TR2021019195A2 - ARTIFICIAL INTELLIGENCE BASED FORECAST DECISION SUPPORT SYSTEM IN DISEASE, PEST AND WEED FIGHTING - Google Patents
ARTIFICIAL INTELLIGENCE BASED FORECAST DECISION SUPPORT SYSTEM IN DISEASE, PEST AND WEED FIGHTINGInfo
- Publication number
- TR2021019195A2 TR2021019195A2 TR2021/019195A TR2021019195A TR2021019195A2 TR 2021019195 A2 TR2021019195 A2 TR 2021019195A2 TR 2021/019195 A TR2021/019195 A TR 2021/019195A TR 2021019195 A TR2021019195 A TR 2021019195A TR 2021019195 A2 TR2021019195 A2 TR 2021019195A2
- Authority
- TR
- Turkey
- Prior art keywords
- artificial intelligence
- weeds
- diseases
- pests
- support system
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/188—Vegetation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Business, Economics & Management (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- General Business, Economics & Management (AREA)
- Artificial Intelligence (AREA)
- Mining & Mineral Resources (AREA)
- Marine Sciences & Fisheries (AREA)
- Animal Husbandry (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Agronomy & Crop Science (AREA)
- Multimedia (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Catching Or Destruction (AREA)
Abstract
Buluş, bitkisel üretimi sınırlayan, hastalık, zararlı ve yabancı otların zararlarından ekonomik olarak bitkileri korumak ve bu yolla tarımsal üretimi arttırmak ve kalitesini yükseltmek amacıyla kullanılan hastalık, zararlı ve yabancı ot mücadelesinde yapay zekâ tabanlı tahmin karar destek sistemi (A) ile ilgilidir.The invention relates to an artificial intelligence-based predictive decision support system (A) in the control of diseases, pests and weeds, which is used to economically protect plants from the damage of diseases, pests and weeds that limit plant production, and thus to increase agricultural production and improve their quality.
Description
TARIFNAME HASTALIK, ZARARLI VE YABANCI OT MÜCADELESINDE YAPAY ZEKÂ TABANLI TAHMIN KARAR DESTEK SISTEMI Teknik Alan Bulus, hastalik, zararli ve yabanci ot mücadelesinde yapay zekâ tabanli tahmin karar destek sistemi ile ilgilidir. DESCRIPTION ARTIFICIAL INTELLIGENCE IN DISEASE, PEST AND WEED CONTROL BASED FORECAST DECISION SUPPORT SYSTEM Technical Area Artificial intelligence-based predictive decision making in invention, disease, pest and weed control It's about the support system.
Bulus özellikle, bitkisel üretimi sinirlayan, hastalik. zararli ve yabanci otlarin zararlarindan ekonomik olarak bitkileri korumak ve bu yolla tarimsal üretimi arttirmak ve kalitesini yükseltmek amaciyla kullanilan hastalik, zararli ve yabanci ot mücadelesinde yapay zekâ tabanli tahmin karar destek sistemi ile ilgilidir. In particular, the invention is a disease limiting crop production. harmful and weeds To protect crops economically from their damage and to increase agricultural production in this way. Diseases, pests and weeds used to improve the quality of It is about artificial intelligence based prediction decision support system.
