TW202330327A - Blind spot detection auxiliary system for motorcycle - Google Patents
Blind spot detection auxiliary system for motorcycle Download PDFInfo
- Publication number
- TW202330327A TW202330327A TW111104048A TW111104048A TW202330327A TW 202330327 A TW202330327 A TW 202330327A TW 111104048 A TW111104048 A TW 111104048A TW 111104048 A TW111104048 A TW 111104048A TW 202330327 A TW202330327 A TW 202330327A
- Authority
- TW
- Taiwan
- Prior art keywords
- vehicle
- locomotive
- module
- optical flow
- image
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 53
- 230000003287 optical effect Effects 0.000 claims abstract description 74
- 230000003137 locomotive effect Effects 0.000 claims description 55
- 239000013598 vector Substances 0.000 claims description 32
- 238000010801 machine learning Methods 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 230000005484 gravity Effects 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 claims 1
- 230000006870 function Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 208000033748 Device issues Diseases 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Traffic Control Systems (AREA)
Abstract
Description
本發明係有關於一種用於機車的盲區偵測輔助系統,尤其是有關於一種透過即時影像辨識偵測後方來車、判斷自車轉向,並用於機車的盲區偵測輔助系統。The present invention relates to a blind spot detection auxiliary system for a locomotive, in particular to a blind spot detection auxiliary system for a locomotive that detects vehicles coming from behind through real-time image recognition and judges the steering of the vehicle.
目前的兩輪機動車(簡稱:機車)所進行的高級輔助駕駛系統(Advanced Driver Assistance Systems;簡稱ADAS)後方盲區偵測功能是採用反光鏡或左右雙雷達的方案來達成。其中,反光鏡的方式是將一凸面鏡設置於機車儀表板的上方,而透過凸面鏡的反射,機車騎士可看到後方的畫面,不過因凸面鏡同時也會反射機車騎士本身的身影,而造成畫面上的死角。至於左右雙雷達的方案,則是在機車兩側各設置一個雷達,以偵測機車後方是否有其他車輛靠近,不過雷達並無法判斷接近物是否真的為車輛,也無法辨識車輛的種類,而使其功能受到限制。The rear blind spot detection function of the Advanced Driver Assistance Systems (ADAS) carried out by current two-wheeled motor vehicles (referred to as: locomotives) is achieved by using mirrors or left and right dual radar solutions. Among them, the way of the reflector is to install a convex mirror on the top of the motorcycle dashboard, and through the reflection of the convex mirror, the motorcycle rider can see the picture behind, but because the convex mirror will also reflect the figure of the motorcycle rider himself at the same time, resulting in dead corner. As for the left and right dual radar solution, one radar is installed on each side of the locomotive to detect whether there are other vehicles approaching behind the locomotive. However, the radar cannot determine whether the approaching object is really a vehicle, nor can it identify the type of vehicle. make its function limited.
本發明一實施例揭露一種用於機車的盲區偵測輔助系統,其包含影像採擷裝置、影像處理器以及警示模組。影像採擷裝置設置於機車上,用以拍攝機車後方,以產生視訊。影像處理器耦接於影像採擷裝置,並包含機器學習物件偵測模組、影像扭曲透視轉換模組、影像光流向量模組以及安全判別模組。機器學習物件偵測模組用以分析視訊,以判斷出機車後方的至少一車輛。影像扭曲透視轉換模組用以根據視訊,將所述的至少一車輛的顯示區域的影像座標轉換成世界座標,以計算出所述的至少一車輛與機車之間的行車距離。影像光流向量模組用以根據視訊,獲得全域的光流以及所述的至少一車輛的至少一特徵點的區域光流(optical flow),並根據區域光流計算所述的至少一車輛的相對車速,以及透過全域光流判斷自車轉向。安全判別模組用以判斷行車距離及車速是否符合預設條件。警示模組耦接於影像處理器,用以當安全判別模組判斷出行車距離及車速符合預設條件時,發出警示。An embodiment of the present invention discloses a blind spot detection auxiliary system for a locomotive, which includes an image capture device, an image processor, and a warning module. The image capture device is installed on the locomotive to photograph the rear of the locomotive to generate video. The image processor is coupled to the image capture device and includes a machine learning object detection module, an image distortion perspective conversion module, an image optical flow vector module, and a security identification module. The machine learning object detection module is used to analyze the video to determine at least one vehicle behind the locomotive. The image distortion perspective conversion module is used to convert the image coordinates of the display area of the at least one vehicle into world coordinates according to the video, so as to calculate the driving distance between the at least one vehicle and the locomotive. The image optical flow vector module is used to obtain the overall optical flow and the regional optical flow (optical flow) of at least one feature point of the at least one vehicle according to the video, and calculate the optical flow of the at least one vehicle according to the regional optical flow. Relative vehicle speed, as well as judging the steering of the ego vehicle through the global optical flow. The safety judgment module is used to judge whether the driving distance and speed meet the preset conditions. The warning module is coupled to the image processor, and is used for issuing a warning when the safety judging module judges that the driving distance and the speed meet the preset conditions.
