TW201918937A - Neuromorphic computing system and current estimation method using the same - Google Patents
Neuromorphic computing system and current estimation method using the same Download PDFInfo
- Publication number
- TW201918937A TW201918937A TW106138193A TW106138193A TW201918937A TW 201918937 A TW201918937 A TW 201918937A TW 106138193 A TW106138193 A TW 106138193A TW 106138193 A TW106138193 A TW 106138193A TW 201918937 A TW201918937 A TW 201918937A
- Authority
- TW
- Taiwan
- Prior art keywords
- terminal
- voltage value
- current
- circuit
- value
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 13
- 210000000225 synapse Anatomy 0.000 claims abstract description 19
- 230000000946 synaptic effect Effects 0.000 claims description 27
- 210000004027 cell Anatomy 0.000 claims description 16
- 230000001537 neural effect Effects 0.000 claims description 10
- 230000000926 neurological effect Effects 0.000 claims description 7
- 239000013598 vector Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
本發明大致涉及一種類神經計算系統,且特別是涉及一種基於硬體陣列結構所實現之類神經計算系統。The present invention generally relates to a neural-like computing system, and more particularly to a neural computing system implemented based on a hardware array structure.
近來,利用硬體陣列結構所實現的類神經計算裝置被提出。相較於利用處理器(例如CPU)來執行類神經演算的裝置,類神經計算裝置具有低功耗的優點。Recently, a neural-like computing device implemented using a hardware array structure has been proposed. A neural-like computing device has the advantage of low power consumption compared to a device that performs a neural-like calculus using a processor (eg, a CPU).
類神經計算裝置通常包括多個突觸單元(synapse)。各個突觸單元對應於一權重值。當一輸入向量施加至類神經計算裝置,此輸入向量將與關聯的一或多個突觸單元所對應的權重值所構成的權重向量相乘,並在輸出通道上形成積項和(sum of product)感測電流。此積項和感測電流的大小係反映一積項和結果。A neurological computing device typically includes a plurality of synapse units. Each synapse unit corresponds to a weight value. When an input vector is applied to the neural network computing device, the input vector is multiplied by the weight vector formed by the weight value corresponding to the associated one or more synaptic units, and a product term sum is formed on the output channel (sum of Product) senses the current. The magnitude of this product and the sense current reflect an integral term and result.
然而,隨著突觸單元數量增加,輸出通道上的積項和感測電流可能變的相當大,使得耗能提高。However, as the number of synaptic units increases, the product terms and sense currents on the output channels may become quite large, resulting in increased energy consumption.
本發明大致涉及一種基於硬體陣列結構所實現之類神經計算系統。根據本發明實施例,突觸單元陣列的輸出通道可切換地連接至第一終端或第二終端。輸出通道在連接至第一終端時會呈現第一電壓值,並在連接至第二終端時呈現第二電壓值。積項和感測電流值可根據第一電壓值以及第二電壓值之間的差值而被推估出來。相較於傳統方法中可能直接對流經輸出通道的積項和大電流進行測量以進行運算,根據本發明,連接至第一終端或第二終端的輸出通道僅可能導通大小被限制的電流,甚至不導通電流,故可有效降低能耗。The present invention generally relates to a neural computing system implemented based on a hardware array structure. According to an embodiment of the invention, the output channel of the synaptic cell array is switchably connected to the first terminal or the second terminal. The output channel presents a first voltage value when connected to the first terminal and a second voltage value when connected to the second terminal. The product term and the sense current value can be estimated based on the difference between the first voltage value and the second voltage value. Compared with the conventional method, it is possible to directly measure the product flowing through the output channel and the large current to perform an operation. According to the present invention, the output channel connected to the first terminal or the second terminal may only turn on the current whose size is limited, or even It does not conduct current, so it can effectively reduce energy consumption.
