[go: up one dir, main page]

TW202312666A - Ultrasonic transducer - Google Patents

Ultrasonic transducer Download PDF

Info

Publication number
TW202312666A
TW202312666A TW110132451A TW110132451A TW202312666A TW 202312666 A TW202312666 A TW 202312666A TW 110132451 A TW110132451 A TW 110132451A TW 110132451 A TW110132451 A TW 110132451A TW 202312666 A TW202312666 A TW 202312666A
Authority
TW
Taiwan
Prior art keywords
ultrasonic sensor
stress balance
layer
piezoelectric body
acoustic resistance
Prior art date
Application number
TW110132451A
Other languages
Chinese (zh)
Other versions
TWI772167B (en
Inventor
陳隆
吳瑋仁
楊松儒
蘇益廷
Original Assignee
詠業科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 詠業科技股份有限公司 filed Critical 詠業科技股份有限公司
Priority to TW110132451A priority Critical patent/TWI772167B/en
Priority to CN202111095552.1A priority patent/CN115728757A/en
Application granted granted Critical
Publication of TWI772167B publication Critical patent/TWI772167B/en
Publication of TW202312666A publication Critical patent/TW202312666A/en

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

An ultrasonic transducer comprising a piezoceramic element, an acoustic matching layer, a stress balance layer and a damping layer. The stress-balance layer is connected to the piezoceramic element, and the stress-balance layer is harder than the damping layer, and its acoustic impedance is less than 5 MRayl.

Description

超音波傳感器ultrasonic sensor

本創作大體上為一種超音波傳感器,更具體言之,其係關於一種包含應力平衡層的超音波傳感器。The present invention is an ultrasonic sensor in general, and more specifically, it relates to an ultrasonic sensor including a stress-balancing layer.

超音波傳感器(ultrasonic transducer)可用於短距離的物件偵測,其藉由發出的超音波碰撞到物體之後反射回來的飛行時間差 (time of flight; ToF),可以計算出超音波傳感器與待偵測物體之間的距離。對於超音波偵測而言,待偵測物體的類型與性質並不會受到太多的限制,包括各種表面顏色、透明度、硬度的固體、液體、或粉體等,其都可以用超音波傳感器來進行偵測。故此,現今超音波傳感器已廣泛應用在倒車雷達(parking sensor)、位高偵測(level sensor)、薄片層數偵測(multiple sheet detection)及流量偵測(flow meter)等範疇。The ultrasonic transducer (ultrasonic transducer) can be used for short-distance object detection. It can calculate the difference between the ultrasonic sensor and the object to be detected by the time of flight (ToF) reflected back after the ultrasonic wave hits the object. distance between objects. For ultrasonic detection, the type and nature of the object to be detected are not subject to too many restrictions, including solids, liquids, or powders of various surface colors, transparency, hardness, etc., which can be used with ultrasonic sensors to detect. Therefore, ultrasonic sensors have been widely used in the fields of parking sensors, level sensors, multiple sheet detection and flow meters.

超音波傳感器的主要組成元件為壓電陶瓷(piezoceramics),例如以鋯鈦酸鉛(lead zirconate titanate, PZT)材料製作的陶瓷,其雙面會塗佈導電層。在運作中施加高頻交流電訊號會讓壓電陶瓷產生高頻率振動,該高頻率震動是一種聲波,如果此聲波的頻率落在超音波範圍,即為超音波振動。為了讓所產生的超音波能從壓電陶瓷傳遞到空氣中,會在壓電陶瓷與空氣之間設置聲阻匹配層,使得兩者的聲阻得以匹配,從而可有效地將超音波傳遞到空氣中。一般業界常用的匹配層材料為高分子樹脂與空心玻璃球混合成的複合材料,來達到較低的聲阻特性,同時也具有較佳的耐候性及可靠度。然而,壓電陶瓷所產生的振動是同時朝向前端(發射端)及背面傳遞的,若無法將朝向背面發射的超音波消除,在使用此超音波傳感器時,會有較大的殘響,殘響會使訊號判別失效,故此,減震體(damping layer)就成了超音波傳感器中必要的部件,其會設置環繞在壓電陶瓷和/或聲阻匹配層周圍,使得壓電陶瓷震動的餘波能被快速的消除。用於超音波傳感器的減震體,一般業界常用之減震體材料為高分子樹脂與金屬或陶瓷粒子混合之複合材料,其聲阻抗與壓電陶瓷較相近,以吸收較多背向傳遞的超音波,讓超音波傳感器之餘震降低。The main component of the ultrasonic sensor is piezoelectric ceramics (piezoceramics), such as ceramics made of lead zirconate titanate (PZT) material, which is coated with a conductive layer on both sides. Applying a high-frequency AC signal during operation will cause piezoelectric ceramics to generate high-frequency vibrations. The high-frequency vibrations are a type of sound wave. If the frequency of the sound wave falls within the ultrasonic range, it is ultrasonic vibration. In order to allow the generated ultrasonic waves to pass from the piezoelectric ceramics to the air, an acoustic resistance matching layer is set between the piezoelectric ceramics and the air, so that the acoustic resistances of the two can be matched, so that the ultrasonic waves can be effectively transmitted to the air. in the air. Generally, the matching layer material commonly used in the industry is a composite material mixed with polymer resin and hollow glass spheres to achieve lower acoustic resistance characteristics, and also has better weather resistance and reliability. However, the vibration generated by piezoelectric ceramics is transmitted toward the front (transmitter) and the back at the same time. If the ultrasonic waves emitted toward the back cannot be eliminated, there will be a large reverberation when using this ultrasonic sensor. The sound will make the signal discrimination invalid. Therefore, the damping layer becomes a necessary part of the ultrasonic sensor, which will be set around the piezoelectric ceramic and/or the acoustic resistance matching layer, so that the piezoelectric ceramic vibrates Aftermath can be quickly eliminated. For the shock absorber of ultrasonic sensors, the commonly used shock absorber material in the industry is a composite material mixed with polymer resin and metal or ceramic particles. Its acoustic impedance is closer to that of piezoelectric ceramics to absorb more back-transferred Ultrasonic, so that the aftershock of the ultrasonic sensor is reduced.

為了讓閱者對本創作之面向有基本的了解,以下段落提出了本創作的簡要說明。此概要並非是本發明內容詳盡的綜覽,並未意欲要表明本發明的所有關鍵或必要元件或是要限定本發明之範疇,其訴求僅在於對後續所將探討的本發明細節描述先以簡化的形式提出其中的某些概念。In order to let readers have a basic understanding of the aspects of this creation, the following paragraphs present a brief description of this creation. This summary is not an exhaustive overview of the content of the present invention, and it is not intended to indicate all key or essential elements of the present invention or to limit the scope of the present invention. Some of these concepts are presented in simplified form.

本發明的目的即在於提出一種新穎的超音波傳感器,其特點為在壓電陶瓷與減震體之間增加一應力平衡層,以改善壓電陶瓷與聲阻匹配層在高低溫環境下,由於熱膨脹係數的差異,聲阻匹配層會對壓電陶瓷產生熱應力,進而導致壓電陶瓷破裂。其次,此應力平衡層的材料與業界常用之高密度、高聲阻抗的減震體材料不同,其密度相對較小且聲阻抗也相對較低,所以能減少超音波從壓電陶瓷背面的傳遞,從而提升整體傳感器的發射感度。此具有應力平衡層結構的超音波傳感器,可以提升超音波傳感器的可靠度,還提供了超音波傳感器在減震材料配置的靈活性。The purpose of the present invention is to propose a novel ultrasonic sensor, which is characterized in that a stress balance layer is added between the piezoelectric ceramics and the shock absorber to improve the piezoelectric ceramics and the acoustic resistance matching layer in high and low temperature environments. Due to the difference in thermal expansion coefficient, the acoustic resistance matching layer will generate thermal stress on the piezoelectric ceramic, which will cause the piezoelectric ceramic to crack. Secondly, the material of this stress balance layer is different from the shock absorber material with high density and high acoustic impedance commonly used in the industry. Its density is relatively low and the acoustic impedance is relatively low, so it can reduce the transmission of ultrasonic waves from the back of the piezoelectric ceramic. , thereby improving the emission sensitivity of the overall sensor. The ultrasonic sensor with the stress balance layer structure can improve the reliability of the ultrasonic sensor, and also provides the flexibility of the ultrasonic sensor in the shock-absorbing material configuration.