請參考第1圖,第1圖為本發明一實施例之盲區偵測輔助系統100的功能方塊圖。盲區偵測輔助系統100包含影像採擷裝置110、影像處理器120以及警示模組130。影像採擷裝置110設置於機車上,用以拍攝機車後方,以產生視訊Sv。影像採擷裝置110例如是具有感光元件和鏡頭的數位相機。影像處理器120耦接於影像採擷裝置110,以接收由影像採擷裝置110所產生的視訊Sv。在本發明另一實施例中,盲區偵測輔助系統100還可將視訊Sv儲存起來,以達到影像監控記錄的功能。影像處理器120包含機器學習物件偵測模組122、影像扭曲透視轉換模組124、影像光流向量模組126以及安全判別模組128。機器學習物件偵測模組122用以分析視訊Sv,以判斷出機車後方的至少一車輛。更具體地說,機器學習物件偵測模組122可預先透過機器學習的方式進行訓練,以建立可辨識視訊Sv畫面中之車輛的能力。當機器學習物件偵測模組122訓練完後即可對視訊Sv畫面中的物體進行辨識,以找出視訊Sv畫面中的車輛。以第2圖和第3圖為例,其中第2圖為影像採擷裝置110所產生的視訊Sv中的一畫面,而第3圖則是機器學習物件偵測模組122在第2圖的畫面上判斷出機車後方的車輛後的畫面。機器學習物件偵測模組122會將所判斷出的車輛C1、C2和C3分別以區域A1、A2和A3的方框標示出來。如此一來,機車騎士即可藉由畫面中所顯示的區域A1、A2和A3而得知其後方有哪些車輛。至於機器學習物件偵測模組122如何透過機器學習的方式辨識視訊Sv畫面中的車輛,這部分有許多先前的技術可參考,在此即不贅述。在本實施例中,車輛C1、C2和C3對於機器學習物件偵測模組122而言分別為一個物件,而區域A1、A2和A3可稱為機器學習所偵測物件的區域。Please refer to FIG. 1 , which is a functional block diagram of a blind spot
影像處理器120的影像扭曲透視轉換模組124則是用以根據視訊Sv,將機器學習物件偵測模組122所辨識出的車輛C1、C2和C3的區域A1、A2和A3之影像座標轉換成世界座標。其中,關於影像座標轉換成世界座標的技術也屬於習知的技術,在此即不贅述。在本實施例中,為有效地將畫面中各像素的影像座標轉換成對應的世界座標,影像扭曲透視轉換模組124利用查詢表(lookup table)的方式來達成。上述的查詢表記錄了畫面中各像素的影像座標所對應的世界座標,影像扭曲透視轉換模組124可將各像素的影像座標代入查詢表中,即可得到對應的世界座標。為方便機車騎士可方便地透過視訊Sv的畫面得知後方車輛的大概距離,影像扭曲透視轉換模組124可在視訊Sv的畫面上顯示距離線和消失點。請參考第4圖,第4圖為影像扭曲透視轉換模組124在第3圖的畫面上標示出距離線170和消失點N後的畫面。其中,兩相鄰的距離線170之間的距離相等(例如:1公尺或其他長度),畫面中的地平線以符號160標示,而消失點N即代表畫面所顯示的各物件(如道路兩旁的建築物)最終會在畫面中消失的位置,而其廣泛地被應用在影像透視的領域中。The image distortion
影像處理器120的影像光流向量模組126則是用以根據視訊Sv,獲得車輛C1、C2和C3的區域A1、A2和A3內的特徵點之光流(optical flow),並根據各車輛C1、C2和C3之特徵點的光流計算各車輛C1、C2和C3的相對車速。每部車輛C1、C2和C3特徵點的數量可為一個或多個,而特徵點的選擇可以是車輛的特定影像邊緣角點,例如:車前燈的邊緣角點、車牌的邊緣角點或所屬區域A1、A2和A3的底部中心點。請參考第5圖,第5圖為影像光流向量模組126所獲得的光流E1、E2和E3之示意圖。光流E1、E2和E3分別對應於車輛C1、C2和C3光流方向的歷史軌跡,影像處理器120可依據光流E1、E2和E3分別計算出車輛C1、C2和C3的車速。The image optical
請參考第6圖,第6圖為用以輔助說明第1圖之盲區偵測輔助系統的影像處理器120如何根據光流計算出車速。第6圖中的
為光流的水平移動向量,
為影像採擷裝置110之鏡頭的光軸中心的水平偏移向量,X
0為車輛與機車之間的橫向距離,
表示車輛與自車(即:機車本身)之間的相對速度,f
x為影像採擷裝置110之鏡頭的焦距,ψ表示車輛的特徵點在前一個畫面時與影像採擷裝置110之鏡頭的光軸之間的平移角度(前一刻車輛與鏡頭光軸之平移角度),θ則表示車輛的特徵點在前後兩畫面之間對於光軸之夾角的變化量(此刻車輛與鏡頭光軸之平移角度和前一刻車輛與鏡頭光軸之平移角度之間的變化量)。其中,ψ和(θ+ψ)可透過下列三角函數得到:
Please refer to FIG. 6 . FIG. 6 is used to help explain how the
