SG10201901654VA - Stacked memory devices, memory systems and methods of operating stacked memory devices - Google Patents
Stacked memory devices, memory systems and methods of operating stacked memory devicesInfo
- Publication number
- SG10201901654VA SG10201901654VA SG10201901654VA SG10201901654VA SG10201901654VA SG 10201901654V A SG10201901654V A SG 10201901654VA SG 10201901654V A SG10201901654V A SG 10201901654VA SG 10201901654V A SG10201901654V A SG 10201901654VA SG 10201901654V A SG10201901654V A SG 10201901654VA
- Authority
- SG
- Singapore
- Prior art keywords
- memory devices
- stacked memory
- methods
- operating
- stacked
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/18—Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/44—Indication or identification of errors, e.g. for repair
- G11C29/4401—Indication or identification of errors, e.g. for repair for self repair
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write [R-W] circuits
- G11C11/4097—Bit-line organisation, e.g. bit-line layout, folded bit lines
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/14—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
- G11C17/16—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
- G11C17/165—Memory cells which are electrically programmed to cause a change in resistance, e.g. to permit multiple resistance steps to be programmed rather than conduct to or from non-conduct change of fuses and antifuses
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/1201—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising I/O circuitry
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/38—Response verification devices
- G11C29/42—Response verification devices using error correcting codes [ECC] or parity check
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/46—Test trigger logic
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/48—Arrangements in static stores specially adapted for testing by means external to the store, e.g. using direct memory access [DMA] or using auxiliary access paths
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
- G11C29/88—Masking faults in memories by using spares or by reconfiguring with partially good memories
- G11C29/886—Masking faults in memories by using spares or by reconfiguring with partially good memories combining plural defective memory devices to provide a contiguous address range, e.g. one device supplies working blocks to replace defective blocks in another device
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/02—Disposition of storage elements, e.g. in the form of a matrix array
- G11C5/025—Geometric lay-out considerations of storage- and peripheral-blocks in a semiconductor storage device
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/06—Arrangements for interconnecting storage elements electrically, e.g. by wiring
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/18—Bit line organisation; Bit line lay-out
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/22—Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/10—Decoders
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/14—Word line organisation; Word line lay-out
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5384—Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/50—Peripheral circuit region structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/14—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
- G11C17/16—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C2029/1204—Bit line control
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/18—Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
- G11C2029/1806—Address conversion or mapping, i.e. logical to physical address
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16135—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/16145—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06548—Conductive via connections through the substrate, container, or encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/481—Internal lead connections, e.g. via connections, feedthrough structures
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- For Increasing The Reliability Of Semiconductor Memories (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020180085119A KR102587648B1 (en) | 2018-07-23 | 2018-07-23 | Stacked memory devices, memory systems including the same and methods of testing the stacked memory devices |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| SG10201901654VA true SG10201901654VA (en) | 2020-02-27 |
Family
ID=69162057
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SG10201901654VA SG10201901654VA (en) | 2018-07-23 | 2019-02-25 | Stacked memory devices, memory systems and methods of operating stacked memory devices |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US10622088B2 (en) |
