SG11202101353TA - A method and apparatus for training a neural network to identify cracks - Google Patents
A method and apparatus for training a neural network to identify cracksInfo
- Publication number
- SG11202101353TA SG11202101353TA SG11202101353TA SG11202101353TA SG11202101353TA SG 11202101353T A SG11202101353T A SG 11202101353TA SG 11202101353T A SG11202101353T A SG 11202101353TA SG 11202101353T A SG11202101353T A SG 11202101353TA SG 11202101353T A SG11202101353T A SG 11202101353TA
- Authority
- SG
- Singapore
- Prior art keywords
- training
- neural network
- identify cracks
- cracks
- identify
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30132—Masonry; Concrete
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30181—Earth observation
- G06T2207/30184—Infrastructure
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SG10201807490P | 2018-08-31 | ||
| PCT/SG2019/050433 WO2020046213A1 (en) | 2018-08-31 | 2019-08-30 | A method and apparatus for training a neural network to identify cracks |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| SG11202101353TA true SG11202101353TA (en) | 2021-03-30 |
Family
ID=69645838
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SG11202101353TA SG11202101353TA (en) | 2018-08-31 | 2019-08-30 | A method and apparatus for training a neural network to identify cracks |
Country Status (2)
| Country | Link |
|---|---|
| SG (1) | SG11202101353TA (en) |
| WO (1) | WO2020046213A1 (en) |
Families Citing this family (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111612747B (en) * | 2020-04-30 | 2023-10-20 | 湖北煌朝智能自动化装备有限公司 | Rapid detection method and detection system for product surface cracks |
| CN111563888A (en) * | 2020-05-06 | 2020-08-21 | 清华大学 | Quantitative crack growth monitoring method |
| CN112419244B (en) * | 2020-11-11 | 2022-11-01 | 浙江大学 | Concrete crack segmentation method and device |
| CN112634195B (en) * | 2020-11-23 | 2024-10-01 | 清华大学 | Concrete structure crack prediction method, device and system |
| CN112465776B (en) * | 2020-11-26 | 2023-10-31 | 常州信息职业技术学院 | Crack intelligent detection method based on wind turbine surface blurred image |
| US11544919B2 (en) | 2020-12-09 | 2023-01-03 | Precisionhawk, Inc. | Drone inspection of an undifferentiated surface using a reference image |
| CN112581441B (en) * | 2020-12-10 | 2024-07-05 | 北京工业大学 | Pavement crack detection method and device, electronic equipment and storage medium |
| CN112700423B (en) * | 2021-01-06 | 2023-05-05 | 中国民航科学技术研究院 | Automatic detection method and system for fuselage surface damage defects based on deep learning |
| CN113011397B (en) * | 2021-04-27 | 2024-03-29 | 北京工商大学 | Multi-factor cyanobacterial bloom prediction method based on remote sensing image 4D-Fractalnet |
| CN113627475A (en) * | 2021-07-07 | 2021-11-09 | 厦门市美亚柏科信息股份有限公司 | Method and device for carrying out uncertainty estimation on sample |
| US20230080178A1 (en) * | 2021-09-02 | 2023-03-16 | Northeastern University | Automated assessment of cracks using lidar and camera data |
| CN113838013A (en) * | 2021-09-13 | 2021-12-24 | 中国民航大学 | Blade crack real-time detection method and device in aero-engine operation and maintenance based on YOLOv5 |
| CN114418937B (en) * | 2021-12-06 | 2022-10-14 | 北京邮电大学 | Pavement crack detection method and related equipment |
| CN115184372B (en) * | 2022-07-13 | 2023-04-18 | 水利部交通运输部国家能源局南京水利科学研究院 | Intelligent detection device and method for micro-crack fluorescence permeation of inaccessible part of concrete structure |
| CN115423829B (en) * | 2022-07-29 | 2024-03-01 | 江苏省水利科学研究院 | Method and system for rapidly extracting water body of single-band remote sensing image |
| CN116777865B (en) * | 2023-06-16 | 2024-09-06 | 广州大学 | A method, system, device and storage medium for identifying underwater cracks |
