[go: up one dir, main page]

TWI478103B - 使用高度形變微分同胚度量映射法的擴散頻譜造影轉換方法 - Google Patents

使用高度形變微分同胚度量映射法的擴散頻譜造影轉換方法 Download PDF

Info

Publication number
TWI478103B
TWI478103B TW101129000A TW101129000A TWI478103B TW I478103 B TWI478103 B TW I478103B TW 101129000 A TW101129000 A TW 101129000A TW 101129000 A TW101129000 A TW 101129000A TW I478103 B TWI478103 B TW I478103B
Authority
TW
Taiwan
Prior art keywords
diffusion
image
velocity
space
function
Prior art date
Application number
TW101129000A
Other languages
English (en)
Other versions
TW201407544A (zh
Inventor
Isaac Wen Yih Tseng
Yung Chin Hsu
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW101129000A priority Critical patent/TWI478103B/zh
Priority to US13/644,211 priority patent/US9047695B2/en
Publication of TW201407544A publication Critical patent/TW201407544A/zh
Application granted granted Critical
Publication of TWI478103B publication Critical patent/TWI478103B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • G06T7/337Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Image Processing (AREA)

Description

使用高度形變微分同胚度量映射法的擴散頻譜造影轉換 方法
本發明是有關於一種影像處理方法,特別是指一種磁振造影的處理方法。
擴散磁振造影(diffusion MRI)是一種非侵入性的造影方法,可用來評估某位置神經纖維走向,進而呈現人類腦部的白質結構。藉由擴散張量模型(diffusion tensor model),得以依據擴散磁振造影重建出擴散張量造影(diffusion tensor imaging,以下稱DTI)。具體來說,DTI以一對稱的三維張量矩陣表現擴散強度,成像時是將磁場梯度施加在六個特定的方向,作六個擴散加權像,再作一個不加擴散梯度的加權像,藉此得到該張量矩陣。DTI已經被用於研究神經纖維走向與各種擴散特性的量化測量。
然而DTI是假設每一個體素(voxel)只有一個神經纖維,因此實際上產生如下限制:解析交叉纖維時會產生困難,以及導致錯估交叉纖維區域的異向性指標(anisotropy index)的部分體積效應(partial volume effect)。
交叉纖維的限制可藉著使用方向分佈函數(orientation distribution function,ODF)描述(characterize)擴散分佈或纖維數量來解決。擴散影像能夠用一單殼擴散取樣計劃(single-shell diffusion sampling scheme)來獲得,又稱高角解析度擴散造影(high angular resolution diffusion imaging,HARDI)擷取(acquisition);或使用網格取樣計劃(grid sampling scheme),又稱擴散頻譜造影(diffusion spectrum imaging,以下稱DSI)擷取。不需要模型的重建方法,包括q球造影(q-ball imaging,QBI)與DSI,兩者皆是使用以機率為基礎的方法來建構擴散分佈並計算擴散方向分佈函數(diffusion ODF)。
以DSI舉例來說,取得DSI資料之後,可以反推神經纖維結構。然而重建個體的神經纖維結構還不夠。有關腦部的研究或分析,往往需要將受測個體資料對位到一標準腦,也就是模板(template),進而比較差異性;或者將兩個群體各自對應到模板,進而進行統計分析。
在對位技術發展方面,使用線性或是非線性的方法將個體的腦部三維影像轉換到一模板空間(template space)的技術發展已久。然而單純的三維轉換只考慮實體空間,並未將擴散資訊連帶轉換,轉換後資訊的完整性及可靠性仍有改善空間。
因此,本發明之目的,即在提供一種完整轉換影像空間資訊及擴散資訊的使用高度形變微分同胚度量映射法(Large Deformation Diffeomorphic Metric Mapping,LDDMM)的擴散頻譜造影轉換方法。
於是,本發明使用高度形變微分同胚度量映射的擴散頻譜造影轉換方法,包含以下步驟:
(A)接收一原始擴散頻譜造影(diffusion DSI),I 1 ,及一模板(template)影像,I 0
(B)依據一能量方程式逐一地計算該原始擴散頻譜造影中一個點(x,q)的能量E,其中,x代表影像空間的三維座標,q代表Q空間的三維座標。能量方程式可以例如由下式表現:
其中,vt 表示時間t時的速度場。ga,b (x)表示時間t=b時位置為x的點於時間t=a時的位置,因此g1,0 可視為WI0 於t=1時的變形映射函數。σ則為E1 與E2 間的權重參數。W(q)則為一預設的權重參數,計算能量時乘上W(q)的原因在於,擴散程度越強,水分子在單位時間內走得越遠,影像強度越弱,因此本發明給定用權重參數以對強度做補償。
(C)利用(B)之結果進一步求出E對影像空間速度的一階及二階導數,以及E對Q空間速度的一階及二階導數。
本發明是假設變形轉換的過程是平順的,像液體的流動,因此將影像形變過程按時間切割成數等分,影像形變的每個時間點都有速度場;換句話說,指速度為時間的函數。
以上列式子來說,E對影像空間速度的一階導數為:
E對Q空間速度的一階導數為:
其中,K為一平滑運算符,其作用為促使速度場足夠平 滑。
E對影像空間速度的近似二階導數為:
E對Q空間速度的近似二階導數為:
(D)利用步驟(C)之結果計算該原始擴散頻譜造影變形至該模板影像的影像空間的速度以及Q空間的速度。
本發明其中一實施例是結合一階與二階導數,利用迭代Levenberg-Marquardt(LM)演算法加快計算速度,公式如下:
其中K-1 是K的反向運算符。大約迭代n=5次可收斂。
(E)接下來將步驟(D)之結果對時間積分計算出該原始擴散頻譜造影的點(x,q)映射到該模板影像的變形量。本步驟所述變性量遵循以下公式。
且其中,變形量g= (g x ,g q ),且gx 是x的函數,gq 是x與q的函數;其中,速度值v=(v x ,v q ) ,且vx 是x的函數,vq 是x與q的函數。
(F)依據該原始擴散頻譜造影的每個點(x,q)的變形量推算出轉換後影像。本發明之功效在於,本發明發展之形變程式善加利用了DSI資訊的特性進行運算處理,同時考 慮影像空間及Q空間的變形,因此原始擴散頻譜造影對位到模板時,影像本身以及內含的擴散資訊等細節都能夠完整轉換,本發明之轉換結果能大幅提高後續比對應用之準確性。
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一個較佳實施例的詳細說明中,將可清楚的呈現。
參閱圖1,本發明使用高度形變微分同胚度量映射法的擴散頻譜造影轉換方法,由一電腦讀取儲存於紀錄媒體的程式碼後執行,該方法包含以下步驟:
步驟S11-接收一如圖2所示原始擴散頻譜造影(diffusion DSI)及一如圖3所示的模板(template)影像。每一DSI影像組往往包含數百張影像,因此此二圖為將此數百張影像轉化為一般化非等向性指標(generalized fractional anisotropy,GFA)後的影像。
步驟S12-依據下列[式一]之能量方程式逐一地計算該原始擴散頻譜造影中一個點(x,q)的能量E,其中,x代表影像空間的三維座標,q代表Q空間的三維座標。也就是說,在本實施例的運算是採用六維資料進行對位轉換。本實施例能量方程式可以例如由下式表現:。
其中,vt 表示時間t時的速度場。ga,b (x)表示時間t=b時位置為x的點於時間t=a時的位置,因此g1,0 可視為WI0 於t=1時的變形映射函數。σ則為E1 與E2 間的權重參數。W(q)是一預設的權重參數,計算能量時乘上W(q)的原因在於,擴散程度越強,水分子在單位時間內走得越遠,影像強度越弱,因此本發明給定用權重參數以對強度做補償。
步驟S13-利用步驟S12之結果進一步求出E對影像空間速度的一階及二階導數,以及E對Q空間速度的一階及二階導數。
本實施例應用Beg等人於2005年發表的高度形變微分同胚度量映射法(LDDMM),假設變形轉換的過程是平順的,像液體的流動,因此將影像形變過程按時間切割成數等分,影像形變的每個時間點都有速度場;換句話說,指速度為時間的函數。
本實施例計算E對影像空間速度的一階導數的公式如[式二]:
計算E對Q空間速度的一階導數的公式如[式三]:
其中,K為一平滑運算符,其作用為促使速度場足夠平滑。
計算E對影像空間速度的近似二階導數的公式如[式四]:
計算E對Q空間速度的近似二階導數的公式如[式五] :
步驟S14-利用步驟S13之結果對每一時間點計算影像空間的速度以及Q空間的速度。
本實施例是結合一階與二階導數,利用迭代Levenberg-Marquardt(LM)演算法加快計算速度,公式如下:
其中K-1 是K的反向運算符。大約迭代n=5次可收斂,得t時間的影像空間的速度及q空間的速度。
步驟S15-接下來將步驟S14之結果對時間積分計算出該原始擴散頻譜造影的點(x,q)映射到該模板影像的變形量。本步驟所述變性量遵循以下公式。
其中,變形量gt =(gt,x ,gt,q ),且gt,x 是x的函數,gt,q 是x與q的函數;其中,速度值vt =(vt,x ,vt,q ),且vt,x 是x的函數,vt,q 是x與q的函數。
步驟S16-最後,依據該原始擴散頻譜造影的每個點(x,q)的變形量推算出轉換後影像,該影像如圖4所示。
歸納上述,本發明發展之演算方法,不僅只利用影像空間的三維資訊,還充分利用DSI資訊中的三維擴散資訊 ,總共六維;因此原始擴散頻譜造影對位到模板時,影像 空間及Q空間的擴散資訊等細節都能夠完整轉換,本發明之轉換結果能大幅提高後續比對應用之準確性,故確實能達成本發明之目的。
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。
S11~S16‧‧‧步驟
圖1是一流程圖,說明本發明使用高度形變微分同胚度量映射法的擴散頻譜造影轉換方法的較佳實施例的執行步驟;圖2是一原始擴散頻譜造影的示例;圖3是一模板影像的示例;及圖4是一圖2影像經本實施例之方法轉換得到的影像。
S11~S16‧‧‧步驟