| KR (1) | KR102587648B1 (en) |
| CN (1) | CN110751976B (en) |
| SG (1) | SG10201901654VA (en) |
Families Citing this family (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102553267B1 (en) * | 2018-05-17 | 2023-07-07 | 삼성전자 주식회사 | Multi-channel package, and test apparatus and test method for testing the package |
| US11257543B2 (en) * | 2019-06-25 | 2022-02-22 | Stmicroelectronics International N.V. | Memory management device, system and method |
| US11360667B2 (en) | 2019-09-09 | 2022-06-14 | Stmicroelectronics S.R.L. | Tagged memory operated at lower vmin in error tolerant system |
| US11164856B2 (en) | 2019-09-19 | 2021-11-02 | Micron Technology, Inc. | TSV check circuit with replica path |
| US10916489B1 (en) | 2019-10-02 | 2021-02-09 | Micron Technology, Inc. | Memory core chip having TSVS |
| US10930363B1 (en) | 2019-10-02 | 2021-02-23 | Micron Technology, Inc. | TSV auto repair scheme on stacked die |
| KR20210063496A (en) * | 2019-11-22 | 2021-06-02 | 삼성전자주식회사 | Memory device including processing circuit, and electronic device including system on chip and memory device |
| US11367495B2 (en) * | 2020-02-05 | 2022-06-21 | Micron Technology, Inc. | Microelectronic device testing, and associated methods, devices, and systems |
| KR102822816B1 (en) * | 2020-04-01 | 2025-06-19 | 삼성전자주식회사 | Semiconductor memory devices |
| US11456022B2 (en) * | 2020-06-30 | 2022-09-27 | Western Digital Technologies, Inc. | Distributed grouped terminations for multiple memory integrated circuit systems |
| KR102807818B1 (en) * | 2020-07-27 | 2025-05-14 | 삼성전자주식회사 | Semiconductor package including an interposer |
| US11500575B2 (en) * | 2020-09-23 | 2022-11-15 | Micron Technology, Inc. | Pattern generation for multi-channel memory array |
| US12211571B2 (en) * | 2020-10-07 | 2025-01-28 | Micron Technology, Inc. | On-die testing for a memory device |
| KR20220054119A (en) * | 2020-10-23 | 2022-05-02 | 삼성전자주식회사 | Semiconductor device using different types of a through-silicon-via |
| CN113178223A (en) * | 2021-04-27 | 2021-07-27 | 珠海全志科技股份有限公司 | Data training method of memory, computer device and computer readable storage medium |
| KR102877316B1 (en) * | 2021-06-17 | 2025-10-29 | 삼성전자주식회사 | Semiconductor memory devices |
| US20230260588A1 (en) * | 2022-02-14 | 2023-08-17 | Sandisk Technologies Llc | Systems and methods for sense circuit testing by sensor emulation in memory die |
| CN119153424B (en) * | 2023-06-08 | 2025-09-26 | 长鑫存储技术有限公司 | A memory chip, a chip stacking structure, and a memory |
| CN119274609B (en) * | 2023-07-06 | 2025-08-29 | 兆易创新科技集团股份有限公司 | Self-detection circuit and storage device |
| CN120164514B (en) * | 2025-05-19 | 2025-07-22 | 北京青耘科技有限公司 | Memory controller and three-dimensional stacked memory |
Family Cites Families (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19725581C2 (en) | 1997-06-17 | 2000-06-08 | Siemens Ag | Method for checking the function of memory cells of an integrated memory |
| US6801471B2 (en) * | 2002-02-19 | 2004-10-05 | Infineon Technologies Ag | Fuse concept and method of operation |
| US7859925B1 (en) | 2006-03-31 | 2010-12-28 | Cypress Semiconductor Corporation | Anti-fuse latch self-test circuit and method |
| JP2009181600A (en) * | 2008-01-29 | 2009-08-13 | Renesas Technology Corp | Semiconductor device |
| KR101312348B1 (en) * | 2009-03-10 | 2013-09-27 | 가부시키가이샤 어드밴티스트 | Test device and testing method |
| US20110002169A1 (en) * | 2009-07-06 | 2011-01-06 | Yan Li | Bad Column Management with Bit Information in Non-Volatile Memory Systems |
| US20150348633A1 (en) * | 2010-02-11 | 2015-12-03 | Samsung Electronics Co., Ltd. | Nonvolatile memory devices and methods of programming nonvolatile memory devices |
| JP2011253593A (en) * | 2010-06-02 | 2011-12-15 | Toshiba Corp | Nonvolatile semiconductor memory device |
| JP5611916B2 (en) * | 2011-09-16 | 2014-10-22 | 株式会社東芝 | Semiconductor integrated circuit |
| US9001601B2 (en) | 2011-09-30 | 2015-04-07 | Samsung Electronics Co., Ltd. | Memory device including repair circuit and repair method thereof |
| US8804394B2 (en) | 2012-01-11 | 2014-08-12 | Rambus Inc. | Stacked memory with redundancy |
| US9087613B2 (en) * | 2012-02-29 | 2015-07-21 | Samsung Electronics Co., Ltd. | Device and method for repairing memory cell and memory system including the device |
| KR20170134989A (en) * | 2016-05-30 | 2017-12-08 | 삼성전자주식회사 | Semiconductor memory device and method of operating the same |
| DE112012006171B4 (en) | 2012-03-30 | 2020-06-18 | Intel Corporation | On-chip redundancy repair for storage devices |
| US8982598B2 (en) | 2012-04-18 | 2015-03-17 | Rambus Inc. | Stacked memory device with redundant resources to correct defects |
| KR101890301B1 (en) * | 2012-06-14 | 2018-08-21 | 삼성전자주식회사 | Memory device and operation method thereof |
