[go: up one dir, main page]

TW202321130A - Freight management system and method thereof - Google Patents

Freight management system and method thereof Download PDF

Info

Publication number
TW202321130A
TW202321130A TW111136395A TW111136395A TW202321130A TW 202321130 A TW202321130 A TW 202321130A TW 111136395 A TW111136395 A TW 111136395A TW 111136395 A TW111136395 A TW 111136395A TW 202321130 A TW202321130 A TW 202321130A
Authority
TW
Taiwan
Prior art keywords
cargo
item
dock
images
cnn
Prior art date
Application number
TW111136395A
Other languages
Chinese (zh)
Inventor
秉彥 劉
羅德里戈 巴里烏索德胡安
尼古拉斯 蘇
查爾斯 伍德
麥斯威爾C 戈德堡
丹尼爾 方
喬納森 茲維貝爾
塞繆爾 盧耶
Original Assignee
美商卡爾戈科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/488,031 external-priority patent/US12142048B2/en
Priority claimed from US17/488,033 external-priority patent/US12142049B2/en
Application filed by 美商卡爾戈科技股份有限公司 filed Critical 美商卡爾戈科技股份有限公司
Publication of TW202321130A publication Critical patent/TW202321130A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/255Detecting or recognising potential candidate objects based on visual cues, e.g. shapes
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/778Active pattern-learning, e.g. online learning of image or video features
    • G06V10/7784Active pattern-learning, e.g. online learning of image or video features based on feedback from supervisors
    • G06V10/7788Active pattern-learning, e.g. online learning of image or video features based on feedback from supervisors the supervisor being a human, e.g. interactive learning with a human teacher
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/98Detection or correction of errors, e.g. by rescanning the pattern or by human intervention; Evaluation of the quality of the acquired patterns
    • G06V10/987Detection or correction of errors, e.g. by rescanning the pattern or by human intervention; Evaluation of the quality of the acquired patterns with the intervention of an operator
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/06Recognition of objects for industrial automation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Studio Devices (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Example freight management systems and methods are described. In one implementation, techniques receive at least one wide angle camera image from a sensor tower, where the sensor tower is located proximate a loading dock and the wide angle camera image is associated with at least a portion of the loading dock. The techniques also receive multiple high precision camera images from the sensor tower, where the plurality of high precision camera images are associated with at least a portion of the loading dock. The techniques process the wide angle image using a first convolutional neural network (CNN) and process the multiple high precision images using a second CNN. The techniques identify a freight item proximate the loading dock based on the processed high precision images.

Description

貨物管理系統及其方法Cargo management system and method thereof

本公開內容涉及管理倉庫操作,包括經由裝卸台運送和接收貨物。The present disclosure relates to managing warehouse operations, including shipping and receiving goods via docks.

運送和接收物品的倉庫和其他建築物通常使用裝卸台在倉庫和運送和接收任何數量的物品的卡車之間轉移那些物品。在一些情況下,叉車和其他設備可以將物品從卡車卸載到倉庫中並且可以將物品從倉庫裝載到卡車上。Warehouses and other buildings that ship and receive items typically use loading docks to transfer those items between the warehouse and the trucks that ship and receive any number of items. In some cases, forklifts and other equipment can unload items from trucks into warehouses and can load items from warehouses onto trucks.

重要的是追蹤這些物品的移動、確認接收到的貨物包含正確的物品、檢查接收到的貨物中的損壞物品、檢查篡改物品的證據等。通常,這些活動由人工操作員手動執行,操作員檢查收到的貨物並將其與提貨單或其他追蹤系統進行比較。這些手動操作通常很慢並且容易出錯。It is important to track the movement of these items, verify that received shipments contain the correct items, check received shipments for damaged items, check for evidence of tampered items, etc. Typically, these activities are performed manually by human operators who inspect incoming shipments and compare them to bills of lading or other tracking systems. These manual operations are often slow and error-prone.

本發明揭露一種貨物管理系統,包含:一個或多個處理器;以及一個或多個非暫時電腦可讀取媒體,儲存可由所述一個或多個處理器執行的指令,其中指令在被執行時使所述系統執行包括以下操作:從感測器塔接收至少一個廣角相機影像,其中所述感測器塔位於裝卸台附近並且所述廣角相機影像與所述裝卸台的至少一部分相關聯;從所述感測器塔接收複數個高精度相機影像,其中所述複數個高精度相機影像與所述裝卸台的至少一部分相關聯;預處理所述廣角相機影像和所述複數個高精度相機影像以生成預處理廣角影像和複數個預處理高精度影像;使用第一卷積神經網路(CNN)處理所述預處理廣角影像;以及使用第二卷積神經網路(CNN)處理所述複數個預處理高精度影像。The present invention discloses a cargo management system, comprising: one or more processors; and one or more non-transitory computer-readable media storing instructions executable by the one or more processors, wherein the instructions are executed when executed Causing the system includes receiving at least one wide-angle camera image from a sensor tower, wherein the sensor tower is located adjacent to a dock and the wide-angle camera image is associated with at least a portion of the dock; The sensor tower receives a plurality of high-precision camera images, wherein the plurality of high-precision camera images is associated with at least a portion of the dock; preprocessing the wide-angle camera image and the plurality of high-precision camera images to generate a pre-processed wide-angle image and a plurality of pre-processed high-resolution images; process the pre-processed wide-angle image using a first convolutional neural network (CNN); and process the complex number using a second convolutional neural network (CNN) A preprocessed high-resolution image.

所述之貨物管理系統,更包含基於使用第二CNN處理所述複數個預處理高精度影像來識別在所述裝卸台附近操作的至少一個設備。The cargo management system further includes identifying at least one device operating near the loading dock based on processing the plurality of pre-processed high-resolution images using a second CNN.

所述系統執行的操作還包含基於使用第二CNN處理所述複數個預處理高精度影像來識別接近所述裝卸台的貨物項目。所述系統執行的操作還包含基於使用該第二CNN處理所述複數個預處理高精度影像來識別與該貨物項目相關聯的複數個物件。該操作更進一步包含基於使用該第二CNN處理所述複數個預處理高精度影像的結果來接收人工輸入。該操作還包含基於接收到的該人工輸入來訓練該第二 CNN。該操作更進一步包含分析所述預處理高精度影像以識別與該貨物項目相關聯的至少一個物件是否損壞或識別與該貨物項目相關聯的至少一個事件是否被篡改。該操作還包含確定該貨物項目是否正在通過所述裝卸台進行裝載或卸載。該操作還包含識別至少一個在所述裝卸台附近操作的設備。該操作進一步包含基於使用該第二 CNN處理複數個預處理高精度影像來檢測與靠近所述裝卸台的至少一個項目相關聯的一資訊紋理。該操作進一步包含將檢測到的與靠近所述裝卸台的至少一個物件相關聯的所述資訊紋理傳送到一遠端運算系統。該操作進一步包含將所述資訊紋理與特定產品相關聯。該操作進一步包含將所述特定產品資料與更高級別的物流資料整合。The system performs operations further comprising identifying a cargo item approaching the dock based on processing the plurality of pre-processed high-resolution images using a second CNN. The system performs operations further comprising identifying a plurality of objects associated with the cargo item based on processing the plurality of pre-processed high-resolution images using the second CNN. The operations further include receiving manual input based on a result of processing the plurality of pre-processed high-resolution images using the second CNN. The operations also include training the second CNN based on the received artificial input. The operations further comprise analyzing the pre-processed high-resolution imagery to identify whether at least one item associated with the cargo item is damaged or to identify whether at least one event associated with the cargo item has been tampered with. The operation also includes determining whether the cargo item is being loaded or unloaded by the loading dock. The operations also include identifying at least one piece of equipment operating proximate to the dock. The operations further include detecting an informative texture associated with at least one item proximate to the dock based on processing the plurality of pre-processed high-resolution images using the second CNN. The operations further include transmitting the information texture detected to be associated with at least one object proximate to the dock to a remote computing system. The operation further includes associating the informative texture with a particular product. The operation further includes integrating the specific product data with higher level logistics data.

所述之貨物管理系統,其中識別該貨物項目包含分析該貨物項目上的標籤、分析該貨物項目上的文字、分析該貨物項目上的標誌、分析該貨物項目的尺寸、分析該貨物項目的顏色或分析該貨物項目材積中的至少一種。The cargo management system described above, wherein identifying the cargo item includes analyzing the label on the cargo item, analyzing the text on the cargo item, analyzing the logo on the cargo item, analyzing the size of the cargo item, and analyzing the color of the cargo item Or analyze at least one of the volumes of the item of cargo.

本發明更揭露一種貨物管理方法,包含以下步驟:從感測器塔接收至少一個廣角相機影像,其中所述感測器塔位於裝卸台附近並且所述至少一個廣角相機影像與所述裝卸台的至少一部分相關聯;從所述感測器塔接收複數個高精度相機影像,其中所述複數個高精度相機影像與所述裝卸台的至少一部分相關聯;使用第一卷積神經網路(CNN)處理所述廣角影像;使用第二卷積神經網路(CNN)處理所述複數個高精度影像;以及根據處理過的複數個高精度影像識別所述裝卸台附近的貨物項目。The present invention further discloses a cargo management method, comprising the following steps: receiving at least one wide-angle camera image from a sensor tower, wherein the sensor tower is located near a loading and unloading dock and the at least one wide-angle camera image is consistent with the loading and unloading dock. at least a portion is associated; receiving a plurality of high precision camera images from the sensor tower, wherein the plurality of high precision camera images are associated with at least a portion of the dock; using a first convolutional neural network (CNN ) processing the wide-angle image; processing the plurality of high-resolution images using a second convolutional neural network (CNN); and identifying cargo items near the loading dock according to the processed plurality of high-resolution images.

所述之貨物管理方法,其中更進一步包含預處理所述至少一個廣角相機影像和所述複數個高精度相機影像以生成預處理廣角影像和複數個預處理高精度影像。所述之貨物管理方法,更進一步包含基於使用第二CNN處理所述複數個高精度影像來識別與該貨物項目相關聯的複數個物件。其中識別該貨物項目包括分析該貨物項目上的標籤、分析該貨物項目上的文字、分析該貨物項目上的標誌、分析該貨物項目的尺寸、分析該貨物項目的顏色或分析該貨物項目的材積中的至少一種。其中更進一步包含分析處理過的所述複數個高精度影像以識別至少一個與該貨物項目相關聯的物件是否損壞或識別至少一個與貨物相關聯的物件是否被篡改。The cargo management method further includes preprocessing the at least one wide-angle camera image and the plurality of high-precision camera images to generate a pre-processed wide-angle image and a plurality of pre-processed high-precision images. The cargo management method further includes identifying a plurality of objects associated with the cargo item based on processing the plurality of high-resolution images using a second CNN. wherein identifying the item of cargo includes analyzing a label on the item of cargo, analyzing text on the item of cargo, analyzing a logo on the item of cargo, analyzing the size of the item of cargo, analyzing the color of the item of cargo, or analyzing the volume of the item of cargo at least one of the It further includes analyzing the plurality of processed high-resolution images to identify whether at least one item associated with the cargo item is damaged or to identify whether at least one item associated with the cargo item has been tampered with.

所述之貨物管理方法,更進一步包含基於接收到與處理過的所述複數個高精度影像相關聯的人工輸入來訓練第二CNN。The cargo management method further includes training a second CNN based on receiving manual input associated with the processed high-precision images.

本發明主張2021年9月28日申請之美國申請案17/488,031以及17/488,033的優先權,基於所有的目的將其所有內容引用併入本文中。This application claims priority to US Application Nos. 17/488,031 and 17/488,033, filed September 28, 2021, the entire contents of which are incorporated herein by reference for all purposes.

在一些實施例中,本文討論的系統和方法執行與倉庫操作相關聯的各種活動,例如進出貨物和類似物品。在特定實施例中,這些系統和方法與識別、分析和追蹤移動通過倉庫或其他設施處的裝卸台的貨物項目相關聯。In some embodiments, the systems and methods discussed herein perform various activities associated with warehouse operations, such as incoming and outgoing goods and the like. In particular embodiments, these systems and methods are associated with identifying, analyzing, and tracking items of cargo that move through docks at a warehouse or other facility.

在下面的揭露中,參考了構成揭露內容的一部分的圖式,並且在圖式中以舉例的方式說明了可以在其中實現本揭露的具體實施方式。應當理解,在不脫離本公開範圍的情況下,可以使用其他實施方式並且可以進行結構改變。說明書中對“一個實施例”、“一實施例”、“一個示範性實施例”等的參考引用表示所描述的實施例可能包括特定特徵、結構或特性,但每個實施例不一定都必須包括所述的特定特徵、結構或特性。此外,這樣的表達方式不一定指稱相同的實施例。此外,當結合實施例描述的特定特徵、結構或特性時,無論有或沒有明確描述,可以認為在本領域技術人員的知識範圍內結合其他實施例影響此類特徵、結構或特性。In the following disclosure, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of example specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present disclosure. References in the specification to "one embodiment," "an embodiment," "an exemplary embodiment," etc. mean that the described embodiments may include a particular feature, structure, or characteristic, but each embodiment does not necessarily have to. including the particular feature, structure or characteristic described. Moreover, such expressions are not necessarily referring to the same embodiment. Furthermore, when a particular feature, structure or characteristic is described in conjunction with an embodiment, whether explicitly described or not, it is considered within the knowledge of those skilled in the art to affect such feature, structure or characteristic in combination with other embodiments.

