SG10201709945UA - Face detection using small-scale convolutional neural network (cnn) modules for embedded systems - Google Patents
Face detection using small-scale convolutional neural network (cnn) modules for embedded systemsInfo
- Publication number
- SG10201709945UA SG10201709945UA SG10201709945UA SG10201709945UA SG10201709945UA SG 10201709945U A SG10201709945U A SG 10201709945UA SG 10201709945U A SG10201709945U A SG 10201709945UA SG 10201709945U A SG10201709945U A SG 10201709945UA SG 10201709945U A SG10201709945U A SG 10201709945UA
- Authority
- SG
- Singapore
- Prior art keywords
- cnn
- scale
- small
- cascaded
- face detection
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/172—Classification, e.g. identification
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
- G06F18/24143—Distances to neighbourhood prototypes, e.g. restricted Coulomb energy networks [RCEN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
- G06T7/248—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/19—Recognition using electronic means
- G06V30/191—Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06V30/19173—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/168—Feature extraction; Face representation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/168—Feature extraction; Face representation
- G06V40/169—Holistic features and representations, i.e. based on the facial image taken as a whole
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/251—Fusion techniques of input or preprocessed data
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/28—Indexing scheme for image data processing or generation, in general involving image processing hardware
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20021—Dividing image into blocks, subimages or windows
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20224—Image subtraction
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30196—Human being; Person
- G06T2207/30201—Face
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/12—Bounding box
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/62—Text, e.g. of license plates, overlay texts or captions on TV images
- G06V20/625—License plates
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/32—Digital ink
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/178—Human faces, e.g. facial parts, sketches or expressions estimating age from face image; using age information for improving recognition
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Multimedia (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Neurology (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Image Analysis (AREA)
Abstract
FACE DETECTION USING SMALL-SCALE CONVOLUTIONAL NEURAL NETWORK (CNN) MODULES FOR EMBEDDED SYSTEMS Embodiments described herein provide various examples of a face detection system, based on using a small-scale hardware convolutional neutral network (CNN) module configured into a multi-task cascaded CNN. In some embodiments, a subimage-based CNN system can be configured to be equivalent to a large-scale CNN that processes the entire input image without partitioning such that the output of the subimage-based CNN system can be exactly identical to the output of the large-scale CNN. Based on this observation, some embodiments of this patent disclosure make use of the subimage-based CNN system and technique on one or more stages of a cascaded CNN or a multitask cascaded CNN (MTCNN) so that a larger input image to a given stage of the cascaded CNN or the MTCNN can be partitioned into a set of subimages of a smaller size. As a result, each stage of the cascaded CNN or the MTCNN can use the same small-scale hardware CNN module that is associated with a maximum input image size constraint. FIG. 47
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201662428497P | 2016-11-30 | 2016-11-30 | |
| US15/441,194 US10360494B2 (en) | 2016-11-30 | 2017-02-23 | Convolutional neural network (CNN) system based on resolution-limited small-scale CNN modules |
| US15/657,109 US10268947B2 (en) | 2016-11-30 | 2017-07-21 | Face detection using small-scale convolutional neural network (CNN) modules for embedded systems |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| SG10201709945UA true SG10201709945UA (en) | 2018-06-28 |
Family
ID=62190214
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SG10201709943RA SG10201709943RA (en) | 2016-11-30 | 2017-11-30 | A convolutional neural network (cnn) system based on resolution-limited small-scale cnn modules |
