測步驟,當判斷結果為有異物狀態時,則發出警示。 According to one embodiment of the structural aspect of the present invention, a mouth and nose foreign body shielding detection system is provided, which includes an image capturing device, a processor, and a warning device. The image capturing device is used to capture image data. The processor includes a face detection module, an image extraction module and a foreign object occlusion judgment module. The face detection module is electrically connected to the image capture device. The face detection module captures image data through the image capture device, and performs face detection on the image data to obtain a facial image. The image extraction module is electrically connected to the face detection module, and the image extraction module uses the image extraction method to extract the mouth area of the face image to form a mouth image. The foreign object masking judgment module is electrically connected to the image extraction module, and the foreign object masking judgment module inputs the mouth image to the foreign object masking convolutional neural network to generate a judgment result. The signal of the warning device is connected to the processor, and the warning device sends When a warning is issued, the detection step is executed when the judgment result is in the state of no foreign objects, and when the judgment result is in the state of foreign objects, a warning is issued.
藉此,本發明的口鼻異物遮蔽檢測系統利用異物遮蔽判斷模組將嘴部影像輸入至異物遮蔽卷積神經網路以降低影像資料中的環境因素所造成之檢測誤判。 Therefore, the mouth and nose foreign body shielding detection system of the present invention uses the foreign body shielding judgment module to input the mouth image to the foreign body shielding convolutional neural network to reduce the detection misjudgment caused by environmental factors in the image data.
根據前段所述的口鼻異物遮蔽檢測系統,其中影像擷取裝置為攝影機。 According to the mouth and nose foreign body shielding detection system described in the preceding paragraph, the image capturing device is a camera.
根據前段所述的口鼻異物遮蔽檢測系統,其中異物遮蔽卷積神經網路包含六卷積層、三池化層、一隱藏層及一輸出層。 According to the mouth and nose foreign body shading detection system described in the preceding paragraph, the foreign body shading convolutional neural network includes six convolution layers, three pooling layers, a hidden layer and an output layer.
根據前段所述的口鼻異物遮蔽檢測系統,其中臉部偵測是採用多工聯集卷積神經網路,以偵測影像資料之臉部位置。 According to the mouth and nose foreign body occlusion detection system described in the preceding paragraph, the face detection uses a multiplexed convolutional neural network to detect the face position of the image data.
s100‧‧‧口鼻異物遮蔽檢測方法 S100‧‧‧ Masking detection method of foreign body
s110‧‧‧偵測步驟 s110‧‧‧detection steps
s111‧‧‧臉部偵測步驟 s111‧‧‧Face detection steps
s112‧‧‧影像提取步驟 s112‧‧‧Image extraction steps
s113‧‧‧異物遮蔽判斷步驟 s113‧‧‧judgment procedure
s120‧‧‧警示步驟 s120‧‧‧Warning steps
s130‧‧‧建模步驟 s130‧‧‧Modeling steps
s131‧‧‧資料建立步驟 s131‧‧‧Data creation steps
s132‧‧‧影像處理步驟 s132‧‧‧Image processing steps
s133‧‧‧資料訓練步驟 s133‧‧‧Data training steps
200‧‧‧異物遮蔽卷積神經網路架構 200‧‧‧ Foreign matter shielding convolutional neural network architecture
cl1‧‧‧第一卷積層 cl1‧‧‧The first convolution layer
cl2‧‧‧第二卷積層 cl2‧‧‧second convolution layer
cl3‧‧‧第三卷積層 cl3‧‧‧third convolution layer
cl4‧‧‧第四卷積層 cl4‧‧‧ fourth convolution layer
cl5‧‧‧第五卷積層 cl5‧‧‧fifth convolution layer
cl6‧‧‧第六卷積層 cl6‧‧‧sixth convolution layer
pl1‧‧‧第一池化層 pl1‧‧‧The first pooling layer
pl2‧‧‧第二池化層 pl2‧‧‧Second pooling layer
pl3‧‧‧第三池化層 pl3‧‧‧The third pooling layer
hl‧‧‧隱藏層 hl‧‧‧ hidden layer
op‧‧‧輸出層 op‧‧‧ output layer
sl‧‧‧歸一化指數層 sl‧‧‧Normalized index layer
300‧‧‧臉部九宮格影像 300‧‧‧ facial image
310‧‧‧嘴部影像 310‧‧‧ mouth image
400‧‧‧口鼻異物遮蔽檢測系統 400‧‧‧Mouth and nose foreign body shielding detection system
410‧‧‧影像擷取裝置 410‧‧‧Image capture device
420‧‧‧處理器 420‧‧‧ processor
421‧‧‧臉部偵測模組 421‧‧‧Face detection module