根據本發明之一方面,提出一種類神經計算裝置。類神經計算系統包括突觸單元陣列、切換電路、感測電路以及處理電路。突觸單元陣列包括多條列線、多條行線以及多個突觸單元。突觸單元位在列線與行線的交叉處。切換電路耦接突觸單元陣列,並用以將行線連接至第一終端或第二終端。感測電路耦接突觸單元陣列,用以感測行線上的電壓值以及電流值。處理電路耦接切換電路以及感測電路,經配置而用以:透過切換電路將多條行線中的一特定行線電性連接至第一終端、透過感測電路自電性連接至第一終端時的特定行線取得一第一電壓值、透過切換電路將特定行線電性連接至第二終端、透過感測電路自電性連接至第二終端時的特定行線取得第二電壓值、根據第一電壓值以及第二電壓值之間的電壓差值,估計積項和感測電流值。According to one aspect of the invention, a neurological computing device is presented. A neurological computing system includes a synaptic cell array, a switching circuit, a sensing circuit, and a processing circuit. The synaptic cell array includes a plurality of column lines, a plurality of row lines, and a plurality of synapse units. The synaptic unit is located at the intersection of the column line and the row line. The switching circuit is coupled to the synapse cell array and configured to connect the row line to the first terminal or the second terminal. The sensing circuit is coupled to the synaptic cell array for sensing a voltage value and a current value on the row line. The processing circuit is coupled to the switching circuit and the sensing circuit, configured to: electrically connect a specific one of the plurality of row lines to the first terminal through the switching circuit, and electrically connect to the first through the sensing circuit The specific row line at the terminal obtains a first voltage value, electrically connects the specific row line to the second terminal through the switching circuit, and obtains the second voltage value through a specific row line when the sensing circuit is electrically connected to the second terminal And estimating the product term and the sense current value according to the voltage difference between the first voltage value and the second voltage value.
根據本發明之另一方面,提出一種類神經計算裝置的電流估計方法。類神經計算系統包括突觸單元陣列、切換電路、感測電路以及處理電路,突觸單元陣列包括多條列線、多條行線以及位在列線與行線的交叉處的多個突觸單元。該電流估計方法包括:透過切換電路將多條行線中的一特定行線電性連接至第一終端、透過感測電路自電性連接至第一終端時的特定行線取得第一電壓值、透過切換電路將特定行線電性連接至第二終端、透過感測電路自電性連接至第二終端時的特定行線取得第二電壓值、透過處理電路根據第一電壓值以及第二電壓值之間的一電壓差值估計一積項和感測電流值。According to another aspect of the present invention, a current estimation method for a neural-like computing device is presented. The neural-like computing system includes a synaptic cell array, a switching circuit, a sensing circuit, and a processing circuit, and the synaptic cell array includes a plurality of column lines, a plurality of row lines, and a plurality of synapses positioned at intersections of the column lines and the row lines unit. The current estimation method includes: electrically connecting a specific one of the plurality of row lines to the first terminal through the switching circuit, and obtaining the first voltage value through a specific row line when the sensing circuit is electrically connected to the first terminal And electrically connecting the specific row line to the second terminal through the switching circuit, obtaining the second voltage value through the specific row line when the sensing circuit is electrically connected to the second terminal, and transmitting the processing circuit according to the first voltage value and the second A voltage difference between the voltage values estimates a product term and a sense current value.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:In order to better understand the above and other aspects of the present invention, the following detailed description of the embodiments and the accompanying drawings
圖1是根據本發明的一實施例所示意性繪示的類神經計算系統的方塊圖。類神經計算系統包括突觸單元陣列102、切換電路104、感測電路106以及處理電路108。切換電路104以及感測電路106耦接突觸單元陣列102。處理電路108耦接切換電路104以及感測電路106。1 is a block diagram of a neurological computing system, schematically depicted in accordance with an embodiment of the present invention. The neurological computing system includes a synapse cell array 102, a switching circuit 104, a sensing circuit 106, and a processing circuit 108. The switching circuit 104 and the sensing circuit 106 are coupled to the synaptic cell array 102. The processing circuit 108 is coupled to the switching circuit 104 and the sensing circuit 106.