| SG10201709945UA SG10201709945UA (en) | 2016-11-30 | 2017-11-30 | Face detection using small-scale convolutional neural network (cnn) modules for embedded systems |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SG10201709943RA SG10201709943RA (en) | 2016-11-30 | 2017-11-30 | A convolutional neural network (cnn) system based on resolution-limited small-scale cnn modules |
Country Status (4)
| Country | Link |
|---|---|
| US (3) | US10360494B2 (en) |
| KR (2) | KR20180062422A (en) |
| CA (2) | CA2986860A1 (en) |
| SG (2) | SG10201709943RA (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109711384A (en) * | 2019-01-09 | 2019-05-03 | 江苏星云网格信息技术有限公司 | A kind of face identification method based on depth convolutional neural networks |
| CN110097021A (en) * | 2019-05-10 | 2019-08-06 | 电子科技大学 | Face pose estimation based on MTCNN |
Families Citing this family (165)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6806066B2 (en) * | 2015-09-11 | 2021-01-06 | 日本電気株式会社 | Object counting device, object counting method, object counting program, and object counting system |
| US10592729B2 (en) * | 2016-01-21 | 2020-03-17 | Samsung Electronics Co., Ltd. | Face detection method and apparatus |
| CN106157307B (en) * | 2016-06-27 | 2018-09-11 | 浙江工商大学 | A kind of monocular image depth estimation method based on multiple dimensioned CNN and continuous CRF |
| US10303977B2 (en) * | 2016-06-28 | 2019-05-28 | Conduent Business Services, Llc | System and method for expanding and training convolutional neural networks for large size input images |
| US10366302B2 (en) * | 2016-10-10 | 2019-07-30 | Gyrfalcon Technology Inc. | Hierarchical category classification scheme using multiple sets of fully-connected networks with a CNN based integrated circuit as feature extractor |
| US10360494B2 (en) * | 2016-11-30 | 2019-07-23 | Altumview Systems Inc. | Convolutional neural network (CNN) system based on resolution-limited small-scale CNN modules |
| CN106778856A (en) * | 2016-12-08 | 2017-05-31 | 深圳大学 | A kind of object identification method and device |
| US10318827B2 (en) | 2016-12-19 | 2019-06-11 | Waymo Llc | Object detection neural networks |
| US10546231B2 (en) * | 2017-01-23 | 2020-01-28 | Fotonation Limited | Method for synthesizing a neural network |
| US11620482B2 (en) * | 2017-02-23 | 2023-04-04 | Nokia Technologies Oy | Collaborative activation for deep learning field |
| CN106952269B (en) * | 2017-02-24 | 2019-09-20 | 北京航空航天大学 | Near-neighbor reversible video foreground object sequence detection and segmentation method and system |
| WO2018160943A1 (en) * | 2017-03-03 | 2018-09-07 | Pindrop Security, Inc. | Method and apparatus for detecting spoofing conditions |
| CN106683680B (en) * | 2017-03-10 | 2022-03-25 | 百度在线网络技术(北京)有限公司 | Speaker recognition method and apparatus, computer equipment and computer readable medium |
| US10185895B1 (en) * | 2017-03-23 | 2019-01-22 | Gopro, Inc. | Systems and methods for classifying activities captured within images |
| US10496895B2 (en) * | 2017-03-28 | 2019-12-03 | Facebook, Inc. | Generating refined object proposals using deep-learning models |
| US10810371B2 (en) | 2017-04-06 | 2020-10-20 | AIBrain Corporation | Adaptive, interactive, and cognitive reasoner of an autonomous robotic system |
| US10929759B2 (en) | 2017-04-06 | 2021-02-23 | AIBrain Corporation | Intelligent robot software platform |
| US10963493B1 (en) | 2017-04-06 | 2021-03-30 | AIBrain Corporation | Interactive game with robot system |
| US10839017B2 (en) | 2017-04-06 | 2020-11-17 | AIBrain Corporation | Adaptive, interactive, and cognitive reasoner of an autonomous robotic system utilizing an advanced memory graph structure |
| US11151992B2 (en) * | 2017-04-06 | 2021-10-19 | AIBrain Corporation | Context aware interactive robot |
| US10621725B2 (en) * | 2017-04-12 | 2020-04-14 | Here Global B.V. | Small object detection from a large image |
| US10515199B2 (en) * | 2017-04-19 | 2019-12-24 | Qualcomm Incorporated | Systems and methods for facial authentication |
| CN110537369B (en) * | 2017-04-21 | 2021-07-13 | 株式会社半导体能源研究所 | Image processing method and image receiving device |
| US10410314B2 (en) * | 2017-04-27 | 2019-09-10 | Apple Inc. | Systems and methods for crossfading image data |
| CN107124609A (en) * | 2017-04-27 | 2017-09-01 | 京东方科技集团股份有限公司 | A kind of processing system of video image, its processing method and display device |
