[go: up one dir, main page]

SG11201903787YA - Exploiting input data sparsity in neural network compute units - Google Patents

Exploiting input data sparsity in neural network compute units

Info

Publication number
SG11201903787YA
SG11201903787YA SG11201903787YA SG11201903787YA SG11201903787YA SG 11201903787Y A SG11201903787Y A SG 11201903787YA SG 11201903787Y A SG11201903787Y A SG 11201903787YA SG 11201903787Y A SG11201903787Y A SG 11201903787YA SG 11201903787Y A SG11201903787Y A SG 11201903787YA
Authority
SG
Singapore
Prior art keywords
input
international
activation
activations
memory
Prior art date
Application number
SG11201903787YA
Inventor
Dong Hyuk Woo
Ravi Narayanaswami
Original Assignee
Google Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Google Llc filed Critical Google Llc
Publication of SG11201903787YA publication Critical patent/SG11201903787YA/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/1668Details of memory controller
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • G06F17/153Multidimensional correlation or convolution
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/3001Arithmetic instructions
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3824Operand accessing
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0495Quantised networks; Sparse networks; Compressed networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/10Interfaces, programming languages or software development kits, e.g. for simulating neural networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Neurology (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Image Analysis (AREA)
  • Advance Control (AREA)
  • Complex Calculations (AREA)
  • Memory System (AREA)
  • Storage Device Security (AREA)

Abstract

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property :::` , 1111111011110111011111111111011111010111111111101110111111111111111111111111110111111 Organization International Bureau (10) International Publication Number (43) International Publication Date .....•\"\" WO 2018/080624 Al 03 May 2018 (03.05.2018) W I PO I PCT (51) International Patent Classification: NARAYANASWAMI, Ravi; 1600 Amphitheatre Park- G06N 3/10 (2006.01) way, Mountain View, California 94043 (US). (21) International Application Number: (74) Agent: HENRY, Joel et al.; Fish & Richardson P.C., P.O. PCT/US2017/047992 Box 1022, Minneapolis, Minnesota 55440-1022 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 22 August 2017 (22.08.2017) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (25) Filing Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (26) Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (30) Priority Data: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 15/336,066 27 October 2016 (27.10.2016) US KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 15/465,774 22 March 2017 (22.03.2017) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (71) Applicant: GOOGLE LLC [US/US]; 1600 Amphitheatre SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, Parkway, Mountain View, California 94043 (US). TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (72) Inventors: WOO, Dong Hyuk; 1600 Amphitheatre (84) Designated States (unless otherwise indicated, for every Parkway, Mountain View, California 94043 (US). kind of regional protection available): ARIPO (BW, GH, (54) Title: EXPLOITING INPUT DATA SPARSITY IN NEURAL NETWORK COMPUTE UNITS 300-- INSTRUCTIONS, INPUT ACTIVATIONS, AND WEIGHTS/PARAMETERS 303--- t Bitmap 1 1 ° 1 1 1 6 1 1 1 ° 1 1 1 ° ( 1 ) ( ) 3 + ( ) 5 ( ) 7 Weights and Partial Sums (Second Memory 110) Controller 302 310 First Activiations 102 Memory 108 Input 310 310 Activation Bus Parameters MAC 304 T r104a f Parameters MAC 304 r104b IL f Parameters MAC 304 r104c 306 —2 Output Activation Bus I 1 , 308 305 -- UU1 t. EI1 i ,-1 .4 I I - (57) : A computer el a controller of the computing device, whether each of the input activations has either a zero value or a non-zero value. The method 0 further includes storing, GC © activation includes generating - non-zero values. The GC ,_ 1 onto a data bus that is © memory address location N ( 1 ) ( ) 3 ( 5 ) ( ) 7 FIG. 3 -implemented method includes receiving, by a computing device, input activations and determining, by in a memory bank of the computing device, at least one of the input activations. Storing the at least one input an index comprising one or more memory address locations that have input activation values that are method still further includes providing, by the controller and from the memory bank, at least accessible by one or more units of a computational array. The activations are provided, at least associated with the index. one input activation in part, from a C [Continued on next page] WO 2018/080624 Al MIDEDIMOMMIDIREEMOOMMMONEDIDEHMEMOIMIE GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Declarations under Rule 4.17: — as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(U)) — as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) Published: — with international search report (Art. 21(3))
SG11201903787YA 2016-10-27 2017-08-22 Exploiting input data sparsity in neural network compute units SG11201903787YA (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/336,066 US10360163B2 (en) 2016-10-27 2016-10-27 Exploiting input data sparsity in neural network compute units
US15/465,774 US9818059B1 (en) 2016-10-27 2017-03-22 Exploiting input data sparsity in neural network compute units
PCT/US2017/047992 WO2018080624A1 (en) 2016-10-27 2017-08-22 Exploiting input data sparsity in neural network compute units

