TR201517613A2 - A SYSTEM FOR DETERMINATION OF FRAUD IN TELECOMMUNICATION SYSTEMS - Google Patents
A SYSTEM FOR DETERMINATION OF FRAUD IN TELECOMMUNICATION SYSTEMS Download PDFInfo
- Publication number
- TR201517613A2 TR201517613A2 TR2015/17613A TR201517613A TR201517613A2 TR 201517613 A2 TR201517613 A2 TR 201517613A2 TR 2015/17613 A TR2015/17613 A TR 2015/17613A TR 201517613 A TR201517613 A TR 201517613A TR 201517613 A2 TR201517613 A2 TR 201517613A2
- Authority
- TR
- Turkey
- Prior art keywords
- fraud
- detection module
- network performance
- database
- tokens
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 52
- 238000010295 mobile communication Methods 0.000 claims abstract description 14
- 238000012545 processing Methods 0.000 claims description 21
- 238000004891 communication Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 238000010367 cloning Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/22—Arrangements for supervision, monitoring or testing
- H04M3/2281—Call monitoring, e.g. for law enforcement purposes; Call tracing; Detection or prevention of malicious calls
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M15/00—Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M15/00—Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
- H04M15/47—Fraud detection or prevention means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M15/00—Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
- H04M15/58—Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP based on statistics of usage or network monitoring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/12—Detection or prevention of fraud
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/24—Accounting or billing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2203/00—Aspects of automatic or semi-automatic exchanges
- H04M2203/55—Aspects of automatic or semi-automatic exchanges related to network data storage and management
- H04M2203/555—Statistics, e.g. about subscribers but not being call statistics
- H04M2203/556—Statistical analysis and interpretation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2203/00—Aspects of automatic or semi-automatic exchanges
- H04M2203/60—Aspects of automatic or semi-automatic exchanges related to security aspects in telephonic communication systems
- H04M2203/6027—Fraud preventions
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Security & Cryptography (AREA)
- Technology Law (AREA)
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Telephonic Communication Services (AREA)
- Telephone Function (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Bu buluş, mobil haberleşme operatörü firmalar için temel girdi olarak şebeke performans belirteçlerini (KPI_Key Performance Indicators) kullanan bir sahtekarlık (fraud) belirleme sistemi (1) ile ilgilidir.The present invention relates to a fraud detection system (1) that uses network performance indicators (KPI_Key Performance Indicators) as the primary input for mobile communications operator firms.
Description
TARIFNAME TELEKOMÜNIKASYON SISTEMLERINDE SAHTEKARLIGIN BELIRLENMESI IÇIN BIR SISTEM Teknik Alan Bu bulus, mobil haberlesme operatörü firmalar için temel girdi olarak sebeke performans belirteçlerini (KPI_Key Performance [ndicators) kullanan bir sahtekarlik (fraud) belirleme sistemi ile ilgilidir. Önceki Teknik Telekomünikasyon sistemlerinde sahtekarlik (fraud) telekomünikasyon endüstrisinin ilk olusum tarihine kadar uzanmaktadir. Kullanilan ilk sahtekarlik yöntemlerinden biri abone hatlarina fiziksel olarak yapilan paralel baglantilarla abone hatlarindan pahali istikainetlere arama yapilmasidir. Günümüzde ayni islem GSM altyapilarinda SIM karti klonlamasi ile gerçeklestirilmektedir. DESCRIPTION FRAUD IN TELECOMMUNICATION SYSTEMS A SYSTEM TO DETERMINE Technical Area This invention has been used as a basic input for mobile communication operator companies. a spoof that uses performance tokens (KPI_Key Performance [ndicators)] (fraud) is related to the determination system. Prior Art Fraud in telecommunications systems It goes back to the date of its first creation. One of the first fraud methods used one of the subscriber lines with parallel connections made physically to the subscriber lines. is to search for expensive destinations. Today, the same process is used in GSM infrastructures. It is done by cloning the SIM card.