其中,c x為水平偏移向量 的絕對值,u 0為光流向量 的絕對值。而相對速度 則可以下列式子求得: Among them, c x is the horizontal offset vector The absolute value of , u 0 is the optical flow vector the absolute value of . while the relative velocity Then it can be obtained by the following formula:
其中,相對速度 的單位為每幀多少公尺(m/frame)。因此,在視訊Sv每秒畫面的幀數已知的情況下,相對速度 的單位可被換算成每秒多少公尺(m/sec)。 Among them, the relative speed The unit is how many meters per frame (m/frame). Therefore, when the number of frames per second of the video Sv is known, the relative speed The unit of can be converted into meters per second (m/sec).
此外,安全判別模組128則是用以判斷各車輛C1、C2和C3的行車距離及車速是否符合預設條件(例如:距離是否過近及/或車速是否太快)。當安全判別模組128判斷出任一車輛C1、C2和C3的行車距離及車速符合預設條件時,影像處理器120會控制所耦接的警示模組130發出警示,以提醒機車騎士注意。警示模組130可包含顯示器132及警報裝置134,而警示模組130發出警示的方式可包括但不限於:顯示器132在所需要注意的車輛在其所顯示的畫面的對應位置上顯示警示標誌。如第7圖所示,因車輛C1和C2的行車距離及車速被判斷出符合上述的預設條件,故顯示器132會在車輛C1和C2在畫面中的對應位置分別以警示標誌180標示。另外,警報裝置134可以是可發出聲音及/或亮光的裝置,例如:包含揚聲器及/或發光二極體(LED)的裝置。當上述預設條件符合時,警報裝置134即可發出聲音及/或亮光,以提醒機車騎士。In addition, the
在本發明另一實施例中,機器學習物件偵測模組122還用以根據視訊Sv辨識出車輛C1至C3的車種,而安全判別模組128可依據各車輛C1至C3的車種判斷是否發出警示以提醒機車騎士。舉例來說,當機器學習物件偵測模組122所辨識出的車種為聯結車、大客車、大貨車等車輛時,可以提醒機車騎士注意。In another embodiment of the present invention, the machine learning
另外,除了上述的區域A1、A2和A3內的光流(可稱為:區域光流)可被用來計算車速之外,於區域A1、A2和A3外的光流(可稱為:全域光流)則可被用來計算出上述消失點N在畫面中的更新位置,而消失點N在畫面中與預設消失點之間的偏移量則可被用來判斷機車是否正在進行轉彎,以及判斷轉向為右向或左向。其中,上述預設消失點在畫面中距離畫面左側邊和右側邊的距離可相等。具體判斷機車是否轉彎及轉向的方式是在畫面中車輛的區域以外的範圍選擇至少兩個特徵點,將所選擇的特徵點逐一地計算其光流的移動向量,再將這些光流的移動向量延伸,其延伸後的交集點即可作為消失點N的參考。更進一步,可以計算多個光流的移動向量的交集點的座標再予以平均,而平均後的座標即可作為消失點N的座標。以兩組光流的移動向量 和 為例,若其交集點的座標為 ,則藉由下列的方程式,即可求出交集點的座標 。 ................(1) ................(2) ................(3) In addition, in addition to the optical flow in the above-mentioned areas A1, A2 and A3 (which can be called: regional optical flow) can be used to calculate the vehicle speed, the optical flow outside the areas A1, A2 and A3 (which can be called: global Optical flow) can be used to calculate the updated position of the vanishing point N in the picture, and the offset between the vanishing point N in the picture and the preset vanishing point can be used to judge whether the locomotive is turning , and judge whether the steering is right or left. Wherein, the above-mentioned preset vanishing point may have the same distance from the left side and the