SG11201903787YA - Exploiting input data sparsity in neural network compute units - Google Patents
Exploiting input data sparsity in neural network compute unitsInfo
- Publication number
- SG11201903787YA SG11201903787YA SG11201903787YA SG11201903787YA SG11201903787YA SG 11201903787Y A SG11201903787Y A SG 11201903787YA SG 11201903787Y A SG11201903787Y A SG 11201903787YA SG 11201903787Y A SG11201903787Y A SG 11201903787YA SG 11201903787Y A SG11201903787Y A SG 11201903787YA
- Authority
- SG
- Singapore
- Prior art keywords
- input
- international
- activation
- activations
- memory
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1668—Details of memory controller
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored program computers
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
- G06F17/153—Multidimensional correlation or convolution
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30007—Arrangements for executing specific machine instructions to perform operations on data operands
- G06F9/3001—Arithmetic instructions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3824—Operand accessing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0495—Quantised networks; Sparse networks; Compressed networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/10—Interfaces, programming languages or software development kits, e.g. for simulating neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Computer Hardware Design (AREA)
- Neurology (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Image Analysis (AREA)
- Advance Control (AREA)
- Complex Calculations (AREA)
- Memory System (AREA)
- Storage Device Security (AREA)
Abstract
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property :::` , 1111111011110111011111111111011111010111111111101110111111111111111111111111110111111 Organization International Bureau (10) International Publication Number (43) International Publication Date .....•\"\" WO 2018/080624 Al 03 May 2018 (03.05.2018) W I PO I PCT (51) International Patent Classification: NARAYANASWAMI, Ravi; 1600 Amphitheatre Park- G06N 3/10 (2006.01) way, Mountain View, California 94043 (US). (21) International Application Number: (74) Agent: HENRY, Joel et al.; Fish & Richardson P.C., P.O. PCT/US2017/047992 Box 1022, Minneapolis, Minnesota 55440-1022 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 22 August 2017 (22.08.2017) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (25) Filing Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (26) Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (30) Priority Data: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 15/336,066 27 October 2016 (27.10.2016) US KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 15/465,774 22 March 2017 (22.03.2017) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (71) Applicant: GOOGLE LLC [US/US]; 1600 Amphitheatre SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, Parkway, Mountain View, California 94043 (US). TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (72) Inventors: WOO, Dong Hyuk; 1600 Amphitheatre (84) Designated States (unless otherwise indicated, for every Parkway, Mountain View, California 94043 (US). kind of regional protection available): ARIPO (BW, GH, (54) Title: EXPLOITING INPUT DATA SPARSITY IN NEURAL NETWORK COMPUTE UNITS 300-- INSTRUCTIONS, INPUT ACTIVATIONS, AND WEIGHTS/PARAMETERS 303--- t Bitmap 1 1 ° 1 1 1 6 1 1 1 ° 1 1 1 ° ( 1 ) ( ) 3 + ( ) 5 ( ) 7 Weights and Partial Sums (Second Memory 110) Controller 302 310 First Activiations 102 Memory 108 Input 310 310 Activation Bus Parameters MAC 304 T r104a f Parameters MAC 304 r104b IL f Parameters MAC 304 r104c 306 —2 Output Activation Bus I 1 , 308 305 -- UU1 t. EI1 i ,-1 .4 I I - (57) : A computer el a controller of the computing device, whether each of the input activations has either a zero value or a non-zero value. The method 0 further includes storing, GC © activation includes generating - non-zero values. The GC ,_ 1 onto a data bus that is © memory address location N ( 1 ) ( ) 3 ( 5 ) ( ) 7 FIG. 3 -implemented method includes receiving, by a computing device, input activations and determining, by in a memory bank of the computing device, at least one of the input activations. Storing the at least one input an index comprising one or more memory address locations that have input activation values that are method still further includes providing, by the controller and from the memory bank, at least accessible by one or more units of a computational array. The activations are provided, at least associated with the index. one input activation in part, from a C [Continued on next page] WO 2018/080624 Al MIDEDIMOMMIDIREEMOOMMMONEDIDEHMEMOIMIE GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Declarations under Rule 4.17: — as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(U)) — as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) Published: — with international search report (Art. 21(3))