Publications (1)

Publication Number Publication Date
SG11201903787YA true SG11201903787YA (en) 2019-05-30

Family

ID=60256363

Family Applications (1)

Application Number Title Priority Date Filing Date
SG11201903787YA SG11201903787YA (en) 2016-10-27 2017-08-22 Exploiting input data sparsity in neural network compute units

Country Status (9)

Country Link
US (6) US10360163B2 (en)
EP (2) EP3533003B1 (en)
JP (2) JP7134955B2 (en)
KR (4) KR102679563B1 (en)
CN (2) CN114595803B (en)
DE (2) DE202017105363U1 (en)
HK (1) HK1254700A1 (en)
SG (1) SG11201903787YA (en)
WO (1) WO2018080624A1 (en)

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9959498B1 (en) 2016-10-27 2018-05-01 Google Llc Neural network instruction set architecture
US10360163B2 (en) 2016-10-27 2019-07-23 Google Llc Exploiting input data sparsity in neural network compute units
US10175980B2 (en) 2016-10-27 2019-01-08 Google Llc Neural network compute tile
US10685285B2 (en) * 2016-11-23 2020-06-16 Microsoft Technology Licensing, Llc Mirror deep neural networks that regularize to linear networks
EP3561736A4 (en) * 2016-12-20 2020-09-09 Shanghai Cambricon Information Technology Co., Ltd MULTIPLICATION AND ADDITION DEVICE FOR MATRICES, COMPUTER DEVICE WITH NEURONAL NETWORK AND PROCESS
US11328037B2 (en) * 2017-07-07 2022-05-10 Intel Corporation Memory-size- and bandwidth-efficient method for feeding systolic array matrix multipliers
TWI680409B (en) * 2017-07-08 2019-12-21 英屬開曼群島商意騰科技股份有限公司 Method for matrix by vector multiplication for use in artificial neural network
US10879904B1 (en) * 2017-07-21 2020-12-29 X Development Llc Application specific integrated circuit accelerators
US10790828B1 (en) 2017-07-21 2020-09-29 X Development Llc Application specific integrated circuit accelerators
US10725740B2 (en) * 2017-08-31 2020-07-28 Qualcomm Incorporated Providing efficient multiplication of sparse matrices in matrix-processor-based devices
WO2019090325A1 (en) 2017-11-06 2019-05-09 Neuralmagic, Inc. Methods and systems for improved transforms in convolutional neural networks
CN110059798B (en) 2017-11-06 2024-05-03 畅想科技有限公司 Exploiting sparsity in neural networks
US11715287B2 (en) 2017-11-18 2023-08-01 Neuralmagic Inc. Systems and methods for exchange of data in distributed training of machine learning algorithms
US10936942B2 (en) * 2017-11-21 2021-03-02 Google Llc Apparatus and mechanism for processing neural network tasks using a single chip package with multiple identical dies
CN109902811B (en) * 2017-12-11 2020-03-10 中科寒武纪科技股份有限公司 Neural network operation device and method
US10553207B2 (en) * 2017-12-29 2020-02-04 Facebook, Inc. Systems and methods for employing predication in computational models
US11693627B2 (en) * 2018-02-09 2023-07-04 Deepmind Technologies Limited Contiguous sparsity pattern neural networks
WO2019157599A1 (en) * 2018-02-16 2019-08-22 The Governing Council Of The University Of Toronto Neural network accelerator
US10572568B2 (en) 2018-03-28 2020-02-25 Intel Corporation Accelerator for sparse-dense matrix multiplication
US11449363B2 (en) 2018-05-31 2022-09-20 Neuralmagic Inc. Systems and methods for improved neural network execution
US10832133B2 (en) 2018-05-31 2020-11-10 Neuralmagic Inc. System and method of executing neural networks
WO2021054990A1 (en) * 2019-09-16 2021-03-25 Neuralmagic Inc. Systems and methods for generation of sparse code for convolutional neural networks
US11216732B2 (en) 2018-05-31 2022-01-04 Neuralmagic Inc. Systems and methods for generation of sparse code for convolutional neural networks
US10963787B2 (en) 2018-05-31 2021-03-30 Neuralmagic Inc. Systems and methods for generation of sparse code for convolutional neural networks