| CN116895008A (en) * | 2023-07-17 | 2023-10-17 | 中国长江三峡集团有限公司 | Crack identification model determination and crack identification method, device, equipment and medium |
| CN117540626B (en) * | 2023-10-30 | 2024-05-14 | 南通大学 | Fixed wing unmanned aerial vehicle situation prediction method based on Bayesian neural network |
| CN117495147B (en) * | 2023-12-22 | 2024-03-22 | 中国石油大学(华东) | An intelligent prediction method for fracture network expansion considering differences in fracturing processes between sections |
| CN117875549B (en) * | 2023-12-29 | 2024-11-05 | 昆明理工大学 | Building heritage protection evaluation system and method based on image recognition |
| CN118036476B (en) * | 2024-04-11 | 2024-07-02 | 合肥工业大学 | Precast concrete crack detection model, method, system and readable medium |
| CN118781431B (en) * | 2024-07-19 | 2025-02-11 | 苏州旗开得电子科技有限公司 | Classification method of SMT 3D image data based on deep learning framework |
| CN119693302A (en) * | 2024-11-15 | 2025-03-25 | 常州百利锂电智慧工厂有限公司 | A method for detecting sagger defects |
| CN119540240B (en) * | 2025-01-22 | 2025-04-25 | 浙江华诚工程管理有限公司 | A bridge crack detection method based on image recognition |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105787486B (en) * | 2015-12-11 | 2019-04-09 | 昆明理工大学 | A method for crack detection of steel beams based on image processing |
| CA3056498A1 (en) * | 2017-03-14 | 2018-09-20 | University Of Manitoba | Structure defect detection using machine learning algorithms |
| CN108198173B (en) * | 2017-12-28 | 2019-11-26 | 石家庄铁道大学 | A kind of online test method, device and the terminal device in distress in concrete region |
-
2019
- 2019-08-30 SG SG11202101353TA patent/SG11202101353TA/en unknown
- 2019-08-30 WO PCT/SG2019/050433 patent/WO2020046213A1/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| WO2020046213A1 (en) | 2020-03-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| SG11202101353TA (en) | A method and apparatus for training a neural network to identify cracks | |
| SG11202100953WA (en) | Method and apparatus for training risk identification model and server | |
| EP3977364A4 (en) | Method and processing device for training a neural network | |
| SG11202106979WA (en) | Neural network training method and apparatus, and image processing method and apparatus | |
| SG11202006205SA (en) | Gbdt model feature interpretation method and apparatus | |
| SG11202106062WA (en) | Neural network training method and image matching method and device | |
| SG11202000749RA (en) | Model training method and apparatus | |
| GB201900469D0 (en) | Method and system for training a chatbot | |
| PL3829124T3 (en) | Method and apparatus for designing short training sequence | |
| EP3627401A4 (en) | METHOD AND DEVICE FOR TRAINING A NEURONAL NETWORK | |
| SG11202112274SA (en) | Responding method and apparatus | |
| GB201911577D0 (en) | Method and apparatus | |
| PL3932056T3 (en) | Method and apparatus for intra-prediction | |
| GB201912887D0 (en) | Apparatus and method | |
| PL4084633T3 (en) | Method and apparatus to crimp a sheet | |
| EP4036804A4 (en) | METHOD AND APPARATUS FOR TRAINING A NEURAL NETWORK MODEL | |
| GB201806123D0 (en) | Simulated breathing apparatus and method | |
| GB201916079D0 (en) | Apparatus and method | |
| GB2588496B (en) | Recognition apparatus and method | |
| GB201815539D0 (en) | Method and apparatus for deriving a set of training data | |
| GB202008511D0 (en) | Method and apparatus for training a meural network | |
| GB201818643D0 (en) | Apparatus and method for creating and training artifical neural networks | |
| GB201900591D0 (en) | Method and apparatus for forming a network | |
| EP3907662A4 (en) | Method and apparatus for processing neural network model | |
| GB201905795D0 (en) | Apparatus and method |