Günümüzde telekomünikasyon sahtekarligi telekomünikasyon endüstrisinin en büyük sorunlarindan birisidir. Yeni nesil haberlesme teknolojilerinin ortaya çikmasiyla beraber yeni tür hileli kazanç yöntemlerinde de büyük bir artis meydana gelmistir. Iletisim Dolandiricilik Kontrol Birligi (Communications Fraud Control AssociationýCFCO) 2009 yilinda gerçeklesen telekomünikasyon sahtekarlik girisimlerinin sebep oldugu zararin yaklasik 70 ila 78 milyar dolar arasinda gerçeklestigini tahmin etmektedir. Telekomünikasyon pazarindaki rekabetçi baskilar telekomünikasyon firmalarini sahtekarliktan kaynaklanan gelir kayiplarinin azaltilmasi konusunda daha etkili çalismalar yapmaya yönlendirmektedir.Today, telecommunications fraud is one of the biggest problems in the telecommunications industry. is one of its biggest problems. The emergence of new generation communication technologies With the emergence of new types of fraudulent earning methods, a great increase has occurred. has arrived. Communication Fraud Control AssociationýCFCO) telecommunications fraud that occurred in 2009 Between $70 and $78 billion in damage caused by their ventures predicts it will happen. Competitive pressures in the telecommunications market telecommunications companies of revenue losses due to fraud It directs them to do more effective work on reducing it.
Telekomünikasyon sahtekarligi sadece telekomünikasyon operatörlerinin zarar görmesine degil ayni zamanda son kullanicilarin da zarar görmelerine neden olmaktadir. Telekomünikasyon operatörü olan firmalar itibarlarini korumak amaciyla abonelerine sunulan hizmetlerin yetkisiz kullanimini engellemek için önlemler almaktadirlar.Telecommunication fraud only harms telecommunication operators. cause damage to the end users as well as is happening. Firms that are telecommunications operators protect their reputations in order to prevent unauthorized use of the services offered to its subscribers. are taking precautions.
Günümüzde telekomünikasyon operatörü firmalar telekomünikasyon sistemlerindeki sahtekarligin engellenebilmesi amaciyla çesitli sahtekarlik denetim sistemleri (Fraud Management System) kullanmaktadirlar. Söz konusu sistemler abonelerin kullanim raporlarini analiz ederek sahtekarlik girisimlerinin tespit edilmesini saglamaktadirlar. Sahtekarlik denetim sistemleri tipik birer veri madenciligi uygulamalaridir. Sahtekarlik denetim sistemleri geçmise dönük kullanim verilerinden her müsterinin kullanim egilimlerini belirleyen bir tür parmak izi veri tabani olusturulmasini saglamaktadirlar. Ancak, günümüzde herhangi bir sahtekarlik denetim sistemi telekomünikasyon sistemindeki sahtekarligin tespit edilebilmesi sebeke performans belirteçlerindeki anormallikleri kullanmamaktadir. sisteminde bilgisayar yardimli bir sahtekarlik (fraucl) tespit yönteminden bahsedilmektedir. Söz konusu sistem dahilinde kullanicinin sebeke kullanimiyla ilgili tutulan bazi bilgilere dayanarak sahtekar kullanim durumu tespit edilmektedir.Today, telecommunications operator companies Various fraud control systems are used to prevent fraudulent systems. They use systems (Fraud Management System). The systems in question Detecting fraud attempts by analyzing subscribers' usage reports they ensure. Fraud control systems are typical data mining applications. Fraud control systems retrospective a kind of finger that determines the usage trends of each customer from usage data They enable the creation of a trace database. However, nowadays any fraud detection system fraud detection in telecommunications system does not use anomalies in network performance indicators. system from a computer-assisted fraud detection method. is mentioned. Within the system in question, the user's use of the network The fraudulent use case is detected based on some of the relevant information.
Bu test sistemi, kullanicinin iletisim süreleri, ne siklikla iletisim kurdugu ve iletisime geçtigi konum bilgileri Vb. bilgileri kullanarak karsilastirma yoluyla sahtekarlik kullanimini belirleme saglamaktadir. This test system measures the user's contact times, how often they communicate, and location information that he communicated with etc. by comparison using information Allows identifying fraudulent use.
Bulusun Kisa Açiklamasi Bu bulusun amaci, mobil haberlesme operatörü firmalar için temel girdi olarak sebeke performans belirteçlerini kullanan bir sahtekarlik (fraud) belirleme sistemi gerçeklestirmektir. Brief Description of the Invention The aim of this invention is to use mobile communication operators as a basic input for companies. a fraud detection system using network performance tokens is to perform.