US10599429B2 (en) * 2018-06-08 2020-03-24 Intel Corporation Variable format, variable sparsity matrix multiplication instruction
CN112437930A (en) * 2018-07-12 2021-03-02 华为技术有限公司 Generating a compressed representation of a neural network with skilled inference speed and power consumption
US12481861B2 (en) * 2018-07-12 2025-11-25 International Business Machines Corporation Hierarchical parallelism in a network of distributed neural network cores
CN110796244B (en) * 2018-08-01 2022-11-08 上海天数智芯半导体有限公司 Core computing unit processor and accelerated processing method for artificial intelligence equipment
CN109344964B (en) * 2018-08-08 2020-12-29 东南大学 A multiplication and addition calculation method and calculation circuit suitable for neural network
CN110826707B (en) * 2018-08-10 2023-10-31 北京百度网讯科技有限公司 Acceleration method and hardware accelerator applied to convolutional neural network
US12205012B2 (en) * 2018-08-24 2025-01-21 Samsung Electronics Co., Ltd. Method of accelerating training process of neural network and neural network device thereof
WO2020046859A1 (en) 2018-08-27 2020-03-05 Neuralmagic Inc. Systems and methods for neural network convolutional layer matrix multiplication using cache memory
JP6985997B2 (en) * 2018-08-27 2021-12-22 株式会社日立製作所 Machine learning system and Boltzmann machine calculation method
WO2020064988A1 (en) * 2018-09-27 2020-04-02 Deepmind Technologies Limited Scalable and compressive neural network data storage system
US11586417B2 (en) 2018-09-28 2023-02-21 Qualcomm Incorporated Exploiting activation sparsity in deep neural networks
US11636343B2 (en) 2018-10-01 2023-04-25 Neuralmagic Inc. Systems and methods for neural network pruning with accuracy preservation
CN111026440B (en) * 2018-10-09 2022-03-29 上海寒武纪信息科技有限公司 Operation method, operation device, computer equipment and storage medium
JP7115211B2 (en) * 2018-10-18 2022-08-09 富士通株式会社 Arithmetic processing device and method of controlling arithmetic processing device
CN111126081B (en) * 2018-10-31 2023-07-21 深圳永德利科技股份有限公司 Global universal language terminal and method
US10768895B2 (en) * 2018-11-08 2020-09-08 Movidius Limited Dot product calculators and methods of operating the same
KR102809535B1 (en) * 2018-11-13 2025-05-22 삼성전자주식회사 Method for processing data using neural network and electronic device for supporting the same
US11663001B2 (en) * 2018-11-19 2023-05-30 Advanced Micro Devices, Inc. Family of lossy sparse load SIMD instructions
US11361050B2 (en) 2018-11-20 2022-06-14 Hewlett Packard Enterprise Development Lp Assigning dependent matrix-vector multiplication operations to consecutive crossbars of a dot product engine
WO2020121023A1 (en) * 2018-12-11 2020-06-18 Mipsology SAS Accelerating artificial neural network computations by skipping input values
US10769527B2 (en) 2018-12-11 2020-09-08 Mipsology SAS Accelerating artificial neural network computations by skipping input values
KR102833321B1 (en) * 2018-12-12 2025-07-10 삼성전자주식회사 Method and apparatus for performing convolution operations in neural networks
JP7189000B2 (en) 2018-12-12 2022-12-13 日立Astemo株式会社 Information processing equipment, in-vehicle control equipment, vehicle control system
KR102721579B1 (en) * 2018-12-31 2024-10-25 에스케이하이닉스 주식회사 Processing system
US11544559B2 (en) 2019-01-08 2023-01-03 Neuralmagic Inc. System and method for executing convolution in a neural network
US11604958B2 (en) 2019-03-13 2023-03-14 Samsung Electronics Co., Ltd. Method and apparatus for processing computation of zero value in processing of layers in neural network