Claims (5)

  1. 一種使用高度形變微分同胚度量映射法的擴散頻譜造影轉換方法,包含以下步驟:(A)接收一原始擴散頻譜造影及一模板影像;(B)依據一能量方程式逐一地計算該原始擴散頻譜造影中一個點(x,q)的能量E,其中,x代表影像空間的三維座標,q代表Q空間的三維座標;(C)利用(B)之結果進一步求出每一時間點E對影像空間速度的一階及二階導數,以及E對Q空間速度的一階及二階導數;(D)利用步驟(C)之結果計算每一時間點的影像空間的速度以及Q空間的速度;(E)將步驟(D)之結果對時間積分計算出該原始擴散頻譜造影的點(x,q)映射到該模板影像的變形量;及(F)依據該原始擴散頻譜造影的每個點(x,q)的變形量推算出轉換後影像。
  2. 依據申請專利範圍第1項所述之使用高度形變微分同胚度量映射法的擴散頻譜造影轉換方法,其中,該步驟(E)所述變性量遵循以下公式
  3. 依據申請專利範圍第2項所述之使用高度形變微分同胚度量映射法的擴散頻譜造影轉換方法,其中,定義變形量g= (g x ,g q ),且gx 是x的函數,gq 是x與q的函數;定義速度值v=(v x ,v q ) ,且vx 是x的函數,vq 是x與q的函 數。
  4. 依據申請專利範圍第2項所述之使用高度形變微分同胚度量映射法的擴散頻譜造影轉換方法,其中,該步驟(E)是利用迭代Levenberg-Marquardt演算法計算速度。
  5. 依據申請專利範圍第1至4項中任一項所述之使用高度形變微分同胚度量映射法的擴散頻譜造影轉換方法,其中,該步驟(B)所述能量方程式為 其中,W(q)是一預設的權重參數。
TW101129000A 2012-08-10 2012-08-10 使用高度形變微分同胚度量映射法的擴散頻譜造影轉換方法 TWI478103B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101129000A TWI478103B (zh) 2012-08-10 2012-08-10 使用高度形變微分同胚度量映射法的擴散頻譜造影轉換方法
US13/644,211 US9047695B2 (en) 2012-08-10 2012-10-03 Transformation method for diffusion spectrum imaging using large deformation diffeomorphic metric mapping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101129000A TWI478103B (zh) 2012-08-10 2012-08-10 使用高度形變微分同胚度量映射法的擴散頻譜造影轉換方法

Publications (2)

Publication Number Publication Date
TW201407544A TW201407544A (zh) 2014-02-16
TWI478103B true TWI478103B (zh) 2015-03-21