422‧‧‧影像提取模組 422‧‧‧Image extraction module
423‧‧‧異物遮蔽判斷模組 423‧‧‧Foreign object blocking judgment module
430‧‧‧警示裝置 430‧‧‧Warning device
第1圖繪示依照本發明之一方法態樣之一實施例的口鼻異物遮蔽檢測方法之步驟流程圖;第2圖繪示依照本發明之一方法態樣之另一實施例的口鼻異物遮蔽檢測方法之步驟流程圖;第3圖繪示依照第1圖實施方式的口鼻異物遮蔽檢測方法之異物遮蔽卷積神經網路架構之示意圖;第4圖繪示依照第1圖實施方式的口鼻異物遮蔽檢測方法之臉部九宮格影像示意圖; 第5圖繪示依照第1圖實施方式的口鼻異物遮蔽檢測方法之嘴部影像示意圖;以及第6圖繪示依照本發明之一結構態樣之一實施方式的口鼻異物遮蔽檢測系統之方塊示意圖。 Fig. 1 shows a flow chart of the steps of the method for detecting the masking of foreign bodies of the nose and nose according to one embodiment of a method aspect of the invention; Fig. 2 shows the mouth and nose of another embodiment according to a method aspect of the invention Step flow chart of foreign object masking detection method; FIG. 3 shows a schematic diagram of a foreign object masking convolutional neural network architecture according to the embodiment of FIG. 1; FIG. 4 shows an embodiment according to FIG. 1 Schematic diagram of facial nine-grid image of the detection method of foreign body and nose masking; FIG. 5 is a schematic view of a mouth image of a mouth and nose foreign body shielding detection method according to the embodiment of FIG. 1; and FIG. 6 is a mouth and nose foreign body shielding detection system according to an embodiment of a structural aspect of the present invention. Block diagram.
以下將參照圖式說明本發明之複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之;並且重複之元件將可能使用相同的編號表示之。 Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. For clarity, many practical details will be explained in the following description. However, it should be understood that these practical details should not be used to limit the present invention. That is to say, in some embodiments of the present invention, these practical details are unnecessary. In addition, for the sake of simplifying the drawings, some conventionally used structures and elements will be shown in a simple schematic manner in the drawings; and repeated elements may be indicated by the same number.
第1圖繪示依照本發明之一方法態樣之一實施方式的口鼻異物遮蔽檢測方法s100之步驟流程圖。由第1圖可知口鼻異物遮蔽檢測方法s100包含偵測步驟s110及警示步驟s120。 FIG. 1 is a flow chart showing the steps of a method s100 for detecting a masking of foreign body of nose and nose according to an embodiment of a method aspect of the present invention. It can be seen from FIG. 1 that the method for detecting the masking of the foreign body of the nose and nose includes a detection step s110 and a warning step s120.
詳細來說,偵測步驟s110可包含臉部偵測步驟s111、影像提取步驟s112以及異物遮蔽判斷步驟s113。其中臉部偵測步驟s111透過影像擷取裝置410(標示於第6圖)擷取影像資料,並將影像資料進行臉部偵測而得到臉部影像;影像提取步驟s112利用影像提取法提取臉部影像之嘴部區域以形成嘴部影像310(標示於第5圖);異物遮蔽判斷步驟s113將嘴部影像310輸入至異物遮蔽卷積神經網路以
產生判斷結果,判斷結果至少可分為無異物狀態或有異物狀態。警示步驟s120係根據判斷結果以發出警示。當判斷結果為無異物狀態時,則執行偵測步驟s110以持續監測受照護者的狀態,而當判斷結果為有異物狀態時,則發出警示以提示照護者盡速處理。藉此,透過將嘴部影像310輸入至異物遮蔽卷積神經網路進行判斷受照護者的口鼻是否遭到異物遮蔽,以降低異物遮蔽卷積神經網路受到影像資料中的環境因素影響而發生誤判,其中環境因素可為環境的光線或受照護者之衣物顏色。
In detail, the detection step s110 may include a face detection step s111, an image extraction step s112, and a foreign object masking determination step s113. The face detection step s111 captures image data through the image capture device 410 (marked in Figure 6), and performs face detection on the image data to obtain a facial image; the image extraction step s112 uses the image extraction method to extract the face The mouth area of the partial image to form the mouth image 310 (marked in FIG. 5); the foreign body masking judgment step s113 inputs the
第2圖繪示依照本發明之一方法態樣之另一實施方式的口鼻異物遮蔽檢測方法s100之步驟流程圖。口鼻異物遮蔽檢測方法s100包含偵測步驟s110、警示步驟s120及建模步驟s130。 FIG. 2 is a flow chart showing the steps of a method s100 for detecting a masking of foreign body of nose and nose according to another embodiment of a method aspect of the present invention. The mouth and nose foreign body shadow detection method s100 includes a detection step s110, a warning step s120, and a modeling step s130.