CN112905241B (en) * 2019-03-15 2024-03-29 英特尔公司 Sparse optimization for matrix accelerator architecture
CN113424148A (en) 2019-03-15 2021-09-21 英特尔公司 Multi-sharded memory management for detecting cross-sharded access, providing multi-sharded inferential scaling, and providing optimal page migration
KR102746968B1 (en) * 2019-03-20 2024-12-27 에스케이하이닉스 주식회사 accelerating Appratus of neural network and operating method thereof
KR102749978B1 (en) * 2019-05-10 2025-01-03 삼성전자주식회사 Neural network processor compressing featuremap data and computing system comprising the same
US11301545B2 (en) * 2019-07-11 2022-04-12 Facebook Technologies, Llc Power efficient multiply-accumulate circuitry
US20210026686A1 (en) * 2019-07-22 2021-01-28 Advanced Micro Devices, Inc. Chiplet-integrated machine learning accelerators
US11195095B2 (en) 2019-08-08 2021-12-07 Neuralmagic Inc. System and method of accelerating execution of a neural network
US11635893B2 (en) * 2019-08-12 2023-04-25 Micron Technology, Inc. Communications between processors and storage devices in automotive predictive maintenance implemented via artificial neural networks
US12061971B2 (en) 2019-08-12 2024-08-13 Micron Technology, Inc. Predictive maintenance of automotive engines
US12249189B2 (en) 2019-08-12 2025-03-11 Micron Technology, Inc. Predictive maintenance of automotive lighting
US12497055B2 (en) 2019-08-21 2025-12-16 Micron Technology, Inc. Monitoring controller area network bus for vehicle control
US11042350B2 (en) 2019-08-21 2021-06-22 Micron Technology, Inc. Intelligent audio control in vehicles
KR20210024865A (en) 2019-08-26 2021-03-08 삼성전자주식회사 A method and an apparatus for processing data
US12210401B2 (en) 2019-09-05 2025-01-28 Micron Technology, Inc. Temperature based optimization of data storage operations
US11651209B1 (en) * 2019-10-02 2023-05-16 Google Llc Accelerated embedding layer computations
KR102808579B1 (en) * 2019-10-16 2025-05-16 삼성전자주식회사 Method and apparatus for performing operation in neural network
JP7462140B2 (en) * 2019-10-29 2024-04-05 国立大学法人 熊本大学 Neural network circuit and neural network operation method
JP7299134B2 (en) * 2019-11-05 2023-06-27 ルネサスエレクトロニクス株式会社 DATA PROCESSING APPARATUS, OPERATION METHOD THEREOF, AND PROGRAM
US11244198B2 (en) 2019-11-21 2022-02-08 International Business Machines Corporation Input partitioning for deep learning of large image data
FR3105659B1 (en) 2019-12-18 2022-06-24 Commissariat Energie Atomique Method and apparatus for binary signal coding for implementing dynamic precision digital MAC operations
KR102268817B1 (en) * 2019-12-19 2021-06-24 국민대학교산학협력단 Method and device for evaluating machine learning performance in a distributed cloud envirionment
KR20210086233A (en) * 2019-12-31 2021-07-08 삼성전자주식회사 Method and apparatus for processing matrix data through relaxed pruning
TWI727641B (en) * 2020-02-03 2021-05-11 華邦電子股份有限公司 Memory apparatus and operation method thereof
US11586601B2 (en) * 2020-02-05 2023-02-21 Alibaba Group Holding Limited Apparatus and method for representation of a sparse matrix in a neural network
US11604975B2 (en) 2020-04-09 2023-03-14 Apple Inc. Ternary mode of planar engine for neural processor
CN111445013B (en) * 2020-04-28 2023-04-25 南京大学 A Nonzero Detector and Its Method for Convolutional Neural Networks
KR102418794B1 (en) * 2020-06-02 2022-07-08 오픈엣지테크놀로지 주식회사 Method of accessing parameters for a hardware accelerator from a memory and a device for the same
CN113835675A (en) * 2020-06-23 2021-12-24 深圳市中兴微电子技术有限公司 Data processing device and data processing method
US20220012304A1 (en) * 2020-07-07 2022-01-13 Sudarshan Kumar Fast matrix multiplication