Family

ID=50066226

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101129000A TWI478103B (zh) 2012-08-10 2012-08-10 使用高度形變微分同胚度量映射法的擴散頻譜造影轉換方法

Country Status (2)

Country Link
US (1) US9047695B2 (zh)
TW (1) TWI478103B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9886745B2 (en) * 2012-06-28 2018-02-06 Duke University Multi-shot scan protocols for high-resolution MRI incorporating multiplexed sensitivity-encoding (MUSE)
TWI509534B (zh) * 2014-05-12 2015-11-21 Univ Nat Taiwan 自動化計算大腦纖維連結強度的方法
CN108830887A (zh) * 2018-04-18 2018-11-16 佛山市顺德区中山大学研究院 基于lddmm的高维空间多条非交叉曲线的匹配方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070036402A1 (en) * 2005-07-22 2007-02-15 Cahill Nathan D Abnormality detection in medical images
TW200820943A (en) * 2006-11-07 2008-05-16 Wen-Yang Chiang Q-space sampling method and diffusion spectrum imaging method employing the same

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292124A (en) * 1978-08-21 1981-09-29 Massachusetts Institute Of Technology System and method for generating steady state confining current for a toroidal plasma fusion reactor
EP1067362A1 (en) * 1999-07-09 2001-01-10 Hewlett-Packard Company Document imaging system
ATE377381T1 (de) * 2000-03-31 2007-11-15 Gen Hospital Corp Diffusionsbildgebung von gewebe
US6549803B1 (en) * 2000-05-08 2003-04-15 Image-Guided Neurologics Inc. Method and apparatus for targeting material delivery to tissue
JP4248822B2 (ja) * 2002-08-29 2009-04-02 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 線維描出方法および線維描出装置
US7155047B2 (en) * 2002-12-20 2006-12-26 General Electric Company Methods and apparatus for assessing image quality
US7616818B2 (en) * 2003-02-19 2009-11-10 Agfa Healthcare Method of determining the orientation of an image
US7022073B2 (en) * 2003-04-02 2006-04-04 Siemens Medical Solutions Usa, Inc. Border detection for medical imaging
EP1638459A2 (en) * 2003-06-11 2006-03-29 Case Western Reserve University Computer-aided-design of skeletal implants
US7230429B1 (en) * 2004-01-23 2007-06-12 Invivo Corporation Method for applying an in-painting technique to correct images in parallel imaging
US8233681B2 (en) * 2004-09-24 2012-07-31 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for hierarchical registration between a blood vessel and tissue surface model for a subject and a blood vessel and tissue surface image for the subject
US7630530B2 (en) * 2005-01-14 2009-12-08 Siemens Medical Solutions Usa, Inc. System and method for fast tensor field segmentation
EP1877774A4 (en) * 2005-03-25 2011-01-12 Cnoga Holdings Ltd OPTICAL SENSOR DEVICE AND IMAGING UNIT FOR MEASURING CHEMICAL CONCENTRATIONS, CHEMICAL SATURATIONS AND BIOPHYSICAL SIZES
US7680312B2 (en) * 2005-07-13 2010-03-16 Siemens Medical Solutions Usa, Inc. Method for knowledge based image segmentation using shape models
US7760911B2 (en) * 2005-09-15 2010-07-20 Sarnoff Corporation Method and system for segment-based optical flow estimation
DE102005044338A1 (de) * 2005-09-16 2007-03-22 Siemens Ag Verfahren und Anordnung zur Lokalisation eines in ein Untersuchungsobjekt mindestens teilweise eingeführten, medizinischen Instruments
US9299156B2 (en) * 2005-10-17 2016-03-29 The General Hospital Corporation Structure-analysis system, method, software arrangement and computer-accessible medium for digital cleansing of computed tomography colonography images
US7627155B2 (en) * 2005-10-26 2009-12-01 Siemens Medical Solutions Usa, Inc. Fast geometric flows based white matter fiber tract segmentation in DT-MRI
US8031927B2 (en) * 2005-12-28 2011-10-04 The General Hospital Corporation Medical image processing
US7689017B2 (en) * 2005-12-28 2010-03-30 The General Hospital Corporation Medical image processing
WO2007113720A1 (en) * 2006-03-30 2007-10-11 Koninklijke Philips Electronics N.V. Automatic cardiac band detection on breast mri
WO2007121472A2 (en) * 2006-04-18 2007-10-25 The Regents Of The University Of Colorado Method for fast multi-slice mapping of myelin water fraction
JP5127276B2 (ja) * 2006-05-26 2013-01-23 株式会社東芝 画像処理装置および磁気共鳴イメージング装置
US20080051648A1 (en) * 2006-08-25 2008-02-28 Suri Jasjit S Medical image enhancement system
US8170305B2 (en) * 2006-10-19 2012-05-01 Brown University Quantitative tract-of-interest metrics for white matter integrity based on diffusion tensor MRI data
US8788012B2 (en) * 2006-11-21 2014-07-22 General Electric Company Methods and apparatus for automatically registering lesions between examinations