請配合參照第1圖,在第2圖的實施方式中,偵測步驟s110及警示步驟s120均與第1圖中對應之步驟相同,不再贅述。特別的是,第2圖實施方式之口鼻異物遮蔽檢測方法s100可更包含建模步驟s130。建模步驟s130包含資料建立步驟s131、影像處理步驟s132以及資料訓練步驟s133,其中資料建立步驟s131建立異物遮蔽檢測資料庫,異物遮蔽檢測資料庫中可包含複數異物遮蔽影像及複數正常影像,其中複數遮蔽影像可包含棉被遮蔽影像、吐奶遮蔽影像等;影像處理步驟s132將各異物遮蔽影像及各正常影像進行影像處理以形成處理後異物遮蔽檢測影像,並存入異物遮蔽檢測資料庫;資料訓練步驟s133利用異物遮蔽檢測 資料庫中之異物遮蔽影像、正常影像及處理後異物遮蔽檢測影像訓練異物遮蔽卷積神經網路。藉此,透過將複數異物遮蔽影像及複數正常影像分別進行影像處理而得到處理後異物遮蔽檢測影像,以增加異物遮蔽卷積神經網路的訓練樣本,從而提升異物遮蔽卷積神經網路的判斷準確度。 Please refer to FIG. 1 together. In the embodiment of FIG. 2, the detection step s110 and the warning step s120 are the same as the corresponding steps in FIG. 1 and will not be repeated here. In particular, the method for detecting occluded foreign body occlusion in the embodiment shown in FIG. 2 may further include a modeling step s130. The modeling step s130 includes a data creation step s131, an image processing step s132, and a data training step s133, wherein the data creation step s131 creates a foreign object obscuration detection database. The foreign object obscuration detection database may include plural foreign object obscuration images and plural normal images, where The plural masked images may include quilt masked images, milk spit masked images, etc.; the image processing step s132 performs image processing on each foreign object masked image and each normal image to form a processed foreign object masked detection image and stores it in the foreign object masked detection database; data Training step s133 uses foreign object occlusion detection Foreign object obscured images, normal images, and processed foreign object obscured detection images in the database train the foreign object obscured convolutional neural network. In this way, by processing the complex foreign object masked image and the complex normal image separately to obtain processed foreign object masked detection images, the training samples of the foreign object masked convolutional neural network are increased, thereby improving the judgment of the foreign object masked convolutional neural network Accuracy.