本文公開的系統、設備和方法的實施方式可以包括或利用專用或通用電腦,包括電腦硬體,例如一個或多個處理器和系統記憶體,如本文所討論的。本公開範圍內的實施方式還可以包括用於攜帶或儲存電腦可執行指令和/或資料結構的物理和其他電腦可讀取媒體。這樣的電腦可讀取媒體可以是通用或專用電腦系統可以存取的任何可用媒體。儲存電腦可執行指令的電腦可讀取媒體是電腦儲存媒體(設備)。攜帶電腦可執行指令的電腦可讀取媒體是傳輸媒體。因此,作為範例而非限制,本公開的實施方式可以包括至少兩種截然不同的電腦可讀取媒體:電腦儲存媒體(設備)和傳輸媒體。Embodiments of the systems, devices, and methods disclosed herein may include or utilize a special purpose or general purpose computer, including computer hardware such as one or more processors and system memory, as discussed herein. Embodiments within the scope of the present disclosure may also include physical and other computer-readable media for carrying or storing computer-executable instructions and/or data structures. Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer system. A computer-readable medium that stores computer-executable instructions is a computer storage medium (devices). Computer-readable media that carry computer-executable instructions are transmission media. Thus, by way of example and not limitation, embodiments of the present disclosure may include at least two distinct types of computer-readable media: computer storage media (devices) and transmission media.

電腦儲存媒體(設備)包括RAM、ROM、EEPROM、CD-ROM、固態硬碟(“SSD”)(例如,基於RAM)、快閃記憶體、相變記憶體(“PCM”)、其他類型的記憶體、其他光碟儲存、磁碟儲存或其他磁儲存設備,或任何其他可用於以電腦可執行指令或資料結構的形式儲存所需程式碼手段的媒體,並且可以由通用或專用電腦存取。Computer storage media (devices) include RAM, ROM, EEPROM, CD-ROM, solid state drives (“SSD”) (e.g., RAM-based), flash memory, phase change memory (“PCM”), other types of memory, other optical disk storage, disk storage, or other magnetic storage device, or any other medium that can be used to store the desired program code means in the form of computer-executable instructions or data structures, and can be accessed by a general-purpose or special-purpose computer.

本文公開的設備、系統和方法的實現可以通過電腦網路進行通訊。“網路”被定義為一個或多個資料鏈路,能夠在電腦系統和/或模組和/或其他電子設備之間傳輸電子資料。當資訊透過網路或其他通訊連接(有線、無線或有線或無線的組合)傳輸或提供給電腦時,電腦正確地將連接視為傳輸媒體。傳輸媒體可包括網路和/或資料鏈路,其可用於承載電腦可執行指令或資料結構形式的所需程式碼手段,並且可被通用或專用電腦存取。以上的組合也應包括在電腦可讀取媒體的範圍內。The implementation of the devices, systems and methods disclosed in this paper can communicate through computer networks. A "network" is defined as one or more data links capable of transmitting electronic data between computer systems and/or modules and/or other electronic devices. When information is transmitted or provided to a computer over a network or other communication connection (wired, wireless, or a combination of wires and wireless), the computer correctly sees the connection as the transmission medium. Transmission media can include network and/or data links which can be used to carry desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer. Combinations of the above should also be included in the scope of computer-readable media.

電腦可執行指令包括例如:指令和資料,當在處理器處執行時,這些指令和資料使通用電腦、專用電腦或專用處理設備執行某一特定功能或多個功能的功能組。電腦可執行指令可以是例如:二進位文件、諸如組合語言的中介格式指令,或者甚至是原始碼。儘管標的是用特定於結構特徵和/或方法動作的語言所描述的,但是應當理解,權利要求中所定義的標的不一定限於本文描述的特徵或動作。相反的,在本揭露中所描述的特徵和動作是作為實施權利要求的示範形式。Computer-executable instructions include, for example, instructions and materials that, when executed at a processor, cause a general-purpose computer, special-purpose computer, or special-purpose processing device to perform a particular function or functional group of functions. Computer-executable instructions may be, for example, binary files, instructions in an intermediate format such as assembly language, or even source code. Although subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that subject matter defined in the claims is not necessarily limited to the features or acts described herein. Rather, the features and acts described in the present disclosure are described as example forms of implementing the claims.

本領域的技術人員將理解,可以在具有許多類型的電腦系統配置的網路運算環境中實現本公開內容,包括個人電腦、桌上電腦、筆記型電腦、訊息處理機、手持設備、多處理器系統、基於微處理器或可程式的消費電子產品、網路PC、小型電腦、大型主機電腦、行動電話、PDA、平板電腦、尋呼機(pagers)、路由器、交換機、各種儲存設備等。本公開還可以在分散式系統環境中實現,其中透過網路鏈接(通過固線資料鏈路、無線資料鏈路,或者通過固線和無線資料鏈路的組合)的本地和遠端電腦系統都執行任務。在分散式系統環境中,程式模組可能位於本地和遠端的記憶體儲存設備中。Those skilled in the art will appreciate that the present disclosure can be practiced in network computing environments having many types of computer system configurations, including personal computers, desktop computers, notebook computers, message processors, handheld devices, multiprocessor Systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, mobile phones, PDAs, tablet computers, pagers, routers, switches, various storage devices, etc. The present disclosure can also be practiced in a distributed system environment in which local and remote computer systems linked by a network (either by a fixed-wire data link, a wireless data link, or by a combination of fixed-wire and wireless data links) are both perform tasks. In a distributed system environment, program modules may be located in both local and remote memory storage devices.

此外,在適當的情況下,可以在以下一項或多項中執行本文描述的功能:硬體、軟體、韌體、數位組件或類比組件。例如,一個或多個特殊應用積體電路(ASIC)可以被程式化用以執行這裡描述的一個或多個系統和程序。在整個描述和權利要求中使用某些術語來指稱特定的系統組件。正如本領域的技術人員將理解的那樣,組件可以用不同的名稱來指稱。本文並無意區分名稱不同但功能相同的組件。Furthermore, where appropriate, the functions described herein may be performed in one or more of: hardware, software, firmware, digital components, or analog components. For example, one or more application specific integrated circuits (ASICs) may be programmed to implement one or more of the systems and procedures described herein. Certain terms are used throughout the description and claims to refer to particular system components. Components may be referred to by different names, as will be understood by those skilled in the art. This document does not intend to distinguish between components that have different names but have the same function.

應當注意,本文討論的感測器實施例可以包括電腦硬體、軟體、韌體或其任意組合以執行它們的至少一部分功能。例如,感測器可以包括配置為在一個或多個處理器中執行的程式碼,並且可以包括由程式碼控制的硬體邏輯/電路。這些範例設備在本文中出於說明的目的而提供,並且不旨在限制。本公開的實施例可以在其他類型的設備中實現,如相關領域的技術人員已知的那樣。It should be noted that sensor embodiments discussed herein may include computer hardware, software, firmware, or any combination thereof to perform at least a portion of their functions. For example, a sensor may include program code configured to execute in one or more processors, and may include hardware logic/circuitry controlled by the program code. These example devices are provided herein for purposes of illustration and are not intended to be limiting. Embodiments of the present disclosure may be implemented in other types of devices, as known to those skilled in the relevant art.

本揭露的至少一些實施例針對包括儲存在任何電腦可用媒體上的這種邏輯(例如,以軟體的形式)的電腦程式產品。當在一個或多個資料處理設備中執行時,這樣的軟體使設備如本文所描述的那樣操作。At least some embodiments of the present disclosure are directed to a computer program product including such logic (eg, in software) stored on any computer usable medium. When executed in one or more data processing devices, such software causes the devices to operate as described herein.

「第1圖」是說明可以在其中實現範例實施例的環境100的方塊圖。如「第1圖」所示,第一感測器塔104和第二感測器塔106位於裝卸台102的相對側。在一些實施例中,環境100是倉庫、製造設施、分揀設施或具有至少一個裝卸台的任何其他設施。儘管「第1圖」中顯示了兩個感測器塔104、106。 如「第1圖」所示,其他實施例可包括位於裝卸台102一側的單個感測器塔。在一些實施例中,裝卸台102可以具有門(未示出)以控制從設施外部進入裝卸台102。"FIG. 1" is a block diagram illustrating an environment 100 in which example embodiments may be implemented. As shown in FIG. 1 , the first sensor tower 104 and the second sensor tower 106 are located on opposite sides of the dock 102 . In some embodiments, environment 100 is a warehouse, manufacturing facility, sorting facility, or any other facility having at least one loading dock. Although two sensor towers 104, 106 are shown in "Fig. 1". As shown in FIG. 1 , other embodiments may include a single sensor tower located on one side of the dock 102 . In some embodiments, the loading dock 102 may have doors (not shown) to control access to the loading dock 102 from outside the facility.

任何數量的貨物項目 108 都可以穿過裝卸台 102,例如貨物項目 108 被裝載到卡車或其他車輛上,以及貨物項目 108 從卡車或其他車輛被接收。貨物項目108可以包括任何類型的容器、物品集合或可以通過裝卸台102運送和通過的其他物品。貨物項目 108 包括貨盤包裝物品、承載一個或多個物品的架子、單個大件物品(例如液體或乾食品物品的大容器、油桶和車輛發動機)、收縮包裝或捆綁在一起的多個物品等。在一些實施例中,叉車、機器人或其他機器在卸載或裝載卡車或其他車輛時將貨物項目108移動穿過裝卸台102。Any number of cargo items 108 may pass through dock 102, such as cargo items 108 are loaded onto trucks or other vehicles, and cargo items 108 are received from trucks or other vehicles. Cargo items 108 may include any type of container, collection of items, or other items that may be shipped and passed through dock 102 . Cargo items 108 include palletized items, racks holding one or more items, single bulky items (such as large containers of liquid or dry food items, oil drums, and vehicle engines), shrink-wrapped or bundled together multiple items wait. In some embodiments, forklifts, robots, or other machines move cargo items 108 through dock 102 when unloading or loading trucks or other vehicles.

在操作中,貨物項目 108 以叉車或移動貨物項目的其他機器的正常操作速度移動穿過裝卸台 102。感測器塔104和106具有多個相機,當叉車或其他機器以其正常運行速度穿過裝卸台102時,這些相機可以即時掃描貨物項目108。因此,感測器塔 104 和 106 可以安裝在現有的裝卸台 102 上,而不會中斷接收和運送貨物項目 108 的正常操作。如本文更詳細地討論的,感測器塔104和106包括多個相機,其在貨物項目108穿過裝卸台102時被動地掃描貨物項目108。In operation, cargo item 108 is moved across dock 102 at the normal operating speed of a forklift or other machine moving the cargo item. Sensor towers 104 and 106 have multiple cameras that can instantly scan cargo items 108 as forklifts or other machines move across dock 102 at their normal operating speed. Accordingly, sensor towers 104 and 106 may be installed on existing docks 102 without interrupting normal operations for receiving and delivering cargo items 108 . As discussed in greater detail herein, sensor towers 104 and 106 include a plurality of cameras that passively scan cargo items 108 as they pass through dock 102 .

在一些實施例中,特定的感測器塔可以掃描各種貨物項目而不需要在不同類型的貨物項目之間進行重新配置。例如,一個或多個感測器塔可以掃描貨盤包裝貨物項目,然後掃描單個集裝箱貨物項目,然後是貨架貨物項目。這些不同類型的貨物項目可以由一個或多個感測器塔連續掃描,而無需對感測器塔進行任何更改。因此,具適應性的感測器塔允許裝載和卸載貨物,而不管與特定卡車相關聯的各種類型的貨物。In some embodiments, specific sensor towers can scan various cargo items without requiring reconfiguration between different types of cargo items. For example, one or more sensor towers may scan a pallet packaged item, then a single container item, then a shelf item. These different types of cargo items can be continuously scanned by one or more sensor towers without any changes to the sensor towers. Thus, an adaptable sensor tower allows loading and unloading of cargo regardless of the various types of cargo associated with a particular truck.

如「第1圖」所示,感測器塔104和106可以經由資料通訊網路110耦合到其他設備和系統。在一些實施例中,資料通訊網路110包括使用任何通訊協議的任何類型的網路拓撲。另外,資料通訊網路110可以包括兩個或更多個通訊網路的組合。 在一些實施例中,資料通訊網路110包括蜂巢式通訊網路、網際網路、區域網路、廣域網路或任何其他通信網路。As shown in FIG. 1 , sensor towers 104 and 106 may be coupled to other devices and systems via data communication network 110 . In some embodiments, the data communication network 110 includes any type of network topology using any communication protocol. In addition, the data communication network 110 may include a combination of two or more communication networks. In some embodiments, the data communication network 110 includes a cellular communication network, the Internet, a local area network, a wide area network, or any other communication network.

在環境 100 的示例中,感測器塔 104 和 106 被耦合以與一個或多個可穿戴設備 112、一個或多個機器人設備 114、一個或多個叉車 116、一個或多個倉庫設備 118、一個或多個操作平台120,以及一個或多個基於雲(cloud-based)的運算系統122。可穿戴設備112可以包括由倉庫工人(例如,叉車操作員)佩戴以提供與一個或多個倉庫活動相關的反饋(例如,聽覺、視覺或觸覺反饋)的任何設備。可以通過可穿戴設備 112 傳達給倉庫人員的範例資訊包括通過感測器塔 104 和 106 的物品的時間差異,物品被運往或運出,一個或多個物品中的視覺缺陷的識別, 無法讀取的標籤或其他標記,或者感測器塔 104 和 106 之一無法識別與貨物相關的物件。In the example of environment 100, sensor towers 104 and 106 are coupled to interface with one or more wearable devices 112, one or more robotic devices 114, one or more forklifts 116, one or more warehouse devices 118, One or more operating platforms 120 , and one or more cloud-based computing systems 122 . Wearable device 112 may include any device worn by a warehouse worker (eg, a forklift operator) to provide feedback (eg, auditory, visual, or tactile feedback) related to one or more warehouse activities. Example information that may be communicated to warehouse personnel via wearable device 112 includes time differences in items passing sensor towers 104 and 106, items being shipped to or from, identification of visual defects in one or more items, unreadable , or one of the sensor towers 104 and 106 fails to identify items associated with the cargo.