| US10552663B2 (en) * | 2017-05-02 | 2020-02-04 | Techcyte, Inc. | Machine learning classification and training for digital microscopy cytology images |
| CN110892349B (en) | 2017-05-23 | 2023-05-23 | 沃尔玛阿波罗有限责任公司 | Automated Inspection System |
| US10282589B2 (en) * | 2017-08-29 | 2019-05-07 | Konica Minolta Laboratory U.S.A., Inc. | Method and system for detection and classification of cells using convolutional neural networks |
| CN107491771A (en) * | 2017-09-21 | 2017-12-19 | 百度在线网络技术(北京)有限公司 | Method for detecting human face and device |
| CN107644209A (en) * | 2017-09-21 | 2018-01-30 | 百度在线网络技术(北京)有限公司 | Method for detecting human face and device |
| KR102468729B1 (en) * | 2017-09-29 | 2022-11-21 | 삼성전자주식회사 | Electronic device and object sensing method therof |
| US11335024B2 (en) * | 2017-10-20 | 2022-05-17 | Toyota Motor Europe | Method and system for processing an image and determining viewpoints of objects |
| CN107742107B (en) * | 2017-10-20 | 2019-03-01 | 北京达佳互联信息技术有限公司 | Facial image classification method, device and server |
| CN108052862B (en) * | 2017-11-09 | 2019-12-06 | 北京达佳互联信息技术有限公司 | Age estimation method and device |
| US11144815B2 (en) * | 2017-12-04 | 2021-10-12 | Optimum Semiconductor Technologies Inc. | System and architecture of neural network accelerator |
| US20190188729A1 (en) * | 2017-12-18 | 2019-06-20 | Beijing Jingdong Shangke Information Technology Co., Ltd. | System and method for detecting counterfeit product based on deep learning |
| TWI649698B (en) * | 2017-12-21 | 2019-02-01 | 財團法人工業技術研究院 | Object detection device, object detection method, and computer readable medium |
| KR20200119250A (en) * | 2018-01-10 | 2020-10-19 | 앵스티튜 드 흐쉑쉐 쉬르 레 캉세흐 드 라파헤이 디제스티프 - 이흐카드 | Automatic segmentation process of 3D medical images by several neural networks through structured convolution according to the geometric structure of 3D medical images |
| US11448632B2 (en) | 2018-03-19 | 2022-09-20 | Walmart Apollo, Llc | System and method for the determination of produce shelf life |
| WO2019204700A1 (en) * | 2018-04-19 | 2019-10-24 | University Of South Florida | Neonatal pain identification from neonatal facial expressions |
| IT201800003188A1 (en) * | 2018-05-25 | 2019-11-25 | Head counter device and digital image processing method | |
| WO2019236885A1 (en) | 2018-06-06 | 2019-12-12 | Cognex Corporation | System and method for finding and classifying patterns in an image with a vision system |
| CN110581970A (en) * | 2018-06-07 | 2019-12-17 | 北京华泰科捷信息技术股份有限公司 | network video storage device with face recognition and analysis function and method |
| CA3105272A1 (en) * | 2018-06-29 | 2020-01-02 | Wrnch Inc. | Human pose analysis system and method |
| KR101942219B1 (en) | 2018-07-05 | 2019-01-24 | 고재성 | Apparatus and method for waste image identification using convolution neural network |
| KR102570562B1 (en) * | 2018-07-16 | 2023-08-24 | 삼성전자주식회사 | Image processing apparatus and operating method for the same |
| KR102108391B1 (en) * | 2018-07-18 | 2020-05-12 | 주식회사 영국전자 | Moving Object Linkage Tracking System and Method Using Multiple Cameras |
| CN109285157A (en) * | 2018-07-24 | 2019-01-29 | 深圳先进技术研究院 | Left ventricular myocardial segmentation method, device and computer readable storage medium |
| US11393082B2 (en) * | 2018-07-26 | 2022-07-19 | Walmart Apollo, Llc | System and method for produce detection and classification |
| CN109272107A (en) * | 2018-08-10 | 2019-01-25 | 广东工业大学 | A method of improving the number of parameters of deep layer convolutional neural networks |
| US10747989B2 (en) * | 2018-08-21 | 2020-08-18 | Software Ag | Systems and/or methods for accelerating facial feature vector matching with supervised machine learning |
| KR101941994B1 (en) * | 2018-08-24 | 2019-01-24 | 전북대학교산학협력단 | System for pedestrian detection and attribute extraction based on a joint deep network |
| US11579921B2 (en) | 2018-08-29 | 2023-02-14 | Alibaba Group Holding Limited | Method and system for performing parallel computations to generate multiple output feature maps |
| KR102553146B1 (en) | 2018-09-13 | 2023-07-07 | 삼성전자주식회사 | Image processing apparatus and operating method for the same |
| JP6695947B2 (en) * | 2018-09-21 | 2020-05-20 | ソニーセミコンダクタソリューションズ株式会社 | Solid-state imaging system, image processing method and program |
| US11176427B2 (en) | 2018-09-26 | 2021-11-16 | International Business Machines Corporation | Overlapping CNN cache reuse in high resolution and streaming-based deep learning inference engines |
