TWI531655B - Prognosis prediction for acute myeloid leukemia by a 3-microrna scoring system - Google Patents
Prognosis prediction for acute myeloid leukemia by a 3-microrna scoring system Download PDFInfo
- Publication number
- TWI531655B TWI531655B TW103129180A TW103129180A TWI531655B TW I531655 B TWI531655 B TW I531655B TW 103129180 A TW103129180 A TW 103129180A TW 103129180 A TW103129180 A TW 103129180A TW I531655 B TWI531655 B TW I531655B
- Authority
- TW
- Taiwan
- Prior art keywords
- mir
- hsa
- microrna
- micrornas
- risk
- Prior art date
Links
- 208000031261 Acute myeloid leukaemia Diseases 0.000 title claims description 39
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 title claims description 35
- 238000004393 prognosis Methods 0.000 title claims description 21
- 239000002679 microRNA Substances 0.000 claims description 51
- 108700011259 MicroRNAs Proteins 0.000 claims description 49
- 238000013077 scoring method Methods 0.000 claims description 31
- 230000004083 survival effect Effects 0.000 claims description 28
- 230000014509 gene expression Effects 0.000 claims description 25
- 108090000623 proteins and genes Proteins 0.000 claims description 15
- 108091065981 Homo sapiens miR-155 stem-loop Proteins 0.000 claims description 12
- 108091069003 Homo sapiens miR-9-1 stem-loop Proteins 0.000 claims description 12
- 108091068996 Homo sapiens miR-9-2 stem-loop Proteins 0.000 claims description 12
- 108091069001 Homo sapiens miR-9-3 stem-loop Proteins 0.000 claims description 12
- 108091033773 MiR-155 Proteins 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 108091028141 MiR-203 Proteins 0.000 claims description 10
- 108091080995 Mir-9/mir-79 microRNA precursor family Proteins 0.000 claims description 9
- 108091047084 miR-9 stem-loop Proteins 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 3
- 238000003752 polymerase chain reaction Methods 0.000 claims description 3
- 239000003153 chemical reaction reagent Substances 0.000 claims 1
- 206010028980 Neoplasm Diseases 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 201000011510 cancer Diseases 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 238000010837 poor prognosis Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 238000000491 multivariate analysis Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 206010064571 Gene mutation Diseases 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011368 intensive chemotherapy Methods 0.000 description 3
- 230000009401 metastasis Effects 0.000 description 3
- 210000002798 bone marrow cell Anatomy 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 108091070501 miRNA Proteins 0.000 description 2
- 238000003253 miRNA assay Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012502 risk assessment Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 102100034808 CCAAT/enhancer-binding protein alpha Human genes 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 101000945515 Homo sapiens CCAAT/enhancer-binding protein alpha Proteins 0.000 description 1
- 101001109719 Homo sapiens Nucleophosmin Proteins 0.000 description 1
- 101000823316 Homo sapiens Tyrosine-protein kinase ABL1 Proteins 0.000 description 1
- 108091067573 Homo sapiens miR-222 stem-loop Proteins 0.000 description 1
- 108091069517 Homo sapiens miR-224 stem-loop Proteins 0.000 description 1
- 108091066993 Homo sapiens miR-339 stem-loop Proteins 0.000 description 1
- 208000036302 MLL gene rearrangement acute myeloid leukemia Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 108091033433 MiR-191 Proteins 0.000 description 1
- 108091028108 MiR-212 Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 102100022678 Nucleophosmin Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- 102100022596 Tyrosine-protein kinase ABL1 Human genes 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000000270 basal cell Anatomy 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 description 1
- -1 hsa-miR-146a Proteins 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 238000001325 log-rank test Methods 0.000 description 1
- 238000002624 low-dose chemotherapy Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 108091031103 miR-181a stem-loop Proteins 0.000 description 1
- 108091046591 miR-181a-4 stem-loop Proteins 0.000 description 1
- 108091049627 miR-181a-5 stem-loop Proteins 0.000 description 1
- 108091025686 miR-199a stem-loop Proteins 0.000 description 1
- 108091053935 miR-212 stem-loop Proteins 0.000 description 1
- 108091028397 miR-212-1 stem-loop Proteins 0.000 description 1
- 108091028945 miR-212-2 stem-loop Proteins 0.000 description 1
- 108091007431 miR-29 Proteins 0.000 description 1
- 108091089992 miR-9-1 stem-loop Proteins 0.000 description 1
- 108091071572 miR-9-2 stem-loop Proteins 0.000 description 1
- 108091076838 miR-9-3 stem-loop Proteins 0.000 description 1
- 108091038446 miR-9-4 stem-loop Proteins 0.000 description 1
- 108091060187 miR-9-5 stem-loop Proteins 0.000 description 1
- 108091058972 miR-9-6 stem-loop Proteins 0.000 description 1
- 108091084642 miR-9-7 stem-loop Proteins 0.000 description 1
- 238000010208 microarray analysis Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000001558 permutation test Methods 0.000 description 1
- 230000007180 physiological regulation Effects 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
本發明係關於一種包含3個微小核糖體核酸(microRNAs)之用於預測急性骨髓性白血病(AML)患者預後之評分方法。 The present invention relates to a scoring method for predicting the prognosis of patients with acute myeloid leukemia (AML) comprising three microribosomal nucleic acids (microRNAs).
MicroRNA是一種小型、非編碼之RNA分子,其係由其前驅物RNA藉由蛋白質複合體包括Dicer及Drosha之作用而來。其可藉由結合至目標基因3’未轉譯區域進而抑制轉譯作用的發生或是降解mRNA,而在後轉錄層次調控基因之表現。MicroRNA對於造成癌症產生之作用機制所扮演的角色十分重要而複雜。 MicroRNAs are small, non-coding RNA molecules derived from the role of their precursor RNAs by protein complexes including Dicer and Drosha. It can inhibit the occurrence of translation or degrade mRNA by binding to the 3' untranslated region of the target gene, and regulate the expression of the gene at the post-transcription level. The role of microRNAs in the mechanisms that contribute to the development of cancer is important and complex.