本發明的面向之一在於提出一種超音波傳感器,其包含一壓電體,具有隔著該壓電體相對的第一表面與第二表面,及連接該第一表面與該第二表面之側表面。一聲阻匹配層,該聲阻匹配層具有隔著該聲阻匹配層相對的第三表面與第四表面,且該第三表面與壓電體的第二表面相接。一應力平衡層,該應力平衡層具有隔著該應力平衡層相對的第五表面與第六表面,該第六表面與壓電體的第一表面相接。該應力平衡層的硬度大於減震體的硬度,且該應力平衡層的聲阻小於5 MRayl。一減震體,包覆該應力平衡層,和/或該壓電體,和/或該聲阻匹配層。One aspect of the present invention is to provide an ultrasonic sensor, which includes a piezoelectric body, has a first surface and a second surface opposite to each other across the piezoelectric body, and a side connecting the first surface and the second surface surface. An acoustic resistance matching layer, the acoustic resistance matching layer has a third surface and a fourth surface facing each other through the acoustic resistance matching layer, and the third surface is in contact with the second surface of the piezoelectric body. A stress balance layer, the stress balance layer has a fifth surface and a sixth surface opposite to each other through the stress balance layer, and the sixth surface is in contact with the first surface of the piezoelectric body. The hardness of the stress balance layer is greater than that of the shock absorber, and the acoustic resistance of the stress balance layer is less than 5 MRayl. A shock absorber covers the stress balance layer, and/or the piezoelectric body, and/or the acoustic resistance matching layer.

本發明的另一面向在於提出一種超音波傳感器,其應力平衡層具有貫穿該應力平衡層的第五表面與第六表面的貫穿孔。Another aspect of the present invention is to provide an ultrasonic sensor, the stress balance layer of which has a through hole penetrating through the fifth surface and the sixth surface of the stress balance layer.

本發明的另一面向在於提出一種超音波傳感器,其應力平衡層的該第六表面外緣可向前包覆延伸與該壓電體的側表面相連接。Another aspect of the present invention is to provide an ultrasonic sensor, the outer edge of the sixth surface of the stress balance layer can cover and extend forward to connect with the side surface of the piezoelectric body.

本發明的另一面向在於提出一種超音波傳感器,其具有桶狀承載體容納壓電體、聲阻匹配層、應力平衡層與減震體。Another aspect of the present invention is to provide an ultrasonic sensor, which has a barrel-shaped carrier for accommodating a piezoelectric body, an acoustic resistance matching layer, a stress balancing layer, and a shock absorber.

本發明的又一面向在於提出一種超音波傳感器,其具有管狀承載體容納壓電體、聲阻匹配層、應力平衡層與減震體。Another aspect of the present invention is to provide an ultrasonic sensor, which has a tubular carrier for accommodating a piezoelectric body, an acoustic resistance matching layer, a stress balancing layer, and a shock absorber.

本發明的這類目的與其他目的,在閱者讀過下文中以多種圖形與繪圖來描述的較佳實施例細節說明後,必然可變得更為明瞭顯見。These and other objects of the present invention will surely become more apparent to the reader after reading the following detailed description of the preferred embodiment which is described in various figures and drawings.

在下文的本發明細節描述中,元件符號會標示在隨附的圖示中成為其中的一部份,並且以可實行該實施例之特例描述方式來表示。這類的實施例會說明足夠的細節俾使該領域之一般技藝人士得以具以實施。為了圖例清楚之故,圖示中可能有部分元件的尺寸會加以誇大。閱者須瞭解到本發明中亦可利用其他的實施例或是在不悖離所述實施例的前提下,作出結構性、邏輯性、及電性上的改變。因此,下文之細節描述不可被視為是一種限定,反之,其中所包含的實施例將由隨附的申請專利範圍來加以界定。In the following detailed description of the invention, reference numerals will be identified in the accompanying drawings which form a part therein, and are shown by way of description of specific examples in which the embodiment can be practiced. Such embodiments are shown in sufficient detail to enable one of ordinary skill in the art to implement them. For the sake of clarity, the dimensions of some elements in the illustrations may be exaggerated. Readers should understand that other embodiments may be used in the present invention or that structural, logical, and electrical changes may be made without departing from the described embodiments. Therefore, the following detailed description should not be regarded as a limitation; instead, the embodiments contained therein will be defined by the appended claims.

請參考第1圖,第1圖繪示根據本發明第一實施例的超音波傳感器的剖面結構示意圖。如第1圖所示,本實施例中的超音波傳感器1包含有一壓電體10,一聲阻匹配層20、一應力平衡層30以及一減震體40。其中壓電體10位於聲阻匹配層20與應力平衡層30之間,而減震體40又包覆應力平衡層30,和/或包覆壓電體10,和/或包覆聲阻匹配層20。Please refer to FIG. 1 , which is a schematic cross-sectional structure diagram of an ultrasonic sensor according to a first embodiment of the present invention. As shown in FIG. 1 , the ultrasonic sensor 1 in this embodiment includes a piezoelectric body 10 , an acoustic impedance matching layer 20 , a stress balancing layer 30 and a shock absorber 40 . Wherein the piezoelectric body 10 is located between the acoustic resistance matching layer 20 and the stress balancing layer 30, and the shock absorber 40 covers the stress balancing layer 30, and/or covers the piezoelectric body 10, and/or covers the acoustic resistance matching Layer 20.

更詳細而言,本實施例中壓電體10具有一第一表面10A、以及隔著壓電體10相對於第一表面10A的一第二表面10B,另外具有連接第一表面10A與第二表面10B之側表面10C、側表面10D。聲阻匹配層20具有一第三表面20A、以及隔著聲阻匹配層20相對於第三表面20A的一第四表面20B,且聲阻匹配層20的第三表面20A與壓電體10的第二表面10B相接。應力平衡層30具有一第五表面30A、以及隔著應力平衡層30相對於第五表面30A的一第六表面30B,其中應力平衡層30的第六表面30B與壓電體10的第一表面10A相接。另外減震體40與應力平衡層30的第五表面30A相接,且包覆應力平衡層30的側壁,此外本實施例中,減震體40還包覆了壓電體10的側壁、以及部份包覆聲阻匹配層20的側壁。但值得注意的是,減震體40的包覆範圍可能依照實際需求而調整,也就是說,在本發明的其他實施例中,減震體40可能包覆更多/或更少層的表面或側壁,本發明並不以此為限制。In more detail, in this embodiment, the piezoelectric body 10 has a first surface 10A, and a second surface 10B opposite to the first surface 10A through the piezoelectric body 10 , and has a second surface connecting the first surface 10A and the second surface 10A. The side surface 10C and the side surface 10D of the surface 10B. The acoustic resistance matching layer 20 has a third surface 20A, and a fourth surface 20B opposite to the third surface 20A via the acoustic resistance matching layer 20 , and the third surface 20A of the acoustic resistance matching layer 20 and the piezoelectric body 10 The second surfaces 10B are in contact. The stress balance layer 30 has a fifth surface 30A, and a sixth surface 30B opposite to the fifth surface 30A via the stress balance layer 30 , wherein the sixth surface 30B of the stress balance layer 30 is connected to the first surface of the piezoelectric body 10 10A connected. In addition, the shock absorber 40 is in contact with the fifth surface 30A of the stress balance layer 30, and covers the side wall of the stress balance layer 30. In addition, in this embodiment, the shock absorber 40 also covers the side wall of the piezoelectric body 10, and It partially covers the sidewall of the acoustic resistance matching layer 20 . However, it is worth noting that the covering range of the shock absorbing body 40 may be adjusted according to actual needs, that is to say, in other embodiments of the present invention, the shock absorbing body 40 may cover more/or fewer layers of surfaces Or the sidewall, the present invention is not limited thereto.