| US10733742B2 (en) | 2018-09-26 | 2020-08-04 | International Business Machines Corporation | Image labeling |
| CN109271957B (en) * | 2018-09-30 | 2020-10-20 | 厦门市巨龙信息科技有限公司 | Face gender identification method and device |
| DE102018216962A1 (en) * | 2018-10-02 | 2020-04-02 | Robert Bosch Gmbh | Process for high-resolution, scalable domain translation |
| KR102108854B1 (en) * | 2018-10-05 | 2020-05-12 | 재단법인대구경북과학기술원 | Real-time object detection method and apparatus by deep learning network model |
| CA3115784A1 (en) | 2018-10-11 | 2020-04-16 | Matthew John COOPER | Systems and methods for training machine models with augmented data |
| US11715059B2 (en) | 2018-10-12 | 2023-08-01 | Walmart Apollo, Llc | Systems and methods for condition compliance |
| KR102127369B1 (en) * | 2018-10-17 | 2020-06-26 | 엔에이치엔 주식회사 | Neural network system for detecting Palmprint and method for providing Palmprint-based fortune forecasting service |
| CN111079473B (en) * | 2018-10-19 | 2024-08-02 | 北京奇虎科技有限公司 | Gender identification method, device, electronic device and computer-readable storage medium |
| KR102169543B1 (en) * | 2018-11-08 | 2020-10-23 | 주식회사 소이넷 | Method for setting artificial intelligence execution model and system for acceleration a.i execution |
| WO2020106332A1 (en) | 2018-11-20 | 2020-05-28 | Walmart Apollo, Llc | Systems and methods for assessing products |
| KR102813368B1 (en) | 2018-12-03 | 2025-05-27 | 삼성전자주식회사 | Method and apparatus for performing dilated convolution operation in neural network |
| KR102092205B1 (en) * | 2018-12-03 | 2020-03-23 | 한국과학기술원 | Image processing method and apparatus for generating super resolution, inverse tone mapping and joint super resolution-inverse tone mapping processed multiple output image |
| US10977548B2 (en) | 2018-12-05 | 2021-04-13 | Bank Of America Corporation | Generation of capsule neural networks for enhancing image processing platforms |
| KR102055645B1 (en) * | 2018-12-07 | 2020-01-22 | 아주대학교산학협력단 | High speed convolution method for deep learning |
| KR102096617B1 (en) * | 2018-12-12 | 2020-04-02 | 충남대학교산학협력단 | Driver drowsiness detection system using image and ppg data based on multimodal deep learning |
| DE102018222202A1 (en) | 2018-12-18 | 2020-06-18 | Volkswagen Aktiengesellschaft | Method and device for operating a machine learning model |
| CN109726678B (en) * | 2018-12-28 | 2023-02-28 | 深圳市捷顺科技实业股份有限公司 | License plate recognition method and related device |
| CN109711413B (en) * | 2018-12-30 | 2023-04-07 | 陕西师范大学 | Image semantic segmentation method based on deep learning |
| CN109753927B (en) * | 2019-01-02 | 2025-03-07 | 腾讯科技(深圳)有限公司 | A face detection method and device |
| CN109753931A (en) * | 2019-01-04 | 2019-05-14 | 广州广电卓识智能科技有限公司 | Convolutional neural network training method, system and face feature point detection method |
| US11080835B2 (en) | 2019-01-09 | 2021-08-03 | Disney Enterprises, Inc. | Pixel error detection system |
| CN109726703B (en) * | 2019-01-11 | 2021-06-18 | 浙江工业大学 | A Face Image Age Recognition Method Based on Improved Ensemble Learning Strategy |
| US10402695B1 (en) * | 2019-01-23 | 2019-09-03 | StradVision, Inc. | Learning method and learning device for convolutional neural network using 1×H convolution for image recognition to be used for hardware optimization, and testing method and testing device using the same |
| CN109840489A (en) * | 2019-01-24 | 2019-06-04 | 深圳市云恩科技有限公司 | A kind of ferry pedestrian movement tracing detection system and its detection method |
| CN111488475B (en) * | 2019-01-29 | 2025-08-19 | 北京三星通信技术研究有限公司 | Image retrieval method, image retrieval device, electronic equipment and computer readable storage medium |
| US10915809B2 (en) | 2019-02-04 | 2021-02-09 | Bank Of America Corporation | Neural network image recognition with watermark protection |
| CN109886241A (en) * | 2019-03-05 | 2019-06-14 | 天津工业大学 | Driver fatigue detection based on shot and long term memory network |
| CN109934149B (en) * | 2019-03-06 | 2022-08-09 | 百度在线网络技术(北京)有限公司 | Method and apparatus for outputting information |
| US10872258B2 (en) * | 2019-03-15 | 2020-12-22 | Huawei Technologies Co., Ltd. | Adaptive image cropping for face recognition |
| US11222069B2 (en) * | 2019-03-31 | 2022-01-11 | Cortica Ltd. | Low-power calculation of a signature of a media unit |
| KR102083166B1 (en) * | 2019-04-22 | 2020-03-02 | 한국과학기술원 | Image processing method and apparatus |