在AML中,microRNAs參與造血細胞之分化、增殖以及存活等作用,且影響治療反應之效果及病人之預後。不同的microRNA在不同類別基因變異的AML中有不同的基因表現譜;此外,伴隨特定的基因突變之AMLs亦隱藏有許多不同組成之microRNA表徵(signature)。microRNA表現量在預後所扮演的角色為其一項重要的特徵。越來越多研究顯示,microRNA同時參與基因的正負調控且影響預後以及AML白血病的生成。高度表現的單一microRNA如miR-181a,在染色體正常之AML(cytogenetically normal AML)中被認為是一個獨立的良好預後因子。相反地,高表現量之單 獨miR191、miR-199a或miR-155以及低表現量之miR-212或miR-29皆曾被報導其在AML中為具有不良預後的因子。我們推測,在特定生理調控的機制當中,通常會有多個microRNAs參與其中,且皆可能影響AML病人之化療反應,故整合這些數個microRNA之表現量或許比只考慮單一的microRNA,更能夠更有效的預測這些患者預後反應。作為一種具有高度異質性的疾病,AML需要透過更良好的風險分類才能使得病人獲得最佳的治療結果。在患者的生存分析過程中結合多個相關microRNAs的表現量並且考慮到microRNAs各別的比重,應可提供更多關於預後判斷的訊息。 In AML, microRNAs are involved in the differentiation, proliferation, and survival of hematopoietic cells, and affect the effects of treatment response and patient prognosis. Different microRNAs have different gene expression profiles in different types of genetic variants of AML; in addition, AMLs with specific gene mutations also have many different microRNA signatures. The role of microRNA expression in prognosis is an important feature. More and more studies have shown that microRNAs are involved in both positive and negative regulation of genes and affect prognosis and AML leukemia production. A highly expressed single microRNA, such as miR-181a , is considered to be an independent good prognostic factor in cytogenetically normal AML. Conversely, high performance amounts of miR191 , miR-199a or miR-155 alone and low-performance miR-212 or miR-29 have been reported to be factors with poor prognosis in AML. We speculate that in the mechanism of specific physiological regulation, there are usually multiple microRNAs involved, and all of them may affect the chemotherapy response of AML patients. Therefore, the integration of these microRNAs may be more accurate than considering only a single microRNA. Effectively predict the prognosis of these patients. As a highly heterogeneous disease, AML needs to be better classified by risk in order to get the best treatment outcome for patients. Combining the performance of multiple relevant microRNAs during patient survival analysis and taking into account the specific gravity of microRNAs should provide more information on prognostic judgments.
為解決上述問題,本發明之一目的在於提供AML患者一種簡單且易於使用的預後判斷方法。藉由重複的統計計算由病人所獲得的數據資料後,我們獲得了下列的公式:風險=0.4908[hsa-miR-9-5p表現量]+0.2243[hsa-miR-155-5p表現量]-0.7187[hsa-miR-203表現量]。此公式對於預後的預測性亦可在其他獨立的族群,來自西方國家的美國癌症基因體圖譜(TCGA)中,獲得證實。 In order to solve the above problems, it is an object of the present invention to provide a simple and easy to use prognostic method for AML patients. After repeated calculations of the data obtained by the patient, we obtained the following formula: Risk = 0.4908 [hsa-miR-9-5p performance] + 0.2243 [hsa-miR-155-5p performance]- 0.7187 [hsa-miR-203 performance] . The prognostic predictability of this formula can also be confirmed in other independent ethnic groups, from the Western American Cancer Genome Atlas (TCGA).
其中該評分的方法包含:(a)於AML患者中,偵測其microRNAs mir-9、mir-155及mir-203之表現量,其中建議使用MAMMU6基因做為內生性控制基因;(b)依據3個microRNAs評分公式計算AML患者之風險指數(詳述如下);以及(c)決定患者之預後風險類別。 The method for scoring includes: (a) detecting the expression of microRNAs mir-9 , mir-155 and mir-203 in AML patients, wherein MAMMU6 gene is recommended as an endogenous control gene; (b) Three microRNAs scoring formulas are used to calculate the risk index for AML patients (detailed below); and (c) to determine the patient's prognostic risk category.
該評分系統之設計係藉由經過z-轉換之microRNA表現量作為輸入之數據,且該公式需要族群中該3個microRNA之族群平均及族群之標準差。為了將該評分系統實際應用於其他臨床機構或其他不具備群組資 料的醫院中,本發明提供一種用於本院數據集的計算公式:風險=0.4908(- △C t hsa-miR-9-5p +15.71)/3.60+0.2243(- △C t hsa-miR-155-5p +6.94)/1.45-0.7187(- △C t hsa-miR-203 +17.16)/2.66。上述之△C t 係將microRNA之 C t 減去內生性控制基因之 C t 所獲得,該內生性控制基因較好為MAMMU6;15.71及3.60分別為△C t hsa-miR-9-5p 之平均值與標準差,同樣的計算方式可以類推運用在mir-155及mir-203中。對於每一個新診斷的患者,利用4組即時聚合酶連鎖反應(偵測hsa-miR-9-5p、hsa-miR-155-5p、hsa-miR-203及MAMMU6)即足以獲得預後評估之風險指數,所獲得之風險指數與族群風險指數之中位數0.0031相比較後進行預後風險之分類。該風險指數若小於或等於0.0031則表示該患者具有良好的預後存活之前景;反之,則表示該患者具有不好的預後存活之前景。 The scoring system is designed to pass the z-converted microRNA expression as input data, and the formula requires the population average of the three microRNAs in the population and the standard deviation of the population. In order to actually apply the scoring system to other clinical institutions or other hospitals that do not have group data, the present invention provides a calculation formula for the data set of the hospital: risk = 0.4908 (- Δ C t hsa-miR-9- 5p + 15.71) / 3.60 + 0.2243 (- Δ C t hsa-miR-155-5p + 6.94) / 1.45-0.7187 (- Δ C t hsa-miR-203 + 17.16) / 2.66 . The above-described system will microRNA △ C t C t of the endogenous control C t by subtracting the obtained gene, the endogenous gene is preferably controlled to MAMMU6; 15.71 and 3.60 respectively, the average △ C hsa-miR-9-5p of t The value is the same as the standard deviation. The same calculation method can be used in mir-155 and mir-203 . For each newly diagnosed patient, the use of four sets of immediate polymerase chain reaction (detection of hsa-miR-9-5p , hsa-miR-155-5p , hsa-miR-203, and MAMMU6 ) is sufficient to assess the risk of prognosis. The index, the risk index obtained is compared with the median population risk index of 0.0031, and the prognostic risk is classified. If the risk index is less than or equal to 0.0031, it indicates that the patient has a good prognosis for survival; otherwise, the patient has a poor prognosis for survival.