Bulusun Ayrintili Açiklamasi Bu bulusun amacina ulasmak için gerçeklestirilen “Telekomünikasyon Sistemlerinde Sahtekarligin Belirlenmesi Için Bir Sistem” ekli sekilde gösterilmis olup bu sekil; Sekil 1 - Bulus konusu sisteminin sematik görünüsüdür.Detailed Description of the Invention To achieve the aim of this invention, the “Telecommunication A System for Detecting Fraud in Their Systems” is shown as appendix. and this figure; Figure 1 - is the schematic view of the subject system of the invention.
Sekillerde görülen parçalar tek tek numaralandirilmis olup, bu nuinaralarin karsiligi asagida verilmistir. 1. Sistem 2 Veri tabani 3. Anomali belirleme modülü . Merkezi islem modülü Mobil haberlesme operatörü firmalar için temel girdi olarak sebeke performans belirteçlerini (KPI_Key Performance Indicators) kullanarak mobil haberlesme sebekesindeki (MCN) sahtekarliklarin tespit edilmesini saglayan bulus konusu sahtekarlik (fraud) belirleme sistemi (1); içerisinde mobil haberlesme sebekesindeki (MCN) müsteri bazli sebeke performans belirteçlerinin kayit altinda tutuldugu en az bir veri tabani (2), veri tabani (2) ile iletisim halinde olan ve veri tabaninda (2) kayit altinda tutulan sebeke performans belirteçlerini isleyerek söz konusu sebeke performans belirteçlerindeki anormallikleri tespit eden en az bir anomali belirleme modülü (3), veri tabani (2) ile iletisim halinde olan ve veri tabaninda (2) kayit altinda tutulan sebeke performans belirteçleri üzerinde daha önceden belirlenen kurallari çalistirarak söz konusu sebeke performans belirteçlerindeki olasi sahtekarliklari tespit eden en az bir sahtekarlik belirleme modülü (4) ve anomali belirleme modülü (3) ve sahtekarlik belirleme modülü (4) ile iletisim halinde olan, anomali belirleme modülü (3) tarafindan tespit edilen sebeke performans belirteçlerindeki anormalliklere iliskin bilgileri anomali belirleme modülünden (3) alarak söz konusu anormalliklerden kaynakli sahtekarlik olup olmadiginin ve sahtekarlik belirleme modülü (4) tarafindan tespit edilen sebeke performans belirteçlerindeki olasi sahtekarliklara iliskin bilgileri sahtekarlik belirleme modülünden (4) alarak söz konusu olasi sahtekarliklardan kaynakli sahtekarlik olup olmadiginin belirlenmesini saglayan ve tespit edilen sahtekarliga iliskin sahtekarligin engellenmesi için daha önceden belirlenen gerekli aksiyonlarin alinmasini saglayan en az bir merkezi islein modülü (5) içermektedir. The pieces seen in the figures are numbered one by one, and the corresponding numbers are given below. 1. System 2 database 3. Anomaly detection module . central processing module Network performance as a basic input for mobile communication operator companies. mobile communication using tokens (KPI_Key Performance Indicators) subject of the invention enabling the detection of frauds in the network (MCN) fraud detection system (1); customer-based network performance in the mobile communication network (MCN) at least one database (2) in which tokens are recorded, communication with the database (2) and recorded in the database (2). the network performance in question by processing network performance tokens. at least one anomaly detection module (3) that detects abnormalities in markers communication with the database (2) and recorded in the database (2). predetermined rules on network performance indicators. possible frauds in said network performance tokens by running at least one fraud detection module (4), and Communication with the anomaly detection module (3) and fraud detection module (4) network detected by the anomaly detection module (3) anomaly detection information about abnormalities in performance markers fraudulent arising from the said anomalies by obtaining from the module (3) network detected by the fraud detection module (4) information about possible fraud in performance tokens. from the identification module (4), resulting from such possible frauds to the detected fraud, which enables the determination of fraudulent predetermined necessary actions to prevent fraud It contains at least one central processing module (5) that enables
Bulus konusu sistemde (1) yer alan veri tabani (2), anomali belirleme modülü (3) ve sahtekarlik belirleme modülü (4) ile iletisim halindedir. Veri tabani (2) içerisinde mobil haberlesme sebekesindeki (MCN) müsteri bazli sebeke performans belirteçleri kayit altinda tutulmaktadir. The database (2), anomaly detection module (3), and communicates with the fraud detection module (4). In database (2) customer-based network performance in the mobile communication network (MCN) tokens are kept under record.