right side of the picture in the picture. The specific way to judge whether the locomotive is turning and turning is to select at least two feature points outside the area of the vehicle in the picture, calculate the moving vector of the optical flow of the selected feature points one by one, and then calculate the moving vector of these optical flow Extended, the extended intersection point can be used as a reference for the vanishing point N. Furthermore, the coordinates of the intersection points of the movement vectors of multiple optical flows can be calculated and averaged, and the averaged coordinates can be used as the coordinates of the vanishing point N. Take the moving vector of two sets of optical flow and For example, if the coordinates of the intersection points are , then the coordinates of the intersection point can be obtained by the following equation . ................(1) ................(2) ................(3)
其中,
是光流向量
所屬的特徵點在畫面中的座標,
是光流向量
所屬的特徵點在畫面中的座標,上面式子(1)表示光流向量
在畫面中的聯立方程式,而上面式子(2)表示光流向量
在畫面中的聯立方程式
,這兩個聯立方程式分別代表畫面中與光流向量
和
重疊的兩條直線,其中
和
是未知數,而藉由上面式子(3)中的矩陣即可求得未知數
和
,進而得到光流向量
和
延伸後的交集點的座標
。為簡化計算,畫面中兩個特徵點的光流向量
和
延伸後的交集點可直接作為消失點N。若是為了精確度,可以取更多特徵點的光流向量的交集點座標的平均值作為消失點N的座標。而消失點N在畫面中的偏移量可作為判斷機車是否正在進行轉彎的依據。請參考第8A圖和第8B圖,第8A圖是機車在轉彎之前的畫面,而第8B圖是機車正在進行右轉時的畫面。由轉彎前後的畫面可知,消失點N在前後兩畫面中的位置改變了,其水平的座標向右偏移,故影像處理器120可藉此判斷出機車正在向右轉。此時,若影像處理器120也判斷出右側的來車C1的距離過近或其車速過快,則安全判別模組128可透過警示模組130發出轉彎警示。
in, is the optical flow vector The coordinates of the feature points to which they belong in the screen, is the optical flow vector The coordinates of the feature points to which they belong in the screen, the above formula (1) represents the optical flow vector The simultaneous equations in the picture, and the above formula (2) represents the optical flow vector Simultaneous equations in the picture , these two simultaneous equations represent the optical flow vector in the picture and and Two lines that overlap, where and is the unknown, and the unknown can be obtained by the matrix in the above formula (3) and , and then get the optical flow vector and Coordinates of the extended intersection point . To simplify the calculation, the