於本發明之一較佳實施例中,該AML病患者為原發性(de novo)AML患者。 In a preferred embodiment of the invention, the AML patient is a primary ( de novo ) AML patient.
本發明之另一目的在於提供一種用以偵測microRNAs表現量的套組,其中該套組包含可用以偵測microRNAs mir-9、mir-155及mir-203表現量之寡核酸。 Another object of the present invention is to provide a kit for detecting the amount of expression of microRNAs, wherein the kit comprises oligonucleic acids which can be used to detect microRNAs mir-9 , mir-155 and mir-203 .
於一較佳實施例中,該套組更進一步包含一可用於偵測內生性控制基因之寡核酸。於另一較佳實施例中,該內生性控制基因為MAMMU6。 In a preferred embodiment, the kit further comprises an oligonucleic acid useful for detecting endogenous control genes. In another preferred embodiment, the endogenous control gene is MAMMU6 .
非限制性且非全面性之實施例將結合附圖以進行說明。下述圖式係僅依據本發明所公開之實施例進行描述,因此不應用來限制本發明之範圍,本發明所揭示之細節及特異性內容將根據圖示詳細來進行描繪, 其中:圖1為本發明實施例中利用microRNA進行分析之流程圖。 Non-limiting and non-comprehensive embodiments will be described in conjunction with the drawings. The following drawings are only described in accordance with the embodiments of the present invention, and thus are not intended to limit the scope of the present invention. Wherein: FIG. 1 is a flow chart of analyzing by using microRNA in the embodiment of the present invention.
圖2(a)為NTUH詳組中138位患者之風險指數分布圖;圖2(b)為TCGA群組之風險指數分布圖。 Figure 2(a) is a risk index distribution map of 138 patients in the NTUH detailed group; Figure 2(b) is a risk index distribution map of the TCGA group.
圖3(a)為NTUH群組之AML患者族群中具有較低風險指數與高風險指數患者之總存活率比較;圖3(b)為TCGA群組之AML患者族群中具有較低風險指數與高風險指數患者之總存活率比較;圖3(c)為NTUH中具有正常核型(normal karyotype)之AML患者族群中具有較低風險指數與高風險指數患者之總存活率比較;圖3(d)為指數分佈圖,顯示較高風險指數會有比較低的機會獲得完全緩解(complete remission(CR))。 Figure 3(a) compares the overall survival of patients with a lower risk index and high risk index in the AML patient population of the NTUH group; Figure 3(b) shows a lower risk index for the AML patient population in the TCGA group. The overall survival rate of patients with high-risk index was compared; Figure 3(c) is the comparison of the overall survival rate of patients with lower risk index and high-risk index among AML patients with normal karyotype in NTUH; d) is an exponential map showing that the higher risk index will have a lower chance of complete remission (CR).
本案所揭示之內容將以以下實施例及範例作為詳細之說明,並可參照附圖以使得本發明之概念可以由本技術領域人員輕易實現。 The disclosure of the present invention will be described in detail by the following examples and examples, and reference to the accompanying drawings.
然而,必須要注意的是本發明所揭示之內容不僅限於本說明書中的實施例,而可以以其他不同的方式實現。圖式中,與本案不相關的部分內容已被省略,以提高附圖之明確性,並請一併參閱所揭示之圖號。 However, it must be noted that the disclosure of the present invention is not limited to the embodiments in the specification, but may be implemented in other different ways. In the drawings, parts that are not relevant to the present invention have been omitted to improve the clarity of the drawings, and please refer to the disclosed drawings.
整篇說明書當中,所使用之辭彙「包含(comprises)」或「包括(includes)」意謂著除了描述的組成、步驟、操作指令及/或元素以外,不排除一或多個其他組成、步驟、操作指令及/或存在或附加元素。所使用之詞彙「大約(about)或約(approximately)」意指具有接近或可允許的誤差範圍,用於避免本發明所揭示之準確或絕對的數值受未知的第三方非法或非正當使用的。 The use of the terms "comprises" or "includes" in the entire specification means that one or more other components are not excluded, except for the components, steps, operating instructions and/or elements described. Steps, operational instructions, and/or presence or additional elements. The word "about" or "approximately" is used to mean that there is a near or permissible range of error for avoiding the use of the precise or absolute value disclosed herein by an unknown third party. .
本案發明人提供一種基於一或一個以上的microRNAs之表現模式以預測AML病人臨床結果(例如:預後之存活率)的方法。 The inventors of the present invention provide a method based on the expression pattern of one or more microRNAs to predict clinical outcomes (eg, survival of prognosis) in AML patients.
評分的方式如下:招收一群AML患者,依據習知技術對骨髓細胞中之複數microRNAs之表現量進行測量,例如即時聚合酶連鎖反應(real-time PCR)或微陣列分析(microarray analysis)等。各microRNA之表現量藉由與內生性控制基因如MAMMU6之表現量做比較來進行校正,於同一患者中獲得3個經校正之microRNAs表現量。 The scoring method is as follows: recruiting a group of AML patients, measuring the amount of expression of multiple microRNAs in bone marrow cells according to conventional techniques, such as real-time PCR or microarray analysis. The amount of expression of each microRNA was corrected by comparison with the amount of expression of endogenous control genes such as MAMMU6, and the amount of corrected microRNAs was obtained in the same patient.
[實施例][Examples]
下文中,關於本發明所揭示之內容將以實施例及圖式做為說明。然而,本發明所揭示之內容並不侷限於這些實施例及圖式。 Hereinafter, the disclosure of the present invention will be described by way of embodiments and drawings. However, the disclosure of the present invention is not limited to the embodiments and the drawings.