為了增加異物遮蔽卷積神經網路的訓練樣本,上述影像處理步驟s132之影像處理的方法可為圖像翻轉、直方圖等化、對數轉換、伽瑪處理或拉普拉斯處理。將異物遮蔽影像進行影像處理的目的在於模擬各種情況下的照度及影像輪廓以訓練異物遮蔽卷積神經網路,其中直方圖等化能將異物遮蔽影像中的亮度重新均勻分布,使異物遮蔽影像中偏暗的部分變亮,而異物遮蔽影像中偏亮的部分變暗,對數轉換(Log)可將異物遮蔽影像中亮度較低的部分透過對數轉換以提升亮度,伽瑪處理(Gamma)則是透過調整伽瑪值(gamma)使異物遮蔽影像中較暗的部分變亮或使異物遮蔽影像中較亮的部分變暗,拉普拉斯處理(Laplace)則是利用二階偏微分的原理得到異物遮蔽影像的輪廓、形狀及分布狀況。簡單來說,將異物遮蔽影像進行直方圖等化、對數轉換、伽瑪處理及拉普拉斯處理,以及將所述異物遮蔽影像進行圖像翻轉後再進行直方圖等化、對數轉換、伽瑪處理及拉普拉斯處理後,可得到九張處理後異物遮蔽檢測影像,以提升異物遮蔽卷積神經網路的訓練樣本數,影像處理的方法雖揭露如上,但不以本揭示內容所揭露之實施方式為限。此外,請配合參照表一,表一所示為第一實施例與第一比較例之準確 度比較表,其中第一實施例之異物遮蔽卷積神經網路與第一比較例之異物遮蔽卷積神經網路具有相同的網路架構,其差異在於第一實施例之異物遮蔽卷積神經網路的訓練樣本數高於第一比較例之異物遮蔽卷積神經網路之訓練樣本數,其中第一實施例的異物遮蔽卷積神經網路之訓練樣本為異物遮蔽影像、正常影像及處理後異物遮蔽檢測影像,而第一比較例的異物遮蔽卷積神經網路之訓練樣本為異物遮部影像及正常影像,由表一可知,第一比較例的異物遮蔽卷積神經網路之準確度為84%,而第一實施例的異物遮蔽卷積神經網路之準確度為94%,也就是說,於建模步驟s130時,利用較多的訓練樣本訓練異物遮蔽影像可提升異物遮蔽卷積神經網路的準確度。 In order to increase the training samples of the foreign matter masking convolutional neural network, the image processing method in the above image processing step s132 may be image inversion, histogram equalization, logarithmic conversion, gamma processing, or Laplace processing. The purpose of the image processing of the foreign object masking image is to simulate the illuminance and image contour in various situations to train the foreign object masking convolutional neural network, where the histogram equalization can redistribute the brightness in the foreign object masking image uniformly, so that the foreign object masking the image The darker part of the image becomes brighter, and the brighter part of the image obscured by foreign objects becomes darker. Logarithmic conversion (Log) can transform the low-brightness part of the image obscured by foreign objects through logarithmic conversion to increase the brightness. Gamma processing (Gamma) It is to adjust the gamma value to lighten the darker part of the image obscured by foreign objects or darken the lighter part of the image obscured by foreign objects. Laplace processing is obtained by using the principle of second-order partial differential Foreign objects obscure the outline, shape and distribution of the image. In simple terms, histogram equalization, logarithmic conversion, gamma processing, and Laplace processing are performed on the foreign object masked image, and the histogram equalization, logarithmic conversion, and gamma are performed after the image of the foreign object masked image is inverted. After Ma processing and Laplacian processing, nine images of foreign body masking detection after processing can be obtained to increase the number of training samples of foreign body masking convolutional neural network. Although the image processing method is disclosed as above, it is not based on the content of this disclosure. The disclosed embodiments are limited. In addition, please refer to Table 1, which shows the accuracy of the first embodiment and the first comparative example Degree comparison table, in which the foreign matter shielding convolutional neural network of the first embodiment has the same network architecture as the foreign matter shielding convolutional neural network of the first comparative example, the difference is that the foreign body shielding convolutional neural network of the first embodiment The number of training samples of the network is higher than the number of training samples of the foreign object masking convolutional neural network of the first comparative example, wherein the training samples of the foreign object masking convolutional neural network of the first embodiment are foreign object masking images, normal images and processing After the foreign object masking detection image, the training samples of the foreign object masking convolutional neural network of the first comparative example are the foreign object masking part image and the normal image, as can be seen from Table 1, the accuracy of the foreign object masking convolutional neural network of the first comparative example is The degree of accuracy is 84%, and the accuracy of the foreign object masking convolutional neural network of the first embodiment is 94%, that is, during the modeling step s130, using more training samples to train the foreign object masking image can improve foreign object masking The accuracy of convolutional neural networks.