機器人設備 114 可以包括協助設施操作的任何設備,例如移動物件、掃描物件、定位貨物項目等。叉車116可包括自動叉車或人工叉車。倉庫設備118可以包括管理倉庫內物流的任何其他設備以及管理庫存、裝運、接收、調度等所需的任何其他任務。操作平台120可以向一個或多個系統和人員提供各種物流和操作資訊。此處討論關於操作平台120的附加細節。基於雲的運算系統122可以包括任意數量的運算設備,例如伺服器,其可以執行各種任務、活動、資料儲存等。如本文所討論的,基於雲的運算系統122可以執行對感測器塔104和106所擷取的影像的分析,以及與貨物項目108相關聯的一個或多個物件的識別。Robotic devices 114 may include any device that assists in facility operations, such as moving objects, scanning objects, locating cargo items, and the like. Forklifts 116 may include automated forklifts or manual forklifts. Warehouse equipment 118 may include any other equipment that manages logistics within a warehouse and any other tasks required to manage inventory, shipping, receiving, scheduling, and the like. Operations platform 120 may provide various logistical and operational information to one or more systems and personnel. Additional details regarding operating platform 120 are discussed herein. The cloud-based computing system 122 can include any number of computing devices, such as servers, that can perform various tasks, activities, data storage, and the like. As discussed herein, cloud-based computing system 122 may perform analysis of imagery captured by sensor towers 104 and 106 and identification of one or more objects associated with cargo item 108 .

如本文所討論的,每個感測器塔104和106包括獨立的運算設備,其執行各種任務,諸如分析擷取的影像和識別與貨物項目108相關聯的一個或多個物件。在一些實施例中,感測器塔104和106還可以訪問一個或多個基於雲的運算系統122以執行擷取的圖像的至少一些分析和與貨物項目108相關聯的物件的識別。在其他實施例中,感測器塔104和106可能不包括它們自己的運算設備。在這種情況下,感測器塔104和106可以依賴於一個或多個基於雲的計算系統122來執行擷取影像的分析和與貨物項目108相關聯的物件的識別。As discussed herein, each sensor tower 104 and 106 includes an independent computing device that performs various tasks, such as analyzing captured imagery and identifying one or more objects associated with cargo item 108 . In some embodiments, sensor towers 104 and 106 may also access one or more cloud-based computing systems 122 to perform at least some analysis of captured images and identification of items associated with cargo item 108 . In other embodiments, sensor towers 104 and 106 may not include their own computing devices. In such cases, sensor towers 104 and 106 may rely on one or more cloud-based computing systems 122 to perform analysis of captured imagery and identification of objects associated with cargo item 108 .

在另一個實施例中,感測器塔 104 具有其自己的運算設備,該運算設備分析擷取的影像並識別與貨物項目 108 相關聯的一個或多個物件。然而,在這個實施例中,感測器塔106沒有它自己的運算設備。 在這種情況下,感測器塔 104 中的運算設備可以對感測器塔 106 擷取的影像進行分析,並識別感測器塔 106 擷取的影像中的物件。例如,感測器塔106可以將其擷取的影像傳送到感測器塔104以供處理。In another embodiment, sensor tower 104 has its own computing device that analyzes the captured imagery and identifies one or more objects associated with cargo item 108 . However, in this embodiment, sensor tower 106 does not have its own computing device. In this case, computing devices in sensor tower 104 can analyze images captured by sensor tower 106 and identify objects in the images captured by sensor tower 106 . For example, sensor tower 106 may transmit its captured imagery to sensor tower 104 for processing.

在一些實施例中,本文討論的系統和方法可以確定貨物項目中物件的存在或不存在,並檢測與物件或貨物項目的物理損壞、洩漏和篡改。所描述的系統和方法還可以確定貨物項目的尺寸,檢測包裝資訊的類型(例如,有效期或標誌),並感測物件或貨物項目的溫度。這些系統和方法可以進一步識別沒有標準標籤、條碼或其他標識符的物件或貨物項目。此外,所描述的系統和方法可以追蹤將貨物裝載到卡車上、從卡車上卸載貨物以及其他與裝卸台相關的操作所花費的時間。In some embodiments, the systems and methods discussed herein can determine the presence or absence of an item in an item of cargo, and detect physical damage, leakage, and tampering with the item or item of cargo. The described systems and methods can also determine the size of a cargo item, detect the type of packaging information (eg, expiration date or logo), and sense the temperature of the object or cargo item. These systems and methods can further identify items or cargo items that do not have standard labels, barcodes, or other identifiers. Additionally, the described systems and methods can track time spent loading cargo onto trucks, unloading cargo from trucks, and other dock-related operations.

「第2圖」說明了包括11個編號為202-222之相機的感測器塔200的實施例。感測器塔200可以包括至少一個外殼,該外殼為相機202-222和與感測器塔200相關聯的其他組件提供支撐,如本文所討論的。外殼可以具有任何形狀、任何數量的零件,並且可以由任何一種或多種材料製成。感測器塔104和106可以與感測器塔200相似或相同。在一些實施例中,相機202-222可以是不同類型的相機,例如廣角相機和高精度相機。相機202-222可以在可見光譜或任何其他光譜中操作。 在一些實施例中,相機202-222可以基於裝卸台的尺寸(例如,寬度)而具有不同的鏡頭。在一些實施例中,相機202-222中的至少一個可以是單色感測器並且其他相機202-222中的至少一個是彩色相機。在其他實施方式中,不同的相機202-222可以具有不同數量的像素或不同的像素尺寸。在具體實施例中,相機202-222中的一個或多個可以是IR(紅外線)相機、3D(三維)飛行時間相機、熱成像相機等。"FIG. 2" illustrates an embodiment of a sensor tower 200 including eleven cameras numbered 202-222. Sensor tower 200 may include at least one housing that provides support for cameras 202-222 and other components associated with sensor tower 200, as discussed herein. The housing can have any shape, any number of parts, and can be made of any one or more materials. Sensor towers 104 and 106 may be similar or identical to sensor tower 200 . In some embodiments, cameras 202-222 may be different types of cameras, such as wide-angle cameras and high-precision cameras. Cameras 202-222 may operate in the visible spectrum or any other spectrum. In some embodiments, the cameras 202-222 may have different lenses based on the size (eg, width) of the dock. In some embodiments, at least one of the cameras 202-222 may be a monochrome sensor and at least one of the other cameras 202-222 is a color camera. In other implementations, different cameras 202-222 may have different numbers of pixels or different pixel sizes. In particular embodiments, one or more of the cameras 202-222 may be an IR (infrared) camera, a 3D (three-dimensional) time-of-flight camera, a thermal imaging camera, or the like.

在一些實施例中,裝卸台 102 的尺寸和感測器塔之間的距離以及塔和貨物項目之間的距離可能需要具有不同焦距(例如,焦距)的不同相機鏡頭。例如,較小焦距的鏡頭可用於貨物項目經過更靠近感測器塔的情況。當使用較大焦距的鏡頭時,靠近感測器塔擷取的資訊較少,但遠離塔的資訊更精確。In some embodiments, the size of the dock 102 and the distance between the sensor towers and the distance between the towers and cargo items may require different camera lenses with different focal lengths (eg, focal lengths). For example, a lens with a smaller focal length can be used in situations where cargo items pass closer to the sensor tower. When using a lens with a larger focal length, less information is captured closer to the sensor tower, but more accurate information is captured farther away from the tower.

在特定實施方式中,相機206是廣角相機並且其餘相機(202、204和208-222)是高精度相機。在該實施方式中,廣角相機被定位為相機206以在地板上方提供足夠的高度,從而允許本文描述的系統和方法更好地利用廣角視野。高精度相機202、204和208-222在不同的垂直視點擷取更高解析度的影像。高精度相機202、204和208-222的佈置提供重疊的視野,例如,在「第5圖」中所示。In a particular embodiment, camera 206 is a wide-angle camera and the remaining cameras (202, 204, and 208-222) are high-precision cameras. In this embodiment, the wide-angle camera is positioned as camera 206 to provide sufficient height above the floor to allow the systems and methods described herein to better utilize the wide-angle field of view. The high-precision cameras 202, 204, and 208-222 capture higher-resolution images at different vertical viewpoints. The arrangement of high precision cameras 202, 204 and 208-222 provides overlapping fields of view, eg, as shown in "FIG. 5".

在一些實施例中,相機 202-222 瞄準垂直於感測器塔 200 的垂直軸。在其他實施例中,相機202-222中的一個或多個相對於感測器塔200的垂直軸以不同角度瞄準,以從不同角度和不同視角擷取影像。In some embodiments, cameras 202-222 are aimed perpendicular to the vertical axis of sensor tower 200. In other embodiments, one or more of the cameras 202-222 are aimed at different angles relative to the vertical axis of the sensor tower 200 to capture images from different angles and different viewing angles.

在一些實施例中,相機202-222被同步使得所有相機202-222同時擷取影像。在特定實施方式中,可以透過觸發感測器塔200中的所有其他相機的控制系統或主相機來執行同步。在一些實施例中,相機 202-222 具有快速快門速度(例如,小於 100 微秒)。In some embodiments, the cameras 202-222 are synchronized such that all cameras 202-222 capture images at the same time. In certain embodiments, synchronization may be performed by triggering the control system of all other cameras in sensor tower 200 or the master camera. In some embodiments, cameras 202-222 have fast shutter speeds (eg, less than 100 microseconds).

感測器塔 200 還包括四個燈條 224、226、228 和 230,它們照亮通過裝卸台的貨物項目。在一些實施例中,燈條224-230可以用與相機202-222擷取影像相同的頻率閃爍。例如,燈條可以用24Hz頻率閃爍並且相機202-222可以用24Hz頻率擷取影像。儘管圖中顯示了四個燈條224-230,如「第2圖」所示,但在其他替代實施例中可以在感測器塔 200 中包括任意數量的燈條。此外,其他替代實施例中可以包括具有任何形狀的燈,例如多個圓形燈、方形燈和其他形狀或配置。在一些實施例中,燈條224-230的頻閃(strobing)速度是相機擷取影像的三倍。因此,如果相機以 24 Hz 擷取影像,則燈條 224-230 以 72 Hz 頻閃。在一些實施例中,一個或多個燈條224-230的亮度是基於環境光水平來調整。例如,如果環境光水平低,一個或多個燈條224-230可以被調整到更亮的水平以更好地照亮貨物項目。類似地,如果環境光水平高,一個或多個燈條224-230可以被調整到較低的亮度水平以避免貨物項目被光過度飽和(over-saturating)。在一些實施例中,調整一個或多個燈條224-340的亮度以最佳化與貨物項目相關聯或與貨物項目相關聯之物件的標籤、印刷、標記等的檢測和識別。The sensor tower 200 also includes four light bars 224, 226, 228, and 230 that illuminate cargo items passing through the dock. In some embodiments, the light bars 224-230 may flash at the same frequency as the images captured by the cameras 202-222. For example, the light bar can flash at 24Hz and the cameras 202-222 can capture images at 24Hz. Although four light bars 224-230 are shown, as shown in "FIG. 2," any number of light bars may be included in sensor tower 200 in other alternative embodiments. Additionally, other alternative embodiments may include lights having any shape, such as multiple round lights, square lights, and other shapes or configurations. In some embodiments, the strobing speed of the light bars 224-230 is three times faster than the camera captures the image. So if the camera is capturing images at 24 Hz, the light bars 224-230 are strobing at 72 Hz. In some embodiments, the brightness of one or more light bars 224-230 is adjusted based on ambient light levels. For example, if the ambient light level is low, one or more of the light bars 224-230 may be adjusted to a brighter level to better illuminate the cargo item. Similarly, if the ambient light level is high, one or more of the light bars 224-230 may be adjusted to a lower brightness level to avoid over-saturating the cargo item with light. In some embodiments, the brightness of one or more of the light bars 224-340 is adjusted to optimize detection and identification of labels, printing, markings, etc. associated with or associated with the item of cargo.

感測器塔 200 還包括狀態燈 232。在一些實施例中,狀態燈232在感測器塔200未運行時為紅色,而在感測器塔200正常運行時為綠色。感測器塔200可能不工作,例如,當裝卸台門關閉時或當裝卸台被物件阻擋時。在替代實施例中,任何數量的狀態燈232可以被包含在感測器塔200中。在這些替代實施例中,狀態燈232可以用任何配置方式進行佈置。例如,如果感測器塔200具有四個狀態燈232,則這四個燈可以指示網路狀態、處理狀態、運動狀態和一般系統狀態。Sensor tower 200 also includes status lights 232 . In some embodiments, status light 232 is red when sensor tower 200 is not operating and green when sensor tower 200 is operating normally. The sensor tower 200 may not function, for example, when the dock door is closed or when the dock is blocked by items. In alternate embodiments, any number of status lights 232 may be included in sensor tower 200 . In these alternative embodiments, status lights 232 may be arranged in any configuration. For example, if sensor tower 200 has four status lights 232, the four lights may indicate network status, processing status, motion status, and general system status.