| US8913451B2 (en) * | 2012-11-08 | 2014-12-16 | SK Hynix Inc. | Memory device and test method thereof |
| US9087614B2 (en) * | 2012-11-27 | 2015-07-21 | Samsung Electronics Co., Ltd. | Memory modules and memory systems |
| KR102025341B1 (en) * | 2012-12-04 | 2019-09-25 | 삼성전자 주식회사 | Memory controller, Memory system including the memory controller and Method of operating the memory controller |
| US9361116B2 (en) * | 2012-12-28 | 2016-06-07 | Intel Corporation | Apparatus and method for low-latency invocation of accelerators |
| US20150063039A1 (en) | 2013-08-29 | 2015-03-05 | Taiwan Semiconductor Manufacturing Company Ltd. | Redundancy in stacked memory structure |
| KR20150084244A (en) * | 2014-01-13 | 2015-07-22 | 삼성전자주식회사 | Memory Device, Memory System and Operating Method of Memory Device |
| KR20150139116A (en) * | 2014-06-02 | 2015-12-11 | 에스케이하이닉스 주식회사 | Semiconductor device and operating method thereof |
| KR102189757B1 (en) * | 2014-07-30 | 2020-12-11 | 삼성전자주식회사 | A semiconductor memory device, a memory system including the same, and a method operating the same |
| KR20170054182A (en) * | 2015-11-09 | 2017-05-17 | 에스케이하이닉스 주식회사 | Semiconductor device |
| KR20170060205A (en) * | 2015-11-23 | 2017-06-01 | 에스케이하이닉스 주식회사 | Stacked memory device and semiconductor memory system |
| KR101810771B1 (en) | 2016-04-21 | 2018-01-25 | 한양대학교 에리카산학협력단 | 3D repairable semiconductor device, and the method of repairing of the same |
| US10395748B2 (en) | 2016-06-15 | 2019-08-27 | Micron Technology, Inc. | Shared error detection and correction memory |
| KR102467698B1 (en) * | 2016-07-26 | 2022-11-16 | 삼성전자주식회사 | Stacked memory device, system including the same and associated method |
| US10162005B1 (en) * | 2017-08-09 | 2018-12-25 | Micron Technology, Inc. | Scan chain operations |
| KR20190048132A (en) * | 2017-10-30 | 2019-05-09 | 삼성전자주식회사 | Memory device for preventing duplicate program of fail address and operating method thereof |
| JP6991084B2 (en) * | 2018-03-22 | 2022-01-12 | キオクシア株式会社 | Non-volatile memory device and control method |
-
2018
- 2018-07-23 KR KR1020180085119A patent/KR102587648B1/en active Active
-
2019
- 2019-01-11 US US16/245,724 patent/US10622088B2/en active Active
- 2019-02-25 SG SG10201901654VA patent/SG10201901654VA/en unknown
- 2019-03-14 CN CN201910192696.5A patent/CN110751976B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN110751976A (en) | 2020-02-04 |
| KR20200010720A (en) | 2020-01-31 |
| KR102587648B1 (en) | 2023-10-11 |
| US20200027521A1 (en) | 2020-01-23 |
| CN110751976B (en) | 2023-09-05 |
| US10622088B2 (en) | 2020-04-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| SG10201901654VA (en) | Stacked memory devices, memory systems and methods of operating stacked memory devices | |
| SG11202003607TA (en) | Implant-cinching devices and systems | |
| EP3732682A4 (en) | Methods for independent memory bank maintenance and memory devices and systems employing the same | |
| GB201912746D0 (en) | Inventory management systems, devices and methods | |
| IL267787A (en) | Energy storage devices and systems | |
| SG10202103076UA (en) | Blockchain data processing methods, apparatuses, processing devices, and systems | |
| SG11202004911VA (en) | Blockchain data processing methods, apparatuses, devices, and systems | |
| SG11202005052XA (en) | Blockchain data processing methods, apparatuses, processing devices, and systems | |
| SG10202006325SA (en) | Conductive structures, systems and devices including conductive structures and related methods | |
| SG11201913781WA (en) | Access control methods and apparatuses, systems, electronic devices, programs, and medium | |
| EP3134006A4 (en) | Single access surgical robotic devices and systems, and methods of configuring single access surgical robotic devices and systems | |
| EP3417314A4 (en) | Systems, methods and devices for geo-localization | |
| EP3256072A4 (en) | Prosthetic capsular devices, systems, and methods | |
| EP3275280A4 (en) | Device, system and method of quasi-orthogonal multiple access | |
| HUE043320T2 (en) | Systems, methods and devices for radio access technology coordination | |
| EP3264993A4 (en) | Implant placement systems, devices and methods | |
| EP4054407A4 (en) | STIMULATION DEVICES, SYSTEMS AND METHODS | |
| SG11202000871WA (en) | Systems, devices, and methods for isotachophoresis | |
| SG11202106442VA (en) | Distributed ledger systems, methods and devices | |
| GB201710546D0 (en) | Dialysis systems, devices and methods | |
| GB201714329D0 (en) | In-store audio systems, devices, and methods | |
| EP3558162A4 (en) | Obesity treatment devices, systems, and methods | |
| GB201517729D0 (en) | Data systems, devices and methods | |
| EP3646188A4 (en) | Methods of memory address verification and memory devices employing the same | |
| IL276753A (en) | Afibrotic compounds, devices, and uses thereof |