突觸單元陣列102可將輸入向量與由一或多個突觸單元所形成的加權向量進行相乘以進行積項和運算。切換電路104受控於處理電路108,用以將突觸單元陣列102的各個輸出通道連接至第一終端或第二終端。感測電路106可感測輸出通道的電壓值以及電流值。因此,感測電路106可取得突觸單元陣列102的輸出通道在連接至第一終端時所呈現的第一電壓值以及在連接至第二終端時所呈現的第二電壓值。處理電路108可根據第一電壓值以及第二電壓值之間的電壓差值,推估積項和感測電流值的大小。The synapse cell array 102 can multiply the input vector by a weight vector formed by one or more synaptic units to perform a product term sum operation. The switching circuit 104 is controlled by the processing circuit 108 for connecting the various output channels of the synapse cell array 102 to the first terminal or the second terminal. The sensing circuit 106 can sense the voltage value of the output channel as well as the current value. Accordingly, the sensing circuit 106 can obtain a first voltage value presented by the output channel of the synapse cell array 102 when connected to the first terminal and a second voltage value presented when connected to the second terminal. The processing circuit 108 can estimate the magnitude of the product term and the sense current value based on the voltage difference between the first voltage value and the second voltage value.
感測電路106例如包括感測放大器(sensing amplifier)。處理電路108可例如以微處理器、微控制器、晶片及/或電路板來實現。The sensing circuit 106 includes, for example, a sensing amplifier. Processing circuitry 108 may be implemented, for example, in a microprocessor, microcontroller, wafer, and/or circuit board.
圖2示意性地繪示突觸單元陣列102以及切換電路104的電路結構圖。雖然圖2中繪示3´3個突觸單元,但應注意突觸單元陣列102可包括任意數量的突觸單元及組合。FIG. 2 schematically shows a circuit configuration diagram of the synapse cell array 102 and the switching circuit 104. Although 3 ́3 synaptic units are depicted in FIG. 2, it should be noted that synaptic cell array 102 can include any number of synaptic units and combinations.
如圖2所示,突觸單元陣列102包括多條列線201、203、205、多條行線202、204、206以及多個位在列線201、203、205與行線202、204、206的交叉處的突觸單元210。As shown in FIG. 2, the synaptic cell array 102 includes a plurality of column lines 201, 203, 205, a plurality of row lines 202, 204, 206, and a plurality of bits at the column lines 201, 203, 205 and the row lines 202, 204, Synaptic unit 210 at the intersection of 206.
列線201、203、205是作為突觸單元陣列102的輸入通道,用以分別接收輸入電壓V1 、V2 、V3 。輸入電壓V1 、V2 、V3 可視為對系統提供的輸入向量[V1 、V2 、V3 ]。突觸單元210可回應接收自列線201、203、205上的輸入電壓V1 、V2 、V3 ,在作為陣列的輸出通道的行線202、204、206上分別形成感測電流I1 、I2 、I3 。Column lines 201,203 synaptic cell array as the input channel 102 to receive an input voltage V 1, V 2, V 3 . The input voltages V 1 , V 2 , V 3 can be considered as input vectors [V 1 , V 2 , V 3 ] provided to the system. The synapse unit 210 can respond to the input voltages V 1 , V 2 , V 3 received from the column lines 201 , 203 , 205 , and form a sensing current I 1 on the row lines 202 , 204 , 206 as output channels of the array, respectively. , I 2 , I 3 .
突觸單元210可以是任何適用於類神經計算裝置的權重元件,例如由電阻元件WU以及選擇器SU(例如電晶體)串連形成的「1S1R」電路結構。The synapse unit 210 can be any weighting element suitable for a neural-like computing device, such as a "1S1R" circuit structure formed by a series connection of a resistive element WU and a selector SU (eg, a transistor).
切換電路104可透過開關元件SW將各條行線202、204、206的一端連接至第一終端T1或第二終端T2。第一終端T1以及第二終端T2皆非接地端。不同於傳統類神經計算裝置可能在接地的行線上形成積項和大感測電流,當行線202、204、206連接至第一終端T1或第二終端T2,行線202、204、206上的感測電流I1 、I2 、I3 將被限制成預設的小電流(顯小於積項和電流),甚至無電流產生。The switching circuit 104 can connect one end of each of the row lines 202, 204, 206 to the first terminal T1 or the second terminal T2 through the switching element SW. Both the first terminal T1 and the second terminal T2 are not grounded. Different from the traditional neural computing device, a product term and a large sensing current may be formed on the grounded line, when the row lines 202, 204, 206 are connected to the first terminal T1 or the second terminal T2, on the row lines 202, 204, 206. The sense currents I 1 , I 2 , I 3 will be limited to a preset small current (significantly less than the product term and current), even without current.