在「第2圖」的範例中,感測器塔200包括作為感測器的各種相機200-222。在其他實施例中,感測器塔200可以包括額外類型的感測器,例如:無線射頻識別(RFID)感測器、光檢測和測距(光學雷達)感測器、熱感測器、飛行時間(ToF)感測器、鄰近感測器(proximity sensors)、 重量感測器、超音波感測器、紅外線感測器和空氣純度感測器。在特定實施方式中,感測器塔200可以包括任何數量的不同類型的感測器以擷取不同類型的資訊。來自所有類型感測器的資料可以被聚集以提供對貨物項目的加強分析和對與貨物項目相關聯的一個或多個物件的改進識別。In the example of "FIG. 2," the sensor tower 200 includes various cameras 200-222 as sensors. In other embodiments, sensor tower 200 may include additional types of sensors, such as: radio frequency identification (RFID) sensors, light detection and ranging (light radar) sensors, thermal sensors, Time-of-Flight (ToF) sensors, proximity sensors, weight sensors, ultrasonic sensors, infrared sensors, and air purity sensors. In particular embodiments, sensor tower 200 may include any number of different types of sensors to capture different types of information. Data from all types of sensors can be aggregated to provide enhanced analysis of a cargo item and improved identification of one or more items associated with the cargo item.

在一些實施例中,感測器塔200可以包括在感測器塔200的相對側上的兩組相機200-222。例如,如果兩個裝卸台彼此靠近,則具有兩組相機200-222的感測器塔200可以定位在兩個裝卸台之間。在一些實施方式中,第一組相機 200-222 可以擷取由第一運算系統處理的第一組影像(與第一裝卸台相關聯),並且第二組相機 200-222 可以擷取由第二運算系統處理的第二組影像(與第二裝卸台相關聯)。這種佈置允許單個感測器塔200擷取兩個相鄰裝卸台上的貨物項目的影像。In some embodiments, sensor tower 200 may include two sets of cameras 200 - 222 on opposite sides of sensor tower 200 . For example, a sensor tower 200 with two sets of cameras 200-222 may be positioned between two loading docks if they are close to each other. In some implementations, a first set of cameras 200-222 may capture a first set of images (associated with a first dock) processed by a first computing system, and a second set of cameras 200-222 may capture images processed by a first The second set of images (associated with the second dock) processed by the second computing system. This arrangement allows a single sensor tower 200 to capture images of cargo items on two adjacent docks.

「第3圖」說明了包括編號為302-328的十四個相機的感測器塔300的實施例。感測器塔300可包括至少一個外殼,該外殼為相機302-328和與感測器塔300相關聯的其他組件提供支撐,如本文所討論的。外殼可以具有任何形狀、任何數量的零件,並且可以由任何一種或多種材料製成。感測器塔104和106可以與感測器塔300相似或相同。在一些實施例中,相機302-328可以是不同類型的相機,例如廣角相機和高精度相機。相機302-328可以在可見光譜或任何其他光譜中操作。 在一些實施例中,相機302-328可以根據裝卸台的尺寸(例如,寬度)而具有不同的鏡頭。"FIG. 3" illustrates an embodiment of a sensor tower 300 including fourteen cameras numbered 302-328. Sensor tower 300 may include at least one housing that provides support for cameras 302-328 and other components associated with sensor tower 300, as discussed herein. The housing can have any shape, any number of parts, and can be made of any one or more materials. Sensor towers 104 and 106 may be similar or identical to sensor tower 300 . In some embodiments, cameras 302-328 may be different types of cameras, such as wide-angle cameras and high-precision cameras. Cameras 302-328 may operate in the visible spectrum or any other spectrum. In some embodiments, the cameras 302-328 may have different lenses depending on the size (eg, width) of the dock.

在特定實施方式中,相機308和322是廣角相機並且其餘相機(302-306、310-320和324-328)是高精度相機。 在該實施方式中,廣角相機被定位成可以最大化廣角相機308和322在感測器塔300之工作範圍內的視野。高精度相機302-306、310-320和324-328在不同的垂直視點擷取更高解析度的影像。 高精度相機302-306、310-320和324-328的佈置提供重疊的視場,例如,如「第5圖」所示。In a particular embodiment, cameras 308 and 322 are wide-angle cameras and the remaining cameras (302-306, 310-320, and 324-328) are high-precision cameras. In this embodiment, the wide-angle cameras are positioned to maximize the field of view of the wide-angle cameras 308 and 322 within the sensor tower 300 operating range. The high-precision cameras 302-306, 310-320, and 324-328 capture higher-resolution images at different vertical viewpoints. The arrangement of high-precision cameras 302-306, 310-320, and 324-328 provides overlapping fields of view, eg, as shown in "FIG. 5".

在一些實施例中,相機302-328被同步使得所有相機302-328同時擷取影像。在特定實施方式中,可以使用觸發感測器塔300中的所有其他相機的控制系統或主相機來執行同步。在一些實施例中,相機302-328具有快速快門速度(例如,小於100微秒)。In some embodiments, the cameras 302-328 are synchronized such that all cameras 302-328 capture images at the same time. In particular embodiments, synchronization may be performed using a control system or master camera that triggers all other cameras in sensor tower 300 . In some embodiments, cameras 302-328 have fast shutter speeds (eg, less than 100 microseconds).

感測器塔 300 還包括四個燈條 330、332、334 和 336,它們照亮通過裝卸台的貨物項目。在一些實施例中,燈條330-336可以用與相機302-328擷取影像相同的頻率閃爍。例如,燈條可以用24Hz頻閃並且相機302-328可以用24Hz擷取影像。儘管「第3圖」中顯示了四個燈條330-336,替代實施例可以在感測器塔 300 中包括任何數量的燈條。The sensor tower 300 also includes four light bars 330, 332, 334, and 336 that illuminate cargo items passing through the dock. In some embodiments, the light bars 330-336 may flash at the same frequency as the images captured by the cameras 302-328. For example, the light bar can strobe at 24Hz and the cameras 302-328 can capture images at 24Hz. Although four light bars 330-336 are shown in FIG. 3, alternative embodiments may include any number of light bars in the sensor tower 300.

感測器塔 300 還包括狀態燈 338。在一些實施例中,狀態燈 338 在感測器塔 300 未運行時為紅色,而在感測器塔 300 正常運行時為綠色。感測器塔300可能不工作,例如,當裝卸台門關閉時或當裝卸台被物件阻擋時。Sensor tower 300 also includes status lights 338 . In some embodiments, the status light 338 is red when the sensor tower 300 is not operating and green when the sensor tower 300 is operating normally. The sensor tower 300 may not function, for example, when the dock door is closed or when the dock is blocked by items.

在「第3圖」的範例中,感測器塔300包括作為感測器的各種相機302-328。在其他實施例中,感測器塔 300 可以包括其他類型的感測器,例如:無線射頻識別(RFID)感測器、光檢測和測距(光學雷達)感測器、熱感測器、飛行時間(ToF)感測器、鄰近感測器、 重量感測器和空氣純度感測器。在特定實施方式中,感測器塔300可以包括任何數量的不同類型的感測器以擷取不同類型的資訊。來自所有類型感測器的資料可以被聚集以提供對貨物項目的加強分析和對與貨物項目相關聯的一個或多個物件的改進識別。In the example of "FIG. 3," a sensor tower 300 includes various cameras 302-328 as sensors. In other embodiments, the sensor tower 300 may include other types of sensors, such as: radio frequency identification (RFID) sensors, light detection and ranging (light radar) sensors, thermal sensors, Time-of-Flight (ToF) sensors, proximity sensors, weight sensors, and air purity sensors. In particular embodiments, sensor tower 300 may include any number of different types of sensors to capture different types of information. Data from all types of sensors can be aggregated to provide enhanced analysis of a cargo item and improved identification of one or more items associated with the cargo item.

「第4圖」是說明感測器塔400的實施例的方塊圖。如「第4圖」所示,感測器塔400包括通訊管理器402、處理器404和記憶體406。通訊管理器402允許感測器塔400與其他系統和組件通訊。處理器404執行各種指令以執行由感測器塔400提供的功能,如本文所討論的。記憶體406儲存這些指令以及處理器404和包含在感測器塔400中的其他模組和組件使用的其他資料。“ FIG. 4 ” is a block diagram illustrating an embodiment of a sensor tower 400 . As shown in FIG. 4 , the sensor tower 400 includes a communication manager 402 , a processor 404 and a memory 406 . Communications manager 402 allows sensor tower 400 to communicate with other systems and components. Processor 404 executes various instructions to perform the functions provided by sensor tower 400, as discussed herein. Memory 406 stores these instructions and other data used by processor 404 and other modules and components included in sensor tower 400 .

感測器塔 400 還可以包括圖形處理單元 408、反饋系統 410 和光管理器 412。圖形處理單元 408 可以處理和管理由與感測器塔 400相關聯的相機擷取的各種影像。圖形處理單元408還可以管理擷取影像的分析和分析結果的儲存。在一些實施例中,圖形處理單元408被最佳化用於處理由本文討論的感測器塔擷取的類型的影像。例如,圖形處理單元408可以分析擷取的影像以識別影像內的感興趣區域並且識別特定標記或可以確定與貨物項目相關聯之物件的內容的其他標識符。反饋系統410可以向位於感測器塔400附近的用戶或系統提供反饋。在一些實施例中,反饋系統410以光信號、音頻信號(例如,通過揚聲器)等形式提供反饋。光管理器412可以管理與感測器塔400相關聯的一個或多個燈條和一個或多個狀態燈。例如,光管理器412可以確定燈條是否應該被啟動並且確定狀態燈的顏色(例如,紅色或綠色)。Sensor tower 400 may also include graphics processing unit 408 , feedback system 410 and light manager 412 . Graphics processing unit 408 may process and manage various images captured by cameras associated with sensor tower 400. The graphics processing unit 408 can also manage the analysis of the captured images and the storage of the analysis results. In some embodiments, the graphics processing unit 408 is optimized for processing the types of images captured by the sensor towers discussed herein. For example, graphics processing unit 408 may analyze captured imagery to identify regions of interest within the imagery and identify specific markers or other identifiers that may determine the contents of an item associated with a cargo item. Feedback system 410 may provide feedback to users or systems located near sensor tower 400 . In some embodiments, feedback system 410 provides feedback in the form of optical signals, audio signals (eg, through a speaker), or the like. Light manager 412 may manage one or more light bars and one or more status lights associated with sensor tower 400 . For example, light manager 412 may determine whether the light bar should be activated and determine the color of the status light (eg, red or green).

另外,感測器塔400可以包括深度學習加速器414、頻閃控制器416、乙太網路交換器418、配電系統420、相機422和一個或多個儲存設備424。深度學習加速器414可以執行各種深度學習系統,例如神經網路。在一些實施例中,深度學習加速器414可以基於在擷取的影像中所檢測到的資訊來識別與貨物項目相關聯的一個或多個物件。此處討論了關於物件識別的附加細節。頻閃控制器416可以控制燈條閃爍的頻率。如本文所討論的,在一些實施例中,燈條以24Hz閃爍以匹配相機的頻率。乙太網路交換機418可以提供感測器塔相機和其他系統或組件之間的切換。配電系統420可以管理到感測器塔400中的各種系統和組件的配電。如本文所討論的,相機422擷取移動通過裝卸台之貨物的影像。 一個或多個儲存設備424能夠儲存各種類型的資訊,例如擷取的影像、識別的貨物項目、識別的與貨物項目相關聯的物件等。儲存設備424包括例如:固態硬碟、記憶體設備等。Additionally, sensor tower 400 may include deep learning accelerator 414 , strobe controller 416 , Ethernet switch 418 , power distribution system 420 , camera 422 , and one or more storage devices 424 . The deep learning accelerator 414 can execute various deep learning systems, such as neural networks. In some embodiments, the deep learning accelerator 414 may identify one or more objects associated with the cargo item based on information detected in the captured imagery. Additional details regarding object recognition are discussed here. The strobe controller 416 can control the flickering frequency of the light bar. As discussed herein, in some embodiments, the light bar flashes at 24Hz to match the frequency of the camera. An Ethernet switch 418 may provide switching between sensor tower cameras and other systems or components. Power distribution system 420 may manage power distribution to various systems and components in sensor tower 400 . As discussed herein, camera 422 captures images of cargo moving through the dock. The one or more storage devices 424 can store various types of information, such as captured images, identified cargo items, identified objects associated with the cargo items, and the like. The storage device 424 includes, for example, a solid state disk, a memory device, and the like.

「第5圖」是貨物項目移動穿過兩個感測器塔之間的裝卸台的實施例500。如「第5圖」所示,感測器塔502和504位於裝卸台的相對兩側。貨物項目 506正在穿過裝卸台。如本文所討論的,感測器塔502和504各自具有多個相機,其在貨物項目通過裝卸台時掃描貨物項目506。如「第5圖」所示,廣角相機具有更大的視野508。相比之下,高精度相機具有更窄的視野510。多個視野508和510如「第5圖」所示彼此重疊。"FIG. 5" is an embodiment 500 of a cargo item moving across a dock between two sensor towers. As shown in "FIG. 5," sensor towers 502 and 504 are located on opposite sides of the dock. Cargo item 506 is passing through the dock. As discussed herein, sensor towers 502 and 504 each have a plurality of cameras that scan cargo item 506 as it passes through the dock. As shown in "FIG. 5", the wide-angle camera has a larger field of view 508 . In contrast, a high precision camera has a narrower field of view 510 . Multiple fields of view 508 and 510 overlap each other as shown in "FIG. 5".