第3圖繪示依照第1圖實施方式的口鼻異物遮蔽檢測方法s100之異物遮蔽卷積神經網路架構200之示意圖,表二為第3圖實施方式之異物遮蔽卷積神經網路架構200之列表。請配合參照第3圖及表二,異物遮蔽卷積神經網路架構200可包含六卷積層(未標示)、三池化層(未標示)、一隱藏層hl及一輸出層op。卷積層包含第一卷積層cl1、第二卷積層cl2、第三卷積層cl3、第四卷積層cl4、第五卷積層cl5及第六卷積層cl6,其中第一卷積層cl1及第二卷積層cl2可為conv3_16,即第一卷積層cl1及第二卷積層
cl2的卷積核大小為3×3且第一卷積層cl1及第二卷積層cl2之輸出的特徵圖數量為16,第三卷積層cl3及第四卷積層cl4可為conv3_32,即第三卷積層cl3及第四卷積層cl4的卷積核大小為3×3且第三卷積層cl3及第四卷積層cl4之輸出的特徵圖數量32,第五卷積層cl5及第六卷積層cl6可為conv3_64,即第五卷積層cl5及第六卷積層cl6的卷積核大小為3×3且第五卷積層cl5及第六卷積層cl6之輸出的特徵圖數量為64。另外,各卷積層可包含複數卷積核以輸出複數張特徵圖,各卷積核之大小為3×3,各卷積核之步幅可為1,且各卷積層可採用填充法以調整卷積層輸出之特徵圖的特徵圖大小,詳細來說,影像資料的大小可為50×50,在執行卷積層的卷積運算前,可先利用填充法對影像資料進行填充以得到填充後的影像資料,填充後的影像資料的大小為52×52,填充法可為補零填充法,再針對填充後的影像資料進行卷積運算。池化層包含第一池化層pl1、第二池化層pl2及第三池化層pl3,各池化層可採用最大池化法,且各池化層包含池化濾波器,池化濾波器的大小為2×2且池化濾波器的步幅為2。隱藏層hl可包含第一全連接層,第一全連接層可為FC_128,即第一全連接層的神經元數量為128。輸出層op可包含第二全連接層,且第二全連接層可為FC_2,即第二全連接層之神經元數量為2。
FIG. 3 is a schematic diagram of a foreign object masking convolutional
異物遮蔽卷積神經網路架構200可更包含歸一化指數(softmax)層sl,歸一化指數層sl可用以計算有異物狀態的機率及無異物狀態的機率,以產生判斷結果。歸一化指數層sl層包含影像狀態、影像狀態數量、嘴部影像310、影像狀態參數、影像狀態機率以及影像狀態機率集合,其中y (i)為影像狀態,k為影像狀態數量,x (i)為嘴部影像310,θ為影像狀態參數之集合,θ 1,θ 2...,θ K 為影像狀態參數,p(y (i)=k|x (i);θ)為影像狀態機率,h θ (x (i))為影像狀態機率集合,T為轉置矩陣,歸一化指數層sl符合下式:
請配合參照表三及表四,表三所示為本發明之第二實施例之異物遮蔽卷積神經網路架構200與第二比較
例、第三比較例、第四比較例、第五比較例及第六比較例之異物遮蔽卷積神經網路架構之比較表,表四所示為第二實施例之異物遮蔽卷積神經網路架構200的準確度與第二比較例、第三比較例、第四比較例、第五比較例及第六比較例之異物遮蔽卷積神經網路架構的準確度之比較表。由表三及表四可知,第二實施例之異物遮蔽卷積神經網路架構200之準確度高於第二比較例、第三比較例、第四比較例、第五比較例及第六比較例之異物遮蔽卷積神經網路架構。
Please refer to Table 3 and Table 4 together. Table 3 shows the comparison of the foreign object shielding convolutional
為了從影像資料中得到臉部影像,臉部偵測可採用多工聯集卷積神經網路(Multi-task Cascaded Convolutional Networks,MTCNN),以偵測影像資料之臉部位置,多工聯集卷積神經網路包含建議網路(Proposal Net,P-Net)、縮小網路(Refine-Net,R-Net)及輸出網路(Output-Net,O-Net),其中建議網路為透過建議網路卷積神經網路生成複數人臉框,縮小網路為透過縮小網路卷積神經網路排除非人臉框,而輸出網路為透過輸出網路卷積神經網路輸出人臉特徵。藉此,透過將影像資料輸入至多工聯集卷積神經網路中以得到臉部影像。 In order to obtain facial images from image data, face detection can use multi-task Cascaded Convolutional Networks (MTCNN) to detect the facial position of the image data. Convolutional neural networks include Proposal Net (P-Net), Reduced Network (Refine-Net, R-Net) and Output Network (Output-Net, O-Net), where the recommended network is through It is recommended that the network convolutional neural network generate complex face frames, the reduced network is to exclude non-face frames by reducing the network convolutional neural network, and the output network is to output the face through the output network convolutional neural network feature. In this way, facial images can be obtained by inputting image data into a multiplexed convolutional neural network.