Bulusun Altyapisi Günümüzde ülkelerin en Çok üzerinde durduklari konularin basinda insanlarin gida ihtiyaçlarinin karsilanmasi gelmektedir. Bütün çabalara ragmen dünya nüfusu artmakta dünyanin yüzölçümü ise artmamaktadir. Bunun yaninda erozyon, yeni yerlesim yerlerinin, sanayi tesislerinin ve yollarin açilmasi gibi nedenlerle tarim alanlari giderek azalmaktadir. Arazi miktarinin arttirilmasi mümkün olmadigina göre modern teknikler ve girdiler kullanarak birim alandan elde edilen ürün miktarinda artis yapilmasi zorunlulugu ortaya çikmaktadir. Ürünü arttirmanin yollari arasinda sulama, uygun toprak isleme, gübreleme, islah, uygun hasat, üretici birliklerinin olusturulmasi, mekanizasyon yaninda modern bitki koruma yöntemlerinin uygulanmasi yer almaktadir. Ülkemizde tarim alanlarinda yasanan hastaliklar, zararlilar ve yabanci otlar sebebiyle verimde düsüs meydana gelmektedir. Bu da hem üreticilerimizin gelirlerinde hem de ülkemizdeki gayri safi milli hasilada ciddi kayiplara yol açmaktadir. Bu yüzden bitki koruma çalismalari dogru sekilde, dogru zamanda ve dogru teshisle uygulanmasi zaruridir. Ülkeler gida ihtiyaçlarini temin etmek için tarima dayali sanayi ürünü satin almak durumuyla karsi karsiyadir. Bitkisel ürünler ve bitkisel kökenli çesitli maddeler ülkeden ülkeye yer degistirmekte, böylece bitki ve bitkisel ürünler kisa zamanda milli sinirlari asarak dünyanin dört bir yanina dagilmaktadir. Invention Background Today, people's food is at the forefront of the issues that countries focus on the most. needs are met. Despite all efforts, the world population is increasing, the surface area of the world is not increasing. Besides, erosion, new Agricultural areas for reasons such as the opening of settlements, industrial facilities and roads is gradually decreasing. Since it is not possible to increase the amount of land, modern increase in the amount of product obtained from unit area using techniques and inputs necessity arises. Among the ways to increase the yield, irrigation, suitable soil cultivation, fertilization, improvement, appropriate harvest, formation of producer associations, Besides mechanization, the application of modern plant protection methods takes place. takes. Due to diseases, pests and weeds in agricultural areas in our country a decrease in productivity occurs. This is both in the income of our producers and It causes serious losses in the gross national product in our country. so the plant implementation of the protection work correctly, at the right time and with the right diagnosis. it is essential. Countries buy agro-industrial products to meet their food needs. against his situation. Herbal products and various substances of plant origin country, so plants and herbal products soon cross national borders. it is dispersed all over the world.
Bugün dünyada hizli bir sekilde ve büyük çapli bir bitki alisverisi söz konusudur. Bunun sonucu olarak da bitki ve bitkisel ürün parçalari çok uzaklara kisa zamanda dagilmaktadir. Bunlarla beraber çok tehlikeli hastalik, zararli ve yabanci otlarda dagilmaktadir. Tedbir alinmadigi takdirde temiz ülke ve bölgeler kisa zamanda zararli etmenlerle bulasmaktadir. Önceleri yayilmalari uzun zaman alan bu etmenlerin günümüzde bulasma ve dagilmalari kisa zamanda gerçeklesmektedir. There is a rapid and large-scale exchange of plants in the world today. This As a result, plant and plant product parts are far away in a short time. disperses. Along with these, very dangerous diseases, harmful and weeds disperses. If no action is taken, clean countries and regions will become harmful in a short time. infected with factors. These factors, which took a long time to spread, Today, their transmission and distribution takes place in a short time.
Ekonomik olmayan hiçbir uygulamanin modern bitki korumada yeri olmadigi için, günümüzde tarimsal mücadelenin amaci, ürünü ve kaliteyi ekonomiklik sinirlari içinde artirabilmektir. Bilindigi gibi ekonomiklik, çagimizin en temel degerlerini içermektedir. Since any non-economic application has no place in modern plant protection, Today, the aim of agricultural struggle is to keep the product and quality within the limits of economy. is to increase. As it is known, economy includes the most basic values of our age.
Modern bitki korumada ekonomiklik kavrami, çevrenin, sagligin korunmasi yani sira, bilinçli ve kontrollü uygulamalar ile yeni sorunlarin, örnegin yeni zararli, hastalik ya da yabanci ot türlerinin dominant hale gelmemesi için çalismaktadir. The concept of economy in modern plant protection, besides the protection of the environment and health, With conscious and controlled practices, new problems, for example new pests, diseases or is working to prevent weed species from becoming dominant.
Tarim alanlarinda yasanan hastaliklar, zararlilar ve yabanci otlar verimde önemli ölçüde kayiplara neden olmakta ve ürün kalitesini düsürerek pazarda karlilik payini azaltmaktadir. Üretici bazen çok iyi tanidigi hastalik, zararli ve yabanci otlari karistirmakta ve sahada görev yapan ziraat mühendisleri, danismanlar birçok hastalik ve zararlilari tam net teshiste bulunmakta zorlanmaktadirlar. Üreticiler hastalik zararli ve yabanci otlari bilinçsiz bir sekilde ilaçlamakta ve bunun sonucunda da istenilen ürünü alamamaktadir. Bilinçsiz bir sekilde uygulanan bitki koruma ürünleri toprak, su kaynaklari, dogal flora, hayvanlar ve bitkilere zarar vermektedir. Üreticiler çogunlukla ziraat mühendislerine sormadan komsu parselde yapilan ilaç uygulamasini taklit ederek gereksiz yere ilaçlama yapmaktadirlar. Diseases, pests and weeds in agricultural areas are important in yield. causes significant losses and decreases the profitability of the market by decreasing the product quality. decreases. Diseases, pests and weeds of which the producer is sometimes very well acquainted. Agricultural engineers, consultants, who are mixing and working in the field, and pests have difficulty in making a full diagnosis. Producers unconsciously spray disease, harmful and weeds, and As a result, they cannot get the desired product. unconsciously applied plant protection products harm the soil, water resources, natural flora, animals and plants. gives. Producers are mostly in the neighboring parcel without asking the agricultural engineers. They imitate the drug application and apply pesticides unnecessarily.