「第6圖」說明多個裝卸台的實施例600,其中每個裝卸台具有位於裝卸台相對側的兩個感測器塔606。如「第6圖」所示,第一裝卸台602包括一對感測器塔606,第二裝卸台604具有另一對感測器塔606。雖然「第6圖」的例子僅顯示兩個裝卸台602和604,實際上任何數量的成對感測器塔606可以與任何數量的裝卸台一起使用。在一些實施例中,單個感測器塔606可以與每個裝卸台一起使用而不是一對感測器塔。"FIG. 6" illustrates an embodiment 600 of multiple docks, where each dock has two sensor towers 606 located on opposite sides of the dock. As shown in FIG. 6 , the first dock 602 includes a pair of sensor towers 606 , and the second dock 604 has another pair of sensor towers 606 . Although the example of "FIG. 6" shows only two docks 602 and 604, virtually any number of pairs of sensor towers 606 can be used with any number of docks. In some embodiments, a single sensor tower 606 may be used with each dock rather than a pair of sensor towers.

「第7圖」是一個流程圖,說明當貨物項目移動穿過裝卸台時使用兩個感測器塔掃描貨物項目的過程700的實施例。最初,貨物項目接近裝卸台(步驟702)。當貨物項目移動經過第一感測器塔時,第一感測器塔擷取貨物項目第一側的多個影像(步驟704)。當貨物項目移動經過第二感測器塔時,第二感測器塔擷取貨物項目第二側的多個影像(步驟706)。"FIG. 7" is a flowchart illustrating an embodiment of a process 700 for scanning a cargo item using two sensor towers as it moves through a dock. Initially, a cargo item approaches a dock (step 702). As the cargo item moves past the first sensor tower, the first sensor tower captures a plurality of images of a first side of the cargo item (step 704). As the cargo item moves past the second sensor tower, the second sensor tower captures a plurality of images of a second side of the cargo item (step 706).

隨著運算設備分析貨物項目的第一側和貨物項目的第二側的多個影像(步驟708),過程700繼續進行。運算設備識別與貨物項目相關聯之至少一個物件(步驟710)。例如,物件可以是貨盤上的物品、容器中的物品等。在一些實施例中,可以基於多種屬性從擷取的影像中識別物件。例如,擷取的影像可以包括產品標籤、條碼、公司標誌、產品標誌、部件號、產品號、有效期、批號和識別物件並且可以將物件與特定製造商相關聯的其他標記。Process 700 continues as the computing device analyzes the plurality of images of the first side of the cargo item and the second side of the cargo item (step 708). The computing device identifies at least one item associated with the cargo item (step 710). For example, an item may be an item on a pallet, an item in a container, or the like. In some embodiments, objects may be identified from captured images based on various attributes. For example, captured images may include product labels, barcodes, company logos, product logos, part numbers, product numbers, expiration dates, lot numbers, and other markings that identify the item and can associate the item with a particular manufacturer.

在一些實施例中,與貨物項目相關聯的一些物件沒有被標記並且沒有任何其他區分標記。在這些情況下,本文描述的系統和方法可以確定物件的尺寸和其他特徵。例如,如果物件在盒子裡,系統和方法可以確定盒子的尺寸、盒子的顏色、盒子的反射率、盒子的紋理、用於製作盒子的材料,以及類似特徵。在一些實施例中,可以進一步基於物件的溫度來識別物件。In some embodiments, some items associated with cargo items are not marked and do not have any other distinguishing markings. In these cases, the systems and methods described herein can determine dimensions and other characteristics of the item. For example, if the item is in a box, the systems and methods can determine the dimensions of the box, the color of the box, the reflectivity of the box, the texture of the box, the material used to make the box, and similar characteristics. In some embodiments, the item may be further identified based on the temperature of the item.

在一些實施例中,所描述的系統和方法還可以識別對物件的任何損壞、篡改物件的證據或物件內容物洩漏的證據。In some embodiments, the described systems and methods can also identify any damage to the item, evidence of tampering with the item, or evidence of leakage of the item's contents.

再次參考到過程700,運算設備進一步將關於識別的物件的資訊傳送到操作平台(步驟712)。隨著操作平台基於關於識別的物件的資訊更新各種供應鏈資訊和倉庫操作資訊(步驟714),過程700繼續。Referring again to process 700, the computing device further transmits information about the identified object to the operating platform (step 712). Process 700 continues as the operations platform updates various supply chain information and warehouse operations information based on the information about the identified items (step 714).

「第8圖」是一個流程圖,說明當貨物項目移動穿過裝卸台時使用一個感測器塔掃描貨物項目的過程800的實施例。最初,貨物項目接近裝卸台(步驟802)。當貨物項目移動通過感測器塔時,感測器塔擷取貨物項目的多個影像(步驟804)。隨著感測器塔中的運算設備分析貨物項目的多個影像(步驟806),過程800繼續。運算設備然後識別與貨物項目相關聯的至少一個物件(步驟808)。如上所述,物件可以是貨盤上的物品、容器中的物品等。隨著運算設備將關於識別的物件的資訊傳送到操作平台(步驟810),過程800繼續。操作平台基於關於識別物件的資訊更新各種供應鏈資訊和倉庫操作資訊(步驟812)。"FIG. 8" is a flow diagram illustrating an embodiment of a process 800 for scanning cargo items using a sensor tower as the cargo items move through the dock. Initially, a cargo item approaches a dock (step 802). As the cargo item moves past the sensor tower, the sensor tower captures a plurality of images of the cargo item (step 804). Process 800 continues as the computing device in the sensor tower analyzes the multiple images of the cargo item (step 806). The computing device then identifies at least one item associated with the cargo item (step 808). As mentioned above, the item may be an item on a pallet, an item in a container, or the like. Process 800 continues as the computing device transmits information about the identified object to the operating platform (step 810). The operation platform updates various supply chain information and warehouse operation information based on the information about the identified item (step 812).

「第9圖」是說明經由本文討論的系統和方法所掃描之特定貨物項目的貨物記錄900的實施例。做為範例的貨物記錄900包括與從卡車運送到裝卸台之特定貨盤的物件相關的資訊。該資訊包括例如卡車編號、交貨時間、貨盤資訊、箱子數量等。貨物記錄 900的其他實施例可以包含「第9圖」中未顯示的附加資訊。在具體實現中,貨物記錄可以包括物品來自哪裡或去哪裡(例如,地址)、物流公司資訊、貨運公司標識符、貨盤重量、關於貨盤內容的特殊資訊(例如,不要堆疊超過三個更多的貨盤或溫度限制),等等。"FIG. 9" illustrates an embodiment of a cargo record 900 for a particular cargo item scanned via the systems and methods discussed herein. The exemplary cargo record 900 includes information related to items that are delivered from a truck to a dock for a particular pallet. This information includes, for example, truck number, delivery time, pallet information, number of boxes, etc. Other embodiments of the item record 900 may include additional information not shown in "FIG. 9". In a specific implementation, a shipment record may include where the item came from or went to (e.g., address), carrier information, carrier identifier, pallet weight, special information about pallet contents (e.g., do not stack more than three multiple pallets or temperature restrictions), etc.

「第10圖」是感測器塔的實施例的示意圖1000。在「第10圖」的例子中,感測器塔包括此處討論的許多組件和系統。例如,示意圖 1000 說明連接到相機陣列 1004 的乙太網路交換機 1002、配電盤 1006 和運算系統(例如,邊緣運算單元)1008。示意圖中還說明閘道 1010 和狀態指示器(例如,LED) 1012。在一些實施例中,閘道1010 連接到乙太網路交換機 1002 和配電盤 1006。閘道 1010 可以包含無線通訊模組,例如 LTE(長期演進技術)、WiFi、BLE(低功耗藍芽)和 GPS(全球定位系統)。閘道1010還可以包括與無線通訊模組相關聯的任何數量的天線。一個或多個無線通訊模組可以將資料從感測器塔傳輸到其他系統,例如:基於雲的運算設備。"FIG. 10" is a schematic diagram 1000 of an embodiment of a sensor tower. In the example in Figure 10, the sensor tower includes many of the components and systems discussed here. For example, schematic diagram 1000 illustrates Ethernet switch 1002 connected to camera array 1004, power strip 1006, and computing system (eg, edge computing unit) 1008. Also illustrated in the schematic is a gateway 1010 and a status indicator (eg, LED) 1012. In some embodiments, gateway 1010 is connected to Ethernet switch 1002 and switchboard 1006. The gateway 1010 can include wireless communication modules such as LTE (Long Term Evolution), WiFi, BLE (Bluetooth Low Energy) and GPS (Global Positioning System). Gateway 1010 may also include any number of antennas associated with wireless communication modules. One or more wireless communication modules can transmit data from the sensor tower to other systems, such as cloud-based computing devices.

「第10圖」進一步說明LED照明1014和音頻揚聲器1016。配電盤1006還連接到24V AC/DC轉換器1018和頻閃控制器1020。24V AC/DC轉換器1018將交流電轉換為24V的直流電。然後將 24V 電源軌連接到配電盤1006 和由 24V 供電的其他系統和組件。儘管本文描述的一些系統和方法使用 24V,但替代實施例可以使用不同的電壓。此外,感測器塔的一些實施例可以使用兩個或多個電壓,例如:5V、12V、24V、48V等。頻閃控制器1020管理與感測器塔相關聯的各種燈的頻閃頻率。「第10圖」中所示的各種組件和系統和本文中所討論的組件和系統類似。"FIG. 10" further illustrates LED lighting 1014 and audio speakers 1016. The switchboard 1006 is also connected to a 24V AC/DC converter 1018 and a strobe controller 1020. The 24V AC/DC converter 1018 converts alternating current to 24V direct current. The 24V power rail is then connected to the power strip 1006 and other systems and components powered by the 24V. Although some systems and methods described herein use 24V, alternative embodiments may use different voltages. Additionally, some embodiments of sensor towers may use two or more voltages, eg: 5V, 12V, 24V, 48V, etc. The strobe controller 1020 manages the strobe frequency of the various lights associated with the sensor towers. The various components and systems shown in "Figure 10" are similar to those discussed herein.

「第11圖」說明操作平台1100的實施例的方塊圖。在一些實施例中,操作平台1100類似於「第1圖」中說明的操作平台120。如「第11圖」所示,操作平台1100包括感測器管理器1102,其管理一個或多個感測器塔中的各種感測器(例如,相機和其他感測器)。硬體管理器1104管理各種特徵,例如反饋燈、溫度控制等。例如,硬體管理器1104可以響應於檢測和掃描貨物項目而啟動一個狀態燈兩秒。操作平台1100還包括資訊紋理檢測器1106,其檢測與貨物項目相關聯的各種紋理或與貨物項目相關聯的特定物件。資訊紋理提取器1108能夠從資訊紋理檢測器1106擷取到所檢測之資訊紋理資料中提取資訊紋理資訊。資訊紋理識別器1110基於檢測和提取的資訊紋理資料識別特定的貨物項目或與貨物項目相關聯的物件。"FIG. 11" illustrates a block diagram of an embodiment of an operating platform 1100. In some embodiments, operating platform 1100 is similar to operating platform 120 illustrated in FIG. 1 . As shown in FIG. 11 , the operating platform 1100 includes a sensor manager 1102 that manages various sensors (eg, cameras and other sensors) in one or more sensor towers. The hardware manager 1104 manages various features such as feedback lights, temperature control, and the like. For example, hardware manager 1104 may activate a status light for two seconds in response to detecting and scanning a cargo item. The operations platform 1100 also includes an informational texture detector 1106 that detects various textures associated with a cargo item or specific objects associated with a cargo item. The infotexture extractor 1108 can extract infotexture information from the infotexture data detected by the infotexture detector 1106 . The informative texture identifier 1110 identifies a particular cargo item or an object associated with a cargo item based on the detected and extracted informative texture data.

操作平台1100還包括與一個或多個基於雲的系統進行通訊的邊緣-雲通訊管理器1112。例如,邊緣-雲通訊管理器1112可以將識別的資料發送到雲、將遙測資料發送到雲、從雲接收操作命令等。事件處理器1114能夠處理各種事件,例如卡車到達、卡車離開、貨物裝載事件、貨物卸載事件、貨物識別、物件識別等。物流資料處理器 1116 能夠處理各種類型的物流資料,例如:處理高階物流資料以推斷來自先前步驟的資訊(例如,卡車庫存、卡車裝載時間、卡車卸載時間和裝卸台吞吐量)。The operating platform 1100 also includes an edge-cloud communication manager 1112 that communicates with one or more cloud-based systems. For example, edge-cloud communication manager 1112 may send identified data to the cloud, send telemetry data to the cloud, receive operational commands from the cloud, and the like. The event handler 1114 can handle various events, such as truck arrival, truck departure, cargo loading event, cargo unloading event, cargo identification, item identification, and the like. The logistics data processor 1116 is capable of processing various types of logistics data, such as: processing high-level logistics data to infer information from previous steps (eg, truck inventory, truck load time, truck unload time, and dock throughput).