WO2008085473A1 (en) * 2006-12-27 2008-07-17 The Johns Hopkins University Mri methods using diffusion tensor imaging techniques and mri systems embodying same
KR20090104857A (ko) * 2007-01-22 2009-10-06 캘리포니아 인스티튜트 오브 테크놀로지 정량적 3-d 이미징을 위한 방법 및 장치
US7423430B1 (en) * 2007-04-06 2008-09-09 The Board Of Trustees Of The University Of Illinois Adaptive parallel acquisition and reconstruction of dynamic MR images
US7817838B2 (en) * 2007-05-24 2010-10-19 University Of Utah Research Foundation Method and system for constrained reconstruction of imaging data using data reordering
US8107695B2 (en) * 2007-06-27 2012-01-31 General Electric Company Methods and systems for assessing patient movement in diagnostic imaging
US7835493B2 (en) * 2007-08-06 2010-11-16 Stanford University Method and system for four dimensional intensity modulated radiation therapy for motion compensated treatments
US20090074276A1 (en) * 2007-09-19 2009-03-19 The University Of Chicago Voxel Matching Technique for Removal of Artifacts in Medical Subtraction Images
US8094904B2 (en) * 2007-09-26 2012-01-10 Siemens Aktiengesellschaft Method and system for bone suppression based on a single x-ray image
US7911208B2 (en) * 2007-10-15 2011-03-22 Siemens Aktiengesellschaft Methods for rectification of B0 inhomogeneity effects in magnetic resonance images
EP2053416A1 (en) * 2007-10-25 2009-04-29 Commissariat A L'energie Atomique Real-time magnetic resonance diffusion imaging
US8731256B2 (en) 2008-01-31 2014-05-20 The Johns Hopkins University Automated image analysis for magnetic resonance imaging
US7902825B2 (en) * 2008-05-19 2011-03-08 The Board Of Trustees Of The Leland Stanford Junior University Motion corrected tensor magnetic resonance imaging
US20100004526A1 (en) * 2008-06-04 2010-01-07 Eigen, Inc. Abnormality finding in projection images
WO2010005969A2 (en) * 2008-07-07 2010-01-14 The Johns Hopkins University Advanced cost functions for image registration for automated image analysis: multi-channel, hypertemplate and atlas with built-in variability
WO2010005973A2 (en) * 2008-07-07 2010-01-14 The Johns Hopkins University Automated surface-based anatomical analysis based on atlas-based segmentation of medical imaging
US8255038B2 (en) * 2008-08-28 2012-08-28 Siemens Medical Solutions Usa, Inc. System and method for non-uniform image scanning and acquisition
US8324898B2 (en) * 2008-11-14 2012-12-04 University Of Southern California Tailored radiofrequency pulses for uniform saturation in magnetic resonance imaging
CA2655001C (en) * 2009-02-20 2015-11-24 Queen's University At Kingston Marker localization using intensity-based registration of imaging modalities
US8111893B2 (en) * 2009-06-09 2012-02-07 Wisconsin Alumni Research Foundation Method for dynamic prior image constrained image reconstruction
US20110142316A1 (en) * 2009-10-29 2011-06-16 Ge Wang Tomography-Based and MRI-Based Imaging Systems
US9129392B2 (en) * 2010-02-25 2015-09-08 The Trustees Of The University Of Pennsylvania Automatic quantification of mitral valve dynamics with real-time 3D ultrasound
US8594401B2 (en) * 2010-03-30 2013-11-26 The Johns Hopkins University Automated characterization of time-dependent tissue change
US8502534B2 (en) * 2010-03-31 2013-08-06 General Electric Company Accelerated dynamic magnetic resonance imaging system and method
US20110245650A1 (en) * 2010-04-02 2011-10-06 Kerwin William S Method and System for Plaque Lesion Characterization
DE102010014166A1 (de) * 2010-04-08 2011-10-13 Karlsruher Institut für Technologie Verfahren zur Rekonstruktion der inneren Struktur eines Probenkörpers mittels Reflexions- und Streusignalen
US20120078085A1 (en) * 2010-09-29 2012-03-29 Siemens Corporation Method of Analysis for Dynamic Magnetic Resonance Perfusion Imaging
CN103124517B (zh) * 2010-10-07 2015-10-14 杜克大学 Mri图像的多维迭代相位循环重构
US20130237804A1 (en) * 2011-08-30 2013-09-12 Qi Imaging, Llc Time varying density of tissues
TWI474804B (zh) * 2012-04-03 2015-03-01 針對擴散磁振造影資料以體積像素為基礎的轉換方法及利用該方法的群體檢定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070036402A1 (en) * 2005-07-22 2007-02-15 Cahill Nathan D Abnormality detection in medical images
TW200820943A (en) * 2006-11-07 2008-05-16 Wen-Yang Chiang Q-space sampling method and diffusion spectrum imaging method employing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Diffusion MRI Registration Using Orientation Distribution Functions" Inf Process Med Imaging 2009 "Mapping Complex Myoarchitecture in the Bovine Tongue with Diffusion-Spectrum Magnetic Resonance Imaging" Biophysical Journal Volume 91 Aug 2006 *