| CN110046595B (en) * | 2019-04-23 | 2022-08-09 | 福州大学 | Cascade multi-scale based dense face detection method |
| CN110022466A (en) * | 2019-04-24 | 2019-07-16 | 中科院成都信息技术股份有限公司 | A kind of video analysis platform and its control method based on wisdom big data |
| CN110222566A (en) * | 2019-04-30 | 2019-09-10 | 北京迈格威科技有限公司 | A kind of acquisition methods of face characteristic, device, terminal and storage medium |
| CN111027366B (en) * | 2019-04-30 | 2020-11-27 | 六安木子可科技有限公司 | Adaptive Facial Signal Processing Platform |
| CN110334577B (en) * | 2019-05-05 | 2022-09-16 | 四川盛通智联网络科技有限公司 | A face recognition method based on HiSilicon security chip |
| CN110135313A (en) * | 2019-05-07 | 2019-08-16 | 西安募格网络科技有限公司 | A kind of Age estimation method based on convolutional neural networks |
| KR102420104B1 (en) * | 2019-05-16 | 2022-07-12 | 삼성전자주식회사 | Image processing apparatus and operating method for the same |
| US10831417B1 (en) * | 2019-06-17 | 2020-11-10 | Kyocera Document Solutions Inc. | Convolutional neural network based copy or print wizard |
| CN112115740B (en) * | 2019-06-19 | 2024-04-09 | 京东科技信息技术有限公司 | Method and apparatus for processing an image |
| CN112149449A (en) * | 2019-06-26 | 2020-12-29 | 北京华捷艾米科技有限公司 | Face attribute recognition method and system based on deep learning |
| KR102850050B1 (en) * | 2019-07-16 | 2025-08-26 | 삼성전자주식회사 | Method and apparatus of detecting object |
| US10748650B1 (en) * | 2019-07-17 | 2020-08-18 | Richard Ricci | Machine learning of dental images for E-commerce |
| CN110351526A (en) * | 2019-07-23 | 2019-10-18 | 北京中安信合科技有限公司 | A kind of personnel's supervisory systems based on artificial intelligence technology |
| US11113822B2 (en) * | 2019-08-14 | 2021-09-07 | International Business Machines Corporation | Moving object identification from a video stream |
| KR102641117B1 (en) * | 2019-08-26 | 2024-02-27 | 삼성전자주식회사 | Method and apparatus of augmenting image |
| CN110706200B (en) * | 2019-09-02 | 2022-08-05 | 杭州深睿博联科技有限公司 | Method and device for data prediction |
| CN110619391B (en) * | 2019-09-19 | 2023-04-18 | 华南理工大学 | Detection model compression method and device and computer readable storage medium |
| KR102405867B1 (en) * | 2019-10-02 | 2022-06-08 | (주)디앤아이파비스 | Method, apparatus and system for determining importance of patent documents using artificial intelligence model |
| KR102095892B1 (en) * | 2019-10-02 | 2020-04-01 | (주)디앤아이파비스 | Method, apparatus and system for determining similarity of patent documents using artificial intelligence model |
| US11568062B2 (en) * | 2019-10-10 | 2023-01-31 | Baidu Usa Llc | Methods to protect neural network models |
| US11087163B2 (en) * | 2019-11-01 | 2021-08-10 | Vannevar Labs, Inc. | Neural network-based optical character recognition |
| JP2023502653A (en) | 2019-11-18 | 2023-01-25 | イマーヴィジョン インコーポレイテッド | Use of deliberately controlled distortion imagers for inference or training of artificial intelligence neural networks |
| KR102863767B1 (en) | 2019-11-21 | 2025-09-24 | 삼성전자주식회사 | Electronic apparatus and control method thereof |
| US12307627B2 (en) | 2019-11-21 | 2025-05-20 | Samsung Electronics Co., Ltd. | Electronic apparatus and controlling method thereof |
| CN110929794B (en) * | 2019-11-28 | 2022-12-13 | 哈尔滨工程大学 | A Side Scan Sonar Image Classification Method Based on Multi-task Learning |
| CN111028177B (en) * | 2019-12-12 | 2023-07-21 | 武汉大学 | An edge-based deep learning image de-blurring method |
| CN111179175B (en) * | 2019-12-27 | 2023-04-07 | 深圳力维智联技术有限公司 | Image processing method and device based on convolutional neural network and storage medium |
| US11687778B2 (en) | 2020-01-06 | 2023-06-27 | The Research Foundation For The State University Of New York | Fakecatcher: detection of synthetic portrait videos using biological signals |
| CN113111679A (en) * | 2020-01-09 | 2021-07-13 | 北京君正集成电路股份有限公司 | Design method of human-shaped upper half monitoring network structure |
| KR102295202B1 (en) | 2020-01-31 | 2021-08-27 | 중앙대학교 산학협력단 | Multiple object detection method and apparatus |
| US20210248462A1 (en) * | 2020-02-07 | 2021-08-12 | Nec Laboratories America, Inc. | Interpreting convolutional sequence model by learning local and resolution-controllable prototypes |
| CN111401516B (en) * | 2020-02-21 | 2024-04-26 | 华为云计算技术有限公司 | A method for searching neural network channel parameters and related equipment |
| CN113496775A (en) * | 2020-03-19 | 2021-10-12 | 上海联影医疗科技股份有限公司 | Control method and system of radioactive ray equipment |