Literatürde CN107942302 numarali Çin patent basvurusunda konu ile ilgili olarak tahmin sistemini ve yöntemini açiklar. Sistem bir radar, bir veri tabani ve sirayla baglanan bir ana bilgisayardan olusur. Radar, tespit edilen bir deniz alanini isinlar ve radar deniz daginikligi verilerini veritabaninda saklar. Ana bilgisayar, bir veri ön isleme modülü, saglam bir tahmin modeli modelleme modülü, bir akilli optimizasyon modülü, bir deniz daginikligi tahmin modülü, bir ayrim modeli güncelleme modülü ve bir sonuç görüntüleme modülü içerir. Bulusa göre, radar deniz daginikliginin kaotik özelliklerine gelince, radar deniz daginikligi verileri yeniden yapilandirilir, yeniden olusturulan veriler dogrusal olmayan uydurmaya tabi tutulur ve akilli bir tahmin modeli olusturmak için istilaci ot optimizasyon yöntemi tanitilir. radar deniz daginikligi. Bulus, yapay faktörlerden kaçinan ve yüksek zekaya sahip müdahaleci ot optimizasyon algoritmasina dayali akilli radar deniz daginikligi tahmin sistemi ve yöntemini saglar.” Bahsedilen basvuruda denizlerdeki istilaci ot üzerine radar sistemi ile ilgilidir. Radar deniz daginikliginin kaotik özellikleri ile ilgili veriler üzerinden akilli bir tahmin modeli olusturmaktadir. Regarding the subject in the Chinese patent application numbered CN107942302 in the literature explains the estimation system and method. The system consists of a radar, a database and, in turn, consists of a connecting host. Radar illuminates a detected sea area and The radar stores sea clutter data in its database. host, a data preprocessing module, a robust predictive model modeling module, an intelligent optimization module, a sea clutter prediction module, a segregation model update module, and a result Includes display module. According to the invention, the chaotic characteristics of radar sea clutter As for the radar sea clutter data, reconstructed, reconstructed data is subjected to non-linear fitting and to create an intelligent forecasting model Invasive weed optimization method is introduced for radar sea clutter. invention, artificial intrusive weed optimization that avoids factors and has high intelligence It provides an intelligent radar sea clutter forecasting system and method based on the algorithm.” The application referred to relates to a radar system on invasive weed in the seas. Radar An intelligent forecasting model based on data on the chaotic features of sea clutter. forms.
Literatürde CN111387169 numarali patent müracaatinda ise konu ile ilgili olarak modülünü, yapay zeka teknolojisine dayali çok püskürtmeli bir yolu açiklar ve tarim makineleri alaniyla ilgilidir. Yapay zeka teknolojisine dayali çoklu püskürtme yolu, kontrollü püskürtme araligina sahip, hedefe yönelik hassas ayiklama modülü, özellikle tarim alanindaki çok sayida mahsulün akilli tarlada ayiklanmasina uygulanir. Modül, birden fazla türde tasima platformu için kullanilir ve hizli geçmeli montaj saglanabilir. In the patent application numbered CN111387169 in the literature, explains the module, a multi-jet path based on artificial intelligence technology and relates to the field of machinery. Multiple spray paths based on artificial intelligence technology, targeted precision sorting module with controlled spray interval, especially It is applied to smart field sorting of a large number of crops in the agricultural field. Module, Used for multiple types of transport platforms and quick snap-on mounting can be provided.