本實施例中,壓電體10的材質包含壓電陶瓷,例如包含鈦酸鋇(BaTiO 3)、鈦酸鉛(PbTiO 3)和鋯鈦酸鉛(Pb(ZrTi)O 3, PZT)等,但不限於此。聲阻匹配層20的材質包含有機高分子材料或是由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,例如有機高分子材料包括環氧樹脂(epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨脂(polyurethane)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin),但不限於此。應力平衡層30的材質包含有機高分子材料或是由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,例如有機高分子材料包括環氧樹脂(epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨脂(polyurethane)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin),但不限於此。減震體40的材質包含有機高分子材料或是由有機高分子材料與金屬或陶瓷粒子混合而成的複合材料,該有機高分子材料包括環氧樹脂(epoxy)、聚氨脂(polyurethane)、或是矽膠(silicone),但不限於此。 In this embodiment, the piezoelectric body 10 is made of piezoelectric ceramics, such as barium titanate (BaTiO 3 ), lead titanate (PbTiO 3 ), lead zirconate titanate (Pb(ZrTi)O 3 , PZT), etc. But not limited to this. The material of the acoustic resistance matching layer 20 includes an organic polymer material or a composite material mixed with an organic polymer material and a hollow powder or a solid powder. For example, the organic polymer material includes epoxy resin (epoxy), vinyl ester Resin (vinyl ester resin), ultraviolet curing glue (UV glue), polyurethane (polyurethane), acrylic resin (acrylic resin), or cyanate ester resin (cyanate ester resin), but not limited thereto. The material of the stress balance layer 30 includes an organic polymer material or a composite material mixed with an organic polymer material and hollow powder or solid powder. For example, the organic polymer material includes epoxy resin (epoxy), vinyl ester resin (vinyl ester resin), ultraviolet curing glue (UV glue), polyurethane (polyurethane), acrylic resin (acrylic resin), or cyanate ester resin (cyanate ester resin), but not limited thereto. The material of the shock absorber 40 includes an organic polymer material or a composite material mixed with an organic polymer material and metal or ceramic particles. The organic polymer material includes epoxy resin (epoxy), polyurethane (polyurethane), Or silicone (silicone), but not limited to this.

本實施例中,壓電體10的作用是藉由高頻率震動產生超音波,因壓電體10的聲阻(約為35MRayl,35*10 6公斤/平方公尺∙秒左右)與空氣的聲阻(約為4*10 -4MRayl),二者聲阻差距為 5個級數,因此需要設置聲阻匹配層20位於壓電體10與空氣之間,使得壓電體10與空氣的聲阻得以匹配,從而可有效地將超音波傳遞到空氣中。另外,減震體40的設置目的則是降低使用超音波傳感器時產生的殘響。上述壓電體10、聲阻匹配層20與減震體40都屬於習知超音波傳感器的常見元件,其詳細原理與材料屬於本領域的習知技術,在此不多加贅述。 In this embodiment, the function of the piezoelectric body 10 is to generate ultrasonic waves through high-frequency vibrations, because the acoustic resistance of the piezoelectric body 10 (about 35 MRayl, about 35*10 6 kg/square meter∙s) and the air Acoustic resistance (approximately 4*10 -4 MRayl), the difference in acoustic resistance between the two is 5 series, so it is necessary to set the acoustic resistance matching layer 20 between the piezoelectric body 10 and the air, so that the piezoelectric body 10 and the air Acoustic resistance is matched to efficiently transmit ultrasound waves into the air. In addition, the purpose of setting the shock absorber 40 is to reduce the reverberation generated when the ultrasonic sensor is used. The piezoelectric body 10 , the acoustic resistance matching layer 20 and the shock absorber 40 are all common components of conventional ultrasonic sensors, and their detailed principles and materials belong to the known technology in the art, and will not be repeated here.

然而,習知的超音波傳感器有一缺陷存在,就是習知的超音波傳感器,聲阻匹配層僅位於壓電體的單邊表面,因此容易在溫度循環試驗之下,因壓電體的熱膨脹係數與聲阻匹配層的熱膨脹係數差異大而產生碎裂。更詳細而言,一般的超音波傳感器在出廠時通常會先經過溫度循環試驗(例如在攝氏負40度至攝氏正85度左右進行循環測試),以測試超音波傳感器在環境溫度變化之下的可靠性。申請人發現習知的超音波傳感器中(也就是僅包含壓電體、聲阻匹配層與減震體的超音波傳感器),由於聲阻匹配層僅位於壓電體的單邊表面,再加上壓電體與聲阻匹配層的熱膨脹係數差異較大(一般來說壓電體的熱膨脹係數約 5PPM,而聲阻匹配層的熱膨脹係數則約50PPM,兩者差距近10倍),因此在溫度循環測試時,壓電體的單邊表面,也就是與聲阻匹配層相鄰的該表面,易受到較明顯的壓縮/拉伸力,進而使得壓電體產生碎裂。However, there is a defect in the conventional ultrasonic sensor, that is, the acoustic resistance matching layer of the conventional ultrasonic sensor is only located on one side surface of the piezoelectric body, so it is easy to fail under the temperature cycle test due to the thermal expansion coefficient of the piezoelectric body. The thermal expansion coefficient difference with the acoustic resistance matching layer is large, resulting in cracking. In more detail, general ultrasonic sensors usually go through a temperature cycle test (such as a cycle test at minus 40 degrees Celsius to plus 85 degrees Celsius) before leaving the factory to test the performance of the ultrasonic sensor under environmental temperature changes. reliability. The applicant found that in the conventional ultrasonic sensor (that is, an ultrasonic sensor that only includes a piezoelectric body, an acoustic resistance matching layer, and a shock absorber), since the acoustic resistance matching layer is only located on one side of the piezoelectric body, and the The thermal expansion coefficient of the upper piezoelectric body and the acoustic resistance matching layer is quite different (generally speaking, the thermal expansion coefficient of the piezoelectric body is about 5PPM, while the thermal expansion coefficient of the acoustic resistance matching layer is about 50PPM, and the difference between the two is nearly 10 times), so in During the temperature cycle test, the one-sided surface of the piezoelectric body, that is, the surface adjacent to the acoustic resistance matching layer, is susceptible to significant compression/stretch force, which in turn causes the piezoelectric body to break.

上述壓電體產生碎裂的原因,主要來自聲阻匹配層僅設置在壓電體的單面表面,而壓電體的另一表面則直接連接減震體,因此當熱漲冷縮發生時,壓電體受到來自單面(也就是聲阻匹配層)較為明顯的應力,進而產生碎裂情況。因此,本實施例的特徵在於,在壓電體10的另一面(也就是相對於聲阻匹配層20的對面表面)額外設置應力平衡層30。在一些實施例中,應力平衡層30的材質可與聲阻匹配層20相同,且應力平衡層30與聲阻匹配層20分別設置在壓電體10的雙面,因此在進行溫度循環測試時,壓電體10所承受的應力將會平均分散至雙面,達到應力雙邊平衡的效果,不容易讓壓電體10承受來自單一面的應力而產生碎裂情況。The reason for the fragmentation of the piezoelectric body above is mainly due to the fact that the acoustic resistance matching layer is only provided on one surface of the piezoelectric body, while the other surface of the piezoelectric body is directly connected to the shock absorber, so when thermal expansion and contraction occur , the piezoelectric body is subjected to relatively obvious stress from one side (that is, the acoustic resistance matching layer), and then cracks. Therefore, the present embodiment is characterized in that a stress balancing layer 30 is additionally provided on the other surface of the piezoelectric body 10 (that is, the surface opposite to the acoustic resistance matching layer 20 ). In some embodiments, the material of the stress balancing layer 30 can be the same as that of the acoustic resistance matching layer 20, and the stress balancing layer 30 and the acoustic resistance matching layer 20 are respectively arranged on both sides of the piezoelectric body 10, so when performing the temperature cycle test Therefore, the stress borne by the piezoelectric body 10 will be evenly distributed to both sides to achieve the effect of stress balance on both sides, and it is not easy for the piezoelectric body 10 to bear the stress from a single side and cause cracking.