| US12064268B2 (en) | 2020-03-17 | 2024-08-20 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for medical imaging |
| US12056608B2 (en) * | 2020-03-20 | 2024-08-06 | Robert Bosch Gmbh | System and method for distributed neural networks on edge devices |
| US11508143B2 (en) | 2020-04-03 | 2022-11-22 | Disney Enterprises, Inc. | Automated salience assessment of pixel anomalies |
| US11568249B2 (en) | 2020-04-07 | 2023-01-31 | International Business Machines Corporation | Automated decision making for neural architecture search |
| US11386656B2 (en) * | 2020-04-08 | 2022-07-12 | Moxa Inc. | Device and method of handling video content analysis |
| KR20230011307A (en) | 2020-04-15 | 2023-01-20 | 핀드롭 시큐리티 인코포레이티드 | Passive and persistent multi-speaker voice biometrics |
| US11379697B2 (en) * | 2020-05-20 | 2022-07-05 | Bank Of America Corporation | Field programmable gate array architecture for image analysis |
| CN116097319A (en) * | 2020-06-30 | 2023-05-09 | 巴黎欧莱雅 | High resolution controllable facial aging using spatially aware conditional GAN |
| CN111862030B (en) * | 2020-07-15 | 2024-02-09 | 北京百度网讯科技有限公司 | Face synthetic image detection method and device, electronic equipment and storage medium |
| US20220028088A1 (en) * | 2020-07-23 | 2022-01-27 | Vingroup Joint Stock Company | Multi-scale segmentation system |
| US10902290B1 (en) * | 2020-08-04 | 2021-01-26 | Superb Ai Co., Ltd. | Methods for training auto labeling device and performing auto labeling related to object detection while performing automatic verification by using uncertainty scores and devices using the same |
| US10902291B1 (en) * | 2020-08-04 | 2021-01-26 | Superb Ai Co., Ltd. | Methods for training auto labeling device and performing auto labeling related to segmentation while performing automatic verification by using uncertainty scores and devices using the same |
| US10885387B1 (en) * | 2020-08-04 | 2021-01-05 | SUPERB Al CO., LTD. | Methods for training auto-labeling device and performing auto-labeling by using hybrid classification and devices using the same |
| US11889049B2 (en) | 2020-08-14 | 2024-01-30 | Raytheon Company | Gain map generation with rotation compensation |
| US11563899B2 (en) * | 2020-08-14 | 2023-01-24 | Raytheon Company | Parallelization technique for gain map generation using overlapping sub-images |
| CN112016432A (en) * | 2020-08-24 | 2020-12-01 | 高新兴科技集团股份有限公司 | License plate character recognition method based on deep learning, storage medium and electronic equipment |
| AU2021331069A1 (en) * | 2020-08-25 | 2023-05-18 | Axon Enterprise, Inc. | Systems and methods for rapid license plate reading |
| CN112035683B (en) * | 2020-09-30 | 2024-10-18 | 北京百度网讯科技有限公司 | User interaction information processing model generation method and user interaction information processing method |
| US12067499B2 (en) * | 2020-11-02 | 2024-08-20 | Adobe Inc. | Increasing efficiency of inferencing digital videos utilizing machine-learning models |
| CN112215245A (en) * | 2020-11-05 | 2021-01-12 | 中国联合网络通信集团有限公司 | Image identification method and device |
| CN112464009B (en) * | 2020-11-17 | 2024-11-15 | 百度(中国)有限公司 | Method, device, electronic device and storage medium for generating paired images |
| KR20230107869A (en) * | 2020-11-18 | 2023-07-18 | 인텔렉추얼디스커버리 주식회사 | Neural network feature map quantization method and apparatus |
| CN112580453A (en) * | 2020-12-08 | 2021-03-30 | 成都数之联科技有限公司 | Land use classification method and system based on remote sensing image and deep learning |
| US20240056575A1 (en) * | 2020-12-22 | 2024-02-15 | Intellectual Discovery Co., Ltd. | Deep learning-based image coding method and device |
| US20220198539A1 (en) * | 2020-12-23 | 2022-06-23 | Panasonic Intellectual Property Management Co., Ltd. | Checkout system and checkout method |
| KR102817011B1 (en) * | 2021-01-13 | 2025-06-09 | 삼성전자주식회사 | Electronic device for upscailing image and method for controlling the same |
| CN112434678B (en) * | 2021-01-27 | 2021-06-04 | 成都无糖信息技术有限公司 | Face measurement feature space searching system and method based on artificial neural network |
| CN113095251B (en) * | 2021-04-20 | 2022-05-27 | 清华大学深圳国际研究生院 | Human body posture estimation method and system |
| US12136250B2 (en) * | 2021-05-27 | 2024-11-05 | Adobe Inc. | Extracting attributes from arbitrary digital images utilizing a multi-attribute contrastive classification neural network |