Cihaz, farkli büyüme döngülerinde çok sayida tarla bitkisinin tarlada ayiklanmasi için uygundur. Cihaza göre, yabanci ot bilgilerini tanimak için hafif bir evrisimli sinir agi benimsenmistir, böylece ajan tipi seçimi, hedef sprey parametreleri ve akislari, basinç, sprey basligi açilarinin otomatik optimizasyonu ve çökeltme bölgesi planlamasi için temeller saglanmistir. Çok kanalli bir hedef püskürtme ünitesi, farkli türdeki yabani otlara farkli türde ot öldürücüler püskürtebilir, senkron bir kayisli kayar tabla, yabani otlar üzerinde hassas hedefe dogru püskürtme yapmak için püskürtme basliklarini enine hareket ettirir ve bir püskürtme araligi, asagidakilere göre ayarlanabilir. yabanci ot gruplarinin büyüklügüHedefe yönelik püskürtme sistemi sayesinde, pestisit kullanimi azaltilabilir, ekolojik bir çevreye olan kirlilik azaltilabilir ve çalisma verimliligi etkin bir sekilde gelistirilebilir.” ifadelerine yer verilmektedir. The device is suitable for field weeding of a large number of field crops at different growth cycles. suitable. According to the device, a slightly convolutional neural network for recognizing weed information so that agent type selection, target spray parameters and flows, pressure, for automatic optimization of spray head angles and settling zone planning the foundations have been laid. A multi-channel target spray unit can be used to capture different types of wild can spray different types of herbicides on grass, a synchronous belt slide table, weed spray nozzles for precise target spraying on weeds. moves transversely and a spray interval can be adjusted according to the following. foreign the size of the weed groups, thanks to the targeted spray system, the pesticide use can be reduced, pollution to an ecological environment can be reduced and operating efficiency can be developed effectively.” statements are included.
Bahsedilen patent basvurusunda ise cihaz, farkli büyüme döngülerinde çok çesitli tarla bitkilerinin tarlada ayiklanmasi için tasarlanmis tür özelliklerine göre degil sadece büyüme farkliliklarina göre çalismaktadir. Farkli türdeki yabani otlarin üzerine farkli türde ot öldürücüler püskürtebilir sekilde bir tarim makinesi olarak tasarlanmistir. In the aforementioned patent application, the device is used in a wide variety of fields in different growth cycles. only according to the species characteristics designed for field selection of plants. It works according to growth differences. Different types of weeds on different It is designed as an agricultural machine that can spray all kinds of herbicides.
Sadece yabanci ot ile ilgilidir. It's just about weed.
Yine literatürde CN109676624 numarali patent basvurusunda konu ile ilgili olarak amaçlamaktadir. Saha hedef tespit robotu platformu, bir araç gövdesi ve bir yapay zeka sistem grubundan olusmakta olup, burada araç gövdesi bir çerçeve platform, bir yürüme ve yönlendirme sistemi, çift kanatli bir görüs mekanizmasi ve bir akilli kontrol sisteminden olusmaktadir. Güç, yürüme ve direksiyon sisteminde bir tekerlek göbegi motoru tarafindan saglanir. Bir yönlendirme islevini gerçeklestirmek için platformun ilerleme yönünü kontrol etmek için bir kademeli motor kullanilir. Yukarida bahsedilenlerden hareketle, yapay zeka sisteminde tarla bitkisi ve yabanci ot bilgilerinin toplanmasi ve bu bilgilerin bilgisayara iletilerek tespit edilen bitkilerin tespiti ve siniflandirilmasi için çift kanatli görüs mekanizmasinda bir kamera kullanilmaktadir. Again, in the patent application numbered CN109676624 in the literature, aims. Field target detection robot platform, a vehicle body and an artificial consists of an intelligence system group, where the vehicle body is a frame platform, a walking and steering system, a double-wing vision mechanism and an intelligent control system. consists of system. A wheel hub in the power, drive and steering system supplied by the engine. platform to perform a routing function. A stepper motor is used to control the direction of feed. Above Based on the aforementioned, field crops and weeds in the artificial intelligence system collection of information and the determination of the detected plants by transmitting this information to the computer. and a camera in the double-wing sight mechanism is used for its classification.
Araç gövdesindeki akilli kontrol sistemi, yürüme ve direksiyon sistemini ve bir direksiyon sistemini kontrol etmek için kullanilir. Bu sirada araç gövdesi, yapay zeka sisteminin talimatlarina göre hiz ayarina ve ilerleyen yön degistirmeye tabi tutulur.” Bahsedilen uygulamada bir alan hedefi tespit robotu ile ilgili olup tarla bitkisi ve yabanci ot bilgilerinin toplanmasi ve bu bilgilerin bilgisayara iletilerek tespit edilen bitkilerin tespiti ve siniflandirilmasi amaciyla kullanilmaktadir. Sadece bitki üzerinden kamera görüntüsü alip merkezdeki bir bilgisayara göndermektedir. The intelligent control system in the vehicle body, the walking and steering system and a Used to control the steering system. Meanwhile, the vehicle body, artificial intelligence subject to speed adjustment and progressive change of direction according to the instructions of the system. In the mentioned application, it is related to an area target detection robot and it is related to field plant and foreign collecting weed information and transmitting this information to the computer used for detection and classification. Just the camera through the plant It takes the image and sends it to a computer in the center.