[材料與方法][Materials and Methods]
(a)患者 (a) patient
共195位連續受測的成年患者(>或=15歲),這些患者在1995至2007年間,於國立台灣大學附屬醫院(NTUH)中被新診斷為罹患原發性(de novo)AML,且具有大量可用於microRNA分析之冷凍骨髓細胞。其中,患有前驅血液疾病(antecedent hematologic disease)及與治療有關的急性骨髓性白血病(therapy-related AML)的患者已排除。本實驗依據赫爾辛基宣言實行,且經由NTUH倫理委員會核准。在這些原發性患者中,138位(70.7%)接受標準強化化療,其餘57位患者由於不良表現狀態(poor performance status)或患者意願而接受安寧照護或低劑量化療。所有195位患者皆納入特定microRNA相對於其他參數表現之間的關聯性分析,但僅針對其中接受標準強化化療的138位患者進行存活分析。使用由TCGA(癌症基因組圖譜)所獲得 的AML族群資料,其包含公開可用的microRNA資料庫,做為驗證族群(圖1)。 A total of 195 consecutive adult patients (> or = 15 years old) who were newly diagnosed with de novo AML at the National Taiwan University Hospital (NTUH) between 1995 and 2007. There are a large number of frozen bone marrow cells that can be used for microRNA analysis. Among them, patients with antecedent hematologic disease and treatment-related acute myeloid leukemia (therapy-related AML) have been excluded. This experiment was carried out in accordance with the Helsinki Declaration and approved by the NTUH Ethics Committee. Of these primary patients, 138 (70.7%) received standard intensive chemotherapy, and the remaining 57 received tranquil care or low-dose chemotherapy due to poor performance status or patient wishes. All 195 patients included a correlation analysis between specific microRNAs relative to the performance of other parameters, but only for 138 patients who received standard intensive chemotherapy. AML population data obtained from TCGA (Cancer Genome Atlas) was used, which contained a publicly available microRNA database as a validation population (Figure 1).
(b)microRNA表現量之定量 (b) Quantification of microRNA expression
將單核球細胞由診斷所獲得之骨髓樣本中分離,接著以冷凍保存。利用TriZol法萃取RNA。取1μg RNA利用TaqMan MicroRNA反轉錄套組(Applied Biosystems)進行測試,且microRNA之分析測定採用TaqMan Array Human microRNA A card(Applied Biosystems)以7900HT即時聚合酶連鎖反應儀進行實驗。擴增曲線由Applied Biosystems公司SDS2.3軟體轉換為數字表表示。無法在40個循環(CT>40)內偵測到之MicroRNAs標注為「未確定」。 Mononuclear cells were isolated from the bone marrow samples obtained from the diagnosis and then stored frozen. RNA was extracted using the TriZol method. 1 μg of RNA was tested using the TaqMan MicroRNA Reverse Transcriptome (Applied Biosystems), and the microRNA assay was performed using a TaqMan Array Human microRNA A card (Applied Biosystems) with a 7900HT Instant Polymerase Chain Reaction Reactor. The amplification curve was converted by the Applied Biosystems SDS2.3 software to a digital representation. MicroRNAs that could not be detected within 40 cycles (C T >40) are labeled as "undetermined".
(c)風險評分方法的建立 (c) Establishment of a risk scoring method
為了建立基於microRNA表現層次的風險評分方法,首先分析總存活率(overall survival,OS)與單獨microRNAs表現層次之間的關聯。在此,各microRNA之表現對於生存之預後顯著性係藉由單變量Cox比例風險回歸模型(Cox proportional hazards regression model)進行測量。將表現量相對於存活率具有顯著意義(單變量Cox P<0.005)的microRNAs應用於多變量Cox模型中,以尋找表現量可獨立用於預測存活率之microRNAs。選出由多元測試中獲得相對於總存活率具有顯著意義(多變量Cox P<0.1)之microRNA以建立風險評分之方法,其中組成元素microRNA經過一輪又一輪多變量Cox回歸測試後,獲得可做為比重係數之β值。對於預後存活之重要性具有較顯著意義之microRNA具有較高比重係數。以microRNA為基礎之風險評分方法定義為,風險(p)= Beta i .miRNA i (p),其中P表示患者之識別號碼,Beta i 定義為microRNA探針i之比重,miRNAi則表示經microRNA探針i偵測獲得表現量經對數轉換之數值。所有microRNAs之Beta i ΣmiRNA(p)總和為所估計之患者P之風險指數。 In order to establish a risk scoring method based on microRNA expression level, the relationship between overall survival (OS) and individual microRNAs performance levels was first analyzed. Here, the prognostic significance of the performance of each microRNA for survival is measured by a univariate Cox proportional hazards regression model. MicroRNAs with significant performance relative to survival (univariate Cox P < 0.005) were applied to the multivariate Cox model to look for microRNAs whose performance was independently used to predict survival. A method for establishing a risk score by multivariate testing with a significant significance (multivariate Cox P <0.1) relative to the total survival rate was selected, in which the constituent microRNAs were subjected to round and round multivariate Cox regression tests to obtain The beta value of the specific gravity coefficient. MicroRNAs that are more significant for the importance of prognosis have a higher specific gravity coefficient. The microRNA-based risk scoring method is defined as risk ( p )= Beta i . miRNA i ( p ), where P is the patient's identification number, Beta i is defined as the specific gravity of the microRNA probe i , and miRNAi is the value obtained by logarithmic conversion of the amount of expression obtained by the microRNA probe i . The sum of Beta i Σ miRNA(p) for all microRNAs is the estimated risk index for patient P.
為了確認本發明之風險評分方法的性能,故進行一萬次隨機排列測試,在每次的隨機循環當中,隨機由microRNA數據集中選擇相同數量的microRNAs以建立一「隨機評分方法」,並根據上述內容指定適當的比重。各個用以評估預後重要性之隨機評分皆依據單變量Cox模型進行測試。在10,000循環後,所提出之該風險評估系統經由經驗所得之P值可被計算為一小部份隨機評分方法,其達成較預估的風險系統更佳的多變量Cox P值。所獲得之經驗P值越小,則表示所提出之風險評分方法優於隨機組合microRNA的方式。 In order to confirm the performance of the risk scoring method of the present invention, 10,000 random permutation tests were performed, and in each random cycle, the same number of microRNAs were randomly selected from the microRNA data set to establish a "random scoring method", and according to the above The content specifies the appropriate weight. Each random score used to assess the importance of prognosis was tested against a univariate Cox model. After 10,000 cycles, the proposed P- value obtained by the risk assessment system can be calculated as a small fractional randomization method that achieves a better multivariate Cox P value than the estimated risk system. The smaller the empirical P value obtained, the better the proposed risk scoring method is than the random combination of microRNAs.