Also Published As

Publication number Publication date
US20140044332A1 (en) 2014-02-13
US9047695B2 (en) 2015-06-02
TW201407544A (zh) 2014-02-16

Similar Documents

Publication Publication Date Title
Studholme et al. Deformation-based mapping of volume change from serial brain MRI in the presence of local tissue contrast change
Thompson et al. Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces
US20170052241A1 (en) Tractography Framework With Magnetic Resonance Imaging For Brain Connectivity Analysis
Ruthotto et al. Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images
Fogtmann et al. A unified approach to diffusion direction sensitive slice registration and 3-D DTI reconstruction from moving fetal brain anatomy
Xie et al. DiffusionKit: a light one-stop solution for diffusion MRI data analysis
US20080292164A1 (en) System and method for coregistration and analysis of non-concurrent diffuse optical and magnetic resonance breast images
CN107316334B (zh) 个性化精准磁共振影像方法
Toga et al. Probabilistic approaches for atlasing normal and disease-specific brain variability
Hsu et al. A large deformation diffeomorphic metric mapping solution for diffusion spectrum imaging datasets
US8811706B2 (en) System, method and computer accessible medium for providing real-time diffusional kurtosis imaging and for facilitating estimation of tensors and tensor-derived measures in diffusional kurtosis imaging
TWI474804B (zh) 針對擴散磁振造影資料以體積像素為基礎的轉換方法及利用該方法的群體檢定方法
US9402562B2 (en) Systems and methods for improved tractographic processing
CN102622759A (zh) 一种结合灰度与几何信息的医学图像配准方法
CN104392019A (zh) 用于脑白质纤维跟踪的高阶扩散张量混合稀疏成像方法
Vos et al. Multi-fiber tractography visualizations for diffusion MRI data
US20150055845A1 (en) System, Method and Computer Accessible Medium for Providing Real-Time Diffusional Kurtosis Imaging and for Facilitating Estimation of Tensors and Tensor- Derived Measures in Diffusional Kurtosis Imaging
CN120525721B (zh) 磁共振图像自监督超分辨率重建方法及系统、设备、介质
KR101593480B1 (ko) 영상강도 최소화를 통한 자기공명 확산텐서 영상정합 및 왜곡보정 방법 및 그 시스템
Taylor et al. Open environment for multimodal interactive connectivity visualization and analysis
TWI478103B (zh) 使用高度形變微分同胚度量映射法的擴散頻譜造影轉換方法
Jianu et al. Exploring brain connectivity with two-dimensional neural maps
Ghosh et al. A survey of current trends in diffusion MRI for structural brain connectivity
Fujita et al. Advancing clinical MRI exams with artificial intelligence: Japan’s contributions and future prospects
Trinkle et al. Synchrotron X‐ray micro‐CT as a validation dataset for diffusion MRI in whole mouse brain