值得注意的是,本發明中應力平衡層30與減震體40屬於不同層,兩者也較佳包含有不同的材質,因減震體40的材質與用途均與應力平衡層30不同,所以本發明較佳不以全部或是一部分的減震體40,來代替作為應力平衡層30使用。本實施例中,應力平衡層30的硬度大於減震體40的硬度,且應力平衡層30的聲阻小於5 MRayl。本發明中增設應力平衡層30於壓電體10與減震體40之間,比起習知技術(也就是不包含有應力平衡層的結構)可以有效地提高超音波傳感器的可靠性與耐用性。根據申請人的實際測試結果,習知的超音波傳感器在進行約10次溫度循環測試後可能即會產生壓電體碎裂的情況,然而本發明在增設應力平衡層30之後,超音波傳感器1可在進行50次以上的溫度循環測試後仍未碎裂,故超音波傳感器的可靠性大幅度提升。It should be noted that in the present invention, the stress balance layer 30 and the shock absorber 40 belong to different layers, and the two preferably contain different materials, because the material and application of the shock absorber 40 are different from the stress balance layer 30, so In the present invention, preferably, all or part of the shock absorber 40 is not used as the stress balance layer 30 instead. In this embodiment, the hardness of the stress balance layer 30 is greater than that of the shock absorber 40, and the acoustic resistance of the stress balance layer 30 is less than 5 MRayl. In the present invention, the stress balance layer 30 is added between the piezoelectric body 10 and the shock absorber 40, which can effectively improve the reliability and durability of the ultrasonic sensor compared with the conventional technology (that is, the structure without the stress balance layer) sex. According to the applicant's actual test results, the conventional ultrasonic sensor may break the piezoelectric body after about 10 temperature cycle tests. However, after the stress balancing layer 30 is added in the present invention, the ultrasonic sensor 1 It can not be broken after more than 50 temperature cycle tests, so the reliability of the ultrasonic sensor is greatly improved.

此外,本發明的超音波傳感器除了具有提高可靠性的優點之外,還可調整應力平衡層30的參數,例如調整厚度或是材質,以降低壓電體10產生的超音波從背面傳遞的效率,進而提高超音波傳感器1的正面發射效能。In addition, in addition to the advantage of improving reliability, the ultrasonic sensor of the present invention can also adjust the parameters of the stress balance layer 30, such as adjusting the thickness or material, so as to reduce the transmission efficiency of the ultrasonic wave generated by the piezoelectric body 10 from the back , and then improve the front emission efficiency of the ultrasonic sensor 1 .

下文將針對本發明之超音波傳感器的不同實施樣態進行說明,且為簡化說明,以下說明主要針對各實施例不同之處進行詳述,而不再對相同之處作重覆贅述。此外,本發明之各實施例中相同之元件係以相同之標號進行標示,以利於各實施例間互相對照。The following description will focus on different implementations of the ultrasonic sensor of the present invention, and to simplify the description, the following description will mainly focus on the differences between the embodiments, and will not repeat the similarities. In addition, the same elements in the various embodiments of the present invention are marked with the same reference numerals to facilitate mutual comparison between the various embodiments.

第2圖繪示根據本發明第二實施例的超音波傳感器的剖面結構示意圖。如第2圖所示,本實施例的超音波傳感器與上述第一實施例所述的超音波傳感器(請見第1圖)相似,而主要的差別在於,本實施例中超音波傳感器2中的應力平衡層30中更包含有多個貫穿孔32,其中貫穿孔32為貫穿應力平衡層30的第五表面30A與第六表面30B的中空孔狀結構。從其切面來看,其形狀包含但不限於圓形、矩形、三角形、不規則形或其他形狀。本實施例中貫穿孔32具有降低應力平衡層30的整體密度的功效,以達到低聲阻的優點,從而可提高超音波從前方聲阻匹配層發射的感度。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述第一實施例所述相同,在此不重複贅述。FIG. 2 is a schematic cross-sectional structure diagram of an ultrasonic sensor according to a second embodiment of the present invention. As shown in Figure 2, the ultrasonic sensor of this embodiment is similar to the ultrasonic sensor (see Figure 1) described in the first embodiment above, and the main difference is that the ultrasonic sensor 2 in this embodiment The stress balance layer 30 further includes a plurality of through holes 32 , wherein the through holes 32 are hollow hole structures penetrating through the fifth surface 30A and the sixth surface 30B of the stress balance layer 30 . Viewed from its section, its shape includes, but is not limited to, circular, rectangular, triangular, irregular or other shapes. In this embodiment, the through holes 32 have the effect of reducing the overall density of the stress balance layer 30 to achieve low acoustic resistance, thereby improving the sensitivity of ultrasonic waves emitted from the front acoustic resistance matching layer. Except for the above features, the material properties or structures of other components in this embodiment are the same as those described in the first embodiment above, and will not be repeated here.

第3圖繪示根據本發明第三實施例的超音波傳感器的剖面結構示意圖。如第3圖所示,本實施例的超音波傳感器與上述第一實施例所述的超音波傳感器(請見第1圖)相似,而主要的差別在於,本實施例中超音波傳感器3中的應力平衡層30不僅覆蓋於壓電體10的第一表面10A,且同時部分延展而包覆壓電體10的側面10C、10D。也就是說,應力平衡層30的第六表面30B外緣可向前包覆延伸與壓電體10的側表面10C、10D相連接。如此一來可以更有效地保護壓電體10,使壓電體10的側壁也不易碎裂。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述第一實施例所述相同,在此不重複贅述。FIG. 3 is a schematic cross-sectional structure diagram of an ultrasonic sensor according to a third embodiment of the present invention. As shown in Fig. 3, the ultrasonic sensor of this embodiment is similar to the ultrasonic sensor (see Fig. 1) described in the first embodiment above, and the main difference is that the ultrasonic sensor 3 in this embodiment The stress balancing layer 30 not only covers the first surface 10A of the piezoelectric body 10 , but also partially extends to cover the side surfaces 10C, 10D of the piezoelectric body 10 . That is to say, the outer edge of the sixth surface 30B of the stress balancing layer 30 can cover and extend forward to connect with the side surfaces 10C and 10D of the piezoelectric body 10 . In this way, the piezoelectric body 10 can be protected more effectively, and the sidewall of the piezoelectric body 10 is not easily broken. Except for the above features, the material properties or structures of other components in this embodiment are the same as those described in the first embodiment above, and will not be repeated here.

第4圖繪示根據本發明第四實施例的超音波傳感器的剖面結構示意圖。如第4圖所示,本實施例的超音波傳感器4與上述第一實施例所述的超音波傳感器(請見第1圖)相似,而主要的差別在於,本實施例中超音波傳感器4更包含有一桶狀承載體50,其中上述壓電體10、聲阻匹配層20、應力平衡層30以及減震體40位於桶狀承載體50內。更詳細而言,桶狀承載體50具有一桶底51與桶身52,且桶狀承載體50具有隔著桶底51相對的第七表面50A與第八表面50B,其中壓電體10、聲阻匹配層20、應力平衡層30以及減震體40設置於桶狀承載體50內,且桶狀承載體50的桶底51的第七表面50A與聲阻匹配層20的第四表面20B相接。桶狀承載體50可以作為超音波傳感器4的外殼,保護其他內部的元件。其中,桶狀承載體50的材質可包含金屬、塑膠、高分子材料等,但不限於此。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述第一實施例所述相同,在此不重複贅述。FIG. 4 is a schematic cross-sectional structure diagram of an ultrasonic sensor according to a fourth embodiment of the present invention. As shown in Fig. 4, the ultrasonic sensor 4 of the present embodiment is similar to the ultrasonic sensor (see Fig. 1) described in the above-mentioned first embodiment, and the main difference is that the ultrasonic sensor 4 in the present embodiment is more It includes a barrel-shaped carrier 50 , wherein the above-mentioned piezoelectric body 10 , acoustic resistance matching layer 20 , stress balance layer 30 and shock absorber 40 are located in the barrel-shaped carrier 50 . In more detail, the barrel-shaped carrier 50 has a barrel bottom 51 and a barrel body 52, and the barrel-shaped carrier 50 has a seventh surface 50A and an eighth surface 50B opposite to each other across the barrel bottom 51, wherein the piezoelectric body 10, The acoustic resistance matching layer 20 , the stress balancing layer 30 and the shock absorber 40 are disposed in the barrel-shaped carrier 50 , and the seventh surface 50A of the barrel bottom 51 of the barrel-shaped carrier 50 and the fourth surface 20B of the acoustic resistance matching layer 20 connect. The barrel-shaped carrier 50 can be used as a casing of the ultrasonic sensor 4 to protect other internal components. Wherein, the material of the barrel-shaped carrier 50 may include metal, plastic, polymer material, etc., but is not limited thereto. Except for the above features, the material properties or structures of other components in this embodiment are the same as those described in the first embodiment above, and will not be repeated here.