(d)統計分析 (d) Statistical analysis
總存活率係藉由計算首次診斷的日期至任何原因的死亡或最終可追蹤的日期為止。為了排除任何由異基因造血幹細胞移植(HSCT)可能產生的混淆因子,接受過此項程序之患者皆於細胞輸入當天予以censored。採用Kaplan-Meier估算法繪製生存曲線並使用對數等級檢定(log rank test)以檢視不同研究族群之間的差異。基於microRNA表現之風險評分方法相對於臨床特徵之間的相關性評估係將整體患者族群皆納入分析;然而,僅有接受標準強化化療的患者進行生存率分析。所有計算分析皆係利用XLSTAT計算分析軟體2010.5.02版本(Addinsoft,Deutschland,Germany)。 The overall survival rate is calculated by calculating the date of the first diagnosis to the date of death or the final traceability for any reason. To rule out any confounding factors that may be caused by allogeneic hematopoietic stem cell transplantation (HSCT), patients who underwent this procedure were censored on the day of cell entry. Survival curves were plotted using the Kaplan-Meier estimate and log rank tests were used to examine differences between different study populations. The correlation between the risk-based scoring methods based on microRNA performance and the clinical features was included in the overall patient population; however, only patients receiving standard intensive chemotherapy were analyzed for survival. All computational analyses were performed using the XLSTAT Computational Analysis Software version 2010.5.02 (Addinsoft, Deutschland, Germany).
[結果][result]
(a)3-microRNA風險評估方法之建立 (a) Establishment of a 3-microRNA risk assessment method
為了定義一對於AML患者風險的預測性的microRNA評分方法,於NTUH族群(做為一發現資料庫,n=138)中,進行單獨microRNA表現相對於總生存率的相關性篩選。由單變量Cox比例風險回歸模型所定義出與總存活率有顯著相關(P<0.005)的11個microRNAs,包含:hsa-miR-9-5p、hsa-miR-146a、hsa-miR-222、hsa-miR-128、hsa-miR-181a、hsa-miR-125b、hsa-miR-196b、hsa-miR-155-5p、hsa-miR-224、hsa-miR-203及hsa-miR-339-3p(依據Cox P值大小升冪排序)。為了更進一步查明藉由microRNA表現進行單獨強而有力生存預測,於是我們將該11個microRNA表現量引入多變量Cox模型,進而發現hsa-miR-9-5p(登錄號:MIMAT0000441)及hsa-miR-155-5p(MIMAT0000646)皆各別獨立與不良的總存活率有所關聯,而hsa-miR-203(MIMAT0000264)之表現則具有良好的總存活率趨勢,其多變量Cox P值分別為0.005、0.033及0.080。聚焦於此3個microRNAs進而建立一個風險評分方法如下:風險=0.4908[hsa-miR-9-5p]+0.2243[hsa-miR-155-5p]-0.7187[hsa-miR-203],其中microRNAs的比重為經過患者microRNA表現量由多變量Cox分析及經z轉換(即扣除平均值後,再除以單位標準差),使得每一microRNA具有零平均值及單位標準差。根據NTUH的研究族群中138位患者數據所獲得之風險指數分佈接近常態分佈,範圍為-2.01至1.97,中位數、平均值以及標準差分別為0.01、2.87e-15以及0.78(圖2(a))。同樣的狀況亦適用於TCGA族群(圖2(b))。該風險指數在我們的數據資料庫中具有良好的預測效果(單變量Cox P=1.41 x 10-7,Log-rank P=1.03 x 10-5)。本發明之評分方法幾乎優於隨機選擇10,000次之結果(經驗P=6 x 10-4),顯示我們所提出的 系統具有高效能且非偶然。 To define a predictive microRNA scoring method for AML patient risk, a correlation screen for individual microRNA performance versus overall survival was performed in the NTUH population (as a discovery database, n=138). Eleven microRNAs with a significant correlation with total survival ( P < 0.005) were defined by a univariate Cox proportional hazard regression model, including: hsa-miR-9-5p , hsa-miR-146a , hsa-miR-222 , hsa-miR-128 , hsa-miR-181a , hsa-miR-125b , hsa-miR-196b , hsa-miR-155-5p , hsa-miR-224 , hsa-miR-203 and hsa-miR-339- 3p (sorted according to the size of the Cox P value). In order to further investigate the strong and robust survival prediction by microRNA expression, we introduced the 11 microRNA expressions into the multivariate Cox model, and found hsa-miR-9-5p (accession number: MIMAT0000441) and hsa- miR-155-5p (MIMAT0000646) was independently associated with poor overall survival, while hsa-miR-203 (MIMAT0000264) showed a good overall survival trend with multivariate Cox P values of 0.005, 0.033 and 0.080. Focusing on these three microRNAs to establish a risk scoring method is as follows: risk = 0.4908 [hsa-miR-9-5p] + 0.2243 [hsa-miR-155-5p]-0.7187[hsa-miR-203] , in which microRNAs The specific gravity is the multivariate Cox analysis and z-conversion (ie, after subtracting the average, divided by the unit standard deviation), so that each microRNA has a zero mean and unit standard deviation. According to data from 138 patients in the NTUH study population, the risk index distribution was close to the normal distribution, ranging from -2.01 to 1.97, with median, mean, and standard deviation of 0.01, 2.87e-15, and 0.78, respectively (Figure 2 (Figure 2 ( a)). The same applies to the TCGA group (Fig. 2(b)). This risk index has good predictive effect in our database (univariate Cox P =1.41 x 10 -7 , Log-rank P =1.03 x 10 -5 ). The scoring method of the present invention is almost superior to the random selection of 10,000 results (experience P = 6 x 10 -4 ), indicating that the proposed system is highly efficient and non-accidental.