第4圖繪示依照第1圖實施方式的口鼻異物遮蔽檢測方法s100之臉部九宮格影像300示意圖,第5圖繪示依照第1圖實施方式的口鼻異物遮蔽檢測方法s100之嘴部影像310示意圖。請參照第4圖及第5圖,影像提取法可為將臉部影像執行九宮格化,以產生臉部九宮格影像300,並提取臉部九宮格影像300之下方三格的部分影像,以產生嘴部影像310,再將嘴部影像310輸入至異物遮蔽卷積神經網路以產生判斷結果,透過由影像資料中擷取出之嘴部影像310做為異物遮蔽卷積神經網路的輸入資料以降低環境因素的影響,可避免異物遮蔽卷積神經網路發生誤判。
FIG. 4 is a schematic diagram of a
由於人的臉孔大小會有差異,為避免嘴部影像310之大小具有差異而導致口鼻異物遮蔽檢測方法s100發生誤判,口鼻異物遮蔽檢測方法s100可更包含將嘴部影像310進行正規化處理,請配合參照表五,表五所示為第三實施例之異物遮蔽卷積神經網路之準確度與第七比較例、第八比較例、第九比較例及第十比較例之異物遮蔽卷積神經網路之準確度比較表,其中第三實施例之嘴部影像310正規化後的大小為50×50,第七比較例之嘴部影像正規化後大小為25×25,第八比較例之嘴部影像正規化後大小為75×75,第九比較例之嘴部影像正規化後大小為100×100,第十比較例之嘴部影像正規化後大小為150×150。由表五可知,第三實施例之異物遮蔽卷積神經網路具有較高的準確度,即嘴部影像310的大小為50×50時,異物遮蔽卷積神經網路的準確度較高。
Due to the difference in the size of the human face, in order to avoid the difference in the size of the
第6圖繪示依照本發明之一結構態樣之一實施方式的口鼻異物遮蔽檢測系統400之方塊示意圖,由第6圖可知,口鼻異物遮蔽檢測系統400包含影像擷取裝置410、處理器420及警示裝置430。影像擷取裝置410可用以擷取影
像資料。處理器420電性連接影像擷取裝置410並包含臉部偵測模組421、影像提取模組422及異物遮蔽判斷模組423。臉部偵測模組421電性連接影像擷取裝置410,臉部偵測模組421透過影像擷取裝置410擷取影像資料,並將影像資料進行臉部偵測而得到臉部影像。影像提取模組422電性連接臉部偵測模組421,影像提取模組422利用影像提取法提取臉部影像之嘴部區域以形成嘴部影像310。異物遮蔽判斷模組423電性連接影像提取模組422,異物遮蔽判斷模組423將嘴部影像310輸入至異物遮蔽卷積神經網路以產生判斷結果。警示裝置430訊號連接處理器420,且警示裝置430可根據判斷結果以發出警示。當判斷結果為無異物狀態時,則執行偵測步驟s110,當判斷結果為有異物狀態時,則發出警示。
FIG. 6 shows a block diagram of a mouth and nose foreign body
詳細來說,影像擷取裝置410可用以擷取受照護者之影像以產生影像資料,其中影像擷取裝置410可為攝影機。處理器420之臉部偵測模組421可針對影像資料進行臉部偵測以得到臉部影像,其中臉部偵測可採用多工聯集卷積神經網路,以偵測影像資料之臉部位置。處理器420之影像提取模組422可利用影像提取法提取臉部影像中的嘴部區域以形成嘴部影像310,影像提取法可為將臉部影像進行九宮格化以產生臉部九宮格影像300,並提取臉部九宮格影像300中下方三格影像以形成嘴部影像310。再者,處理器420之異物遮蔽判斷模組423可將嘴部影像310輸入至異物遮蔽卷積神經網路以產生判斷結果,判斷結果可分為有異物
狀態及無異物狀態。處理器420可為微處理器、中央處理器(CPU)或其他電子運算處理單元。警示裝置430根據判斷結果以發出警示。當判斷結果為無異物狀態時,影像擷取裝置410再次擷取受照護者之影像以持續監測受照護者之狀態,而當判斷結果為有異物狀態時,警示裝置430發出警示以提示照護者盡速處理。警示裝置430可為影像警示(如閃燈)或聲音警示(如蜂鳴器)。口鼻異物遮蔽檢測系統400可應用於電腦或手機。
In detail, the
為提升口鼻異物遮蔽檢測系統400之準確度,異物遮蔽卷積神經網路架構200可包含六卷積層、三池化層、隱藏層hl及輸出層op,而異物遮蔽卷積神經網路架構200與第3圖、表二、表三及表四相同,在此不另贅述。
In order to improve the accuracy of the mouth and nose foreign body masking
綜上所述,本發明之口鼻異物遮蔽檢測方法及口鼻異物遮蔽檢測系統可提供下列優點: In summary, the mouth and nose foreign body shielding detection method and mouth and nose foreign body shielding detection system of the present invention can provide the following advantages:
(1)透過影像處理以增加異物遮蔽卷積神經網路的訓練樣本,以提升異物遮蔽卷積神經網路的準確度。 (1) Through image processing to increase the training samples of the foreign body shielding convolutional neural network, to improve the accuracy of the foreign body shielding convolutional neural network.
(2)透過將嘴部影像輸入至異物遮蔽卷積神經網路以避免影像資料中的環境因素導致異物遮蔽卷積神經網路誤判,藉以提升異物遮蔽卷積神經網路的準確度。 (2) By inputting the image of the mouth to the foreign object shielding convolutional neural network to avoid the environmental factors in the image data causing the foreign object shielding convolutional neural network to misjudge, thereby improving the accuracy of the foreign object shielding convolutional neural network.
(3)口鼻異物遮蔽檢測方法及口鼻異物遮蔽檢測系統之異物遮蔽卷積神經網路架構具有較高之準確度。 (3) The foreign body shielding detection method of the oral and nose foreign body shielding detection system and the foreign body shielding convolutional neural network architecture with high accuracy.