optical flow vectors of two feature points in the picture and The extended intersection point can be directly used as the vanishing point N. For the sake of accuracy, the average value of the coordinates of the intersection points of the optical flow vectors of more feature points can be taken as the coordinates of the vanishing point N. The offset of the vanishing point N in the picture can be used as a basis for judging whether the locomotive is turning. Please refer to Figure 8A and Figure 8B, Figure 8A is a picture of the locomotive before turning, and Figure 8B is a picture of the locomotive when it is making a right turn. It can be seen from the pictures before and after the turn that the position of the vanishing point N in the two pictures has changed, and its horizontal coordinates have shifted to the right, so the
在本發明另一實施例中,盲區偵測輔助系統100可另包含重力感測器150,用以判斷出機車的轉向,而安全判別模組128還依據機車的轉向及後面車輛C1至C3的位置,決定是否控制警示模組130發出轉彎警示。In another embodiment of the present invention, the blind spot
在本發明另一實施例中,影像處理器120還根據視訊Sv判斷出地平線160的傾斜角度,並根據地平線160的傾斜角度判斷出機車的轉向,而安全判別模組128還依據機車的轉向及後面車輛C1至C3的位置,決定是否控制警示模組130發出轉彎警示。In another embodiment of the present invention, the
請參考第9圖,第9圖為本發明一實施例之盲區偵測輔助系統100之方法900的流程圖。方法900包含下列步驟:Please refer to FIG. 9 , which is a flowchart of a
步驟S910:影像採擷裝置110拍攝機車的後方,以產生視訊Sv;Step S910: the
步驟S920:機器學習物件偵測模組122分析視訊Sv,以判斷出機車後方的至少一車輛C1至C3;Step S920: the machine learning
步驟S930:影像扭曲透視轉換模組124根據視訊Sv,將各車輛C1至C3的顯示區域A1至A3的影像座標轉換成世界座標,以計算出各車輛C1至C3與機車之間的行車距離;Step S930: The image distortion
步驟S940:影像光流向量模組126根據視訊Sv,獲得各車輛C1至C3的至少一特徵點的光流E1至E3,並根據光流E1至E3計算各車輛C1至C3的車速;Step S940: The image optical
步驟S950:影像光流向量模組126根據視訊Sv,獲得車輛C1至C3之區域A1、A2和A3以外的至少兩特徵點的光流,並根據上述至少兩特徵點的光流計算消失點N的偏移量(即消失點N在畫面中與預設消失點之間的偏移量),其中,影像處理器120可依據消失點N在畫面中的偏移量判斷機車是否正在進行轉彎以及轉向;Step S950: The image optical
步驟S960:判斷各車輛C1至C3的行車距離及車速是否符合預設條件;若符合條件,則進行步驟S960;反之,則結束流程或是回到步驟S910;以及Step S960: Determine whether the driving distance and vehicle speed of each vehicle C1 to C3 meet the preset conditions; if the conditions are met, proceed to Step S960; otherwise, end the process or return to Step S910; and
步驟S970:警示裝置發出警示。Step S970: the warning device issues a warning.