(b)臨床與分子特徵評分方法的相關性 (b) Correlation between clinical and molecular feature scoring methods
較高的指數與較高年齡、高量白血球、血小板及芽球呈現正相關,但與預後較佳的染色體變化則為互斥(如表1所示)。 The higher index is positively correlated with higher age, high white blood cells, platelets and buds, but the chromosomal changes with better prognosis are mutually exclusive (as shown in Table 1).
在高及低指數群組中,基因突變概況亦有所不同:具有高指數的患者通常具有NPM1、FLT3-ITD以及MLL-PTD突變,而很少具有CEBPA突變(表2)。 Gene mutation profiles are also different in the high and low index groups: patients with high indices usually have NPM1 , FLT3- ITD, and MLL- PTD mutations, and rarely have CEBPA mutations (Table 2).
(c)存活分析 (c) Survival analysis
具有高指數的AML患者其總存活率明顯低於具有低指數者(中位數13.5個月vs.未達到,P<0.0001,圖3(a))。該預後重要性之評分方法由TCGA之AML族群進行驗證(中位數12.2 vs 26.4個月,P=0.008,圖3(b)),其係為唯一公開可取得之AML存活及microRNA數據之族群。當我們限制受測患者限制為正常核型時,指數越高的患者其總存活率依然不佳(中位數17.0個月vs未達,P=0.006,圖3(c))。具有低指數之患者較高指數之患者 在誘導化療後較易達到完全緩解(complete remission(CR))(P=0.0001,圖3(d))。 The overall survival rate of AML patients with high index was significantly lower than those with low index (median 13.5 months vs. not reached, P < 0.0001, Figure 3 (a)). The prognostic importance score was validated by the TCGA AML population (median 12.2 vs 26.4 months, P = 0.008, Figure 3(b)), which is the only group that publicly available AML survival and microRNA data. . When we restricted the patients to the normal karyotype, the higher the index, the overall survival rate remained poor (median 17.0 months vs. did not reach, P = 0.006, Figure 3(c)). Patients with a higher index of patients with a lower index were more likely to achieve complete remission (CR) after induction chemotherapy ( P = 0.0001, Figure 3(d)).
(d)多變量分析 (d) Multivariate analysis
由於高指數似乎與其餘不良預後的變化有所關聯(表1及表2),我們試圖探討此評分方法所獲得之指數是否可做為一項獨立的因子。我們將一些已知的預後影響因子納入做為共同變量,而後高指數出現成為高度獨立風險因子。值得注意的是,本發明之評分方法之獨立性在TCGA群組中亦具有證實具有可信度(表3)。藉由整合共變量進行更進一步分析,我們發現具有較差風險指數之患者無論是在我們的患者或是TCGA之患者皆具有較短的總存活率。 Since the high index appears to be associated with changes in other poor prognosis (Tables 1 and 2), we sought to investigate whether the index obtained by this scoring method can be used as an independent factor. We included some known prognostic impact factors as a common variable, and the post-high index appeared to be a highly independent risk factor. It is worth noting that the independence of the scoring method of the present invention also has demonstrated confidence in the TCGA cohort (Table 3). By integrating the covariates for further analysis, we found that patients with a poor risk index had a shorter overall survival rate in both our patients and patients with TCGA.
(e)評分方法與單一microRNA表現對於預後重要性之比 較 (e) Ratio of scoring methods to single microRNA expression for prognosis More
為了了解評分方法相較於單一microRNA是否具有更強的效用,我們增加了單獨microRNA組成之表現量,包括hsa-miR-9-5p、hsa-miR-155-5p、hsa-miR-203及hsa-miR-181a,該microRNA之表現量上升與AML良好的預後高度相關,將這些microRNA表現進行共變量分析以外更進行多變量的分析,示於表3。結果顯示該3-microRNA表徵優於所有單獨表現的microRNA的表現(表4~7)。 To understand whether the scoring method is more potent than a single microRNA, we increased the amount of microRNA composition, including hsa-miR-9-5p , hsa-miR-155-5p , hsa-miR-203, and hsa. -miR-181a , the increase in the expression of this microRNA is highly correlated with the good prognosis of AML, and the multivariate analysis was performed in addition to the covariate analysis of these microRNA expressions, as shown in Table 3. The results show that the 3-microRNA characterization is superior to the performance of all individual microRNAs (Tables 4-7).
(f)以即時聚合酶聯鎖反應microRNA檢測進行臨床應用評分方法 (f) Clinical application scoring method using real-time polymerase interlocking reaction microRNA detection
由於該評分方法設計為將z-轉移microRNA表現層次做為輸入數據,三個microRNA之平均值與族群標準差為該公式所需。為了將此評分方法實際應用於臨床及不具本發明評估族群之醫院中,以下將提供使用NTUH數據計算而得之公式如下:風險=0.4908(-△Ct hsa-miR-9-5p +15.71)/3.60+0.2243(-△Ct hsa-miR-155-5p +6.94)/1.45-0.7187(-△Ct hsa-miR-203 +17.16)/2.66。 Since the scoring method is designed to use the z-transferred microRNA expression hierarchy as input data, the mean and population standard deviation of the three microRNAs is required for this formula. To this scoring method actually used in clinical evaluation and non-hospital groups of the present invention, will be provided below using the NTUH data is calculated using the following formula: Risk = 0.4908 (- △ Ct hsa- miR-9-5p +15.71) / 3.60 + 0.2243 (- △ Ct hsa -miR-155-5p +6.94) /1.45-0.7187 (- △ Ct hsa-miR-203 +17.16) /2.66.