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/336,066 US10360163B2 (en) | 2016-10-27 | 2016-10-27 | Exploiting input data sparsity in neural network compute units |
| US15/465,774 US9818059B1 (en) | 2016-10-27 | 2017-03-22 | Exploiting input data sparsity in neural network compute units |
| PCT/US2017/047992 WO2018080624A1 (en) | 2016-10-27 | 2017-08-22 | Exploiting input data sparsity in neural network compute units |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| SG11201903787YA true SG11201903787YA (en) | 2019-05-30 |
Family
ID=60256363
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SG11201903787YA SG11201903787YA (en) | 2016-10-27 | 2017-08-22 | Exploiting input data sparsity in neural network compute units |
Country Status (9)
| Country | Link |
|---|---|
| US (6) | US10360163B2 (en) |
| EP (2) | EP3533003B1 (en) |
| JP (2) | JP7134955B2 (en) |
| KR (4) | KR102679563B1 (en) |
| CN (2) | CN114595803B (en) |
| DE (2) | DE202017105363U1 (en) |
| HK (1) | HK1254700A1 (en) |
| SG (1) | SG11201903787YA (en) |
| WO (1) | WO2018080624A1 (en) |
Families Citing this family (107)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9959498B1 (en) | 2016-10-27 | 2018-05-01 | Google Llc | Neural network instruction set architecture |
| US10360163B2 (en) | 2016-10-27 | 2019-07-23 | Google Llc | Exploiting input data sparsity in neural network compute units |
| US10175980B2 (en) | 2016-10-27 | 2019-01-08 | Google Llc | Neural network compute tile |
| US10685285B2 (en) * | 2016-11-23 | 2020-06-16 | Microsoft Technology Licensing, Llc | Mirror deep neural networks that regularize to linear networks |
| EP3561736A4 (en) * | 2016-12-20 | 2020-09-09 | Shanghai Cambricon Information Technology Co., Ltd | MULTIPLICATION AND ADDITION DEVICE FOR MATRICES, COMPUTER DEVICE WITH NEURONAL NETWORK AND PROCESS |
| US11328037B2 (en) * | 2017-07-07 | 2022-05-10 | Intel Corporation | Memory-size- and bandwidth-efficient method for feeding systolic array matrix multipliers |
| TWI680409B (en) * | 2017-07-08 | 2019-12-21 | 英屬開曼群島商意騰科技股份有限公司 | Method for matrix by vector multiplication for use in artificial neural network |
| US10879904B1 (en) * | 2017-07-21 | 2020-12-29 | X Development Llc | Application specific integrated circuit accelerators |
| US10790828B1 (en) | 2017-07-21 | 2020-09-29 | X Development Llc | Application specific integrated circuit accelerators |
| US10725740B2 (en) * | 2017-08-31 | 2020-07-28 | Qualcomm Incorporated | Providing efficient multiplication of sparse matrices in matrix-processor-based devices |
| WO2019090325A1 (en) | 2017-11-06 | 2019-05-09 | Neuralmagic, Inc. | Methods and systems for improved transforms in convolutional neural networks |
| CN110059798B (en) | 2017-11-06 | 2024-05-03 | 畅想科技有限公司 | Exploiting sparsity in neural networks |
| US11715287B2 (en) | 2017-11-18 | 2023-08-01 | Neuralmagic Inc. | Systems and methods for exchange of data in distributed training of machine learning algorithms |
| US10936942B2 (en) * | 2017-11-21 | 2021-03-02 | Google Llc | Apparatus and mechanism for processing neural network tasks using a single chip package with multiple identical dies |
| CN109902811B (en) * | 2017-12-11 | 2020-03-10 | 中科寒武纪科技股份有限公司 | Neural network operation device and method |
| US10553207B2 (en) * | 2017-12-29 | 2020-02-04 | Facebook, Inc. | Systems and methods for employing predication in computational models |
| US11693627B2 (en) * | 2018-02-09 | 2023-07-04 | Deepmind Technologies Limited | Contiguous sparsity pattern neural networks |
| WO2019157599A1 (en) * | 2018-02-16 | 2019-08-22 | The Governing Council Of The University Of Toronto | Neural network accelerator |
| US10572568B2 (en) | 2018-03-28 | 2020-02-25 | Intel Corporation | Accelerator for sparse-dense matrix multiplication |
| US11449363B2 (en) | 2018-05-31 | 2022-09-20 | Neuralmagic Inc. | Systems and methods for improved neural network execution |