Yukarida bahsedilen dezavantajlardan dolayi, hastalik, zararli ve yabanci ot mücadelesinde yapay zekâ tabanli yeni bir tahmin karar destek sistemi ortaya koyma gereksinimi duyulmustur. Because of the disadvantages mentioned above, disease, pest and weed Introducing a new predictive decision support system based on artificial intelligence need has been felt.
Bulusun Açiklanmasi Teknigin bu konumundan yola çikilarak bulusun amaci, mevcut dezavantajlari ortadan kaldiran hastalik, zararli ve yabanci ot mücadelesinde yapay zekâ tabanli yeni bir tahmin karar destek sistemi ortaya koymaktir. Disclosure of the Invention Starting from this position of the technique, the aim of the invention is to eliminate the existing disadvantages. A new artificial intelligence-based method in the control of diseases, pests and weeds that removes predictive decision support system.
Bulusun bir diger amaci, bitkisel üretimi sinirlayan, hastalik, zararli ve yabanci otlarin zararlarindan ekonomik olarak bitkileri koruyan ve bu yolla tarimsal üretimi arttirarak üretim kalitesini yükselten bir sistem ortaya koymaktir. Another object of the invention is to control disease, pest and weeds that limit crop production. by protecting plants economically from their damage and by increasing agricultural production in this way. is to put forward a system that increases the production quality.
Bulusun bir diger amaci. çiftçilerimizi hem mücadele olarak hem de ekonomik olarak en çok ugrastiran hastalik, zararli ve yabanci otlar ile ilgili otomatik bölgesel haritalandirmanin yani sira ziraat mühendislerinin ve çiftçilerin de faydalanabilecegi ve kullanabilecegi bir uygulama ortaya koymaktir. Another purpose of the invention. our farmers both as a struggle and economically. automatic regional information on most troublesome diseases, pests and weeds mapping as well as agricultural engineers and farmers can benefit from and is to present an application that you can use.
Bulusun bir diger amaci, son kullanici (ziraat mühendisleri ve çiftçiler) tarafindan kullandikça ve veriler genisledikçe bölgesel haritalandirma ve tahminleme yapan dinamik bir sistem ortaya koymaktir Sekillerin Açiklanmasi Sekil - 1 Bulusa konu olan hastalik, zararli ve yabanci ot mücadelesinde yapay zekâ tabanli tahmin karar destek sisteminin sematik bir görünümü Referans Numaralari A- Hastalik, Zararli ve Yabanci Ot Mücadelesinde Yapay Zekâ Tabanli Tahmin Karar Destek Sistemi Hastalik, Zararli ve Yabanci Ot Olusumlari Hastalikli Meyve/Sebze Aplikasyon Ham Veri Yapay Zeka Motoru 9753:“93539 Ögrenilmis Veritabani 7. Ana Veritabanlari 8. Siniflandirilmis Veri 9. Uzman Havuzu .Geri Bildirim Ünitesi Bulusun Detayli Anlatimi Bu detayli açiklamada, bulus konusu yenilik sadece konunun daha iyi anlasilmasina yönelik hiçbir sinirlayici etki olusturmayacak örneklerle açiklanmaktadir. Another object of the invention is the end user (agricultural engineers and farmers) regional mapping and forecasting as data expands to reveal a dynamic system Explanation of Figures Figure - 1 Artificial intelligence in the control of diseases, pests and weeds, which is the subject of the invention A schematic view of a predictive decision support system Reference Numbers A- Artificial Intelligence Based Prediction in Disease, Pest and Weed Control Decision Support System Disease, Pest and Weed Formations Diseased Fruit/Vegetable Application Raw Data Artificial Intelligence Engine 9753:“93539 Learned Database 7. Master Databases 8. Classified Data 9. Expert Pool .Feedback Unit Detailed Description of the Invention In this detailed description, the innovation subject of the invention is only intended for a better understanding of the subject. It is explained with examples that will not have any limiting effect on the subject.