在此,△Ct值為microRNA之Ct減去內生性控制基因MAMMU6之Ct;15.71及3.60分別為△Ct hsa-miR-9-5p 之平均值及標準差。hsa-miR-155-5p及hsa-miR-203的數值亦同。對於每一個新診斷之患者,使用4孔即時聚合酶聯鎖反應microRNA試驗(偵測hsa-miR-9-5p、 hsa-miR-155-5p、hsa-miR-203及MAMMU6)即足以獲得預後評分,可與我們的族群風險指數之中位數0.0031相比較,以進行風險群組之分類。 Here, △ Ct value minus the Ct of the endogenous microRNA Ct of the control gene MAMMU6; 15.71 and 3.60 respectively, the average and standard △ Ct hsa-miR-9-5p difference. The values of hsa-miR-155-5p and hsa-miR-203 are also the same. For each newly diagnosed patient, a 4-well real-time polymerase-interlocking microRNA assay (detecting hsa-miR-9-5p , hsa-miR-155-5p , hsa-miR-203, and MAMMU6 ) is sufficient for prognosis The score can be compared to the median of our ethnic risk index of 0.0031 for risk group classification.
在本發明中,具有整合本發明族群之臨床、基因以及陣列數據的優點,以獲得簡單但有效果的3-microRNA特徵,以預測術後結果,僅考量3個microRNA之表現以及比重,其係經由一連串的統計計算後篩選而得,以確保其對於預後具有強且獨立之影響力。該指數之效力係藉由TCGA族群確認,該CGA族群係一獨立之患者驗證組合,該患者係在其他平台中經由不同microRNA定量平台而研究。藉此,本發明之評分方法同時在患者族群及定量方法皆為獨立。雖然NTUH及TCGA皆為非具有可預期性的患者族群,然而3-microRNA特徵對於預測預後效果具有非常高度的影響,因此其對於風險分類具有很高的可性度。值得注意的是,本發明所整合的3-microRNA評分方法優於microRNA hsa-miR-9-5p、hsa-miR-155-5p及hsa-miR-203之單獨表現,在評分方法中之microRNAs組成,以及hsa-miR-181a,其上升之表現量與AML之良好預後因子高度相關。在本發明之評分方法中,低指數係與良好的預後因子相關,例如好的風險分類及基因突變等有關,在NTUH族群以及TCGA族群之多變量分析更確認3個獨立microRNA特徵獨立於其他重要的預後參數。 In the present invention, there are advantages in integrating the clinical, genetic, and array data of the population of the present invention to obtain a simple but effective 3-microRNA signature to predict postoperative outcomes, considering only the performance and specific gravity of the three microRNAs. It is screened through a series of statistical calculations to ensure its strong and independent influence on prognosis. The efficacy of this index was confirmed by the TCGA ethnic group, an independent patient validation combination that was studied in different platforms via different microRNA quantification platforms. Thereby, the scoring method of the present invention is independent in both the patient population and the quantitative method. Although both NTUH and TCGA are non-predictable patient populations, 3-microRNA signatures have a very high impact on predicting prognostic outcomes, and therefore have a high degree of susceptibility to risk classification. It is worth noting that the integrated 3-microRNA scoring method of the present invention is superior to the microRNA hsa-miR-9-5p , hsa-miR-155-5p and hsa-miR-203 alone, and the microRNAs in the scoring method are composed. , and hsa-miR-181a, its increased performance is highly correlated with good prognostic factors for AML. In the scoring method of the present invention, the low index system is associated with a good prognostic factor, such as good risk classification and gene mutation, and the multivariate analysis of the NTUH group and the TCGA group confirms that three independent microRNA features are independent of other important factors. Prognostic parameters.
以實際觀點來看,將平均值及標準差加入評分方法,使得每一個新診斷為AML患者之治療後的結果,可經由以簡易的qPCR做為基礎的實驗程序來預測,即使該實驗室未有其族群平均值或標準差亦可進行。所用皆為商業化可得之材料,過程快速且適合用於高通量之方式進行。 From a practical point of view, the mean and standard deviation are added to the scoring method so that the results of each new diagnosis of AML patients can be predicted via a simple qPCR-based experimental procedure, even if the laboratory does not It is also possible to have a population mean or standard deviation. All are commercially available materials and are fast and suitable for high throughput applications.
miR-155、miR-9及miR-203為本發明之評分方法的三個核 心組份。在造血癌症中,miR-155已知為一個致癌基因並造成預後較差,但另一項研究結果卻有相反結論。miR-155所參與的訊號傳遞路徑是非常複雜的,但其可能對生物之細胞生殖、細胞週期進程、細胞浸潤/轉移造成大規模的影響。在本發明的族群當中,miR-155為一個獨立的不良預後因子,與先前的研究內容相符。miR-9已被證明可藉由抑制癌症的致腫瘤性,但此分子亦可促進實體癌之轉移。更複雜地,在一項報導中提及,其表現量的增加顯示在髓母細胞瘤中其可做為一個良好預後因子,但在另一個報導中又說明其在神經膠質瘤中為一個不良的預後分子。對AML來說,相較於其他種類之AML,miR-9特別是在MLL-基因重排AML為一特定表現量上升之microRNA,其為MLL融合蛋白的一個標的,而其表現亦直接與疾病之進展相關連。在本發明中,miR-9為一預後不良之因子。對於miR-203的研究則較少,此分子做為一種藉由調控所增生之基底前驅細胞及末端分化基底層細胞間的轉移來抑制皮膚幹細胞的抑制劑,然而其對於AML預後之意義尚不明確,但其可在一些慢性骨髓性白血病或一些急性淋巴細胞白血病中針對ABL1及抑制BCR-ABL1表現。在其他癌症當中,其常做為一種腫瘤抑制物,但miR-203之表現量上升在卵巢癌中與腫瘤的增生以及不良的預後具有相關性;在本發明中,miR-203為一種對預後有利的因子。 miR-155 , miR-9 and miR-203 are the three core components of the scoring method of the present invention. In hematopoietic cancer, miR-155 is known to be an oncogene and has a poor prognosis, but another study has the opposite conclusion. The signal transmission pathway involved in miR-155 is very complex, but it may have a large-scale impact on cell reproduction, cell cycle progression, cell infiltration/metastasis. Among the populations of the present invention, miR-155 is an independent poor prognostic factor consistent with previous studies. miR-9 has been shown to inhibit the tumorigenicity of cancer, but this molecule can also promote the metastasis of solid cancer. More complicated, it is mentioned in one report that an increase in the amount of expression is shown to be a good prognostic factor in medulloblastoma, but in another report it is a poor outcome in glioma. Prognostic molecule. For AML, compared to other types of AML, miR-9, especially in MLL-gene rearrangement AML, is a specific amount of microRNA that is a target of MLL fusion protein, and its performance is directly related to disease. The progress is related. In the present invention, miR-9 is a factor of poor prognosis. There are few studies on miR-203 , which acts as an inhibitor of skin stem cells by regulating the metastasis between proliferating basal precursor cells and terminally differentiated basal cells. However, its significance for the prognosis of AML is not yet Clear, but it can target ABL1 and inhibit BCR-ABL1 in some chronic myelogenous leukemia or some acute lymphocytic leukemia. Among other cancers, it is often used as a tumor suppressor, but the increased expression of miR-203 is associated with tumor proliferation and poor prognosis in ovarian cancer; in the present invention, miR-203 is a prognosis. Favorable factor.