第5圖繪示根據本發明第五實施例的超音波傳感器的剖面結構示意圖。如第5圖所示,本實施例的超音波傳感器5與上述第一實施例所述的超音波傳感器(請見第1圖)相似,而主要的差別在於,本實施例中超音波傳感器5更包含有一管狀承載體60,其中壓電體10、聲阻匹配層20、應力平衡層30以及減震體40位於管狀承載體60內。更詳細而言,管狀承載體60具有隔著管狀承載體60相對的內表面61與外表面62以及相對的第一開口63與第二開口64,以及減震體40包覆壓電體10與應力平衡層30,其中管狀承載體60的內表面61圍繞減震體40並與減震體40相接,且聲阻匹配層20的第四表面20B從管狀承載體60的第一開口63露出。管狀承載體60同樣可以保護其他內部的元件。另外管狀承載體60可以較容易控制超音波的發射方向。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述第一實施例所述相同,在此不重複贅述。FIG. 5 is a schematic cross-sectional structure diagram of an ultrasonic sensor according to a fifth embodiment of the present invention. As shown in Fig. 5, the ultrasonic sensor 5 of the present embodiment is similar to the ultrasonic sensor (see Fig. 1) described in the above-mentioned first embodiment, and the main difference is that the ultrasonic sensor 5 in the present embodiment is more It includes a tubular carrier 60 , wherein the piezoelectric body 10 , the acoustic resistance matching layer 20 , the stress balance layer 30 and the shock absorber 40 are located in the tubular carrier 60 . In more detail, the tubular carrier 60 has an inner surface 61 and an outer surface 62 opposite to each other across the tubular carrier 60, and a first opening 63 and a second opening 64 opposite to each other, and the shock absorber 40 covers the piezoelectric body 10 and the second opening 64. The stress balance layer 30, wherein the inner surface 61 of the tubular carrier 60 surrounds the shock absorber 40 and is in contact with the shock absorber 40, and the fourth surface 20B of the acoustic resistance matching layer 20 is exposed from the first opening 63 of the tubular carrier 60 . The tubular carrier 60 can also protect other internal components. In addition, the tubular carrier 60 can easily control the emission direction of the ultrasonic waves. Except for the above features, the material properties or structures of other components in this embodiment are the same as those described in the first embodiment above, and will not be repeated here.

除了以上所述的桶狀承載體或是管狀承載體之外,在一些實施例中,還可以包含有其他形狀的承載體,例如板狀的承載體。另外一些其他的實施例中,可能使用板狀的承載體來替代聲阻匹配層。第6圖繪示根據本發明第六實施例的超音波傳感器的剖面結構示意圖。如第6圖所示。本實施例的超音波傳感器6與上述第一實施例所述的超音波傳感器(請見第1圖)相似,本實施例中同樣包含有壓電體10、應力平衡層30以及減震體40。但是本實施例中以承載體70替代上述第一實施例中的聲阻匹配層20。更詳細而言,本實施例中包含有:一壓電體10,具有隔著壓電體10相對的第一表面10A與第二表面10B,與連接第一表面10A與第二表面10B之側表面10C、側表面10D;一承載體70,承載體70具有隔著承載體70相對的第三表面70A與第四表面70B,且第三表面70A與壓電體10的第二表面10B相接;一應力平衡層30,應力平衡層30具有隔著應力平衡層30相對的第五表面30A與第六表面30B,第六表面30B與壓電體10的第一表面10A相接,且應力平衡層的聲阻小於5 MRayl;以及一減震體40,包覆應力平衡層30,和/或壓電體10,和/或承載體70,且應力平衡層30的硬度大於減震體40的硬度。本實施例中,以承載體70當作原先第一實施例中的聲阻匹配層,可以節省一部份的元件空間以及簡化製程。其中,承載體70 也可以選用類似聲阻匹配層的材質,例如包含有機高分子材料或是由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,該有機高分子材料包括環氧樹脂(epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨脂(polyurethane)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin),但不限於此。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述第一實施例所述相同,在此不重複贅述。In addition to the barrel-shaped carrier or the tubular carrier mentioned above, in some embodiments, other shapes of carriers, such as plate-shaped carriers, may also be included. In some other embodiments, a plate-shaped carrier may be used instead of the acoustic resistance matching layer. FIG. 6 is a schematic cross-sectional structure diagram of an ultrasonic sensor according to a sixth embodiment of the present invention. As shown in Figure 6. The ultrasonic sensor 6 of this embodiment is similar to the ultrasonic sensor described in the first embodiment above (please see Fig. 1), and also includes a piezoelectric body 10, a stress balancing layer 30 and a shock absorber 40 in this embodiment . However, in this embodiment, the acoustic resistance matching layer 20 in the above-mentioned first embodiment is replaced by the carrier 70 . In more detail, this embodiment includes: a piezoelectric body 10, having a first surface 10A and a second surface 10B facing each other through the piezoelectric body 10, and a side connecting the first surface 10A and the second surface 10B Surface 10C, side surface 10D; a carrier 70, the carrier 70 has a third surface 70A and a fourth surface 70B facing each other across the carrier 70, and the third surface 70A is in contact with the second surface 10B of the piezoelectric body 10 A stress balance layer 30, the stress balance layer 30 has a fifth surface 30A and a sixth surface 30B opposite to each other across the stress balance layer 30, the sixth surface 30B is in contact with the first surface 10A of the piezoelectric body 10, and the stress balance The acoustic resistance of the layer is less than 5 MRayl; and a shock absorber 40, covering the stress balance layer 30, and/or the piezoelectric body 10, and/or the carrier 70, and the hardness of the stress balance layer 30 is greater than that of the shock absorber 40 hardness. In this embodiment, the carrier 70 is used as the acoustic resistance matching layer in the original first embodiment, which can save part of the component space and simplify the manufacturing process. Among them, the carrier 70 can also be made of materials similar to the acoustic resistance matching layer, such as organic polymer materials or composite materials mixed with organic polymer materials and hollow powders or solid powders. The organic polymer materials include Epoxy, vinyl ester resin, UV glue, polyurethane, acrylic resin, or cyanate ester resin , but not limited to this. Except for the above features, the material properties or structures of other components in this embodiment are the same as those described in the first embodiment above, and will not be repeated here.

第7圖繪示根據本發明第七實施例的超音波傳感器的剖面結構示意圖、第8圖繪示根據本發明第八實施例的超音波傳感器的剖面結構示意圖、第9圖繪示根據本發明第九實施例的超音波傳感器的剖面結構示意圖。在這些實施例中,可以將上述第六實施例中,以承載體來替代聲阻匹配層的概念應用於此。如第7圖所示,第七實施例所述的超音波傳感器7與第二實施例所述的超音波傳感器(請見第2圖)相似,差別在於本實施例中超音波傳感器7不包含有聲阻匹配層,而是以承載體70來替代聲阻匹配層。承載體70的材質與特性已經於上述實施例說明,在此不重複贅述。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述實施例所述相同,在此不重複贅述。Figure 7 shows a schematic cross-sectional structure of an ultrasonic sensor according to a seventh embodiment of the present invention, Figure 8 shows a schematic cross-sectional structure of an ultrasonic sensor according to an eighth embodiment of the present invention, and Figure 9 shows a schematic cross-sectional structure of an ultrasonic sensor according to an eighth embodiment of the present invention Schematic diagram of the cross-sectional structure of the ultrasonic sensor of the ninth embodiment. In these embodiments, the concept of replacing the acoustic resistance matching layer with a carrier in the sixth embodiment above can be applied here. As shown in Fig. 7, the ultrasonic sensor 7 described in the seventh embodiment is similar to the ultrasonic sensor described in the second embodiment (please see Fig. 2), the difference is that the ultrasonic sensor 7 does not include an acoustic sensor in this embodiment. Instead of the resistance matching layer, the carrier 70 is used instead of the acoustic resistance matching layer. The material and characteristics of the carrier 70 have been described in the above-mentioned embodiments, and will not be repeated here. Except for the above features, the material properties or structures of other components in this embodiment are the same as those described in the above embodiments, and will not be repeated here.