| US10832133B2 (en) | 2018-05-31 | 2020-11-10 | Neuralmagic Inc. | System and method of executing neural networks |
| WO2021054990A1 (en) * | 2019-09-16 | 2021-03-25 | Neuralmagic Inc. | Systems and methods for generation of sparse code for convolutional neural networks |
| US11216732B2 (en) | 2018-05-31 | 2022-01-04 | Neuralmagic Inc. | Systems and methods for generation of sparse code for convolutional neural networks |
| US10963787B2 (en) | 2018-05-31 | 2021-03-30 | Neuralmagic Inc. | Systems and methods for generation of sparse code for convolutional neural networks |
| US10599429B2 (en) * | 2018-06-08 | 2020-03-24 | Intel Corporation | Variable format, variable sparsity matrix multiplication instruction |
| CN112437930A (en) * | 2018-07-12 | 2021-03-02 | 华为技术有限公司 | Generating a compressed representation of a neural network with skilled inference speed and power consumption |
| US12481861B2 (en) * | 2018-07-12 | 2025-11-25 | International Business Machines Corporation | Hierarchical parallelism in a network of distributed neural network cores |
| CN110796244B (en) * | 2018-08-01 | 2022-11-08 | 上海天数智芯半导体有限公司 | Core computing unit processor and accelerated processing method for artificial intelligence equipment |
| CN109344964B (en) * | 2018-08-08 | 2020-12-29 | 东南大学 | A multiplication and addition calculation method and calculation circuit suitable for neural network |
| CN110826707B (en) * | 2018-08-10 | 2023-10-31 | 北京百度网讯科技有限公司 | Acceleration method and hardware accelerator applied to convolutional neural network |
| US12205012B2 (en) * | 2018-08-24 | 2025-01-21 | Samsung Electronics Co., Ltd. | Method of accelerating training process of neural network and neural network device thereof |
| WO2020046859A1 (en) | 2018-08-27 | 2020-03-05 | Neuralmagic Inc. | Systems and methods for neural network convolutional layer matrix multiplication using cache memory |
| JP6985997B2 (en) * | 2018-08-27 | 2021-12-22 | 株式会社日立製作所 | Machine learning system and Boltzmann machine calculation method |
| WO2020064988A1 (en) * | 2018-09-27 | 2020-04-02 | Deepmind Technologies Limited | Scalable and compressive neural network data storage system |
| US11586417B2 (en) | 2018-09-28 | 2023-02-21 | Qualcomm Incorporated | Exploiting activation sparsity in deep neural networks |
| US11636343B2 (en) | 2018-10-01 | 2023-04-25 | Neuralmagic Inc. | Systems and methods for neural network pruning with accuracy preservation |
| CN111026440B (en) * | 2018-10-09 | 2022-03-29 | 上海寒武纪信息科技有限公司 | Operation method, operation device, computer equipment and storage medium |
| JP7115211B2 (en) * | 2018-10-18 | 2022-08-09 | 富士通株式会社 | Arithmetic processing device and method of controlling arithmetic processing device |
| CN111126081B (en) * | 2018-10-31 | 2023-07-21 | 深圳永德利科技股份有限公司 | Global universal language terminal and method |
| US10768895B2 (en) * | 2018-11-08 | 2020-09-08 | Movidius Limited | Dot product calculators and methods of operating the same |
| KR102809535B1 (en) * | 2018-11-13 | 2025-05-22 | 삼성전자주식회사 | Method for processing data using neural network and electronic device for supporting the same |
| US11663001B2 (en) * | 2018-11-19 | 2023-05-30 | Advanced Micro Devices, Inc. | Family of lossy sparse load SIMD instructions |
| US11361050B2 (en) | 2018-11-20 | 2022-06-14 | Hewlett Packard Enterprise Development Lp | Assigning dependent matrix-vector multiplication operations to consecutive crossbars of a dot product engine |
| WO2020121023A1 (en) * | 2018-12-11 | 2020-06-18 | Mipsology SAS | Accelerating artificial neural network computations by skipping input values |
| US10769527B2 (en) | 2018-12-11 | 2020-09-08 | Mipsology SAS | Accelerating artificial neural network computations by skipping input values |
| KR102833321B1 (en) * | 2018-12-12 | 2025-07-10 | 삼성전자주식회사 | Method and apparatus for performing convolution operations in neural networks |
| JP7189000B2 (en) | 2018-12-12 | 2022-12-13 | 日立Astemo株式会社 | Information processing equipment, in-vehicle control equipment, vehicle control system |
| KR102721579B1 (en) * | 2018-12-31 | 2024-10-25 | 에스케이하이닉스 주식회사 | Processing system |
| US11544559B2 (en) | 2019-01-08 | 2023-01-03 | Neuralmagic Inc. | System and method for executing convolution in a neural network |
| US11604958B2 (en) | 2019-03-13 | 2023-03-14 | Samsung Electronics Co., Ltd. | Method and apparatus for processing computation of zero value in processing of layers in neural network |