KR102871496B1 (en) 2020-07-17 2025-10-14 삼성전자주식회사 Neural network apparatus and operating method of the same
EP4184392A4 (en) * 2020-07-17 2024-01-10 Sony Group Corporation Neural network processing device, information processing device, information processing system, electronic instrument, neural network processing method, and program
CN115989505A (en) 2020-07-21 2023-04-18 多伦多大学管理委员会 Systems and methods for accelerating deep learning networks using sparsity
US11928176B2 (en) * 2020-07-30 2024-03-12 Arm Limited Time domain unrolling sparse matrix multiplication system and method
US12386683B2 (en) * 2020-09-08 2025-08-12 Technion Research And Development Foundation Ltd. Non-blocking simultaneous multithreading (NB-SMT)
WO2022070947A1 (en) 2020-09-30 2022-04-07 ソニーセミコンダクタソリューションズ株式会社 Signal processing device, imaging device, and signal processing method
US12229659B2 (en) 2020-10-08 2025-02-18 Samsung Electronics Co., Ltd. Processor with outlier accommodation
US11436168B2 (en) * 2020-10-14 2022-09-06 Samsung Electronics Co., Ltd. Accelerator and electronic device including the same
US20210042617A1 (en) * 2020-10-27 2021-02-11 Intel Corporation Accelerated loading of unstructured sparse data in machine learning architectures
US11861327B2 (en) * 2020-11-11 2024-01-02 Samsung Electronics Co., Ltd. Processor for fine-grain sparse integer and floating-point operations
US11861328B2 (en) * 2020-11-11 2024-01-02 Samsung Electronics Co., Ltd. Processor for fine-grain sparse integer and floating-point operations
KR20220161485A (en) * 2020-11-30 2022-12-06 구글 엘엘씨 Systolic array cells with multiple accumulators
US11556757B1 (en) 2020-12-10 2023-01-17 Neuralmagic Ltd. System and method of executing deep tensor columns in neural networks
CN112862086B (en) * 2020-12-25 2025-01-24 南京蓝洋智能科技有限公司 A neural network computing processing method, device and computer readable medium
KR102541461B1 (en) 2021-01-11 2023-06-12 한국과학기술원 Low power high performance deep-neural-network learning accelerator and acceleration method
US12210663B2 (en) * 2021-01-13 2025-01-28 University Of Florida Research Foundation, Inc. Decommissioning and erasing entropy in microelectronic systems
US11853717B2 (en) * 2021-01-14 2023-12-26 Microsoft Technology Licensing, Llc Accelerating processing based on sparsity for neural network hardware processors
US20220253692A1 (en) * 2021-02-05 2022-08-11 Samsung Electronics Co., Ltd. Method and apparatus of operating a neural network
TWI847030B (en) * 2021-05-05 2024-07-01 創鑫智慧股份有限公司 Matrix multiplier and operation method thereof
US11940907B2 (en) * 2021-06-25 2024-03-26 Intel Corporation Methods and apparatus for sparse tensor storage for neural network accelerators
US20220012012A1 (en) * 2021-09-24 2022-01-13 Martin Langhammer Systems and Methods for Sparsity Operations in a Specialized Processing Block
US11669489B2 (en) * 2021-09-30 2023-06-06 International Business Machines Corporation Sparse systolic array design
US11960982B1 (en) 2021-10-21 2024-04-16 Neuralmagic, Inc. System and method of determining and executing deep tensor columns in neural networks
JP2023073824A (en) * 2021-11-16 2023-05-26 キヤノン株式会社 Arithmetic unit, information processing method, and program
KR102729077B1 (en) * 2022-03-10 2024-11-13 리벨리온 주식회사 Neural processing device
CN116804973B (en) * 2022-03-18 2024-06-18 深圳鲲云信息科技有限公司 Address generating device, address generating method, data buffer and artificial intelligent chip
US20240119269A1 (en) * 2023-12-18 2024-04-11 Arnab Raha Dynamic sparsity-based acceleration of neural networks
TWI898651B (en) * 2024-06-12 2025-09-21 新加坡商艾沛芯科技股份有限公司 Memory device and operation mothod thereof