在一範例中,第一終端T1係一浮接節點,第二終端T2係一電流限制元件,例如電流鏡、電晶體或其它可提供固定/限制電流的電流源。In one example, the first terminal T1 is a floating node and the second terminal T2 is a current limiting element such as a current mirror, a transistor or other current source that provides a fixed/limited current.
應注意的是,雖然圖2中繪示3組第一終端T1及第二終端T2,但應注意切換電路104可包括任意數量的第一終端T1/第二終端T2及組合。舉例來說,多條行線可共用相同的第一終端T1及/或第二終端T2。It should be noted that although three sets of first terminal T1 and second terminal T2 are illustrated in FIG. 2, it should be noted that the switching circuit 104 may include any number of first terminals T1/second terminals T2 and combinations. For example, a plurality of row lines may share the same first terminal T1 and/or second terminal T2.
感測電路106耦接行線202、204、206。感測電路106可偵測行線202、204、206在第一狀態(即連接至第一終端T1的狀態)或第二狀態(即行線的一端連接至第二終端T2的狀態)時所呈現的電流值、電壓值,並將偵測結果提供給處理電路108估計積項和電流值。The sensing circuit 106 is coupled to the row lines 202, 204, 206. The sensing circuit 106 can detect when the row lines 202, 204, 206 are in a first state (ie, a state connected to the first terminal T1) or a second state (ie, a state in which one end of the row line is connected to the second terminal T2) The current value, the voltage value, and the detection result is provided to the processing circuit 108 to estimate the product term and the current value.
舉例來說,假設第一終端T1係一浮接節點,第二終端T2係一電流限制元件,處理電路108可先利用切換電路104將欲讀取的一行線(如行線202)設定在第一狀態,並利用感測電路106取得該行線上的第一電壓值。處理電路108可接著將感測電路106設定在第二狀態,以取得該行線上的第二電壓值以及該行線所導通的一感測電流值。如此一來,處理電路108可根據第一電壓值(Va )與第二電壓值(Vb )之間的電壓差值與感測電流值(Is )之間的乘積,估測出積項和感測電流值(Isp )。舉例來說,積項和感測電流值Isp 可表示如下:For example, assuming that the first terminal T1 is a floating node and the second terminal T2 is a current limiting component, the processing circuit 108 can first set the row to be read (such as the row line 202) by the switching circuit 104. In a state, the first voltage value on the line is obtained by the sensing circuit 106. The processing circuit 108 can then set the sensing circuit 106 to a second state to obtain a second voltage value on the row line and a sense current value that the row line is conducting. In this way, the processing circuit 108 can estimate the product based on the product between the voltage difference between the first voltage value (V a ) and the second voltage value (V b ) and the sense current value (I s ). Item and sense current value (I sp ). For example, the product term and the sense current value I sp can be expressed as follows:
(式0) (Formula 0)
以行線202為例,為了估測行線202的積項和電流值,處理電路108可先透過切換電路104將行線202浮接(也就是將行線202連接至第一終端T1),並透過感測電路106取得行線202上的第一電壓值,例如0.5V。Taking the row line 202 as an example, in order to estimate the product term and the current value of the row line 202, the processing circuit 108 may first float the row line 202 through the switching circuit 104 (that is, connect the row line 202 to the first terminal T1). The first voltage value on the row line 202, for example 0.5V, is obtained through the sensing circuit 106.
接著,回應於將行線202切換連接至以50μA電流源實現的第二終端T2,處理電路108將透過感測電路106取得行線202上的第二電壓值,例如0.4V。Next, in response to switching the row line 202 to the second terminal T2 implemented with a 50 μA current source, the processing circuit 108 will pass the sensing circuit 106 to obtain a second voltage value on the row line 202, such as 0.4V.
在取得第一電壓值以及第二電壓值之後,處理電路108即可依據(式0)估算出行線202的積項和感測電流值如下:After obtaining the first voltage value and the second voltage value, the processing circuit 108 can estimate the product of the row line 202 and the sense current value according to (Formula 0) as follows:
。 .
為幫助理解,以下係說明為何(式0)可用於估計積項和電流值。To help understand, the following explains why (Equation 0) can be used to estimate the product and current values.