在步驟S950中,影像處理器120除了可依據消失點N在畫面中的偏移量判斷機車是否正在進行轉彎以及機車的轉向之外,還可依據重力感測器150所提供的訊號,輔助判斷機車是否正在進行轉彎以及機車的轉向。此外,盲區偵測輔助系統100可反覆地進行上述步驟S910至S970,以依據視訊Sv,即時地提供盲區偵測及警示功能。In step S950, the
本發明採用機器學習的人工智慧(AI)影像辨識技術抓取畫面中的車輛並進行標示,且透過影像扭曲透視轉換和光流偵測技術,而計算得到各車輛的相對距離及相對速度,與機車本身左右轉向的資訊。因此,本發明可採用單一廣角鏡頭攝影機來取代傳統雙顆雷達的後方盲區警示的方案,並可提供視覺警示及/或聲音警示,以及影像監控記錄之功能。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The present invention uses machine-learning artificial intelligence (AI) image recognition technology to capture and mark the vehicles in the screen, and calculates the relative distance and relative speed of each vehicle through image distortion perspective transformation and optical flow detection technology, which is comparable to the locomotive Information about the left and right turns. Therefore, the present invention can use a single wide-angle lens camera to replace the traditional dual radar rear blind zone warning solution, and can provide visual warning and/or sound warning, as well as video monitoring and recording functions. The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
100:盲區偵測輔助系統 110:影像採擷裝置 120:影像處理器 122:機器學習物件偵測模組 124:影像扭曲透視轉換模組 126:影像光流向量模組 128:安全判別模組 130:警示模組 132:顯示器 134:警報裝置 150:重力感測器 160:地平線 170:距離線 180:警示標誌 900:方法 S910至S970:步驟 A1、A2、A3:機器學習所偵測物件的區域 C1、C2、C3:車輛 E1、E2、E3:車輛光流方向的歷史軌跡 N:消失點 Sv:視訊 :車輛與機車相對速度 X 0:車輛與機車之間的橫向距離 ψ:前一刻車輛與鏡頭光軸之平移角度 θ:此刻車輛與鏡頭光軸之平移角度和前一刻車輛與鏡頭光軸之平移角度之間的變化量 :光流的水平移動向量 :鏡頭的光軸中心的水平偏移向量 100: Blind spot detection auxiliary system 110: Image capture device 120: Image processor 122: Machine learning object detection module 124: Image distortion perspective conversion module 126: Image optical flow vector module 128: Safety discrimination module 130: Warning module 132: display 134: alarm device 150: gravity sensor 160: horizon 170: distance line 180: warning sign 900: methods S910 to S970: steps A1, A2, A3: area C1 of the object detected by machine learning , C2, C3: vehicles E1, E2, E3: the historical trajectory of the vehicle optical flow direction N: vanishing point Sv: video : The relative speed of the vehicle and the locomotive X 0 : The lateral distance between the vehicle and the locomotive ψ: The translation angle between the vehicle and the optical axis of the lens at the previous moment θ: The translation angle between the vehicle and the optical axis of the lens at the moment and the translation between the vehicle and the optical axis of the lens at the previous moment The amount of change between the angles : Horizontal movement vector of optical flow : The horizontal offset vector of the optical axis center of the lens
第1圖為本發明一實施例之盲區偵測輔助系統的功能方塊圖。 第2圖為第1圖之盲區偵測輔助系統的影像採擷裝置所產生的視訊的其中一畫面。 第3圖為第1圖之盲區偵測輔助系統的機器學習物件偵測模組在第2圖的畫面上判斷出機車後方的車輛後的畫面。 第4圖為第1圖之盲區偵測輔助系統的影像扭曲透視轉換模組在第3圖的畫面上標示出距離線和消失點後的畫面。 第5圖為第1圖盲區偵測輔助系統的影像光流向量模組所獲得的光流(optical flow)之示意圖。 第6圖為用以輔助說明第1圖之盲區偵測輔助系統影像處理器如何根據光流計算出車速。 第7圖為第1圖之盲區偵測輔助系統在顯示器上顯示警示標誌的示意圖。 第8A圖和第8B圖用以輔助說明第1圖之盲區偵測輔助系統如何判斷出機車的轉向。 第9圖為本發明一實施例之盲區偵測輔助系統之方法的流程圖。 FIG. 1 is a functional block diagram of a blind spot detection assistance system according to an embodiment of the present invention. Fig. 2 is one of the frames of the video generated by the image capture device of the blind spot detection assistance system in Fig. 1. Figure 3 is a picture of the machine learning object detection module of the blind spot detection assistance system in Figure 1 judging the vehicle behind the locomotive on the screen in Figure 2. Figure 4 is the image after the distance line and vanishing point are marked on the screen in Figure 3 by the image distortion perspective conversion module of the blind spot detection assistance system in Figure 1. FIG. 5 is a schematic diagram of the optical flow obtained by the image optical flow vector module of the blind spot detection assistance system in FIG. 1 . Figure 6 is used to help explain how the image processor of the blind spot detection assistance system in Figure 1 calculates the vehicle speed based on the optical flow. Fig. 7 is a schematic diagram of the blind spot detection assistance system in Fig. 1 displaying warning signs on the monitor. Figure 8A and Figure 8B are used to assist in explaining how the blind spot detection auxiliary system in Figure 1 determines the steering of the locomotive. FIG. 9 is a flow chart of the method of the blind spot detection assisting system according to an embodiment of the present invention.