同樣地,如第8圖所示,第八實施例所述的超音波傳感器8與第三實施例所述的超音波傳感器(請見第3圖)相似,差別在於本實施例中超音波傳感器8不包含有聲阻匹配層,而是以承載體70來替代聲阻匹配層。承載體70的材質與特性已經於上述實施例說明,在此不重複贅述。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述實施例所述相同,在此不重複贅述。Likewise, as shown in Fig. 8, the ultrasonic sensor 8 described in the eighth embodiment is similar to the ultrasonic sensor (see Fig. 3) described in the third embodiment, the difference is that the ultrasonic sensor 8 in this embodiment The acoustic resistance matching layer is not included, but the carrier 70 is used instead of the acoustic resistance matching layer. The material and characteristics of the carrier 70 have been described in the above-mentioned embodiments, and will not be repeated here. Except for the above features, the material properties or structures of other components in this embodiment are the same as those described in the above embodiments, and will not be repeated here.

同理,如第9圖所示,第九實施例所述的超音波傳感器9與第四實施例所述的超音波傳感器(請見第4圖)相似,差別在於本實施例中超音波傳感器9不包含有聲阻匹配層,而是以桶狀承載體50來替代聲阻匹配層。桶狀承載體50的材質與特性已經於上述實施例說明,在此不重複贅述。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述實施例所述相同,在此不重複贅述。In the same way, as shown in Figure 9, the ultrasonic sensor 9 described in the ninth embodiment is similar to the ultrasonic sensor described in the fourth embodiment (please see Figure 4), the difference is that the ultrasonic sensor 9 in this embodiment The acoustic resistance matching layer is not included, but the barrel-shaped carrier 50 is used instead of the acoustic resistance matching layer. The material and characteristics of the barrel-shaped carrier 50 have been described in the above-mentioned embodiments, and will not be repeated here. Except for the above features, the material properties or structures of other components in this embodiment are the same as those described in the above embodiments, and will not be repeated here.

第10圖繪示根據本發明第十實施例的超音波傳感器的剖面結構示意圖。在本實施例中,超音波傳感器10的結構類似第四實施例所述的超音波傳感器4的結構,但差別在於本實施例中聲阻匹配層20被設置在桶狀承載體50的外部,也就是說聲阻匹配層20的第三表面20A與桶狀承載體50的第八表面50B相連。除了以上特徵之外,本實施例的其他元件的材料特性或結構與上述實施例所述相同,在此不重複贅述。FIG. 10 is a schematic cross-sectional structure diagram of an ultrasonic sensor according to a tenth embodiment of the present invention. In this embodiment, the structure of the ultrasonic sensor 10 is similar to the structure of the ultrasonic sensor 4 described in the fourth embodiment, but the difference is that the acoustic resistance matching layer 20 is arranged outside the barrel-shaped carrier 50 in this embodiment, That is to say, the third surface 20A of the acoustic resistance matching layer 20 is connected to the eighth surface 50B of the barrel-shaped carrier 50 . Except for the above features, the material properties or structures of other components in this embodiment are the same as those described in the above embodiments, and will not be repeated here.

綜上所述,本發明的目的即在於提出一種新穎的超音波傳感器,其特點為在壓電陶瓷與減震體之間增加一應力平衡層,以改善壓電陶瓷與聲阻匹配層在高低溫環境下,由於熱膨脹係數的差異,聲阻匹配層會對壓電陶瓷產生熱應力,進而導致壓電陶瓷破裂。其次,此應力平衡層的材料與業界常用之高密度、高聲阻抗的減震體材料不同,其密度相對較小且聲阻抗也相對較低,所以能減少超音波從壓電陶瓷背面的傳遞,從而提升整體傳感器的發射感度。此具有應力平衡層結構的超音波傳感器,可以提升超音波傳感器的可靠度,還提供了超音波傳感器在減震材料配置的靈活性。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 In summary, the purpose of the present invention is to propose a novel ultrasonic sensor, which is characterized in that a stress balance layer is added between the piezoelectric ceramic and the shock absorber to improve the resistance between the piezoelectric ceramic and the acoustic resistance matching layer at high pressure. In a low-temperature environment, due to the difference in thermal expansion coefficient, the acoustic resistance matching layer will generate thermal stress on the piezoelectric ceramic, which will cause the piezoelectric ceramic to crack. Secondly, the material of this stress balance layer is different from the shock absorber material with high density and high acoustic impedance commonly used in the industry. Its density is relatively low and the acoustic impedance is relatively low, so it can reduce the transmission of ultrasonic waves from the back of the piezoelectric ceramic. , thereby improving the emission sensitivity of the overall sensor. The ultrasonic sensor with the stress balance layer structure can improve the reliability of the ultrasonic sensor, and also provides the flexibility of the ultrasonic sensor in the shock-absorbing material configuration. The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

1、2、3、4、5、6、7、8、9、10:超音波傳感器 10:壓電體 10A:第一表面 10B:第二表面 10C:側表面 10D:側表面 20:聲阻匹配層 20A:第三表面 20B:第四表面 30:應力平衡層 30A:第五表面 30B:第六表面 32:貫穿孔 40:減震體 50:桶狀承載體 50A:第七表面 50B:第八表面 51:桶底 52:桶身 60:管狀承載體 61:內表面 62:外表面 63:第一開口 64:第二開口 70:承載體 70A:第三表面 70B:第四表面 1, 2, 3, 4, 5, 6, 7, 8, 9, 10: Ultrasonic sensor 10: Piezoelectric body 10A: first surface 10B: second surface 10C: side surface 10D: side surface 20: Acoustic resistance matching layer 20A: third surface 20B: fourth surface 30: Stress balance layer 30A: fifth surface 30B: sixth surface 32: through hole 40: shock absorber 50: Barrel carrier 50A: seventh surface 50B: eighth surface 51: barrel bottom 52: Barrel body 60: Tubular carrier 61: inner surface 62: Outer surface 63: First opening 64: second opening 70: Carrier 70A: third surface 70B: fourth surface

本說明書含有附圖併於文中構成了本說明書之一部分,俾使閱者對本發明實施例有進一步的瞭解。該些圖示係描繪了本創作的一些實施例並連同本文描述一起說明了其原理。在該些圖示中: 第1圖繪示根據本發明第一實施例的超音波傳感器的剖面結構示意圖; 第2圖繪示根據本發明第二實施例的超音波傳感器的剖面結構示意圖; 第3圖繪示根據本發明第三實施例的超音波傳感器的剖面結構示意圖; 第4圖繪示根據本發明第四實施例的超音波傳感器的剖面結構示意圖; 第5圖繪示根據本發明第五實施例的超音波傳感器的剖面結構示意圖; 第6圖繪示根據本發明第六實施例的超音波傳感器的剖面結構示意圖; 第7圖繪示根據本發明第七實施例的超音波傳感器的剖面結構示意圖; 第8圖繪示根據本發明第八實施例的超音波傳感器的剖面結構示意圖; 第9圖繪示根據本發明第九實施例的超音波傳感器的剖面結構示意圖;以及 第10圖繪示根據本發明第十實施例的超音波傳感器的剖面結構示意圖。 This specification contains drawings and constitutes a part of this specification, so that readers can have a further understanding of the embodiments of the present invention. The drawings depict some embodiments of the invention and together with the description herein explain the principles thereof. In these illustrations: Figure 1 shows a schematic cross-sectional structure diagram of an ultrasonic sensor according to a first embodiment of the present invention; Fig. 2 shows a schematic cross-sectional structure diagram of an ultrasonic sensor according to a second embodiment of the present invention; Fig. 3 shows a schematic cross-sectional structure diagram of an ultrasonic sensor according to a third embodiment of the present invention; Fig. 4 shows a schematic cross-sectional structure diagram of an ultrasonic sensor according to a fourth embodiment of the present invention; Fig. 5 shows a schematic cross-sectional structure diagram of an ultrasonic sensor according to a fifth embodiment of the present invention; Fig. 6 shows a schematic cross-sectional structure diagram of an ultrasonic sensor according to a sixth embodiment of the present invention; Fig. 7 shows a schematic cross-sectional structure diagram of an ultrasonic sensor according to a seventh embodiment of the present invention; Fig. 8 shows a schematic cross-sectional structure diagram of an ultrasonic sensor according to an eighth embodiment of the present invention; Fig. 9 shows a schematic cross-sectional structure diagram of an ultrasonic sensor according to a ninth embodiment of the present invention; and FIG. 10 is a schematic cross-sectional structure diagram of an ultrasonic sensor according to a tenth embodiment of the present invention.