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754128A (en) 1971-08-31 1973-08-21 M Corinthios High speed signal processor for vector transformation
JPS4874139A (en) * 1971-12-29 1973-10-05
JPS5364439A (en) * 1976-11-20 1978-06-08 Agency Of Ind Science & Technol Linear coversion system
JPS58134357A (en) 1982-02-03 1983-08-10 Hitachi Ltd Array processor
EP0156648B1 (en) 1984-03-29 1992-09-30 Kabushiki Kaisha Toshiba Convolution arithmetic circuit for digital signal processing
US5267185A (en) 1989-04-14 1993-11-30 Sharp Kabushiki Kaisha Apparatus for calculating matrices
US5138695A (en) 1989-10-10 1992-08-11 Hnc, Inc. Systolic array image processing system
JPH03167664A (en) 1989-11-28 1991-07-19 Nec Corp Matrix arithmetic circuit
EP0485522A4 (en) 1990-05-30 1993-08-04 Daniel W. Hammerstrom Neural network using virtual-zero
WO1991019267A1 (en) 1990-06-06 1991-12-12 Hughes Aircraft Company Neural network processor
US5287464A (en) 1990-10-24 1994-02-15 Zilog, Inc. Semiconductor multi-device system with logic means for controlling the operational mode of a set of input/output data bus drivers
JP3318753B2 (en) 1991-12-05 2002-08-26 ソニー株式会社 Product-sum operation device and product-sum operation method
AU658066B2 (en) * 1992-09-10 1995-03-30 Deere & Company Neural network based control system
JPH06139218A (en) 1992-10-30 1994-05-20 Hitachi Ltd Method and apparatus for fully parallel neural network simulation using digital integrated circuits
US6067536A (en) * 1996-05-30 2000-05-23 Matsushita Electric Industrial Co., Ltd. Neural network for voice and pattern recognition
US5742741A (en) 1996-07-18 1998-04-21 Industrial Technology Research Institute Reconfigurable neural network
US5905757A (en) 1996-10-04 1999-05-18 Motorola, Inc. Filter co-processor
US6243734B1 (en) 1998-10-30 2001-06-05 Intel Corporation Computer product and method for sparse matrices
JP2001117900A (en) 1999-10-19 2001-04-27 Fuji Xerox Co Ltd Neural network arithmetic device
US20020044695A1 (en) * 2000-05-05 2002-04-18 Bostrom Alistair K. Method for wavelet-based compression of video images
JP2003244190A (en) 2002-02-19 2003-08-29 Matsushita Electric Ind Co Ltd Processor for data flow control switch and data flow control switch
US7016529B2 (en) * 2002-03-15 2006-03-21 Microsoft Corporation System and method facilitating pattern recognition
US7493498B1 (en) * 2002-03-27 2009-02-17 Advanced Micro Devices, Inc. Input/output permission bitmaps for compartmentalized security
US7426501B2 (en) 2003-07-18 2008-09-16 Knowntech, Llc Nanotechnology neural network methods and systems
US7818729B1 (en) * 2003-09-15 2010-10-19 Thomas Plum Automated safe secure techniques for eliminating undefined behavior in computer software
JP2007518199A (en) 2004-01-13 2007-07-05 ニューヨーク・ユニバーシティ Method, system, storage medium, and data structure for image recognition using multiple linear independent element analysis
GB2436377B (en) 2006-03-23 2011-02-23 Cambridge Display Tech Ltd Data processing hardware
CN101441441B (en) * 2007-11-21 2010-06-30 新乡市起重机厂有限公司 Design method of intelligent swing-proof control system of crane
JP4513865B2 (en) 2008-01-25 2010-07-28 セイコーエプソン株式会社 Parallel computing device and parallel computing method
EP2283578A1 (en) 2008-05-21 2011-02-16 Nxp B.V. A data handling system comprising memory banks and data rearrangement
US8321652B2 (en) * 2008-08-01 2012-11-27 Infineon Technologies Ag Process and method for logical-to-physical address mapping using a volatile memory device in solid state disks
EP2290563B1 (en) * 2009-08-28 2017-12-13 Accenture Global Services Limited Accessing content in a network
US8589600B2 (en) 2009-12-14 2013-11-19 Maxeler Technologies, Ltd. Method of transferring data with offsets
US8595467B2 (en) 2009-12-29 2013-11-26 International Business Machines Corporation Floating point collect and operate
US8676874B2 (en) 2010-12-06 2014-03-18 International Business Machines Corporation Data structure for tiling and packetizing a sparse matrix
US8457767B2 (en) * 2010-12-31 2013-06-04 Brad Radl System and method for real-time industrial process modeling
US8977629B2 (en) 2011-05-24 2015-03-10 Ebay Inc. Image-based popularity prediction