Bulus konusu sistemde (1) yer alan anomali belirleme modülü (3), veri tabani (2) ve merkezi islem modülü (5) ile iletisim halindedir. Anomali belirleine modülü (3) veri tabaninda (2) kayit altinda tutulan sebeke performans belirteçlerini isleyerek söz konusu sebeke performans belirteçlerindeki anormallikleri tespit etmektedir. Anomaly detection module (3), database (2) and it is in communication with the central processing module (5). Detect anomaly module (3) data by processing the network performance indicators recorded in the base (2) It detects anomalies in network performance indicators.
Bulus konusu sistemde (1) yer alan sahtekarlik belirleme modülü (4) veri tabani (2) ve merkezi islem modülü (5) ile iletisim halindedir. Sahtekarlik belirleme modülü (4) veri tabaninda (2) kayit altinda tutulan sebeke perfomans belirteçleri üzerinde daha Önceden belirlenen kurallari çalistirarak söz konusu sebeke performans belirteçlerindeki olasi sahtekarliklari tespit etmektedir› Bulus konusu sistemde (1) yer alan merkezi islem modülü (5) anomali belirleine modülü (3) ve sahtekarlik belirleme inodülü (4) ile iletisim halindedir. Merkezi islem modülü (5) anomali belirleine modülü (3) tarafindan tespit edilen sebeke performans belirteçlerindeki anormalliklere iliskin bilgileri anomali belirleme modülünden (3) alarak söz konusu anorinalliklerden kaynakli sahtekarlik olup olmadigini ve sahtekarlik belirleme modülü (4) tarafindan tespit edilen sebeke performans belirteçlerindeki olasi sahtekarliklara iliskin bilgileri sahtekarlik belirleme modülünden (4) alarak söz konusu olasi sahtekarliklardan kaynakli sahtekarlik olup olmadiginin belirlenmesini saglamaktadir. Merkezi islem modülü (5) ayrica, tespit edilen sahtekarliga iliskin sahtekarligin engellenmesi için daha önceden belirlenen gerekli aksiyonlarin alinmasini saglamaktadir. Bulusun bir uygulamasinda merkezi islem modülü (5) daha sonra benzer durumlarda gerçeklestirilebilecek olan sahtekarliklarin kolayca tespit edilebilmesi için anomali belirleme modülü (3) tarafindan gelen ve sahtekarlik olarak degerlendirilen durumlara iliskin bilgileri sahtekarlik belirleme modülü (4) içerisinde kayit altina almaktadir. Fraud detection module (4) database (2) in the inventive system (1) and in communication with the central processing module (5). Fraud detection module (4) on network performance indicators recorded in the database (2) the performance of the network in question by running the predetermined rules. detects possible frauds in tokens› The central processing module (5) in the system (1), which is the subject of the invention, determines the anomaly. module (3) and fraud detection inodule (4). Central network detected by the processing module (5) anomaly detection module (3) anomaly detection information about abnormalities in performance markers It is fraudulent arising from the aforementioned anomalies by taking it from the module (3). network detected by the fraud detection module (4) information about possible fraud in performance tokens. from the identification module (4), resulting from such possible frauds It allows to determine whether there is fraud or not. central processing module (5) furthermore, to prevent fraud related to detected fraud, more ensures that predetermined necessary actions are taken. find one central processing module (5) later in similar situations anomaly so that fraudulent frauds can be easily detected received by the detection module (3) and considered fraudulent. records the information about the cases in the fraud detection module (4). takes.