另外,操作平台1100包括能夠監控和記錄與軟體和硬體操作狀態相關聯的資料的監控和記錄管理器1118。例如,監控和記錄管理器1118可以記錄與CPU負載過高、溫度過高、是否有足夠的記憶體或磁碟儲存空間等相關聯的操作狀態。資料儲存管理器1120處理此處所討論之任何系統和組件所生成或使用的資料的儲存和取回。資料安全管理器1122能夠保護由本文描述的系統和組件所接收和生成的各種類型的資料。在一些範例中,資料安全管理器1122可以處理資料加密、檢測到入侵時刪除的資料等。Additionally, the operating platform 1100 includes a monitoring and logging manager 1118 capable of monitoring and logging data associated with software and hardware operating status. For example, the monitoring and logging manager 1118 may log operating states associated with high CPU load, high temperature, sufficient memory or disk storage space, and the like. Data storage manager 1120 handles the storage and retrieval of data generated or used by any of the systems and components discussed herein. The data security manager 1122 is capable of protecting various types of data received and generated by the systems and components described herein. In some examples, the data security manager 1122 may handle data encryption, deletion of data upon detection of an intrusion, and the like.

操作平台1100還包括分析模組1124,分析模組1124執行各種類型的分析以生成商業見解和與本文描述的系統和方法的操作相關聯的其他資料。另外包含儀表板和外部應用程式程式介面(API)模組 1126。例如,儀表板可以顯示與貨物項目的移動、卡車的移動、貨物項目裝運的調度、時間延遲、裝載或卸載卡車或其他車輛的時間等相關聯的各種資訊。機器學習模組1128管理和執行各種機器學習操作,這些機器學習操作可以例如幫助識別貨物項目、與貨物項目相關聯的物件等。The operating platform 1100 also includes an analysis module 1124 that performs various types of analysis to generate business insights and other data associated with the operation of the systems and methods described herein. Additionally included are dashboard and external application programming interface (API) modules 1126. For example, the dashboard may display various information related to movement of cargo items, movement of trucks, scheduling of shipments of cargo items, time delays, times to load or unload trucks or other vehicles, and the like. Machine learning module 1128 manages and performs various machine learning operations that may, for example, help identify cargo items, items associated with cargo items, and the like.

「第12圖」是說明用於管理與操作平台相關聯的操作的過程1200之實施例的流程圖。最初,操作平台(例如,操作平台120或1100)檢測一件或多件物品(例如,貨物項目)正在通過裝卸台裝載或卸載(步驟1202)。在一些實施例中,一個或多個物品移動接近一個或多個感測器,例如包含在一個或多個感測器塔中的感測器。感測器塔擷取視頻饋送(例如,一系列擷取的影像)(步驟1204)。"FIG. 12" is a flowchart illustrating an embodiment of a process 1200 for managing operations associated with an operating platform. Initially, an operations platform (eg, operations platform 120 or 1100 ) detects that one or more items (eg, cargo items) are being loaded or unloaded by a loading dock (step 1202 ). In some embodiments, one or more items move proximate to one or more sensors, such as sensors contained in one or more sensor towers. The sensor tower captures a video feed (eg, a series of captured images) (step 1204).

過程 1200 繼續識別和追踪在裝卸台中和附近操作的系統和設備(步驟1206)。在一些實施例中,系統和設備可以包括叉車、卡車、貨盤、帶有可穿戴設備的工人、與貨物項目相關聯的個體物件、機器人設備等。過程1200進一步檢測與正在裝載或卸載的物品相關聯的資訊紋理(步驟1208)。在一些實施例中,資訊紋理可以包括標誌、標籤和本文討論的類型的其他圖形標記或圖形資訊。過程1200繼續從視頻或影像中提取資訊紋理(步驟1210)。The process 1200 continues with identifying and tracking systems and equipment operating in and near the dock (step 1206). In some embodiments, systems and devices may include forklifts, trucks, pallets, workers with wearable devices, individual items associated with cargo items, robotic devices, and the like. Process 1200 further detects informational textures associated with items being loaded or unloaded (step 1208). In some embodiments, the informational texture may include logos, labels, and other graphic indicia or graphic information of the types discussed herein. Process 1200 continues with extracting informative textures from video or images (step 1210).

在一些實施例中,過程1200可以將提取的資訊紋理資料傳送到雲(步驟1212)。這是可選的,並且在一些實施例中,資訊紋理資料儲存在本地(例如,在倉庫或其他本地設施內)。然後將提取的資訊紋理與特定產品或貨物裝運相關聯(步驟1214)。例如,系統可以基於對已知產品或貨物裝運的紋理的標識的資訊紋理標識符,將提取的資訊紋理與特定產品或貨物裝運相關聯。In some embodiments, process 1200 may transmit the extracted informational texture data to the cloud (step 1212). This is optional, and in some embodiments the informational texture data is stored locally (eg, within a warehouse or other local facility). The extracted informational textures are then associated with a particular product or shipment (step 1214). For example, the system may associate an extracted informative texture with a particular product or shipment based on an informative texture identifier that identifies textures of known products or shipments.

過程 1200 繼續將特定產品或貨物裝運整合到更高級別的物流資料中(步驟1216),例如庫存資料、卡車資料、裝卸台資料、設施資料等。然後驗證更高級別的物流資料並比較差異,並計算額外的統計資料(步驟1218)。例如,附加統計資料可以包括卡車庫存、卡車裝載時間、卡車卸載時間、裝卸台吞吐量等。The process 1200 continues with integrating specific product or cargo shipments into higher level logistics data (step 1216), such as inventory data, truck data, dock data, facility data, and the like. The higher level logistics data is then validated and compared for differences, and additional statistics are calculated (step 1218). For example, additional statistics may include truck inventory, truck load time, truck unload time, dock throughput, and the like.

「第13圖」是說明使用卷積神經網路(CNN)處理影像資料的過程1300的實施例的流程圖。最初,過程1300接收或擷取廣角相機影像(步驟1302)和高精度相機影像(步驟1304)。如本文所討論的,廣角相機影像1302和高精度相機影像1304可以從一個或多個感測器塔中的任何數量的相機接收(或擷取)。過程1300繼續預處理所有相機影像(例如,所有廣角相機影像1302和所有高精度相機影像1304)(步驟1306)。預處理操作的範例可能包括縮放影像、變換影像和其他影像處理操作,以將原始擷取影像更改為 CNN 期望作為輸入的格式和內容。"FIG. 13" is a flowchart illustrating an embodiment of a process 1300 for processing image data using a convolutional neural network (CNN). Initially, the process 1300 receives or captures wide-angle camera images (step 1302) and high-resolution camera images (step 1304). As discussed herein, wide-angle camera images 1302 and high-resolution camera images 1304 may be received (or captured) from any number of cameras in one or more sensor towers. Process 1300 continues with preprocessing all camera images (eg, all wide-angle camera images 1302 and all high-resolution camera images 1304 ) (step 1306 ). Examples of preprocessing operations might include scaling images, transforming images, and other image processing operations to change the original captured image into the format and content that the CNN expects as input.

如「第13圖」所示,過程1300可以用第一CNN處理廣角相機影像(步驟1308)並且用第二CNN處理高精度相機影像(步驟1310)。在一些實施例中,所描述的系統和方法可以使用任意數量的CNN來處理影像資料和其他類型的資料。在具體實施中,廣角相機影像是了解整體場景(例如,整體裝卸台資訊)的過程。高精度相機影像可以處理用以識別資訊紋理、提取資訊紋理等。在一些實施例中,步驟1308中對廣角相機影像的處理,包括檢測諸如叉車、卡車、貨盤、貨物項目和裝卸台中的其他物品的物件。高精度相機影像的處理(步驟 1310)可以檢測或識別小物件紋理(例如,標誌、純文字和標籤)和其他特定資訊。As shown in "FIG. 13", the process 1300 may process wide-angle camera images with a first CNN (step 1308) and process high-resolution camera images with a second CNN (step 1310). In some embodiments, the described systems and methods can use any number of CNNs to process imagery and other types of data. In a specific implementation, the wide-angle camera image is a process of understanding the overall scene (for example, the overall loading and unloading dock information). High-precision camera images can be processed to identify information textures, extract information textures, etc. In some embodiments, the processing of the wide-angle camera imagery in step 1308 includes detection of objects such as forklifts, trucks, pallets, cargo items, and other items in loading docks. The processing (step 1310) of the high-resolution camera image can detect or recognize small object textures (eg, logos, plain text, and labels) and other specific information.

過程1300繼續接收關於CNN輸出的人工輸入(步驟1312)。 在一些實施例中,人工輸入可以驗證 CNN 對數據的檢測或識別。在其他實施例中,人工輸入可以糾正 CNN 對資料的檢測或識別。過程1300可以進一步基於人工輸入向CNN提供訓練反饋(步驟1314)。當 CNN 從人工驗證或校正中學習時,這種訓練反饋可能會改善 CNN 未來對資料的檢測或識別。Process 1300 continues with receiving manual input on the CNN output (step 1312). In some embodiments, human input can verify the CNN's detection or recognition of the data. In other embodiments, human input can correct the CNN's detection or recognition of material. Process 1300 may further provide training feedback to the CNN based on human input (step 1314). As the CNN learns from human verification or correction, this training feedback may improve the CNN's future detection or recognition of material.

「第14圖」說明了適用於實現本文所述的系統和方法的運算設備1400的範例方塊圖。在一些實施例中,通過網路互連的運算設備集群可用於實現本文所討論的系統的任何一個或多個組件。"FIG. 14" illustrates an example block diagram of a computing device 1400 suitable for implementing the systems and methods described herein. In some embodiments, a cluster of computing devices interconnected by a network may be used to implement any one or more components of the systems discussed herein.

運算設備 1400 可以用於執行各種過程,例如本文所討論的那些。 運算設備1400可以用作伺服器、客戶端或任何其他運算實體。運算設備可以執行這裡討論的各種功能,並且可以執行一個或多個應用程序,例如這裡描述的應用程序。運算設備1400可以是多種運算設備中的任何一種,例如桌上電腦、筆記型電腦、伺服器電腦、手持電腦、平板電腦等。Computing device 1400 may be used to perform various processes, such as those discussed herein. Computing device 1400 may function as a server, client, or any other computing entity. A computing device may perform various functions discussed herein, and may execute one or more applications, such as the applications described herein. The computing device 1400 may be any one of various computing devices, such as a desktop computer, a notebook computer, a server computer, a handheld computer, a tablet computer, and the like.

運算設備1400包括一個或多個處理器1402、一個或多個記憶體設備1404、一個或多個介面1406、一個或多個大容量儲存設備1408、一個或多個輸入 /輸出 (I/O) 設備 1410 和顯示設備 1430 所有這些都耦合到匯流排 1412。處理器1402包括一個或多個處理器或控制器,其執行儲存在記憶體設備1404和/或大容量儲存設備1408中的指令。處理器1402還可以包括各種類型的電腦可讀取媒體,例如:快取記憶體。Computing device 1400 includes one or more processors 1402, one or more memory devices 1404, one or more interfaces 1406, one or more mass storage devices 1408, one or more input/output (I/O) Device 1410 and display device 1430 are all coupled to bus bar 1412 . Processor 1402 includes one or more processors or controllers that execute instructions stored in memory device 1404 and/or mass storage device 1408 . The processor 1402 may also include various types of computer-readable media, such as cache memory.

記憶體設備 1404 包括各種電腦可讀取媒體,例如揮發性記憶體(例如,隨機存取記憶體(RAM) 1414)和/或非揮發性記憶體(例如,唯讀記憶體(ROM) 1416)。 記憶體設備1404還可以包括可重複讀寫ROM,例如快閃記憶體。Memory device 1404 includes various computer-readable media such as volatile memory (e.g., random access memory (RAM) 1414) and/or nonvolatile memory (e.g., read only memory (ROM) 1416) . The memory device 1404 may also include rewritable ROM, such as flash memory.

大容量儲存設備1408 包括各種電腦可讀取媒體,例如磁帶、磁碟、光碟、固態記憶體(例如,快閃記憶體)等。如「第14圖」所示,特定的大容量儲存設備是硬碟1424。各種驅動器也可以包括在大容量儲存設備1408中以使得能夠讀取和/或寫入各種電腦可讀取媒體。大容量儲存設備1408包括可移除媒體1426和/或不可移除媒體。The mass storage device 1408 includes various computer-readable media, such as magnetic tapes, magnetic disks, optical disks, solid-state memory (eg, flash memory), and the like. As shown in FIG. 14 , the specific mass storage device is a hard disk 1424 . Various drives may also be included in mass storage device 1408 to enable reading and/or writing to various computer-readable media. Mass storage device 1408 includes removable media 1426 and/or non-removable media.

輸入 /輸出 (I/O) 設備1410包括允許資料和/或其他資訊輸入到運算設備1400或從運算設備1400取回的各種設備。範例的輸入 /輸出 (I/O) 設備1410包括游標控制設備、鍵盤、小鍵盤、麥克風、監視器或其他顯示設備、揚聲器、印表機、網路介面卡、數據機、鏡頭、CCD或其他影像擷取設備等。Input/output (I/O) devices 1410 include various devices that allow data and/or other information to be input to or retrieved from computing device 1400 . Exemplary input/output (I/O) devices 1410 include cursor control devices, keyboards, keypads, microphones, monitors or other display devices, speakers, printers, network interface cards, modems, cameras, CCDs or other Image capture equipment, etc.

顯示設備1430包括能夠向運算設備1400的一個或多個用戶顯示資訊的任何類型的設備。顯示設備1430的範例包括監視器、顯示終端、視頻投影設備等。Display device 1430 includes any type of device capable of displaying information to one or more users of computing device 1400 . Examples of the display device 1430 include a monitor, a display terminal, a video projection device, and the like.