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明的精 神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above in an embodiment, it is not intended to limit the present invention. Anyone who is familiar with this skill will not deviate from the essence of the present invention. Within the scope of the gods, various changes and modifications can be made, so the scope of protection of the present invention shall be subject to the scope defined in the appended patent application.
s100‧‧‧口鼻異物遮蔽檢測方法 S100‧‧‧ Masking detection method of foreign body
s110‧‧‧偵測步驟 s110‧‧‧detection steps
s111‧‧‧臉部偵測步驟 s111‧‧‧Face detection steps
s112‧‧‧影像提取步驟 s112‧‧‧Image extraction steps
s113‧‧‧異物遮蔽判斷步驟 s113‧‧‧judgment procedure
s120‧‧‧警示步驟 s120‧‧‧Warning steps
Claims (15)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW107140918A TWI684959B (en) | 2018-11-16 | 2018-11-16 | Mouth and nose occluded detecting method and system thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW107140918A TWI684959B (en) | 2018-11-16 | 2018-11-16 | Mouth and nose occluded detecting method and system thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI684959B true TWI684959B (en) | 2020-02-11 |
| TW202020817A TW202020817A (en) | 2020-06-01 |
Family
ID=70413576
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW107140918A TWI684959B (en) | 2018-11-16 | 2018-11-16 | Mouth and nose occluded detecting method and system thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI684959B (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200933535A (en) * | 2008-01-18 | 2009-08-01 | Zippy Tech Corp | Intelligent nursing system |
| CN106874883A (en) * | 2017-02-27 | 2017-06-20 | 中国石油大学(华东) | A kind of real-time face detection method and system based on deep learning |
| WO2017183034A1 (en) * | 2016-04-21 | 2017-10-26 | Ramot At Tel Aviv University Ltd. | Cascaded convolutional neural network |
| TW201832134A (en) * | 2017-06-02 | 2018-09-01 | 大陸商騰訊科技(深圳)有限公司 | Method and device for training human face recognition, electronic device, computer readable storage medium, and computer program product |
| CN207916933U (en) * | 2017-08-31 | 2018-09-28 | 亚月(武汉)智能科技有限公司 | A kind of head portrait identification perambulator |
| CN208092911U (en) * | 2017-11-30 | 2018-11-13 | 西安科锐盛创新科技有限公司 | A kind of baby monitoring systems |
-
2018
- 2018-11-16 TW TW107140918A patent/TWI684959B/en active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200933535A (en) * | 2008-01-18 | 2009-08-01 | Zippy Tech Corp | Intelligent nursing system |
| WO2017183034A1 (en) * | 2016-04-21 | 2017-10-26 | Ramot At Tel Aviv University Ltd. | Cascaded convolutional neural network |
| CN106874883A (en) * | 2017-02-27 | 2017-06-20 | 中国石油大学(华东) | A kind of real-time face detection method and system based on deep learning |
| TW201832134A (en) * | 2017-06-02 | 2018-09-01 | 大陸商騰訊科技(深圳)有限公司 | Method and device for training human face recognition, electronic device, computer readable storage medium, and computer program product |
| CN207916933U (en) * | 2017-08-31 | 2018-09-28 | 亚月(武汉)智能科技有限公司 | A kind of head portrait identification perambulator |
| CN208092911U (en) * | 2017-11-30 | 2018-11-13 | 西安科锐盛创新科技有限公司 | A kind of baby monitoring systems |
Non-Patent Citations (3)
| Title |
|---|