| CN112905241B (en) * | 2019-03-15 | 2024-03-29 | 英特尔公司 | Sparse optimization for matrix accelerator architecture |
| CN113424148A (en) | 2019-03-15 | 2021-09-21 | 英特尔公司 | Multi-sharded memory management for detecting cross-sharded access, providing multi-sharded inferential scaling, and providing optimal page migration |
| KR102746968B1 (en) * | 2019-03-20 | 2024-12-27 | 에스케이하이닉스 주식회사 | accelerating Appratus of neural network and operating method thereof |
| KR102749978B1 (en) * | 2019-05-10 | 2025-01-03 | 삼성전자주식회사 | Neural network processor compressing featuremap data and computing system comprising the same |
| US11301545B2 (en) * | 2019-07-11 | 2022-04-12 | Facebook Technologies, Llc | Power efficient multiply-accumulate circuitry |
| US20210026686A1 (en) * | 2019-07-22 | 2021-01-28 | Advanced Micro Devices, Inc. | Chiplet-integrated machine learning accelerators |
| US11195095B2 (en) | 2019-08-08 | 2021-12-07 | Neuralmagic Inc. | System and method of accelerating execution of a neural network |
| US11635893B2 (en) * | 2019-08-12 | 2023-04-25 | Micron Technology, Inc. | Communications between processors and storage devices in automotive predictive maintenance implemented via artificial neural networks |
| US12061971B2 (en) | 2019-08-12 | 2024-08-13 | Micron Technology, Inc. | Predictive maintenance of automotive engines |
| US12249189B2 (en) | 2019-08-12 | 2025-03-11 | Micron Technology, Inc. | Predictive maintenance of automotive lighting |
| US12497055B2 (en) | 2019-08-21 | 2025-12-16 | Micron Technology, Inc. | Monitoring controller area network bus for vehicle control |
| US11042350B2 (en) | 2019-08-21 | 2021-06-22 | Micron Technology, Inc. | Intelligent audio control in vehicles |
| KR20210024865A (en) | 2019-08-26 | 2021-03-08 | 삼성전자주식회사 | A method and an apparatus for processing data |
| US12210401B2 (en) | 2019-09-05 | 2025-01-28 | Micron Technology, Inc. | Temperature based optimization of data storage operations |
| US11651209B1 (en) * | 2019-10-02 | 2023-05-16 | Google Llc | Accelerated embedding layer computations |
| KR102808579B1 (en) * | 2019-10-16 | 2025-05-16 | 삼성전자주식회사 | Method and apparatus for performing operation in neural network |
| JP7462140B2 (en) * | 2019-10-29 | 2024-04-05 | 国立大学法人 熊本大学 | Neural network circuit and neural network operation method |
| JP7299134B2 (en) * | 2019-11-05 | 2023-06-27 | ルネサスエレクトロニクス株式会社 | DATA PROCESSING APPARATUS, OPERATION METHOD THEREOF, AND PROGRAM |
| US11244198B2 (en) | 2019-11-21 | 2022-02-08 | International Business Machines Corporation | Input partitioning for deep learning of large image data |
| FR3105659B1 (en) | 2019-12-18 | 2022-06-24 | Commissariat Energie Atomique | Method and apparatus for binary signal coding for implementing dynamic precision digital MAC operations |
| KR102268817B1 (en) * | 2019-12-19 | 2021-06-24 | 국민대학교산학협력단 | Method and device for evaluating machine learning performance in a distributed cloud envirionment |
| KR20210086233A (en) * | 2019-12-31 | 2021-07-08 | 삼성전자주식회사 | Method and apparatus for processing matrix data through relaxed pruning |
| TWI727641B (en) * | 2020-02-03 | 2021-05-11 | 華邦電子股份有限公司 | Memory apparatus and operation method thereof |
| US11586601B2 (en) * | 2020-02-05 | 2023-02-21 | Alibaba Group Holding Limited | Apparatus and method for representation of a sparse matrix in a neural network |
| US11604975B2 (en) | 2020-04-09 | 2023-03-14 | Apple Inc. | Ternary mode of planar engine for neural processor |
| CN111445013B (en) * | 2020-04-28 | 2023-04-25 | 南京大学 | A Nonzero Detector and Its Method for Convolutional Neural Networks |
| KR102418794B1 (en) * | 2020-06-02 | 2022-07-08 | 오픈엣지테크놀로지 주식회사 | Method of accessing parameters for a hardware accelerator from a memory and a device for the same |
| CN113835675A (en) * | 2020-06-23 | 2021-12-24 | 深圳市中兴微电子技术有限公司 | Data processing device and data processing method |
| US20220012304A1 (en) * | 2020-07-07 | 2022-01-13 | Sudarshan Kumar | Fast matrix multiplication |
| KR102871496B1 (en) | 2020-07-17 | 2025-10-14 | 삼성전자주식회사 | Neural network apparatus and operating method of the same |
| EP4184392A4 (en) * | 2020-07-17 | 2024-01-10 | Sony Group Corporation | Neural network processing device, information processing device, information processing system, electronic instrument, neural network processing method, and program |
| CN115989505A (en) | 2020-07-21 | 2023-04-18 | 多伦多大学管理委员会 | Systems and methods for accelerating deep learning networks using sparsity |