100:盲區偵測輔助系統 100: Blind Spot Detection Assist System
110:影像採擷裝置 110: image capture device
120:影像處理器 120: image processor
122:機器學習物件偵測模組 122:Machine Learning Object Detection Module
124:影像扭曲透視轉換模組 124: Image Distortion Perspective Transformation Module
126:影像光流向量模組 126:Image optical flow vector module
128:安全判別模組 128:Safety discrimination module
130:警示模組 130:Warning module
132:顯示器 132: Display
134:警報裝置 134: Alarm device
150:重力感測器 150: Gravity sensor
Sv:視訊 Sv: Video
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111104048A TW202330327A (en) | 2022-01-28 | 2022-01-28 | Blind spot detection auxiliary system for motorcycle |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111104048A TW202330327A (en) | 2022-01-28 | 2022-01-28 | Blind spot detection auxiliary system for motorcycle |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| TW202330327A true TW202330327A (en) | 2023-08-01 |
Family
ID=88559211
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW111104048A TW202330327A (en) | 2022-01-28 | 2022-01-28 | Blind spot detection auxiliary system for motorcycle |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TW202330327A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI867696B (en) * | 2023-08-21 | 2024-12-21 | 神達數位股份有限公司 | System and method for driving warning |
-
2022
- 2022-01-28 TW TW111104048A patent/TW202330327A/en unknown
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI867696B (en) * | 2023-08-21 | 2024-12-21 | 神達數位股份有限公司 | System and method for driving warning |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113998034B (en) | Rider assistance system and method | |
| US10380439B2 (en) | Vehicle sensing system for detecting turn signal indicators | |
| CN107845104B (en) | Method for detecting overtaking vehicle, related processing system, overtaking vehicle detection system and vehicle | |
| JP5198835B2 (en) | Method and system for presenting video images | |
| JP5347257B2 (en) | Vehicle periphery monitoring device and video display method | |
| JP6307895B2 (en) | Vehicle periphery monitoring device | |
| US20190172354A1 (en) | Device for Warning a Two-Wheeler Driver of a Collision with Another Vehicle | |
| US20110228980A1 (en) | Control apparatus and vehicle surrounding monitoring apparatus | |
| GB2538572A (en) | Safety system for a vehicle to detect and warn of a potential collision | |
| JP2004056763A (en) | Monitoring device, monitoring method, and monitoring program | |
| KR102045088B1 (en) | Image displaying Method and Apparatus therefor | |
| CN106476695B (en) | System and method for visibility enhancement | |
| US20240383479A1 (en) | Vehicular sensing system with lateral threat assessment | |
| JP2018074286A (en) | Driving support device | |
| JP2006338594A (en) | Pedestrian recognition device | |
| CN116118620A (en) | Collision warning system and method | |
| US20250384698A1 (en) | Vehicle control system and vehicle driving method using the vehicle control system | |
| JP4986070B2 (en) | Ambient monitoring device for vehicles | |
| US20230150533A1 (en) | Vehicle control system and vehicle driving method using the vehicle control system | |
| TW202330327A (en) | Blind spot detection auxiliary system for motorcycle | |
| JP3916930B2 (en) | Approach warning device | |
| JPH0973529A (en) | Two-wheeled vehicle monitor device | |
| JP4848644B2 (en) | Obstacle recognition system | |
| JP4755501B2 (en) | Lane detection device and lane departure warning device | |
| CN217553800U (en) | Vehicle rearview mirror system |