Bulus, bitkisel üretimi sinirlayan, hastalik, zararli ve yabanci otlarin zararlarindan ekonomik olarak bitkileri korumak ve bu yolla tarimsal üretimi arttirmak ve kalitesini yükseltmek amaciyla kullanilan hastalik, zararli ve yabanci ot mücadelesinde yapay zekâ tabanli tahmin karar destek sistemi (A) olup özelligi; hastalik, zararli ve yabanci ot olusumlari (1) ve/veya hastalikli meyve/sebzelerin (2) fotograflama islemi yapilip ya da analiz edilip görüntü saptanmasi, saptanan görüntünün görüntü isleme ile aplikasyona (3) yüklenerek ham veri (4) olusturulmasi, gelen fotograflara ait ham verilerin (4) yapay zeka motorunun (5) çalistigi merkezi bir sunucuya gönderilmesi, ana veritabanlarinda (7) hazir bulunan hastalik, zararli ve yabanci ot olusumlari (1) ve ögrenilmis veritabaniyla (6) egitilmis olan derin ögrenme ile analiz edilmesi ve konu uzmanlarinin tespitleri ile yazilim içerisinde veri isleme teknigi ile siniflandirilmis veri (8) olarak kaydedilmesi, yapay zeka temelli sistemi içeren yapay zeka motorunun (5); ana veritabanlarinda (7) yüklenen görüntülerin, algoritmik analiz modülünde analiz edilerek ve farkliliklar saptanarak ögrenilmis yapay zeka modeli verisi olan siniflandirilmis veri (8) elde edilmekte ve elde edilen ögrenilmis yapay zeka modeli verisi olan siniflandirilmis verinin (8) ögrenilmis veritabanina (6) kaydedilmesi islem adimlarini içermesiyle karakterize edilmesidir. The invention is responsible for the damage of diseases, pests and weeds that limit crop production. to protect plants economically and in this way to increase agricultural production and quality artificial in the control of diseases, pests and weeds used to raise It is an intelligence-based prediction decision support system (A) and its feature is; disease, pest and foreign whether weed formations (1) and/or diseased fruit/vegetables (2) are photographed or not. analysis and image detection, the detected image is processed by image processing. creating raw data (4) by uploading it to the application (3), raw data of the incoming photos sending the data (4) to a central server where the artificial intelligence engine (5) runs, disease, pest and weed occurrences present in the main databases (7) (1) and analyzed with deep learning trained with a learned database (6) and the subject classified data with data processing technique in software with the determinations of experts (8) means that the artificial intelligence engine (5), which includes the artificial intelligence-based system; The images uploaded in the main databases (7) are analyzed in the algorithmic analysis module. artificial intelligence model data learned by classified data (8) is obtained and the learned artificial intelligence model obtained The process of registering the classified data (8) that has data in the learned database (6) is characterized by containing the steps.
Sekil - 1'de bulusa konu olan hastalik, zararli ve yabanci ot mücadelesinde yapay zekâ tabanli tahmin karar destek sisteminin (A) sematik bir görünümü resmedilmektedir. In Figure - 1, the subject of the invention is artificial in the control of disease, pest and weed. A schematic view of the intelligence-based predictive decision support system (A) is pictured.
Bulusa konu olan hastalik, zararli ve yabanci ot mücadelesinde yapay zekâ tabanli tahmin karar destek sistemi (A), hastalik, zararli ve yabanci ot olusumlari (1), hastalikli meyve/sebze (2), aplikasyon (3), ham veri (4), yapay zeka motoru (5), ögrenilmis veritabani (6), ana veritabanlari (7) ve siniflandirilmis veri (8) ana unsurlarindan meydana gelmektedir. The subject of the invention is artificial intelligence-based control in the control of diseases, pests and weeds. predictive decision support system (A), disease, pest and weed occurrences (1), diseased fruit/vegetable (2), app (3), raw data (4), artificial intelligence engine (5), learned database (6), master databases (7) and classified data (8). is occurring.
Bulusun uygulanmasinda seçilen hastalik, zararli ve yabanci ot olusumlari (1) ve hastalikli meyve/sebzede (2) fotograflama yapilip ya da analiz edilip saptanan görüntü, görüntü isleme ile aplikasyona (3) yüklenerek ham veri (4) olusturulmaktadir. Ayrica Tarim ve Orman Bakanligi ile Üniversitelerin ana veri tabanlarindaki (7) hastalik, zararli ve yabanci ot fotograflar da kullanilmaktadir. Disease, pest and weed occurrences selected in the application of the invention (1) and The image detected by photographing or analyzing the diseased fruit/vegetable (2), The raw data (4) is created by uploading it to the application (3) with image processing. Moreover Diseases in the main databases of the Ministry of Agriculture and Forestry and Universities (7), harmful and weed photographs are also used.