| US11928176B2 (en) * | 2020-07-30 | 2024-03-12 | Arm Limited | Time domain unrolling sparse matrix multiplication system and method |
| US12386683B2 (en) * | 2020-09-08 | 2025-08-12 | Technion Research And Development Foundation Ltd. | Non-blocking simultaneous multithreading (NB-SMT) |
| WO2022070947A1 (en) | 2020-09-30 | 2022-04-07 | ソニーセミコンダクタソリューションズ株式会社 | Signal processing device, imaging device, and signal processing method |
| US12229659B2 (en) | 2020-10-08 | 2025-02-18 | Samsung Electronics Co., Ltd. | Processor with outlier accommodation |
| US11436168B2 (en) * | 2020-10-14 | 2022-09-06 | Samsung Electronics Co., Ltd. | Accelerator and electronic device including the same |
| US20210042617A1 (en) * | 2020-10-27 | 2021-02-11 | Intel Corporation | Accelerated loading of unstructured sparse data in machine learning architectures |
| US11861327B2 (en) * | 2020-11-11 | 2024-01-02 | Samsung Electronics Co., Ltd. | Processor for fine-grain sparse integer and floating-point operations |
| US11861328B2 (en) * | 2020-11-11 | 2024-01-02 | Samsung Electronics Co., Ltd. | Processor for fine-grain sparse integer and floating-point operations |
| KR20220161485A (en) * | 2020-11-30 | 2022-12-06 | 구글 엘엘씨 | Systolic array cells with multiple accumulators |
| US11556757B1 (en) | 2020-12-10 | 2023-01-17 | Neuralmagic Ltd. | System and method of executing deep tensor columns in neural networks |
| CN112862086B (en) * | 2020-12-25 | 2025-01-24 | 南京蓝洋智能科技有限公司 | A neural network computing processing method, device and computer readable medium |
| KR102541461B1 (en) | 2021-01-11 | 2023-06-12 | 한국과학기술원 | Low power high performance deep-neural-network learning accelerator and acceleration method |
| US12210663B2 (en) * | 2021-01-13 | 2025-01-28 | University Of Florida Research Foundation, Inc. | Decommissioning and erasing entropy in microelectronic systems |
| US11853717B2 (en) * | 2021-01-14 | 2023-12-26 | Microsoft Technology Licensing, Llc | Accelerating processing based on sparsity for neural network hardware processors |
| US20220253692A1 (en) * | 2021-02-05 | 2022-08-11 | Samsung Electronics Co., Ltd. | Method and apparatus of operating a neural network |
| TWI847030B (en) * | 2021-05-05 | 2024-07-01 | 創鑫智慧股份有限公司 | Matrix multiplier and operation method thereof |
| US11940907B2 (en) * | 2021-06-25 | 2024-03-26 | Intel Corporation | Methods and apparatus for sparse tensor storage for neural network accelerators |
| US20220012012A1 (en) * | 2021-09-24 | 2022-01-13 | Martin Langhammer | Systems and Methods for Sparsity Operations in a Specialized Processing Block |
| US11669489B2 (en) * | 2021-09-30 | 2023-06-06 | International Business Machines Corporation | Sparse systolic array design |
| US11960982B1 (en) | 2021-10-21 | 2024-04-16 | Neuralmagic, Inc. | System and method of determining and executing deep tensor columns in neural networks |
| JP2023073824A (en) * | 2021-11-16 | 2023-05-26 | キヤノン株式会社 | Arithmetic unit, information processing method, and program |
| KR102729077B1 (en) * | 2022-03-10 | 2024-11-13 | 리벨리온 주식회사 | Neural processing device |
| CN116804973B (en) * | 2022-03-18 | 2024-06-18 | 深圳鲲云信息科技有限公司 | Address generating device, address generating method, data buffer and artificial intelligent chip |
| US20240119269A1 (en) * | 2023-12-18 | 2024-04-11 | Arnab Raha | Dynamic sparsity-based acceleration of neural networks |
| TWI898651B (en) * | 2024-06-12 | 2025-09-21 | 新加坡商艾沛芯科技股份有限公司 | Memory device and operation mothod thereof |
Family Cites Families (71)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3754128A (en) | 1971-08-31 | 1973-08-21 | M Corinthios | High speed signal processor for vector transformation |
| JPS4874139A (en) * | 1971-12-29 | 1973-10-05 | ||
| JPS5364439A (en) * | 1976-11-20 | 1978-06-08 | Agency Of Ind Science & Technol | Linear coversion system |
| JPS58134357A (en) | 1982-02-03 | 1983-08-10 | Hitachi Ltd | Array processor |
| EP0156648B1 (en) | 1984-03-29 | 1992-09-30 | Kabushiki Kaisha Toshiba | Convolution arithmetic circuit for digital signal processing |
| US5267185A (en) | 1989-04-14 | 1993-11-30 | Sharp Kabushiki Kaisha | Apparatus for calculating matrices |
| US5138695A (en) | 1989-10-10 | 1992-08-11 | Hnc, Inc. | Systolic array image processing system |
| JPH03167664A (en) | 1989-11-28 | 1991-07-19 | Nec Corp | Matrix arithmetic circuit |