| US12067769B2 (en) * | 2021-06-04 | 2024-08-20 | Apple Inc. | Object recognition |
| CN113392899B (en) * | 2021-06-10 | 2022-05-10 | 电子科技大学 | Image classification method based on binary image classification network |
| US11798117B2 (en) * | 2021-06-16 | 2023-10-24 | Bank Of America Corporation | Systems and methods for intelligent steganographic protection |
| US20220414455A1 (en) * | 2021-06-29 | 2022-12-29 | Nvidia Corporation | Techniques for combining operations |
| US12353420B2 (en) * | 2021-07-28 | 2025-07-08 | Oracle International Corporation | Techniques for providing synchronous and asynchronous data processing |
| US12437364B2 (en) * | 2021-08-19 | 2025-10-07 | Mediatek Singapore Pte. Ltd. | Region-of-interest (ROI) guided sampling for AI super resolution transfer learning feature adaptation |
| KR20240072220A (en) * | 2021-10-25 | 2024-05-23 | 구글 엘엘씨 | Perform efficient inference calculations in fully convolutional networks for inputs of various sizes |
| KR102635607B1 (en) * | 2021-11-04 | 2024-02-08 | 중앙대학교 산학협력단 | Method and apparatus for multi-label class classification based on coarse-to-fine convolutional neural network |
| US11527074B1 (en) | 2021-11-24 | 2022-12-13 | Continental Automotive Technologies GmbH | Systems and methods for deep multi-task learning for embedded machine vision applications |
| CN114386578B (en) * | 2022-01-12 | 2024-09-24 | 西安石油大学 | Convolutional neural network method implemented on Hai Si NPU-free hardware |
| US12175476B2 (en) | 2022-01-31 | 2024-12-24 | Walmart Apollo, Llc | Systems and methods for assessing quality of retail products |
| KR20230131038A (en) * | 2022-03-04 | 2023-09-12 | 현대자동차주식회사 | Apparatus for controlling a movement speed of robot and method thereof |
| CN114973727B (en) * | 2022-08-02 | 2022-09-30 | 成都工业职业技术学院 | Intelligent driving method based on passenger characteristics |
| US12444234B2 (en) * | 2022-10-26 | 2025-10-14 | Innovasoft Tech Holdings Ltd | System and method for age estimation |
| CN117952829B (en) * | 2024-01-18 | 2025-04-25 | 中移雄安信息通信科技有限公司 | Image reconstruction model training method, image reconstruction method, device and equipment |
| CN119693990B (en) * | 2025-02-24 | 2025-07-04 | 四川省计算机研究院 | Gender and age estimation method and terminal based on perception enhancement |
Family Cites Families (49)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6990217B1 (en) * | 1999-11-22 | 2006-01-24 | Mitsubishi Electric Research Labs. Inc. | Gender classification with support vector machines |
| DE60130742T2 (en) * | 2001-05-28 | 2008-07-17 | Honda Research Institute Europe Gmbh | Pattern recognition with hierarchical networks |
| US7912246B1 (en) * | 2002-10-28 | 2011-03-22 | Videomining Corporation | Method and system for determining the age category of people based on facial images |
| US7577297B2 (en) * | 2002-12-16 | 2009-08-18 | Canon Kabushiki Kaisha | Pattern identification method, device thereof, and program thereof |
| US20050047647A1 (en) * | 2003-06-10 | 2005-03-03 | Ueli Rutishauser | System and method for attentional selection |
| US7219085B2 (en) * | 2003-12-09 | 2007-05-15 | Microsoft Corporation | System and method for accelerating and optimizing the processing of machine learning techniques using a graphics processing unit |
| JP4532915B2 (en) * | 2004-01-29 | 2010-08-25 | キヤノン株式会社 | Pattern recognition learning method, pattern recognition learning device, image input device, computer program, and computer-readable recording medium |
| JP4546157B2 (en) * | 2004-06-03 | 2010-09-15 | キヤノン株式会社 | Information processing method, information processing apparatus, and imaging apparatus |
| WO2006114003A1 (en) * | 2005-04-27 | 2006-11-02 | The Governors Of The University Of Alberta | A method and system for automatic detection and segmentation of tumors and associated edema (swelling) in magnetic resonance (mri) images |
| US7747070B2 (en) * | 2005-08-31 | 2010-06-29 | Microsoft Corporation | Training convolutional neural networks on graphics processing units |
| WO2008133951A2 (en) * | 2007-04-24 | 2008-11-06 | Massachusetts Institute Of Technology | Method and apparatus for image processing |
| US8027521B1 (en) * | 2008-03-25 | 2011-09-27 | Videomining Corporation | Method and system for robust human gender recognition using facial feature localization |
| US8135202B2 (en) * | 2008-06-02 | 2012-03-13 | Nec Laboratories America, Inc. | Automated method and system for nuclear analysis of biopsy images |