首先,可知當某一行線的一端接地,該行線上的電流即相當於積項和感測電流,其可表示如下:First, it can be seen that when one end of a row line is grounded, the current on the row line is equivalent to the product term and the sense current, which can be expressed as follows:
(式1) (Formula 1)
其中gout,i 表示耦接至第i條列線以及欲讀取之該行線的突觸單元的權重值,Vi 表示施加於第i條列線的輸入電壓值,Iout |ground 表示該行線接地時所形成的感測電流值(也就是待估計的積項和感測電流值(Isp ))。Where g out,i represents the weight value of the synaptic unit coupled to the ith column line and the row line to be read, and V i represents the input voltage value applied to the ith column line, I out | ground represents The sense current value (that is, the product term to be estimated and the sense current value (I sp )) formed when the row line is grounded.
為了降低積項和運算時在行線上產生的電流,切換電路104可回應處理電路108,將該行線連接至浮接節點(此例中即第一終端T1)。當該行線為浮接,該行線將不會導通電流(也就是行線上的感測電流Iout |floating 為0),並呈現平衡電壓值Vout |floating (此例中即第一電壓值Va )。因此,可將(式1)改寫如下:In order to reduce the current generated on the row lines during the product term and operation, the switching circuit 104 can respond to the processing circuit 108 to connect the row line to the floating node (in this example, the first terminal T1). When the row line is floating, the row line will not conduct current (that is, the sense current I out | floating on the line is 0), and assumes the balanced voltage value V out | floating (in this case, the first voltage) Value V a ). Therefore, (Formula 1) can be rewritten as follows:
(式2) (Formula 2)
其中。among them .
切換電路104更可回應處理電路108,將該行線連接至電流限制元件(在此例中即第二終端T2)。此時該行線上將導通一感測電流Is ,且具有電壓值Vout |Iout=Is (在此例中即第二電壓值Vb )如下:The switching circuit 104 is further responsive to the processing circuit 108 to connect the row line to the current limiting element (in this example, the second terminal T2). At this time, a sense current I s will be turned on the line, and has a voltage value V out | Iout=Is (in this example, the second voltage value V b ) is as follows:
(式3) (Formula 3)
其中α的值介於0至1之間。Where the value of α is between 0 and 1.
依據(式1)、(式2)以及(式3),可得到:According to (Formula 1), (Formula 2), and (Formula 3), we can obtain:
(式4) (Formula 4)
可看出,(式4)與(式0)具有相同的數學表示。It can be seen that (Equation 4) has the same mathematical representation as (Equation 0).
在其他範例中,第一終端T1和第二終端T2是對應不同電流值的兩個電流限制元件。此時,當一行線是以第一終端T1作為終端,該行線上將導通第一感測電流並具有第一電壓值。當該行線是以第二終端T2作為終端,該行線上將導通第二感測電流並具有第二電壓值。透過簡單地修飾(式1)至(式4)的推導過程,處理電路108可利用第一感測電流值、第一電壓值、第二感測電流值、以及第二電壓值估測出對應該行線的積項和電流值。In other examples, the first terminal T1 and the second terminal T2 are two current limiting elements corresponding to different current values. At this time, when the one line is terminated by the first terminal T1, the first sensing current is turned on and has a first voltage value. When the row line is terminated by the second terminal T2, the second sense current is turned on and has a second voltage value. By simply modifying the derivation process of (Formula 1) to (Formula 4), the processing circuit 108 can estimate the pair using the first sensed current value, the first voltage value, the second sensed current value, and the second voltage value. The product and current values of the line should be.
圖3是依據本發明一實施例所繪示的類神經計算系統的電流估計方法的流程圖。FIG. 3 is a flow chart of a current estimation method for a neural-like computing system according to an embodiment of the invention.
在步驟302,切換電路104將欲讀取的一特定行線電性連接至第一終端T1。In step 302, the switching circuit 104 electrically connects a specific row line to be read to the first terminal T1.
在步驟304,處理電路108透過感測電路106,自電性連接至第一終端T1時的該特定行線取得第一電壓值。In step 304, the processing circuit 108 transmits the first voltage value through the sensing circuit 106 from the specific row line when electrically connected to the first terminal T1.
在步驟306,切換電路104將該特定行線電性連接至第二終端T2。At step 306, the switching circuit 104 electrically connects the particular row line to the second terminal T2.