Bulus konusu sistemin (1) örnek bir uygulamasinda veri tabaninda (2) kayit altina alinan sebeke perfonnans belirteçlerine akilli telefona cep telefonu gibi elektronik cihazlarin mobil iletisim sebekesinde gerçeklestirdikleri baglanma sayisi olan lMSl (International Mobile Subscriber Identity_U1uslararasi Mobil Abone Kimligi) baglanma sayisi ve kullanicilarin indirdikleri ve yükledikleri mobil verilerin toplam degeri olan 2G/3G veri hacmi verilebilir. Söz konusu öriiek uygulamada anomali belirleme modülü (3) veri tabaninda (2) kayitli olan IMSI baglanma sayisinin daha önceden belirlenen degerlerden oldukça yüksek olmasi ya da yine 2G/3G veri hacminin daha önceden belirlenen degerlerden oldukça yüksek olmasi durumunda öz konusu sebeke performans belirteçlerinde anormallik tespit etmekte ve bu anormallige iliskin verileri merkezi islem modülüne (5) göndemiektedir. In an exemplary application of the subject system (1), it is recorded in the database (2). network performance indicators received, such as smart phone, mobile phone, electronic lMSl, which is the number of connections made by the devices in the mobile communication network. (International Mobile Subscriber Identity_U1international Mobile Subscriber Identity) the number of connections and the total number of mobile data users have downloaded and installed. The value of 2G/3G data volume can be given. Anomaly in the sample application in question the number of IMSI connections registered in the detection module (3) database (2) higher than the predetermined values or again 2G/3G data in case the volume is considerably higher than the predetermined values The network in question detects anomaly in performance indicators and sends the data regarding the anomaly to the central processing module (5).
Bulusun veri tabani (2) içerisinde bir mobil iletisim sebekesinden (MCN) hizmet alan akilli telefon, cep telefonu gibi bir elektronik cihazin günlük yaptigi sesli arama sayisinin sebeke performans belirteci olarak ve sesli arama sayisinin normalde günlük 10-50 deger araligi arasinda yapilmasinin kayit altinda tutuldugu örnek bir uygulamasinda anomali belirleme modülü (3) tarafindan mobil iletisim sebekesinde (MNC) bir elektronik cihazin günlük 3000-5000 arasinda sesli arama yaptigi belirlenirse bu durum anormallik olarak tespit edilinektedir. Anomali belirleine modülü (3) tespit edilen anormallige iliskin verileri merkezi islem modülüne (5) göndermektedir. Merkezi islem modülüne (5) gelen veriler tercihen sahtekarlik uzmanlari tarafindan manuel olarak degerlendirilmekte ve bu degerlendirme sonucunda söz konusu duruma iliskin bir sahtekarlik tespit edilirse söz konusu durum sahtekarlik modülü (4) içerisinde daha sonra ayni sahtekarligin kolayca tespit edilebilmesi için kayit altina alinmaktadir. Service from a mobile communication network (MCN) within the database (2) of the invention daily voice call made by an electronic device such as a smart phone, mobile phone, etc. as a network performance indicator and the number of voice calls normally An example of a daily recording between 10-50 value ranges. application in the mobile communication network by the anomaly detection module (3). (MNC) is an electronic device that makes between 3000-5000 voice calls per day. is detected, this situation is detected as an anomaly. Identify the anomaly module (3) to the central processing module (5) about the detected anomaly. is sending. The data coming to the central processing module (5) is preferably fraudulent. evaluated manually by experts and this evaluation If fraud is detected as a result of the situation in question, the In the case fraud module (4), the same fraud can be easily detected later. be recorded so that it can be recorded.
Bulus konusu “Telekomünikasyon Sistemlerinde Sahtekarligin Belirlenmesi Için Bir Sistem (1)” için çok çesitli uygulamalarinin gelistirilmesi mümkün olup, bulus burada açiklanan örneklerle sinirlandirilamaz, esas olarak istemlerde belirtildigi The subject of the invention is “A Method for Detection of Fraud in Telecommunication Systems. It is possible to develop a wide variety of applications for the system (1). not limited to the examples described herein, but essentially as specified in the claims.