Gelen fotograflara ait ham veriler (4) yapay zeka motorunun (5) çalistigi merkezi bir sunucuya gönderilerek ana veritabanlarinda (7) hazir bulunan hastalik, zararli ve yabanci ot olusumlari (1), ögrenilmis veritabaniyla (6) egitilmis olan derin ögrenme ile analiz edilmekte ve konu uzmanlarinin tespitleri ile yazilim içerisinde veri isleme teknigi ile siniflandirilmis veri (8) olarak kaydedilmektedir. The raw data (4) of the incoming photographs are stored in a centralized location where the artificial intelligence engine (5) works. sent to the server, the disease, harmful and weed occurrences (1) with deep learning trained with a learned database (6) are analyzed and the data processing technique in the software is determined with the determinations of the subject experts. It is recorded as (8) classified data.
Yapay zeka motoru (5) ile yeni gelen görüntülerin sistem içerisinde analizleri gerçeklestirilerek uzmanlar ile kontrolleri saglanmaktadir. Yapay zeka temelli sistemi içeren yapay zeka motoru (5); ana veritabanlarinda (7) yüklenen görüntülerin, algoritmik analiz modülünde analiz edilerek ve farkliliklar saptanarak ögrenilmis yapay zeka modeli verisi olan siniflandirilmis veri (8) elde edilmekte ve elde edilen ögrenilmis yapay zeka modeli verisi olan siniflandirilmis veri (8) ögrenilmis veritabanina (6) kaydedilmektedir. Analysis of new images within the system with the artificial intelligence engine (5) are carried out and controlled by experts. Artificial intelligence based system including artificial intelligence engine (5); images uploaded in the main databases (7), artificially learned by analyzing and detecting differences in the algorithmic analysis module The classified data (8) which is the intelligence model data is obtained and the obtained learned classified data (8) to learned database (6), which is artificial intelligence model data is recorded.
Ana veritabanlari (7) relational (iliskisel) ve no-sql (iliskisiz) mimaride çalismakta ve Big Data tutmasi için hazirlanmaktadir. Bahsedilen yapay zeka motorundaki (5) görüntü isleme yapay zeka algoritma modülü içerisinde yer alan computer-vision (bilgisayarli görü) algoritmalari ve yapay zeka algoritmalari ile çalisarak analiz etmektedir. Yapay zekanin gelistirilme sürecinde en iyi sonucu bulmak için evrimlesen sinir aglari ile CNN Algoritmasi yöntemleri kullanilmaktadir. The main databases (7) operate in relational and no-sql (unrelated) architecture and It is being prepared for data retention. Images in the mentioned artificial intelligence engine (5) computer-vision (computerized) which is included in the processing artificial intelligence algorithm module. It analyzes it by working with vision) algorithms and artificial intelligence algorithms. Artificial CNN with evolving neural networks to find the best result in the development process of intelligence Algorithm methods are used.
Bulusa konu hastalik, zararli ve yabanci ot mücadelesinde yapay zekâ tabanli tahmin karar destek sistemi (A), tarimsal üretimde hem hastalik, zararli ve yabanci ot olusumlarini (1) hem de hastalikli meyve/sebzeleri (2) tespit edebilecek tür ve cins farkliliklari ile egitilmis olan derin ögrenme yazilim sistemi ile ögrenilmis veri tabanlarini (6) kullanarak computer-vision (bilgisayarli görü) algoritmalari ve yapay zeka motoru (5) tabanli yapay zeka algoritmalari ile çalisarak analiz edecektir. Artificial intelligence-based prediction in disease, pest and weed control, which is the subject of the invention decision support system (A), both disease, pest and weed in agricultural production Species and genus that can detect their occurrence (1) as well as diseased fruit/vegetables (2) Databases learned with deep learning software system trained with differences (6) using computer-vision algorithms and artificial intelligence engine It will analyze by working with (5) based artificial intelligence algorithms.