在步驟308,處理電路108透過感測電路106,自電性連接至第二終端T2時的該特定行線取得第二電壓值。In step 308, the processing circuit 108 transmits the second voltage value through the sensing circuit 106 from the specific row line when electrically connected to the second terminal T2.
在步驟310,處理電路108根據第一電壓值以及第二電壓值之間的電壓差值,估計一積項和感測電流值。At step 310, processing circuit 108 estimates a product term and sense current value based on the voltage difference between the first voltage value and the second voltage value.
在一實施例中,為了解決第一電壓值與第二電壓值之間電壓差值過小而不易判讀的問題,可透過特別設計的感測技術將該電壓差值轉換至時域(time domain),以根據轉換結果推估積項和感測電流值。舉例來說,可規劃行線在第一狀態/第二狀態下對電容充電,以根據電容的充放電時間取得第一電壓值和第二電壓值之間的電壓差值,進而估測積項和感測電流值。In an embodiment, in order to solve the problem that the voltage difference between the first voltage value and the second voltage value is too small to be easily read, the voltage difference can be converted to a time domain through a specially designed sensing technique. To estimate the product term and the sense current value based on the conversion result. For example, the programmable row line charges the capacitor in the first state/second state to obtain a voltage difference between the first voltage value and the second voltage value according to the charge and discharge time of the capacitor, thereby estimating the product term. And sense the current value.
綜上所述,本發明大致涉及一種基於硬體陣列結構所實現之類神經計算系統。根據本發明實施例,突觸單元陣列的輸出通道可切換地連接至第一終端或第二終端。輸出通道在連接至第一終端時會呈現第一電壓值,並在連接至第二終端時呈現第二電壓值。積項和感測電流值可根據第一電壓值以及第二電壓值之間的差值而被推估出來。相較於傳統方法中可能直接對流經輸出通道的積項和大電流進行測量以進行運算,根據本發明,連接至第一終端或第二終端的輸出通道僅可能導通大小被限制的電流,甚至不導通電流,故可有效降低能耗。In summary, the present invention generally relates to a neural computing system implemented based on a hardware array structure. According to an embodiment of the invention, the output channel of the synaptic cell array is switchably connected to the first terminal or the second terminal. The output channel presents a first voltage value when connected to the first terminal and a second voltage value when connected to the second terminal. The product term and the sense current value can be estimated based on the difference between the first voltage value and the second voltage value. Compared with the conventional method, it is possible to directly measure the product flowing through the output channel and the large current to perform an operation. According to the present invention, the output channel connected to the first terminal or the second terminal may only turn on the current whose size is limited, or even It does not conduct current, so it can effectively reduce energy consumption.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above by way of example, it is not intended to limit the invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
102‧‧‧突觸單元陣列 102‧‧‧ synaptic cell array
104‧‧‧切換電路 104‧‧‧Switching circuit
106‧‧‧感測電路 106‧‧‧Sensor circuit
108‧‧‧處理電路 108‧‧‧Processing circuit
201、203、205‧‧‧列線 201, 203, 205‧‧‧ column lines
202、204、206‧‧‧行線 202, 204, 206‧‧‧ lines
210‧‧‧突觸單元 210‧‧‧Synaptic unit
WU‧‧‧電阻元件 WU‧‧‧resistive components
SU‧‧‧選擇器 SU‧‧‧Selector
V1、V2、V3‧‧‧輸入電壓V 1 , V 2 , V 3 ‧‧‧ input voltage
I1、I2、I3‧‧‧感測電流I 1 , I 2 , I 3 ‧‧‧ sense current
T1‧‧‧第一終端 T1‧‧‧ first terminal
T2‧‧‧第二終端 T2‧‧‧second terminal
SW‧‧‧開關元件 SW‧‧‧Switching elements
302、304、306、308、310‧‧‧步驟 302, 304, 306, 308, 310‧‧‧ steps
圖1是根據本發明的一實施例所示意性繪示的類神經計算系統的方塊圖。 圖2示意性地繪示突觸單元陣列以及切換電路的電路結構圖。 圖3是依據本發明一實施例所繪示的類神經計算系統的電流估計方法的流程圖。1 is a block diagram of a neurological computing system, schematically depicted in accordance with an embodiment of the present invention. FIG. 2 schematically shows a circuit configuration diagram of a synapse cell array and a switching circuit. FIG. 3 is a flow chart of a current estimation method for a neural-like computing system according to an embodiment of the invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW106138193A TWI647627B (en) | 2017-11-03 | 2017-11-03 | Neuromorphic computing system and current estimation method using the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW106138193A TWI647627B (en) | 2017-11-03 | 2017-11-03 | Neuromorphic computing system and current estimation method using the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI647627B TWI647627B (en) | 2019-01-11 |