1:超音波傳感器 1: Ultrasonic sensor

10:壓電體 10: Piezoelectric body

10A:第一表面 10A: first surface

10B:第二表面 10B: second surface

10C:側表面 10C: side surface

10D:側表面 10D: side surface

20:聲阻匹配層 20: Acoustic resistance matching layer

20A:第三表面 20A: third surface

20B:第四表面 20B: fourth surface

30:應力平衡層 30: Stress balance layer

30A:第五表面 30A: fifth surface

30B:第六表面 30B: sixth surface

40:減震體 40: shock absorber

Claims (17)

一種超音波傳感器,包含: 一壓電體,具有隔著該壓電體相對的第一表面與第二表面,及連接該第一表面與該第二表面之側表面; 一聲阻匹配層,該聲阻匹配層具有隔著該聲阻匹配層相對的第三表面與第四表面,且該第三表面與壓電體的第二表面相接; 一應力平衡層,該應力平衡層具有隔著該應力平衡層相對的第五表面與第六表面,該第六表面與壓電體的第一表面相接,且該應力平衡層的聲阻小於5 MRayl;以及 一減震體,包覆該應力平衡層,和/或該壓電體,和/或該聲阻匹配層,其中該應力平衡層的硬度大於該減震體的硬度。 An ultrasonic sensor comprising: A piezoelectric body, having a first surface and a second surface facing each other across the piezoelectric body, and a side surface connecting the first surface and the second surface; an acoustic resistance matching layer, the acoustic resistance matching layer has a third surface and a fourth surface opposite to each other through the acoustic resistance matching layer, and the third surface is in contact with the second surface of the piezoelectric body; A stress balance layer, the stress balance layer has a fifth surface and a sixth surface opposite to each other across the stress balance layer, the sixth surface is in contact with the first surface of the piezoelectric body, and the acoustic resistance of the stress balance layer is less than 5 MRayl; and A shock absorbing body covers the stress balancing layer, and/or the piezoelectric body, and/or the acoustic resistance matching layer, wherein the hardness of the stress balancing layer is greater than that of the shock absorbing body. 如專利申請範圍第1項所述之超音波傳感器,其中該應力平衡層更包含有機高分子材料或是由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,該有機高分子材料包括環氧樹脂(epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨脂(polyurethane)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin)。The ultrasonic sensor described in Item 1 of the scope of patent application, wherein the stress balance layer further includes organic polymer materials or composite materials mixed with organic polymer materials and hollow powders or solid powders, the organic polymer materials Molecular materials include epoxy resin (epoxy), vinyl ester resin (vinyl ester resin), ultraviolet curing glue (UV glue), polyurethane (polyurethane), acrylic resin (acrylic resin), or cyanate resin (cyanate) ester resin). 如申請專利範圍第1項所述之超音波傳感器,其中該應力平衡層具有貫穿該應力平衡層的第五表面與第六表面的貫穿孔。The ultrasonic sensor as described in item 1 of the scope of the patent application, wherein the stress balance layer has a through hole penetrating through the fifth surface and the sixth surface of the stress balance layer. 如專利申請範圍第1項所述之超音波傳感器,其中該應力平衡層的該第六表面外緣可向前包覆延伸與該壓電體的側表面相連接。According to the ultrasonic sensor described in item 1 of the patent application scope, the outer edge of the sixth surface of the stress balance layer can cover and extend forward to connect with the side surface of the piezoelectric body. 如專利申請範圍第1項所述之超音波傳感器,更包含一桶狀承載體,具有一桶底與桶身,且該桶狀承載體具有隔著該桶底相對的第七表面與第八表面,其中該壓電體、該聲阻匹配層、該應力平衡層以及該減震體設置於該桶狀承載體內,且該桶狀承載體的該桶底的該第七表面與該聲阻匹配層的第四表面相接。The ultrasonic sensor as described in item 1 of the scope of patent application further comprises a barrel-shaped carrier with a barrel bottom and a barrel body, and the barrel-shaped carrier has a seventh surface and an eighth surface opposite to each other across the barrel bottom. Surface, wherein the piezoelectric body, the acoustic resistance matching layer, the stress balance layer and the shock absorber are arranged in the barrel-shaped carrier, and the seventh surface of the barrel bottom of the barrel-shaped carrier and the acoustic resistance The fourth surfaces of the matching layer are in contact. 如專利申請範圍第1項所述之超音波傳感器,更包含一管狀承載體,具有隔著該管狀承載體相對的內表面與外表面以及相對的第一開口與第二開口,以及一減震體包覆該壓電體與該應力平衡層,其中該管狀承載體的該內表面圍繞該減震體並與該減震體相接,且該聲阻匹配層的該第四表面從該管狀承載體的第一開口露出。The ultrasonic sensor as described in item 1 of the scope of patent application further includes a tubular carrier, with opposite inner and outer surfaces and opposite first and second openings across the tubular carrier, and a shock absorber The body wraps the piezoelectric body and the stress balance layer, wherein the inner surface of the tubular carrier surrounds the shock absorber and is in contact with the shock absorber, and the fourth surface of the acoustic resistance matching layer is separated from the tubular The first opening of the carrier is exposed. 如申請專利範圍第1項所述之超音波傳感器,其中該減震體包含有機高分子材料或是由有機高分子材料與金屬或陶瓷粒子混合而成的複合材料,該有機高分子材料包括環氧樹脂(epoxy)、聚氨脂(polyurethane)、或是矽膠(silicone)。The ultrasonic sensor as described in Item 1 of the scope of the patent application, wherein the shock absorber contains organic polymer materials or composite materials mixed with organic polymer materials and metal or ceramic particles, and the organic polymer materials include rings epoxy, polyurethane, or silicone. 如申請專利範圍第1項所述之超音波傳感器,其中該聲阻匹配層包含有機高分子材料或是由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,該有機高分子材料包括環氧樹脂(epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨脂(polyurethane)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin)。The ultrasonic sensor described in item 1 of the scope of the patent application, wherein the acoustic resistance matching layer contains organic polymer materials or composite materials made of organic polymer materials mixed with hollow powder or solid powder, the organic high polymer Molecular materials include epoxy resin (epoxy), vinyl ester resin (vinyl ester resin), ultraviolet curing glue (UV glue), polyurethane (polyurethane), acrylic resin (acrylic resin), or cyanate resin (cyanate) ester resin). 一種超音波傳感器,包含: 一壓電體,具有隔著該壓電體相對的第一表面與第二表面,與連接該第一表面與該第二表面之側表面; 一承載體,該承載體具有隔著該承載體相對的第三表面與第四表面,且該第三表面與該壓電體的該第二表面相接; 一應力平衡層,該應力平衡層具有隔著該應力平衡層相對的第五表面與第六表面,該第六表面與該壓電體的第一表面相接,且該應力平衡層的聲阻小於5 MRayl;以及 一減震體,包覆該應力平衡層,和/或該壓電體,和/或該承載體,且該應力平衡層的硬度大於該減震體的硬度。 An ultrasonic sensor comprising: A piezoelectric body, having a first surface and a second surface facing each other across the piezoelectric body, and a side surface connecting the first surface and the second surface; a carrier, the carrier has a third surface and a fourth surface opposite to each other across the carrier, and the third surface is in contact with the second surface of the piezoelectric body; A stress balance layer, the stress balance layer has a fifth surface and a sixth surface opposite to each other across the stress balance layer, the sixth surface is in contact with the first surface of the piezoelectric body, and the acoustic resistance of the stress balance layer is less than 5 MRayl; and A shock absorber covers the stress balance layer, and/or the piezoelectric body, and/or the bearing body, and the hardness of the stress balance layer is greater than that of the shock absorber. 如專利申請範圍第9項所述之超音波傳感器,其中該應力平衡層更包含有機高分子材料或是由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,該有機高分子材料包括環氧樹脂(epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨脂(polyurethane)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin)。The ultrasonic sensor as described in item 9 of the scope of patent application, wherein the stress balance layer further includes organic polymer materials or composite materials mixed with organic polymer materials and hollow powders or solid powders, the organic polymer materials Molecular materials include epoxy resin (epoxy), vinyl ester resin (vinyl ester resin), ultraviolet curing glue (UV glue), polyurethane (polyurethane), acrylic resin (acrylic resin), or cyanate resin (cyanate) ester resin). 如申請專利範圍第9項所述之超音波傳感器,其中該應力平衡層具有貫穿該應力平衡層的該第五表面與第六表面的貫穿孔。The ultrasonic sensor as described in claim 9 of the patent application, wherein the stress balance layer has a through hole penetrating through the fifth surface and the sixth surface of the stress balance layer. 如專利申請範圍第9項所述之超音波傳感器,其中該應力平衡層的該第六表面外緣可向前包覆延伸與該壓電體的側表面相連接。The ultrasonic sensor as described in item 9 of the patent application scope, wherein the outer edge of the sixth surface of the stress balance layer can cover and extend forward to connect with the side surface of the piezoelectric body. 如專利申請範圍第9項所述之超音波傳感器,其中該承載體更包含一桶狀承載體,具有一桶底與桶身,且該桶狀承載體具有隔著該桶底相對的第三表面及第四表面,其中該壓電體、該應力平衡層以及該減震體設置於該桶狀承載體的桶內,且該桶狀承載體的該桶底的該第三表面與該壓電體的該第二表面相接。The ultrasonic sensor as described in item 9 of the scope of patent application, wherein the carrier further includes a barrel-shaped carrier with a barrel bottom and a barrel body, and the barrel-shaped carrier has a third opposite across the barrel bottom. surface and the fourth surface, wherein the piezoelectric body, the stress balance layer and the shock absorber are arranged in the barrel of the barrel-shaped carrier, and the third surface of the bottom of the barrel of the barrel-shaped carrier and the pressure The second surface of the electric body is in contact with each other. 如專利申請範圍第9項所述之超音波傳感器,其中該承載體的材料包含選自下列群組或其組合的金屬材質:鋁、鈦、銅、不鏽鋼,或是下列群組或其組合的的非金屬材質:玻璃、壓克力、鐵氟龍(PTFE)、聚二氟乙烯(PVDF)、聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚對苯二甲酸丁酯(PBT)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚苯硫醚(PPS)、液晶聚合物(LCP)、或是聚醚醚酮(PEEK)。The ultrasonic sensor as described in item 9 of the scope of patent application, wherein the material of the carrier includes metal materials selected from the following groups or combinations thereof: aluminum, titanium, copper, stainless steel, or the following groups or combinations thereof Non-metallic materials: glass, acrylic, Teflon (PTFE), polyvinyl difluoride (PVDF), polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalic acid Butyl ester (PBT), acrylonitrile-butadiene-styrene copolymer (ABS), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), or polyether ether ketone (PEEK). 如申請專利範圍第9項所述之超音波傳感器,其中該減震體包含有機高分子材料或是由有機高分子材料與金屬或陶瓷粒子混合而成的複合材料,該有機高分子材料包括環氧樹脂(epoxy)、聚氨脂(polyurethane)、或是矽膠(silicone)。The ultrasonic sensor as described in item 9 of the scope of patent application, wherein the shock absorber includes organic polymer materials or composite materials mixed with organic polymer materials and metal or ceramic particles, and the organic polymer materials include rings epoxy, polyurethane, or silicone. 如申請專利範圍第9項所述之超音波傳感器,更包含一聲阻匹配層,且該聲阻匹配層與該承載體的該第四表面相接。The ultrasonic sensor as described in claim 9 of the patent application further includes an acoustic resistance matching layer, and the acoustic resistance matching layer is in contact with the fourth surface of the carrier. 如申請專利範圍第16項所述之聲阻匹配層,包含有機高分子材料或是由有機高分子材料與空心粉體或實心粉體混合而成的複合材料,該有機高分子材料包括環氧樹脂(Epoxy)、乙烯基酯樹脂(vinyl ester resin)、紫外線硬化膠(UV膠)、聚氨脂(polyurethane)、丙烯酸樹脂(acrylic resin)、或是氰酸酯樹脂(cyanate ester resin)。The acoustic resistance matching layer described in item 16 of the scope of the patent application includes an organic polymer material or a composite material mixed with an organic polymer material and hollow powder or solid powder. The organic polymer material includes epoxy Epoxy, vinyl ester resin, UV glue, polyurethane, acrylic resin, or cyanate ester resin.
TW110132451A 2021-09-01 2021-09-01 Ultrasonic transducer TWI772167B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110132451A TWI772167B (en) 2021-09-01 2021-09-01 Ultrasonic transducer
CN202111095552.1A CN115728757A (en) 2021-09-01 2021-09-17 ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110132451A TWI772167B (en) 2021-09-01 2021-09-01 Ultrasonic transducer