| EP0485522A4 (en) | 1990-05-30 | 1993-08-04 | Daniel W. Hammerstrom | Neural network using virtual-zero |
| WO1991019267A1 (en) | 1990-06-06 | 1991-12-12 | Hughes Aircraft Company | Neural network processor |
| US5287464A (en) | 1990-10-24 | 1994-02-15 | Zilog, Inc. | Semiconductor multi-device system with logic means for controlling the operational mode of a set of input/output data bus drivers |
| JP3318753B2 (en) | 1991-12-05 | 2002-08-26 | ソニー株式会社 | Product-sum operation device and product-sum operation method |
| AU658066B2 (en) * | 1992-09-10 | 1995-03-30 | Deere & Company | Neural network based control system |
| JPH06139218A (en) | 1992-10-30 | 1994-05-20 | Hitachi Ltd | Method and apparatus for fully parallel neural network simulation using digital integrated circuits |
| US6067536A (en) * | 1996-05-30 | 2000-05-23 | Matsushita Electric Industrial Co., Ltd. | Neural network for voice and pattern recognition |
| US5742741A (en) | 1996-07-18 | 1998-04-21 | Industrial Technology Research Institute | Reconfigurable neural network |
| US5905757A (en) | 1996-10-04 | 1999-05-18 | Motorola, Inc. | Filter co-processor |
| US6243734B1 (en) | 1998-10-30 | 2001-06-05 | Intel Corporation | Computer product and method for sparse matrices |
| JP2001117900A (en) | 1999-10-19 | 2001-04-27 | Fuji Xerox Co Ltd | Neural network arithmetic device |
| US20020044695A1 (en) * | 2000-05-05 | 2002-04-18 | Bostrom Alistair K. | Method for wavelet-based compression of video images |
| JP2003244190A (en) | 2002-02-19 | 2003-08-29 | Matsushita Electric Ind Co Ltd | Processor for data flow control switch and data flow control switch |
| US7016529B2 (en) * | 2002-03-15 | 2006-03-21 | Microsoft Corporation | System and method facilitating pattern recognition |
| US7493498B1 (en) * | 2002-03-27 | 2009-02-17 | Advanced Micro Devices, Inc. | Input/output permission bitmaps for compartmentalized security |
| US7426501B2 (en) | 2003-07-18 | 2008-09-16 | Knowntech, Llc | Nanotechnology neural network methods and systems |
| US7818729B1 (en) * | 2003-09-15 | 2010-10-19 | Thomas Plum | Automated safe secure techniques for eliminating undefined behavior in computer software |
| JP2007518199A (en) | 2004-01-13 | 2007-07-05 | ニューヨーク・ユニバーシティ | Method, system, storage medium, and data structure for image recognition using multiple linear independent element analysis |
| GB2436377B (en) | 2006-03-23 | 2011-02-23 | Cambridge Display Tech Ltd | Data processing hardware |
| CN101441441B (en) * | 2007-11-21 | 2010-06-30 | 新乡市起重机厂有限公司 | Design method of intelligent swing-proof control system of crane |
| JP4513865B2 (en) | 2008-01-25 | 2010-07-28 | セイコーエプソン株式会社 | Parallel computing device and parallel computing method |
| EP2283578A1 (en) | 2008-05-21 | 2011-02-16 | Nxp B.V. | A data handling system comprising memory banks and data rearrangement |
| US8321652B2 (en) * | 2008-08-01 | 2012-11-27 | Infineon Technologies Ag | Process and method for logical-to-physical address mapping using a volatile memory device in solid state disks |
| EP2290563B1 (en) * | 2009-08-28 | 2017-12-13 | Accenture Global Services Limited | Accessing content in a network |
| US8589600B2 (en) | 2009-12-14 | 2013-11-19 | Maxeler Technologies, Ltd. | Method of transferring data with offsets |
| US8595467B2 (en) | 2009-12-29 | 2013-11-26 | International Business Machines Corporation | Floating point collect and operate |
| US8676874B2 (en) | 2010-12-06 | 2014-03-18 | International Business Machines Corporation | Data structure for tiling and packetizing a sparse matrix |
| US8457767B2 (en) * | 2010-12-31 | 2013-06-04 | Brad Radl | System and method for real-time industrial process modeling |
| US8977629B2 (en) | 2011-05-24 | 2015-03-10 | Ebay Inc. | Image-based popularity prediction |
| US8806171B2 (en) | 2011-05-24 | 2014-08-12 | Georgia Tech Research Corporation | Systems and methods providing wear leveling using dynamic randomization for non-volatile memory |
| US8812414B2 (en) | 2011-05-31 | 2014-08-19 | International Business Machines Corporation | Low-power event-driven neural computing architecture in neural networks |
| US8909576B2 (en) | 2011-09-16 | 2014-12-09 | International Business Machines Corporation | Neuromorphic event-driven neural computing architecture in a scalable neural network |
| US9201828B2 (en) | 2012-10-23 | 2015-12-01 | Analog Devices, Inc. | Memory interconnect network architecture for vector processor |