US8806171B2 (en) 2011-05-24 2014-08-12 Georgia Tech Research Corporation Systems and methods providing wear leveling using dynamic randomization for non-volatile memory
US8812414B2 (en) 2011-05-31 2014-08-19 International Business Machines Corporation Low-power event-driven neural computing architecture in neural networks
US8909576B2 (en) 2011-09-16 2014-12-09 International Business Machines Corporation Neuromorphic event-driven neural computing architecture in a scalable neural network
US9201828B2 (en) 2012-10-23 2015-12-01 Analog Devices, Inc. Memory interconnect network architecture for vector processor
US9606797B2 (en) 2012-12-21 2017-03-28 Intel Corporation Compressing execution cycles for divergent execution in a single instruction multiple data (SIMD) processor
WO2014105057A1 (en) 2012-12-28 2014-07-03 Intel Corporation Instruction to reduce elements in a vector register with strided access pattern
US20150067273A1 (en) * 2013-08-30 2015-03-05 Microsoft Corporation Computation hardware with high-bandwidth memory interface
US9477628B2 (en) 2013-09-28 2016-10-25 Intel Corporation Collective communications apparatus and method for parallel systems
CN103761213A (en) * 2014-02-14 2014-04-30 上海交通大学 On-chip Array System Based on Circulating Pipeline Computing
US9323525B2 (en) 2014-02-26 2016-04-26 Intel Corporation Monitoring vector lane duty cycle for dynamic optimization
CN103970720B (en) * 2014-05-30 2018-02-02 东南大学 Based on extensive coarseness imbedded reconfigurable system and its processing method
WO2016033506A1 (en) * 2014-08-29 2016-03-03 Google Inc. Processing images using deep neural networks
CN104463209B (en) * 2014-12-08 2017-05-24 福建坤华仪自动化仪器仪表有限公司 Method for recognizing digital code on PCB based on BP neural network
US9666257B2 (en) 2015-04-24 2017-05-30 Intel Corporation Bitcell state retention
US10013652B2 (en) * 2015-04-29 2018-07-03 Nuance Communications, Inc. Fast deep neural network feature transformation via optimized memory bandwidth utilization
US10489703B2 (en) 2015-05-20 2019-11-26 Nec Corporation Memory efficiency for convolutional neural networks operating on graphics processing units
CN107690663B (en) * 2015-06-05 2022-04-12 渊慧科技有限公司 whitening neural network layers
US10552370B2 (en) 2015-10-08 2020-02-04 Via Alliance Semiconductor Co., Ltd. Neural network unit with output buffer feedback for performing recurrent neural network computations
CN205139973U (en) * 2015-10-26 2016-04-06 中国人民解放军军械工程学院 BP neural network based on FPGA device founds
US9875104B2 (en) 2016-02-03 2018-01-23 Google Llc Accessing data in multi-dimensional tensors
US10552119B2 (en) 2016-04-29 2020-02-04 Intel Corporation Dynamic management of numerical representation in a distributed matrix processor architecture
GB201607713D0 (en) * 2016-05-03 2016-06-15 Imagination Tech Ltd Convolutional neural network
CN106023065B (en) * 2016-05-13 2019-02-19 中国矿业大学 A spectral-spatial dimension reduction method for tensor hyperspectral images based on deep convolutional neural networks
CN106127297B (en) 2016-06-02 2019-07-12 中国科学院自动化研究所 The acceleration of depth convolutional neural networks based on tensor resolution and compression method
US9959498B1 (en) 2016-10-27 2018-05-01 Google Llc Neural network instruction set architecture
US10175980B2 (en) 2016-10-27 2019-01-08 Google Llc Neural network compute tile
US10360163B2 (en) 2016-10-27 2019-07-23 Google Llc Exploiting input data sparsity in neural network compute units
US10733505B2 (en) 2016-11-10 2020-08-04 Google Llc Performing kernel striding in hardware
CN106529511B (en) 2016-12-13 2019-12-10 北京旷视科技有限公司 image structuring method and device
US10037490B2 (en) 2016-12-13 2018-07-31 Google Llc Performing average pooling in hardware
US20180189675A1 (en) 2016-12-31 2018-07-05 Intel Corporation Hardware accelerator architecture and template for web-scale k-means clustering
US11164071B2 (en) 2017-04-18 2021-11-02 Samsung Electronics Co., Ltd. Method and apparatus for reducing computational complexity of convolutional neural networks
US10572409B1 (en) 2018-05-10 2020-02-25 Xilinx, Inc. Sparse matrix processing circuitry
CN113383346A (en) * 2018-12-18 2021-09-10 莫维迪厄斯有限公司 Neural network compression