Publications (2)

Publication Number Publication Date
TWI772167B TWI772167B (en) 2022-07-21
TW202312666A true TW202312666A (en) 2023-03-16

Family

ID=83439787

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110132451A TWI772167B (en) 2021-09-01 2021-09-01 Ultrasonic transducer

Country Status (2)

Country Link
CN (1) CN115728757A (en)
TW (1) TWI772167B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0766071B1 (en) * 1995-09-28 2002-04-10 Endress + Hauser Gmbh + Co. Ultrasonic transducer
JP4701059B2 (en) * 2005-10-04 2011-06-15 東光東芝メーターシステムズ株式会社 Ultrasonic sensor, manufacturing method thereof, and optimum design apparatus thereof
DE102008055123B3 (en) * 2008-12-23 2010-07-22 Robert Bosch Gmbh Ultrasonic transducer for use in a fluid medium
TWI611578B (en) * 2017-06-14 2018-01-11 Win Semiconductors Corp. Improved structure for reducing deformation of compound semiconductor wafers
TWM583052U (en) * 2019-05-30 2019-09-01 詠業科技股份有限公司 Ultrasonic transducer
TWM585905U (en) * 2019-08-16 2019-11-01 詠業科技股份有限公司 Ultrasonic transducer

Also Published As

Publication number Publication date
CN115728757A (en) 2023-03-03
TWI772167B (en) 2022-07-21

Similar Documents

Publication Publication Date Title
US11534796B2 (en) Ultrasonic transducer
US11433427B2 (en) Ultrasonic transducer
US7513147B2 (en) Piezocomposite transducer for a downhole measurement tool
JP2918102B2 (en) Ultrasonic transducer
US7036363B2 (en) Acoustic sensor for downhole measurement tool
US7075215B2 (en) Matching layer assembly for a downhole acoustic sensor
US6995500B2 (en) Composite backing layer for a downhole acoustic sensor
JP6552644B2 (en) Impedance matching layer for ultrasonic transducers with metallic protective structure
CN211563576U (en) Ultrasonic sensor
TWI772167B (en) Ultrasonic transducer
TWM628506U (en) Ultrasonic transducer
CN221899330U (en) Ultrasonic Sensors
CN219871774U (en) ultrasonic sensor
TWI816239B (en) Ultrasonic transducer
TWI816253B (en) Ultrasonic transducer
CN219676284U (en) ultrasonic sensor
CN215575645U (en) Ultrasonic sensor
CN114208211A (en) Ultrasonic sensor
JP3667426B2 (en) Sensor
Alkoy et al. Miniature piezoelectric hollow sphere transducers
JPH0416760A (en) Acoustic emission sensor