綜上所述,本發明提出一種簡易且易於使用之3-microRNA特徵針對AML做為一個可有效預測預後效果之因子,其係透過多個統計分析本發明族群數據之循環,且更進一步藉由其他獨立的患者族群所證實。此種評分方法優於僅以多變量分析單一microRNA表現的預測方法。microRNA-mRNA之成對分析推測與此特徵及一般與癌症相關分子調控路 徑有關。 In summary, the present invention proposes a simple and easy-to-use 3-microRNA feature for AML as a factor that can effectively predict the prognostic effect, which is through a plurality of statistical analysis of the cycle of the population data of the present invention, and further by Confirmed by other independent patient populations. This scoring method is superior to the prediction method that only performs multivariate analysis of a single microRNA. Pairwise analysis of microRNA-mRNA is presumed to be associated with this feature and generally associated with cancer-associated molecular regulation Related to the trail.
僅管實施例已於本文實施例當中公開,但仍須了解其仍有許多種可能的變化存在。而這些實施例之變化並不視為背離本發明應用之精神及範圍,且若這些修改對於本領域技術人員而言都為顯而易見則仍包含於原申請專利範圍之範圍內。 Although the examples have been disclosed in the examples herein, it is still to be understood that there are still many possible variations. The changes in the embodiments are not to be construed as a departure from the spirit and scope of the invention, and the scope of the invention is intended to be included within the scope of the invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW103129180A TWI531655B (en) | 2014-08-25 | 2014-08-25 | Prognosis prediction for acute myeloid leukemia by a 3-microrna scoring system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW103129180A TWI531655B (en) | 2014-08-25 | 2014-08-25 | Prognosis prediction for acute myeloid leukemia by a 3-microrna scoring system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW201608028A TW201608028A (en) | 2016-03-01 |
| TWI531655B true TWI531655B (en) | 2016-05-01 |
Family
ID=56084673
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW103129180A TWI531655B (en) | 2014-08-25 | 2014-08-25 | Prognosis prediction for acute myeloid leukemia by a 3-microrna scoring system |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI531655B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI740533B (en) | 2020-06-11 | 2021-09-21 | 國立中央大學 | Method for estimating a risk for a subject suffering from encapsulating peritoneal sclerosis, analyzer and kit thereof |
-
2014
- 2014-08-25 TW TW103129180A patent/TWI531655B/en active
Also Published As
| Publication number | Publication date |
|---|---|
| TW201608028A (en) | 2016-03-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7042784B2 (en) | How to Quantify Prostate Cancer Prognosis Using Gene Expression | |
| Lian et al. | Identification of a plasma four-microRNA panel as potential noninvasive biomarker for osteosarcoma | |
| JP7228896B2 (en) | Methods for predicting the prognosis of breast cancer patients | |
| Ouillette et al. | Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14 | |
| Mulligan et al. | Identification and validation of an anthracycline/cyclophosphamide–based chemotherapy response assay in breast cancer | |
| Bagnoli et al. | Development and validation of a microRNA-based signature (MiROvaR) to predict early relapse or progression of epithelial ovarian cancer: a cohort study | |
| Donnem et al. | MicroRNA signatures in tumor tissue related to angiogenesis in non-small cell lung cancer | |
| Lu et al. | MicroRNA profiling and prediction of recurrence/relapse-free survival in stage I lung cancer | |
| Kubiczkova et al. | Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance | |
| Schou et al. | miR-345 in metastatic colorectal cancer: a non-invasive biomarker for clinical outcome in non-KRAS mutant patients treated with 3rd line cetuximab and irinotecan | |
| Du et al. | Plasma exosomal miRNAs-based prognosis in metastatic kidney cancer | |
| Pedersen et al. | MicroRNA-based classifiers for diagnosis of oral cavity squamous cell carcinoma in tissue and plasma | |
| Bottani et al. | Perspectives on miRNAs as epigenetic markers in osteoporosis and bone fracture risk: a step forward in personalized diagnosis | |
| Weerts et al. | Mitochondrial DNA content in breast cancer: Impact on in vitro and in vivo phenotype and patient prognosis | |
| US20170107577A1 (en) | Determining Cancer Aggressiveness, Prognosis and Responsiveness to Treatment | |
| Wu et al. | Improved risk stratification in myeloma using a micro RNA‐based classifier | |
| Chuang et al. | A 3-microRNA scoring system for prognostication in de novo acute myeloid leukemia patients | |
| Yang et al. | Expression and prognostic significance of the apoptotic genes BCL2L13, Livin, and CASP8AP2 in childhood acute lymphoblastic leukemia | |
| JP7430415B2 (en) | How to predict the usefulness of chemotherapy for breast cancer patients | |
| Raychaudhuri et al. | Intratumoral heterogeneity of microRNA expression in breast cancer | |
| How et al. | Developing a prognostic micro-RNA signature for human cervical carcinoma | |
| Gimondi et al. | Circulating miRNA panel for prediction of acute graft-versus-host disease in lymphoma patients undergoing matched unrelated hematopoietic stem cell transplantation | |
| Backes et al. | Blood born miRNAs signatures that can serve as disease specific biomarkers are not significantly affected by overall fitness and exercise | |
| Sanchez-Diaz et al. | In silico functional analyses and discovery of survival-associated microRNA signatures in pediatric osteosarcoma | |
| Sikic et al. | The prognostic value of FGFR3 expression in patients with T1 non-muscle invasive bladder cancer |