| MNGhost,"深度學習(Deep Learning)-捲積神經網路",<https://ithelp.ithome.com.tw/articles/10199130>,上傳時間:2018年9月13日 |
| MNGhost,"深度學習(Deep Learning)-捲積神經網路",<https://ithelp.ithome.com.tw/articles/10199130>,上傳時間:2018年9月13日 郭二文,"人臉偵測- MTCNN (Multi-task Cascaded Convolutional Networks)",<https://www.youtube.com/watch?v=zZZcEu-iZnk>,發佈日期:2018年1月22日 * |
| 郭二文,"人臉偵測- MTCNN (Multi-task Cascaded Convolutional Networks)",<https://www.youtube.com/watch?v=zZZcEu-iZnk>,發佈日期:2018年1月22日 |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202020817A (en) | 2020-06-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112883918B (en) | Face detection method, face detection device, terminal equipment and computer readable storage medium | |
| CN108009531A (en) | A kind of face identification method of more tactful antifraud | |
| CN114898261B (en) | A sleep quality assessment method and system based on video and physiological data fusion | |
| CN112528764A (en) | Facial expression recognition method, system and device and readable storage medium | |
| CN111444555B (en) | Temperature measurement information display method and device and terminal equipment | |
| CN114049325A (en) | Construction method and application of lightweight face mask wearing detection model | |
| CN112507818B (en) | Illumination estimation method and system based on near infrared image | |
| CN113111804B (en) | Face detection method and device, electronic equipment and storage medium | |
| CN110580454A (en) | Liveness detection method and device | |
| CN113378980A (en) | Mask face shading recovery method based on self-adaptive context attention mechanism | |
| CN112348112A (en) | Training method and device for image recognition model and terminal equipment | |
| CN109118444A (en) | A kind of regularization facial image complex illumination minimizing technology based on character separation | |
| CN116030500B (en) | Personnel dressing standard identification method and system | |
| TWI684959B (en) | Mouth and nose occluded detecting method and system thereof | |
| CN119600670B (en) | A face mask detection method based on YOLOv8 to resist occlusion and counterfeit attacks | |
| CN114359107A (en) | An unsupervised image dehazing method and system based on symbiotic dual model | |
| US10891845B2 (en) | Mouth and nose occluded detecting method and system thereof | |
| TWI425429B (en) | Image texture extraction method, image identification method and image identification apparatus | |
| CN117689893B (en) | Laser scanning ultra-wide-angle fundus image semantic segmentation method, system and terminal | |
| CN113240611A (en) | Foreign matter detection method based on picture sequence | |
| CN113920572B (en) | Method and system for estimating face occlusion degree | |
| CN113971838B (en) | Detection method and device based on security behavior portraits of identification personnel | |
| Grimaldi et al. | Statistics of natural images as a function of dynamic range | |
| CN108764110A (en) | Recurrence false retrieval method of calibration, system and equipment based on HOG feature pedestrian detectors | |
| CN116229502A (en) | Image-based fall behavior recognition method and device |