| US9606797B2 (en) | 2012-12-21 | 2017-03-28 | Intel Corporation | Compressing execution cycles for divergent execution in a single instruction multiple data (SIMD) processor |
| WO2014105057A1 (en) | 2012-12-28 | 2014-07-03 | Intel Corporation | Instruction to reduce elements in a vector register with strided access pattern |
| US20150067273A1 (en) * | 2013-08-30 | 2015-03-05 | Microsoft Corporation | Computation hardware with high-bandwidth memory interface |
| US9477628B2 (en) | 2013-09-28 | 2016-10-25 | Intel Corporation | Collective communications apparatus and method for parallel systems |
| CN103761213A (en) * | 2014-02-14 | 2014-04-30 | 上海交通大学 | On-chip Array System Based on Circulating Pipeline Computing |
| US9323525B2 (en) | 2014-02-26 | 2016-04-26 | Intel Corporation | Monitoring vector lane duty cycle for dynamic optimization |
| CN103970720B (en) * | 2014-05-30 | 2018-02-02 | 东南大学 | Based on extensive coarseness imbedded reconfigurable system and its processing method |
| WO2016033506A1 (en) * | 2014-08-29 | 2016-03-03 | Google Inc. | Processing images using deep neural networks |
| CN104463209B (en) * | 2014-12-08 | 2017-05-24 | 福建坤华仪自动化仪器仪表有限公司 | Method for recognizing digital code on PCB based on BP neural network |
| US9666257B2 (en) | 2015-04-24 | 2017-05-30 | Intel Corporation | Bitcell state retention |
| US10013652B2 (en) * | 2015-04-29 | 2018-07-03 | Nuance Communications, Inc. | Fast deep neural network feature transformation via optimized memory bandwidth utilization |
| US10489703B2 (en) | 2015-05-20 | 2019-11-26 | Nec Corporation | Memory efficiency for convolutional neural networks operating on graphics processing units |
| CN107690663B (en) * | 2015-06-05 | 2022-04-12 | 渊慧科技有限公司 | whitening neural network layers |
| US10552370B2 (en) | 2015-10-08 | 2020-02-04 | Via Alliance Semiconductor Co., Ltd. | Neural network unit with output buffer feedback for performing recurrent neural network computations |
| CN205139973U (en) * | 2015-10-26 | 2016-04-06 | 中国人民解放军军械工程学院 | BP neural network based on FPGA device founds |
| US9875104B2 (en) | 2016-02-03 | 2018-01-23 | Google Llc | Accessing data in multi-dimensional tensors |
| US10552119B2 (en) | 2016-04-29 | 2020-02-04 | Intel Corporation | Dynamic management of numerical representation in a distributed matrix processor architecture |
| GB201607713D0 (en) * | 2016-05-03 | 2016-06-15 | Imagination Tech Ltd | Convolutional neural network |
| CN106023065B (en) * | 2016-05-13 | 2019-02-19 | 中国矿业大学 | A spectral-spatial dimension reduction method for tensor hyperspectral images based on deep convolutional neural networks |
| CN106127297B (en) | 2016-06-02 | 2019-07-12 | 中国科学院自动化研究所 | The acceleration of depth convolutional neural networks based on tensor resolution and compression method |
| US9959498B1 (en) | 2016-10-27 | 2018-05-01 | Google Llc | Neural network instruction set architecture |
| US10175980B2 (en) | 2016-10-27 | 2019-01-08 | Google Llc | Neural network compute tile |
| US10360163B2 (en) | 2016-10-27 | 2019-07-23 | Google Llc | Exploiting input data sparsity in neural network compute units |
| US10733505B2 (en) | 2016-11-10 | 2020-08-04 | Google Llc | Performing kernel striding in hardware |
| CN106529511B (en) | 2016-12-13 | 2019-12-10 | 北京旷视科技有限公司 | image structuring method and device |
| US10037490B2 (en) | 2016-12-13 | 2018-07-31 | Google Llc | Performing average pooling in hardware |
| US20180189675A1 (en) | 2016-12-31 | 2018-07-05 | Intel Corporation | Hardware accelerator architecture and template for web-scale k-means clustering |
| US11164071B2 (en) | 2017-04-18 | 2021-11-02 | Samsung Electronics Co., Ltd. | Method and apparatus for reducing computational complexity of convolutional neural networks |
| US10572409B1 (en) | 2018-05-10 | 2020-02-25 | Xilinx, Inc. | Sparse matrix processing circuitry |
| CN113383346A (en) * | 2018-12-18 | 2021-09-10 | 莫维迪厄斯有限公司 | Neural network compression |
-
2016
- 2016-10-27 US US15/336,066 patent/US10360163B2/en active Active
-
2017
- 2017-03-22 US US15/465,774 patent/US9818059B1/en active Active
- 2017-08-22 KR KR1020237014253A patent/KR102679563B1/en active Active
- 2017-08-22 SG SG11201903787YA patent/SG11201903787YA/en unknown
- 2017-08-22 WO PCT/US2017/047992 patent/WO2018080624A1/en not_active Ceased
- 2017-08-22 EP EP17761665.3A patent/EP3533003B1/en active Active
- 2017-08-22 KR KR1020247021189A patent/KR20240105502A/en active Pending
- 2017-08-22 KR KR1020227015590A patent/KR102528517B1/en active Active