| TW201918937A true TW201918937A (en) | 2019-05-16 |
Family
ID=65804159
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW106138193A TWI647627B (en) | 2017-11-03 | 2017-11-03 | Neuromorphic computing system and current estimation method using the same |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI647627B (en) |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4780921B2 (en) * | 2004-03-17 | 2011-09-28 | キヤノン株式会社 | Parallel pulse signal processing apparatus and control method thereof |
| CN101971166B (en) * | 2008-03-14 | 2013-06-19 | 惠普开发有限公司 | neuromorphic circuits |
| US8510239B2 (en) * | 2010-10-29 | 2013-08-13 | International Business Machines Corporation | Compact cognitive synaptic computing circuits with crossbar arrays spatially in a staggered pattern |
| TWI462419B (en) * | 2013-01-09 | 2014-11-21 | 中原大學 | Neural static switch |
| US10055434B2 (en) * | 2013-10-16 | 2018-08-21 | University Of Tennessee Research Foundation | Method and apparatus for providing random selection and long-term potentiation and depression in an artificial network |
| US9830981B2 (en) * | 2015-01-14 | 2017-11-28 | International Business Machines Corporation | Neuromorphic memory circuit using a leaky integrate and fire (LIF) line to transmit axon LIF pulse and a conductive denrite LIF line |
| CN107122828B (en) * | 2017-05-09 | 2020-05-05 | 清华大学 | Circuit structure, driving method thereof and neural network |
-
2017
- 2017-11-03 TW TW106138193A patent/TWI647627B/en active
Also Published As
| Publication number | Publication date |
|---|---|
| TWI647627B (en) | 2019-01-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109923550B (en) | Multiplier accumulator | |
| US11804266B2 (en) | Apparatus and method with in-memory processing | |
| US11573792B2 (en) | Method and computing device with a multiplier-accumulator circuit | |
| Patra et al. | An intelligent pressure sensor using neural networks | |
| CN111382711B (en) | Fingerprint detection device and driving method thereof | |
| JP2005140612A (en) | Capacity detection circuit and detection method, and fingerprint sensor using the same | |
| JPH05223887A (en) | Current measuring circuit for power MOS transistor | |
| US20180247192A1 (en) | Mixed-Signal Circuitry For Computing Weighted Sum Computation | |
| JPH09198366A (en) | Low voltage, ultra low power conductance mode neuron | |
| JP7736245B2 (en) | Neuromorphic device, electronic system and driving method thereof | |
| CN104376362B (en) | Cynapse device and artificial neural network for artificial neural network | |
| US11062197B2 (en) | Neuromorphic computing system and current estimation method using the same | |
| EP4209969A1 (en) | Device with neural network | |
| CN109784482B (en) | Neural computing system and current estimation method thereof | |
| TWI647627B (en) | Neuromorphic computing system and current estimation method using the same | |
| CN111640463B (en) | Variation-resistant 3T3R binary weighted cell with low output current and high on/off ratio | |
| US20220083845A1 (en) | Arithmetic device and neural network device | |
| CN102150153B (en) | Data processing circuit with elementary processor, data processing assembly including array of such circuits, and matrix sensor including such assembly | |
| TWI861058B (en) | Weight cell and electronic device | |
| KR102675329B1 (en) | Variation mitigation scheme for semi-digital mac array with a 2t-2 resistive memory element bitcell | |
| JP7650825B2 (en) | Temperature-Based Tuning for In-Memory Matrix Multiplication | |
| CN110729010A (en) | Semiconductor circuit and method of operation | |
| CN116097275A (en) | Method for performing one or more vector matrix operations, computing unit and computing module for performing the method | |
| US20240232595A1 (en) | Method and apparatus with neural network circuitry | |
| Mayes et al. | Pulsed VLSI for RBF neural networks |