Also Published As

Publication number Publication date
JP2022172258A (en) 2022-11-15
CN114595803A (en) 2022-06-07
US10360163B2 (en) 2019-07-23
EP3533003A1 (en) 2019-09-04
JP7134955B2 (en) 2022-09-12
KR20220065898A (en) 2022-05-20
US11106606B2 (en) 2021-08-31
EP3533003B1 (en) 2022-01-26
KR102679563B1 (en) 2024-07-01
KR20230061577A (en) 2023-05-08
KR20240105502A (en) 2024-07-05
US11816045B2 (en) 2023-11-14
DE102017120452A1 (en) 2018-05-03
KR102528517B1 (en) 2023-05-04
US20180121377A1 (en) 2018-05-03
KR20190053262A (en) 2019-05-17
CN114595803B (en) 2025-08-08
HK1254700A1 (en) 2019-07-26
JP7469407B2 (en) 2024-04-16
US20250258784A1 (en) 2025-08-14
US20240289285A1 (en) 2024-08-29
CN108009626A (en) 2018-05-08
EP4044071A1 (en) 2022-08-17
CN108009626B (en) 2022-03-01
US9818059B1 (en) 2017-11-14
WO2018080624A1 (en) 2018-05-03
KR102397415B1 (en) 2022-05-12
JP2024096786A (en) 2024-07-17
JP2020500365A (en) 2020-01-09
US20220083480A1 (en) 2022-03-17
DE202017105363U1 (en) 2017-12-06
US20200012608A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
SG11201903787YA (en) Exploiting input data sparsity in neural network compute units
SG11201903631XA (en) Neural network instruction set architecture
SG11201900116RA (en) Communication flow for verification and identification check
SG11201907679TA (en) Business verification method and apparatus
SG11201909420QA (en) Picture-based vehicle loss assessment method and apparatus, and electronic device
SG11201900240WA (en) Superpixel methods for convolutional neural networks
SG11201903141QA (en) Business processing method and apparatus
SG11201904942YA (en) Blockchain-based service execution method and apparatus, and electronic device
SG11201901550WA (en) Method and apparatus for data processing
SG11201903958SA (en) Intuitive occluded object indicator
SG11201907842XA (en) Method and apparatus for consensus verification
SG11202000330XA (en) Concept for generating an enhanced sound field description or a modified sound field description using a multi-point sound field description
SG11201903684RA (en) Neural network compute tile
SG11201710421WA (en) Vending machine
SG11201906395PA (en) Blockchain based data processing method and device
SG11201908886TA (en) Consensus node selection method and apparatus, and server
SG11201811007TA (en) Blockchain-implemented method and system
SG11201809343RA (en) Systems and methods for correcting error in a first classifier by evaluating classifier output in parallel
SG11201910091YA (en) Systems and methods for scenario simulation
SG11201908556UA (en) Methods and devices for providing transaction data to blockchain system for processing
SG11201804771WA (en) Systems and methods for providing financial data to financial instruments in a distributed ledger system
SG11201811095UA (en) Multi-level storage in ferroelectric memory
SG11201906418PA (en) Blockchain-based data processing method and device
SG11201908756SA (en) System and method for distributing data records using a blockchain
SG11201907125XA (en) Dynamic execution of parameterized applications for the processing of keyed network data streams