介面1406 包括允許運算設備 1400 與其他系統、設備或運算環境交互的各種介面。範例介面1406包括任何數量的不同網路介面1420,例如區域網路(LAN)、廣域網路(WAN)、無線網路和網際網路的介面。其他介面包括用戶介面1418和週邊設備介面1422。介面1406還可以包括一個或多個用戶介面元素1418。介面1406還可以包括一個或多個週邊介面,例如用於印表機、指向設備(滑鼠、觸控板等)、鍵盤等的介面。Interfaces 1406 include various interfaces that allow computing device 1400 to interact with other systems, devices, or computing environments. Exemplary interfaces 1406 include any number of different network interfaces 1420, such as local area network (LAN), wide area network (WAN), wireless network, and Internet interfaces. Other interfaces include a user interface 1418 and a peripherals interface 1422 . Interface 1406 may also include one or more user interface elements 1418 . Interfaces 1406 may also include one or more peripheral interfaces, such as interfaces for printers, pointing devices (mouse, touchpad, etc.), keyboards, and the like.

匯流排 1412 允許處理器 1402、儲存設備 1404、介面 1406、大容量儲存設備 1408 和輸入 /輸出 (I/O) 設備1410相互通訊,以及耦合到匯流排 1412 的其他設備或組件。匯流排1412表示幾種類型的匯流排結構中的一種或多種,例如系統匯流排、PCI匯流排、IEEE 1394匯流排、USB匯流排等等。Bus 1412 allows processor 1402 , storage device 1404 , interface 1406 , mass storage device 1408 , and input/output (I/O) device 1410 to communicate with each other, as well as other devices or components coupled to bus 1412 . Buses 1412 represent one or more of several types of bus structures, such as a system bus, a PCI bus, an IEEE 1394 bus, a USB bus, and the like.

出於說明的目的,程式和其他可執行程式組件在本文中被呈現為分離的功能方塊,儘管應理解此類程式和組件可在不同時間駐留在運算設備1400的不同儲存組件中,並且由處理器(s)1402執行。或者,本文描述的系統和程序可以以硬體或硬體、軟體和/或韌體的組合來實現。例如,一個或多個特殊應用積體電路(ASIC)可以被程式化用以執行這裡描述的一個或多個系統和程序。For purposes of illustration, programs and other executable program components are presented herein as separate functional blocks, although it is understood that such programs and components may reside in different storage components of computing device 1400 at different times and be executed by processing implementor(s) 1402. Alternatively, the systems and programs described herein may be implemented in hardware or a combination of hardware, software, and/or firmware. For example, one or more application specific integrated circuits (ASICs) may be programmed to implement one or more of the systems and procedures described herein.

雖然本文描述了本公開的各種實施例,但是應該理解它們僅以範例的方式呈現,而不是限制。對於相關領域的技術人員來說顯而易見的是,在不脫離本公開的精神和範圍的情況下,可以對其中的形式和細節進行各種改變。因此,本公開的廣度和範圍不應受所描述的任何範例性實施例的限制,而應僅根據所附權利要求及其等同物來限定。此處的描述是為了說明和描述的目的而呈現的。其並非旨在詳盡無遺或將公開內容限制為所公開的精確形式。根據所公開的教導,許多修改和變化是可能的。此外,應當注意,本文討論的任何或所有替代實施方式可以以形成本公開的附加混合實施方式所需的任何組合使用。While various embodiments of the present disclosure have been described herein, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to those skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the present disclosure. Thus, the breadth and scope of the present disclosure should not be limited by any of the described exemplary embodiments, but should be defined only in accordance with the appended claims and their equivalents. The description herein has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise form disclosed. Many modifications and variations are possible in light of the disclosed teaching. Furthermore, it should be noted that any or all of the alternative embodiments discussed herein may be used in any combination desired to form additional hybrid embodiments of the present disclosure.

100:環境 102:裝卸台 104:第一感測器塔 106:第二感測器塔 108:貨物項目 110:資料通訊網路 112:可穿戴設備 114:機器人設備 116:叉車 118:倉庫設備 120:操作平台 122:基於雲的運算系統 200:感測器塔 202、204、206、208、210、212、214、216、218、220、222:相機 224、226、228、230:燈條 232:狀態燈 300:感測器塔 302、304、306、308、310、312、314、316、318、320、322、324、326、328:相機 330、332、334、336:燈條 338:狀態燈 400:感測器塔 402:通訊管理器 404:處理器 406:記憶體 408:圖形處理單元 410:反饋系統 412:光管理器 414:深度學習加速器 416:頻閃控制器 418:乙太網路交換器 420:配電系統 422:相機 424:儲存設備 500:實施例 502、504:感測器塔 506:貨物項目 508、510:視野 600:實施例 602:第一裝卸台 604:第二裝卸台 606:感測器塔 700:過程 800:過程 900:貨物記錄 1000:示意圖 1002:乙太網路交換機 1004:相機陣列 1006:配電盤 1008:運算系統 1010:閘道 1012:狀態指示器 1014:LED照明 1016:音頻揚聲器 1018:24V AC/DC轉換器 1020:頻閃控制器 1100:操作平台 1102:感測器管理器 1104:硬體管理器 1106:資訊紋理檢測器 1108:資訊紋理提取器 1110:資訊紋理識別器 1112:邊緣-雲通訊管理器 1114:事件處理器 1116:物流資料處理器 1118:監控和記錄管理器 1120:資料儲存管理器 1122:資料安全管理器 1124:分析模組 1126:儀表板和外部應用程式程式介面(API)模組 1128:機器學習模組 1200:過程 1300:過程 1400:運算設備 1402:處理器 1404:記憶體設備 1406:介面 1408:大容量儲存設備 1410:輸入 /輸出 (I/O) 設備 1412:匯流排 1414:隨機存取記憶體 1416:唯讀記憶體 1418:用戶介面 1420:網路介面 1422:週邊設備介面 1424:硬碟 1426:可移除媒體 1430:顯示設備 步驟702:貨物項目接近裝卸台 步驟704:當貨物項目移動經過第一感測器塔時,第一感測器塔擷取貨物項目第一側的多個影像 步驟706:當貨物項目移動經過第二感測器塔時,第二感測器塔擷取貨物項目第二側的多個影像 步驟708:運算設備分析貨物項目的第一側和貨物項目的第二側的多個影像 步驟710:運算設備識別與貨物項目相關聯之至少一個物件 步驟712:運算設備進一步將關於識別的物件的資訊傳送到操作平台 步驟714:操作平台基於關於識別的物件的資訊更新各種供應鏈資訊和倉庫操作資訊 步驟802:貨物項目接近裝卸台 步驟804:當貨物項目移動通過感測器塔時,感測器塔擷取貨物項目的多個影像 步驟806:感測器塔中的運算設備分析貨物項目的多個影像 步驟808:運算設備識別與貨物項目相關聯的至少一個物件 步驟810:運算設備將關於識別的物件的資訊傳送到操作平台 步驟812:操作平台基於關於識別物件的資訊更新各種供應鏈資訊和倉庫操作資訊 步驟1202:操作平台檢測一件或多件物品正在通過裝卸台裝載或卸載 步驟1204:感測器塔擷取視頻饋送(例如,一系列擷取的影像) 步驟1206:識別和追踪在裝卸台中和附近操作的系統和設備 步驟1208:檢測與正在裝載或卸載的物品相關聯的資訊紋理 步驟1210:從視頻或影像中提取資訊紋理 步驟1212:將提取的資訊紋理資料傳送到雲 步驟1214:將提取的資訊紋理與特定產品或貨物裝運相關聯 步驟1216:將特定產品或貨物裝運整合到更高級別的物流資料(例如庫存資料、卡車資料、裝卸台資料、設施資料) 步驟1218:驗證更高級別的物流資料並比較差異,並計算額外的統計資料 步驟1302:接收或擷取廣角相機影像 步驟1304:接收或擷取高精度相機影像 步驟1306:預處理所有相機影像 步驟1308:用第一CNN處理廣角相機影像 步驟1310:用第二CNN處理高精度相機影像 步驟1312:接收關於CNN輸出的人工輸入 步驟1314:基於人工輸入向CNN提供訓練反饋 100: Environment 102: loading and unloading table 104: First sensor tower 106:Second sensor tower 108: cargo items 110: Data communication network 112:Wearable devices 114:Robot equipment 116: forklift 118: Warehouse equipment 120: Operating platform 122: Cloud-Based Computing Systems 200: Sensor Tower 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222: camera 224, 226, 228, 230: Light bar 232: status light 300: Sensor Tower 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324, 326, 328: camera 330, 332, 334, 336: Light bar 338: status light 400: Sensor Tower 402: Communication Manager 404: Processor 406: Memory 408: Graphics Processing Unit 410: Feedback Systems 412: Light Manager 414:Deep Learning Accelerator 416: Strobe controller 418:Ethernet switch 420: Distribution system 422: camera 424: storage device 500: Example 502, 504: sensor tower 506: cargo items 508, 510: Vision 600: Example 602: The first loading and unloading platform 604: Second loading and unloading platform 606:Sensor Tower 700: process 800: process 900: cargo record 1000: Schematic diagram 1002:Ethernet switch 1004: camera array 1006: Switchboard 1008:Computing system 1010: Gateway 1012: status indicator 1014: LED lighting 1016: Audio speaker 1018:24V AC/DC Converter 1020: Strobe controller 1100: Operating platform 1102: Sensor Manager 1104: hardware manager 1106: Information Texture Detector 1108: Info Texture Extractor 1110: Information Texture Recognizer 1112:Edge-Cloud Communication Manager 1114:Event handler 1116:Logistics Data Processor 1118:Monitoring and Recording Manager 1120: Data storage manager 1122:Data Security Manager 1124: Analysis module 1126: Dashboard and External Application Programming Interface (API) Modules 1128:Machine Learning Module 1200: process 1300: process 1400: computing equipment 1402: Processor 1404: memory device 1406: interface 1408: mass storage device 1410: Input/Output (I/O) Devices 1412: busbar 1414: random access memory 1416: ROM 1418: user interface 1420: Network interface 1422: Peripheral device interface 1424:hard disk 1426: Removable media 1430: display device Step 702: The cargo item approaches the dock Step 704: The first sensor tower captures a plurality of images of the first side of the cargo item as the cargo item moves past the first sensor tower Step 706: The second sensor tower captures a plurality of images of a second side of the cargo item as the cargo item moves past the second sensor tower Step 708: The computing device analyzes the plurality of images of the first side of the cargo item and the second side of the cargo item Step 710: The computing device identifies at least one object associated with the cargo item Step 712: The computing device further transmits information about the identified object to the operating platform Step 714: The operation platform updates various supply chain information and warehouse operation information based on the information about the identified items Step 802: The cargo item approaches the dock Step 804: The sensor tower captures multiple images of the cargo item as the cargo item moves past the sensor tower Step 806: The computing device in the sensor tower analyzes the multiple images of the cargo item Step 808: The computing device identifies at least one item associated with the cargo item Step 810: The computing device transmits information about the identified object to the operating platform Step 812: The operation platform updates various supply chain information and warehouse operation information based on the information about the identified object Step 1202: The operating platform detects that one or more items are being loaded or unloaded by the dock Step 1204: The sensor tower captures a video feed (e.g., a series of captured images) Step 1206: Identify and track systems and equipment operating in and near the dock Step 1208: Detect informational textures associated with items being loaded or unloaded Step 1210: Extract information texture from video or image Step 1212: Send the extracted information texture data to the cloud Step 1214: Associating the extracted informative texture with a specific product or shipment Step 1216: Consolidate specific product or cargo shipments into higher level logistics data (e.g. inventory data, truck data, dock data, facility data) Step 1218: Verify higher level logistics data and compare differences, and calculate additional statistics Step 1302: Receive or retrieve wide-angle camera images Step 1304: Receive or capture high-precision camera images Step 1306: Preprocess all camera images Step 1308: Process the wide-angle camera image with the first CNN Step 1310: Process the high-precision camera image with the second CNN Step 1312: Receive manual input on CNN output Step 1314: Provide training feedback to CNN based on human input

第1圖說明可在其中實施示範性實施例的環境的方塊圖。 第2圖說明包含十一個相機的感測器塔的實施例。 第3圖說明包含十四個相機的感測器塔的實施例。 第4圖說明感測器塔的實施例的方塊圖。 第5圖說明貨物穿過兩個感測器塔之間的裝卸台的實施例。 第6圖說明多個裝卸台的實施例,其中每個裝卸台都有兩個感測器塔,位於裝卸台的相對兩側。 第7圖說明當貨物項目穿過裝卸台時使用兩個感測器塔掃描貨物項目的過程的實施例流程圖。 第8圖說明當貨物項目穿過裝卸台時使用一個感測器塔掃描貨物項目的過程的實施例流程圖。 第9圖說明使用本文討論的系統和方法掃描的特定貨物項目的貨物記錄的實施例。 第10圖說明感測器塔的一個實施例的示意圖。 第11圖說明操作平台的實施例的方塊圖。 第12圖說明用於管理與操作平台相關聯之操作過程的實施例流程圖。 第13圖說明使用卷積神經網路處理影像資料的過程的實施例流程圖。 第14圖說明運算設備的示範方塊圖。 Figure 1 illustrates a block diagram of an environment in which exemplary embodiments may be implemented. Figure 2 illustrates an embodiment of a sensor tower including eleven cameras. Figure 3 illustrates an embodiment of a sensor tower including fourteen cameras. Figure 4 illustrates a block diagram of an embodiment of a sensor tower. Figure 5 illustrates an embodiment where cargo passes through a dock between two sensor towers. Figure 6 illustrates an embodiment of multiple docks, where each dock has two sensor towers located on opposite sides of the dock. Figure 7 illustrates an embodiment flow diagram of a process for scanning cargo items using two sensor towers as they pass through a dock. Figure 8 illustrates a flowchart of an embodiment of a process for scanning cargo items using a sensor tower as they pass through a dock. Figure 9 illustrates an embodiment of a cargo record for a particular cargo item scanned using the systems and methods discussed herein. Figure 10 illustrates a schematic diagram of one embodiment of a sensor tower. Figure 11 illustrates a block diagram of an embodiment of an operating platform. Figure 12 illustrates a flow diagram of an embodiment for managing operational processes associated with an operating platform. FIG. 13 illustrates a flowchart of an embodiment of a process of processing image data using a convolutional neural network. Figure 14 illustrates an exemplary block diagram of a computing device.