- 2017-08-22 JP JP2019523062A patent/JP7134955B2/en active Active
- 2017-08-22 EP EP22153266.6A patent/EP4044071A1/en active Pending
- 2017-08-22 KR KR1020197012085A patent/KR102397415B1/en active Active
- 2017-09-06 DE DE202017105363.6U patent/DE202017105363U1/en active Active
- 2017-09-06 DE DE102017120452.0A patent/DE102017120452A1/en not_active Ceased
- 2017-09-29 CN CN202210121408.9A patent/CN114595803B/en active Active
- 2017-09-29 CN CN201710908258.5A patent/CN108009626B/en active Active
-
2018
- 2018-10-25 HK HK18113685.3A patent/HK1254700A1/en unknown
-
2019
- 2019-07-17 US US16/514,562 patent/US11106606B2/en active Active
-
2021
- 2021-08-24 US US17/410,071 patent/US11816045B2/en active Active
-
2022
- 2022-08-31 JP JP2022138360A patent/JP7469407B2/en active Active
-
2023
- 2023-11-09 US US18/505,662 patent/US20240289285A1/en active Pending
-
2025
- 2025-01-16 US US19/025,263 patent/US20250258784A1/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| JP2022172258A (en) | 2022-11-15 |
| CN114595803A (en) | 2022-06-07 |
| US10360163B2 (en) | 2019-07-23 |
| EP3533003A1 (en) | 2019-09-04 |
| JP7134955B2 (en) | 2022-09-12 |
| KR20220065898A (en) | 2022-05-20 |
| US11106606B2 (en) | 2021-08-31 |
| EP3533003B1 (en) | 2022-01-26 |
| KR102679563B1 (en) | 2024-07-01 |
| KR20230061577A (en) | 2023-05-08 |
| KR20240105502A (en) | 2024-07-05 |
| US11816045B2 (en) | 2023-11-14 |
| DE102017120452A1 (en) | 2018-05-03 |
| KR102528517B1 (en) | 2023-05-04 |
| US20180121377A1 (en) | 2018-05-03 |
| KR20190053262A (en) | 2019-05-17 |
| CN114595803B (en) | 2025-08-08 |
| HK1254700A1 (en) | 2019-07-26 |
| JP7469407B2 (en) | 2024-04-16 |
| US20250258784A1 (en) | 2025-08-14 |
| US20240289285A1 (en) | 2024-08-29 |
| CN108009626A (en) | 2018-05-08 |
| EP4044071A1 (en) | 2022-08-17 |
| CN108009626B (en) | 2022-03-01 |
| US9818059B1 (en) | 2017-11-14 |
| WO2018080624A1 (en) | 2018-05-03 |
| KR102397415B1 (en) | 2022-05-12 |
| JP2024096786A (en) | 2024-07-17 |
| JP2020500365A (en) | 2020-01-09 |
| US20220083480A1 (en) | 2022-03-17 |
| DE202017105363U1 (en) | 2017-12-06 |
| US20200012608A1 (en) | 2020-01-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| SG11201903787YA (en) | Exploiting input data sparsity in neural network compute units | |
| SG11201903631XA (en) | Neural network instruction set architecture | |
| SG11201900116RA (en) | Communication flow for verification and identification check | |
| SG11201907679TA (en) | Business verification method and apparatus | |
| SG11201909420QA (en) | Picture-based vehicle loss assessment method and apparatus, and electronic device | |
| SG11201900240WA (en) | Superpixel methods for convolutional neural networks | |
| SG11201903141QA (en) | Business processing method and apparatus | |
| SG11201904942YA (en) | Blockchain-based service execution method and apparatus, and electronic device | |
| SG11201901550WA (en) | Method and apparatus for data processing | |
| SG11201903958SA (en) | Intuitive occluded object indicator | |
| SG11201907842XA (en) | Method and apparatus for consensus verification | |
| SG11202000330XA (en) | Concept for generating an enhanced sound field description or a modified sound field description using a multi-point sound field description | |
| SG11201903684RA (en) | Neural network compute tile | |
| SG11201710421WA (en) | Vending machine | |
| SG11201906395PA (en) | Blockchain based data processing method and device | |
| SG11201908886TA (en) | Consensus node selection method and apparatus, and server | |
| SG11201811007TA (en) | Blockchain-implemented method and system | |
| SG11201809343RA (en) | Systems and methods for correcting error in a first classifier by evaluating classifier output in parallel | |
| SG11201910091YA (en) | Systems and methods for scenario simulation | |
| SG11201908556UA (en) | Methods and devices for providing transaction data to blockchain system for processing | |
| SG11201804771WA (en) | Systems and methods for providing financial data to financial instruments in a distributed ledger system | |
| SG11201811095UA (en) | Multi-level storage in ferroelectric memory | |
| SG11201906418PA (en) | Blockchain-based data processing method and device | |
| SG11201908756SA (en) | System and method for distributing data records using a blockchain | |
| SG11201907125XA (en) | Dynamic execution of parameterized applications for the processing of keyed network data streams |