Claims (7)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TR2015/17613A TR201517613A2 (en) | 2015-12-31 | 2015-12-31 | A SYSTEM FOR DETERMINATION OF FRAUD IN TELECOMMUNICATION SYSTEMS |
| EP16843234.2A EP3398323A1 (en) | 2015-12-31 | 2016-12-26 | A system for determining fraud in telecommunication systems |
| PCT/TR2016/000207 WO2017116339A1 (en) | 2015-12-31 | 2016-12-26 | A system for determining fraud in telecommunication systems |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TR2015/17613A TR201517613A2 (en) | 2015-12-31 | 2015-12-31 | A SYSTEM FOR DETERMINATION OF FRAUD IN TELECOMMUNICATION SYSTEMS |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| TR201517613A2 true TR201517613A2 (en) | 2017-07-21 |
Family
ID=58228519
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TR2015/17613A TR201517613A2 (en) | 2015-12-31 | 2015-12-31 | A SYSTEM FOR DETERMINATION OF FRAUD IN TELECOMMUNICATION SYSTEMS |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP3398323A1 (en) |
| TR (1) | TR201517613A2 (en) |
| WO (1) | WO2017116339A1 (en) |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5495521A (en) * | 1993-11-12 | 1996-02-27 | At&T Corp. | Method and means for preventing fraudulent use of telephone network |
| US6327352B1 (en) * | 1997-02-24 | 2001-12-04 | Ameritech Corporation | System and method for real-time fraud detection within a telecommunications system |
| US8737962B2 (en) | 2012-07-24 | 2014-05-27 | Twilio, Inc. | Method and system for preventing illicit use of a telephony platform |
-
2015
- 2015-12-31 TR TR2015/17613A patent/TR201517613A2/en unknown
-
2016
- 2016-12-26 WO PCT/TR2016/000207 patent/WO2017116339A1/en not_active Ceased
- 2016-12-26 EP EP16843234.2A patent/EP3398323A1/en not_active Withdrawn
Also Published As
| Publication number | Publication date |
|---|---|
| WO2017116339A1 (en) | 2017-07-06 |
| EP3398323A1 (en) | 2018-11-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106791220B (en) | Method and system for preventing telephone fraud | |
| CN104866763B (en) | Permission-based Android malware hybrid detection method | |
| WO2008035100A2 (en) | Fraud detection system | |
| CN104462973A (en) | System and method for detecting dynamic malicious behaviors of application program in mobile terminal | |
| CN106534463B (en) | A method, device, terminal and server for processing unfamiliar incoming calls | |
| CN110830986A (en) | Method, device, equipment and storage medium for detecting abnormal behavior of Internet of things card | |
| CN108243049A (en) | Telecom fraud identification method and device | |
| CN107809762A (en) | The security risk control method identified using the foster card of big data and device-fingerprint | |
| CN107705126A (en) | A kind of method and device for judging transaction risk | |
| US6636592B2 (en) | Method and system for using bad billed number records to prevent fraud in a telecommunication system | |
| KR101246624B1 (en) | Method and appratus for detecting malicious communications | |
| CN110536302A (en) | Telecommunication fraud based reminding method and device | |
| CN104933150B (en) | Method and system with number are determined based on handset identity number | |
| KR20170006158A (en) | System and method for detecting fraud usage of message | |
| JP2022073842A5 (en) | ||
| TR201517613A2 (en) | A SYSTEM FOR DETERMINATION OF FRAUD IN TELECOMMUNICATION SYSTEMS | |
| CN112004230A (en) | Method and system for detecting number abuse behavior of Internet of things | |
| KR20130083286A (en) | System for processing spam for mobile phone | |
| CN108124241A (en) | Identify method, system, authentication server and the terminal of pseudo-base station note | |
| CN113962276A (en) | Abnormal information determination method, device, electronic device, and storage medium | |
| KR102897480B1 (en) | Proactive Fraudulent Subscription Detection System for Preventing Illegal Phones | |
| TR2023018039A2 (en) | A SYSTEM THAT DETECTS LOCATION-BASED FRAUD | |
| TR201612556A3 (en) | A METHOD FOR DETERMINING FRAUD IN INTERNATIONAL TELECOM CALLS BY ANALYSIS OF DOMESTIC AND FOREIGN CALL RECORDS | |
| CN108900478B (en) | Detection method and device for transaction attack and safety protection equipment | |
| TR2024010297A2 (en) | A SYSTEM THAT PREVENTS CLONING OF IOT DEVICES |