100:環境 100: Environment

102:裝卸台 102: loading and unloading table

104:第一感測器塔 104: First sensor tower

106:第二感測器塔 106:Second sensor tower

108:貨物項目 108: cargo items

110:資料通訊網路 110: Data communication network

112:可穿戴設備 112:Wearable devices

114:機器人設備 114:Robot equipment

116:叉車 116: forklift

118:倉庫設備 118: Warehouse equipment

120:操作平台 120: Operating platform

122:基於雲的運算系統 122: Cloud-Based Computing Systems

Claims (20)

一種貨物管理系統,包含: 一個或多個處理器;以及 一個或多個非暫時電腦可讀取媒體,儲存可由所述一個或多個處理器執行的指令,其中指令在被執行時使所述系統執行包括以下操作: 從一感測器塔接收至少一個廣角相機影像,其中所述感測器塔位於一裝卸台附近並且所述廣角相機影像與所述裝卸台的至少一部分相關聯; 從所述感測器塔接收複數個高精度相機影像,其中所述複數個高精度相機影像與所述裝卸台的至少一部分相關聯; 預處理所述廣角相機影像和所述複數個高精度相機影像以生成一預處理廣角影像和複數個預處理高精度影像; 使用一第一卷積神經網路(CNN)處理所述預處理廣角影像;以及 使用一第二卷積神經網路(CNN)處理所述複數個預處理高精度影像。 A cargo management system comprising: one or more processors; and One or more non-transitory computer-readable media storing instructions executable by the one or more processors, wherein the instructions, when executed, cause the system to perform operations including: receiving at least one wide-angle camera image from a sensor tower, wherein the sensor tower is located adjacent to a dock and the wide-angle camera image is associated with at least a portion of the dock; receiving a plurality of high-precision camera images from the sensor tower, wherein the plurality of high-precision camera images are associated with at least a portion of the dock; preprocessing the wide-angle camera image and the plurality of high-resolution camera images to generate a pre-processed wide-angle image and a plurality of pre-processed high-resolution images; processing the preprocessed wide-angle image using a first convolutional neural network (CNN); and The plurality of pre-processed high-resolution images are processed using a second convolutional neural network (CNN). 如請求項1所述之貨物管理系統,更包含基於使用該第二CNN處理所述複數個預處理高精度影像來識別在所述裝卸台附近操作的至少一個設備。The cargo management system as claimed in claim 1, further comprising identifying at least one device operating near the loading dock based on processing the plurality of pre-processed high-resolution images using the second CNN. 如請求項1所述之貨物管理系統,該操作還包含基於使用該第二CNN處理所述複數個預處理高精度影像來識別接近所述裝卸台的一貨物項目。The cargo management system of claim 1, the operations further comprising identifying a cargo item approaching the dock based on processing the plurality of pre-processed high-resolution images using the second CNN. 如請求項3所述之貨物管理系統,該操作還包含基於使用該第二CNN處理所述複數個預處理高精度影像來識別與該貨物項目相關聯的複數個物件。The cargo management system as recited in claim 3, further comprising identifying a plurality of objects associated with the cargo item based on processing the plurality of pre-processed high-resolution images using the second CNN. 如請求項3所述之貨物管理系統,其中識別該貨物項目包含分析該貨物項目上的標籤、分析該貨物項目上的文字、分析該貨物項目上的標誌、分析該貨物項目的尺寸、分析該貨物項目的顏色或分析該貨物項目材積中的至少一種。The cargo management system as described in Claim 3, wherein identifying the cargo item includes analyzing the label on the cargo item, analyzing the text on the cargo item, analyzing the logo on the cargo item, analyzing the size of the cargo item, analyzing the At least one of the color of the cargo item or analyzing the volume of the cargo item. 如請求項1所述之貨物管理系統,該操作更進一步包含基於使用該第二CNN處理所述複數個預處理高精度影像的結果來接收一人工輸入。In the cargo management system as claimed in claim 1, the operation further includes receiving a manual input based on the result of processing the plurality of pre-processed high-resolution images using the second CNN. 如請求項6所述之貨物管理系統,該操作還包含基於接收到的該人工輸入來訓練該第二 CNN。As the goods management system described in claim 6, the operation further includes training the second CNN based on the received manual input. 如請求項1所述之貨物管理系統,該操作更進一步包含分析所述預處理高精度影像以識別與該貨物項目相關聯的至少一個物件是否損壞或識別與該貨物項目相關聯的至少一個事件是否被篡改。The cargo management system of claim 1, the operations further comprising analyzing the pre-processed high-resolution images to identify whether at least one object associated with the cargo item is damaged or to identify at least one event associated with the cargo item whether it has been tampered with. 如請求項1所述之貨物管理系統,該操作還包含確定該貨物項目是否正在通過所述裝卸台進行裝載或卸載。The cargo management system of claim 1, the operation further comprising determining whether the cargo item is being loaded or unloaded by the dock. 如請求項1所述之貨物管理系統,該操作還包含識別至少一個在所述裝卸台附近操作的設備。The cargo management system as recited in claim 1, the operations further comprising identifying at least one device operating in the vicinity of said dock. 如請求項1所述之貨物管理系統,該操作進一步包含基於使用該第二 CNN處理複數個預處理高精度影像來檢測與靠近所述裝卸台的至少一個項目相關聯的一資訊紋理。The cargo management system of claim 1, the operations further comprising detecting an information texture associated with at least one item near the dock based on processing the plurality of pre-processed high-resolution images using the second CNN. 如請求項11所述之貨物管理系統,該操作進一步包含將檢測到的與靠近所述裝卸台的至少一個物件相關聯的所述資訊紋理傳送到一遠端運算系統。The cargo management system of claim 11, the operations further comprising transmitting the information texture detected to be associated with at least one object proximate to the dock to a remote computing system. 如請求項11所述之貨物管理系統,該操作進一步包含將所述資訊紋理與一特定產品相關聯。In the item management system of claim 11, the operation further includes associating the information texture with a specific product. 如請求項13所述之貨物管理系統,該操作進一步包含將所述特定產品資料與更高級別的物流資料整合。In the cargo management system as claimed in claim 13, the operation further includes integrating the specific product data with higher-level logistics data. 一種貨物管理方法,包含以下步驟: 從一感測器塔接收至少一個廣角相機影像,其中所述感測器塔位於一裝卸台附近並且所述至少一個廣角相機影像與所述裝卸台的至少一部分相關聯; 從所述感測器塔接收複數個高精度相機影像,其中所述複數個高精度相機影像與所述裝卸台的至少一部分相關聯; 使用一第一卷積神經網路(CNN)處理所述廣角影像; 使用一第二卷積神經網路(CNN)處理所述複數個高精度影像;以及 根據處理過的複數個高精度影像識別所述裝卸台附近的一貨物項目。 A cargo management method, comprising the following steps: receiving at least one wide-angle camera image from a sensor tower, wherein the sensor tower is located adjacent to a dock and the at least one wide-angle camera image is associated with at least a portion of the dock; receiving a plurality of high-precision camera images from the sensor tower, wherein the plurality of high-precision camera images are associated with at least a portion of the dock; processing the wide-angle image using a first convolutional neural network (CNN); processing the plurality of high-resolution images using a second convolutional neural network (CNN); and A cargo item near the loading and unloading dock is identified according to the processed plurality of high-precision images. 如請求項15所述之貨物管理方法,其中更進一步包含預處理所述至少一個廣角相機影像和所述複數個高精度相機影像以生成一預處理廣角影像和複數個預處理高精度影像。The cargo management method according to claim 15, further comprising preprocessing the at least one wide-angle camera image and the plurality of high-resolution camera images to generate a pre-processed wide-angle image and a plurality of pre-processed high-resolution images. 如請求項15所述之貨物管理方法,其中更進一步包含基於使用該第二 CNN處理所述複數個高精度影像來識別與該貨物項目相關聯的複數個物件。The cargo management method as described in claim 15, further comprising identifying a plurality of objects associated with the cargo item based on using the second CNN to process the plurality of high-precision images. 如請求項15所述之貨物管理方法,其中識別該貨物項目包括分析該貨物項目上的標籤、分析該貨物項目上的文字、分析該貨物項目上的標誌、分析該貨物項目的尺寸、分析該貨物項目的顏色或分析該貨物項目的材積中的至少一種。The cargo management method as described in claim 15, wherein identifying the cargo item includes analyzing the label on the cargo item, analyzing the text on the cargo item, analyzing the mark on the cargo item, analyzing the size of the cargo item, analyzing the At least one of the color of the cargo item or the volume of the cargo item analyzed. 如請求項15所述之貨物管理方法,其中更進一步包含分析處理過的所述複數個高精度影像以識別至少一個與該貨物項目相關聯的物件是否損壞或識別至少一個與貨物相關聯的物件是否被篡改。The cargo management method according to claim 15, further comprising analyzing the processed plurality of high-precision images to identify whether at least one item associated with the cargo item is damaged or to identify at least one item associated with the cargo whether it has been tampered with. 如請求項15所述之貨物管理方法,其中更進一步包含基於接收到與處理過的所述複數個高精度影像相關聯的一人工輸入來訓練該第二CNN。The cargo management method according to claim 15, further comprising training the second CNN based on receiving a manual input associated with the processed high-resolution images.
TW111136395A 2021-09-28 2022-09-26 Freight management system and method thereof TW202321130A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/488,031 US12142048B2 (en) 2021-09-28 2021-09-28 Freight management systems and methods
US17/488,033 US12142049B2 (en) 2021-09-28 2021-09-28 Freight management systems and methods
US17/488,033 2021-09-28
US17/488,031 2021-09-28

Publications (1)

Publication Number Publication Date
TW202321130A true TW202321130A (en) 2023-06-01

Family

ID=85783444

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111136395A TW202321130A (en) 2021-09-28 2022-09-26 Freight management system and method thereof
TW111136394A TW202321129A (en) 2021-09-28 2022-09-26 Freight management apparatus and method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111136394A TW202321129A (en) 2021-09-28 2022-09-26 Freight management apparatus and method thereof

Country Status (2)

Country Link
TW (2) TW202321130A (en)
WO (2) WO2023055714A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554987B2 (en) * 2009-12-28 2014-07-23 キヤノン株式会社 Object identification device and control method thereof
EP3183687B1 (en) * 2014-08-21 2020-07-08 IdentiFlight International, LLC Avian detection system and method
FI20155171A7 (en) * 2015-03-13 2016-09-14 Conexbird Oy Container inspection arrangement, method, equipment and software
WO2019075276A1 (en) * 2017-10-11 2019-04-18 Aquifi, Inc. Systems and methods for object identification
JP2022514859A (en) * 2018-12-21 2022-02-16 キャンスキャン・ソフトウェアズ・アンド・テクノロジーズ・インコーポレーテッド Related methods for assessing the condition of automated inspection systems and shipping containers
US10984378B1 (en) * 2019-10-31 2021-04-20 Lineage Logistics, LLC Profiling pallets and goods in a warehouse environment

Also Published As

Publication number Publication date
TW202321129A (en) 2023-06-01
WO2023055712A1 (en) 2023-04-06
WO2023055714A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
US9505554B1 (en) Capturing packaging image via scanner
US9171278B1 (en) Item illumination based on image recognition
US20210374659A1 (en) Real Time Event Tracking and Digitization for Warehouse Inventory Management
US20170066597A1 (en) Information processing device, information processing system, distribution system, information processing method, and program storage medium
US11393207B1 (en) Multi-video annotation
US10229487B2 (en) Optical vibrometric testing of container for items
WO2021087490A1 (en) Profiling pallets and goods in a warehouse environment
JP6489562B1 (en) Distribution warehouse work grasping system
US20240103447A1 (en) Product identification system and method
US12487337B2 (en) LiDAR based monitoring in material handling environment
US11443516B1 (en) Locally and globally locating actors by digital cameras and machine learning
JP2023010638A (en) Warehouse location monitoring method, computer apparatus and storage medium
US10611372B2 (en) Dual-mode data capture system for collision detection and object dimensioning
KR102619659B1 (en) Cargo information recognition device and method to automate the Delivery cargo Handling
US11398094B1 (en) Locally and globally locating actors by digital cameras and machine learning
CN113978987B (en) Pallet object packaging and picking method, device, equipment and medium
US11896144B1 (en) Determining inventory levels using rotatable counting devices and visual imagery
US12142049B2 (en) Freight management systems and methods
CN116310405A (en) Goods identification method based on warehouse location, unmanned forklift and storage medium
TW202321130A (en) Freight management system and method thereof
US12142048B2 (en) Freight management systems and methods
KR20240024901A (en) A system for monitoring the movement of multiple containers
JPWO2019003687A1 (en) Projection instructing device, luggage sorting system, and projection instructing method
JP2022135731A (en) Product management system, product management method, and product management program
US20250245803A1 (en) Computer-automated determinations of pallet structural integrity and catch weight