Claims (1)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TR2021/019195A TR2021019195A2 (en) | 2021-12-06 | 2021-12-06 | ARTIFICIAL INTELLIGENCE BASED FORECAST DECISION SUPPORT SYSTEM IN DISEASE, PEST AND WEED FIGHTING |
| PCT/TR2021/051571 WO2023107023A1 (en) | 2021-12-06 | 2021-12-29 | Artificial intelligence based predictive decision support system in disease, pest and weed fighting |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TR2021/019195A TR2021019195A2 (en) | 2021-12-06 | 2021-12-06 | ARTIFICIAL INTELLIGENCE BASED FORECAST DECISION SUPPORT SYSTEM IN DISEASE, PEST AND WEED FIGHTING |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| TR2021019195A2 true TR2021019195A2 (en) | 2021-12-21 |
Family
ID=85114320
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TR2021/019195A TR2021019195A2 (en) | 2021-12-06 | 2021-12-06 | ARTIFICIAL INTELLIGENCE BASED FORECAST DECISION SUPPORT SYSTEM IN DISEASE, PEST AND WEED FIGHTING |
Country Status (2)
| Country | Link |
|---|---|
| TR (1) | TR2021019195A2 (en) |
| WO (1) | WO2023107023A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115578642A (en) * | 2022-11-18 | 2023-01-06 | 长春工业大学 | A C3M-Yolov5s-based image detection method for agricultural pests |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102764221B1 (en) * | 2023-11-14 | 2025-02-05 | 서울과학기술대학교 산학협력단 | Weekend farm operation system using image analysis and generation, and method thereof |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107153840A (en) * | 2017-04-21 | 2017-09-12 | 防城港市丰禾曲辰农业科技有限公司 | A kind of crop pests image-recognizing method based on convolutional Neural |
| KR20200029657A (en) * | 2018-09-06 | 2020-03-19 | 장성식 | Farming automation system using crop image big data |
| EP3739504A1 (en) * | 2019-05-16 | 2020-11-18 | Basf Se | System and method for plant disease detection support |
| CN110321956B (en) * | 2019-07-08 | 2023-06-23 | 府谷县鑫兴泰农贸有限公司 | Grass pest control method and device based on artificial intelligence |
| KR102301013B1 (en) * | 2019-12-30 | 2021-09-17 | 전북대학교산학협력단 | Method for autonomous diagnosis model of pests and diseases using deep learning |
| AU2021101682A4 (en) * | 2021-04-01 | 2021-05-20 | Sachin Balkrushna Jadhav | Automatic plant leaf disease diagnosis with machine learning and deep convolutional neural networks |
-
2021
- 2021-12-06 TR TR2021/019195A patent/TR2021019195A2/en unknown
- 2021-12-29 WO PCT/TR2021/051571 patent/WO2023107023A1/en not_active Ceased
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115578642A (en) * | 2022-11-18 | 2023-01-06 | 长春工业大学 | A C3M-Yolov5s-based image detection method for agricultural pests |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2023107023A1 (en) | 2023-06-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Bergerman et al. | Robotics in agriculture and forestry | |
| Esau et al. | Machine vision smart sprayer for spot-application of agrochemical in wild blueberry fields | |
| Billingsley et al. | Robotics in agriculture and forestry | |
| WO2021198731A1 (en) | An artificial-intelligence-based method of agricultural and horticultural plants' physical characteristics and health diagnosing and development assessment. | |
| TR2021019195A2 (en) | ARTIFICIAL INTELLIGENCE BASED FORECAST DECISION SUPPORT SYSTEM IN DISEASE, PEST AND WEED FIGHTING | |
| Kisliuk et al. | AI in current and future agriculture: an introductory overview | |
| Ziya et al. | Determination of Sugar Beet Leaf Spot Disease Level (Cercospora beticola Sacc.) with Image Processing Technique by Using Drone. Curr Inves Agri Curr Res 5 (3)-2018 | |
| Lawrence et al. | Drone technology in agriculture for surveillance and inspection | |
| Dammer et al. | On-the-go phenotyping in field potatoes using camera vision | |
| Hamdani | Introduction to robotics agriculture in pest control: a review | |
| Anghelache et al. | Intelligent monitoring of diseased plants using drones | |
| Jain et al. | Agriculture assistant for crop prediction and farming selection using machine learning model with real-time data using imaging through uav drone | |
| Kaya et al. | The use of drones in agricultural production | |
| Tsoulias et al. | Digital Farming and Field Robots | |
| TR2024011784T2 (en) | ARTIFICIAL INTELLIGENCE BASED PREDICTION DECISION SUPPORT SYSTEM IN DISEASE, PEST AND WEED MANAGEMENT | |
| Jagli et al. | Smart Farming Using Artificial Intelligence. | |
| Okamoto et al. | Field applications of automated weed control: Asia | |
| Harjeet et al. | Machine vision technology, deep learning, and IoT in agricultural industry | |
| Kayacan et al. | Digital Future with Agriculture 4.0 | |
| Kumar et al. | Robotics applications and its impact in the global agricultural sectors for advancing automation | |
| Fatima et al. | Methodological approaches for smart agriculture and its applications | |
| Gulzar et al. | Precision farming in fruit crops | |
| Singh et al. | Digital technologies for smart agriculture | |
| Pal | Applications of Artificial Intelligence (AI) in Agriculture and Allied Fields | |
| Dhanasekar et al. | Design and implementation of a weed removal agriculture robot |