| US8582807B2 (en) * | 2010-03-15 | 2013-11-12 | Nec Laboratories America, Inc. | Systems and methods for determining personal characteristics |
| US8615123B2 (en) * | 2010-09-15 | 2013-12-24 | Identicoin, Inc. | Coin identification method and apparatus |
| US8498491B1 (en) * | 2011-08-10 | 2013-07-30 | Google Inc. | Estimating age using multiple classifiers |
| US9311564B2 (en) * | 2012-10-05 | 2016-04-12 | Carnegie Mellon University | Face age-estimation and methods, systems, and software therefor |
| US9626597B2 (en) * | 2013-05-09 | 2017-04-18 | Tencent Technology (Shenzhen) Company Limited | Systems and methods for facial age identification |
| US10198689B2 (en) * | 2014-01-30 | 2019-02-05 | Hrl Laboratories, Llc | Method for object detection in digital image and video using spiking neural networks |
| IL231862A (en) * | 2014-04-01 | 2015-04-30 | Superfish Ltd | Neural network image representation |
| US9659341B2 (en) * | 2014-06-25 | 2017-05-23 | Qualcomm Incorporated | Texture pipe as an image processing engine |
| FR3025344B1 (en) * | 2014-08-28 | 2017-11-24 | Commissariat Energie Atomique | NETWORK OF CONVOLUTIONAL NEURONS |
| US10255547B2 (en) * | 2014-12-04 | 2019-04-09 | Nvidia Corporation | Indirectly accessing sample data to perform multi-convolution operations in a parallel processing system |
| US10168785B2 (en) * | 2015-03-03 | 2019-01-01 | Nvidia Corporation | Multi-sensor based user interface |
| US9786036B2 (en) * | 2015-04-28 | 2017-10-10 | Qualcomm Incorporated | Reducing image resolution in deep convolutional networks |
| US9741107B2 (en) * | 2015-06-05 | 2017-08-22 | Sony Corporation | Full reference image quality assessment based on convolutional neural network |
| US10410096B2 (en) * | 2015-07-09 | 2019-09-10 | Qualcomm Incorporated | Context-based priors for object detection in images |
| US9633282B2 (en) * | 2015-07-30 | 2017-04-25 | Xerox Corporation | Cross-trained convolutional neural networks using multimodal images |
| US10204299B2 (en) * | 2015-11-04 | 2019-02-12 | Nec Corporation | Unsupervised matching in fine-grained datasets for single-view object reconstruction |
| US9881234B2 (en) * | 2015-11-25 | 2018-01-30 | Baidu Usa Llc. | Systems and methods for end-to-end object detection |
| US10095957B2 (en) * | 2016-03-15 | 2018-10-09 | Tata Consultancy Services Limited | Method and system for unsupervised word image clustering |
| WO2017177367A1 (en) * | 2016-04-11 | 2017-10-19 | Xiaogang Wang | Method and system for object tracking |
| US9904871B2 (en) * | 2016-04-14 | 2018-02-27 | Microsoft Technologies Licensing, LLC | Deep convolutional neural network prediction of image professionalism |
| US9953679B1 (en) * | 2016-05-24 | 2018-04-24 | Gopro, Inc. | Systems and methods for generating a time lapse video |
| US20170344876A1 (en) * | 2016-05-31 | 2017-11-30 | Samsung Electronics Co., Ltd. | Efficient sparse parallel winograd-based convolution scheme |
| US10185891B1 (en) * | 2016-07-08 | 2019-01-22 | Gopro, Inc. | Systems and methods for compact convolutional neural networks |
| US10169647B2 (en) * | 2016-07-27 | 2019-01-01 | International Business Machines Corporation | Inferring body position in a scan |
| US20180060719A1 (en) * | 2016-08-29 | 2018-03-01 | International Business Machines Corporation | Scale-space label fusion using two-stage deep neural net |
| US10354362B2 (en) * | 2016-09-08 | 2019-07-16 | Carnegie Mellon University | Methods and software for detecting objects in images using a multiscale fast region-based convolutional neural network |
| US10467458B2 (en) * | 2017-07-21 | 2019-11-05 | Altumview Systems Inc. | Joint face-detection and head-pose-angle-estimation using small-scale convolutional neural network (CNN) modules for embedded systems |
| US10360494B2 (en) * | 2016-11-30 | 2019-07-23 | Altumview Systems Inc. | Convolutional neural network (CNN) system based on resolution-limited small-scale CNN modules |
| US10185895B1 (en) * | 2017-03-23 | 2019-01-22 | Gopro, Inc. | Systems and methods for classifying activities captured within images |
| CN109325393B (en) * | 2017-08-01 | 2022-12-09 | 苹果公司 | Face detection, pose estimation, and estimation of distance to camera using a single network |
| US10852749B2 (en) * | 2017-08-28 | 2020-12-01 | Nec Corporation | Learning good features for visual odometry |
| US10282589B2 (en) * | 2017-08-29 | 2019-05-07 | Konica Minolta Laboratory U.S.A., Inc. | Method and system for detection and classification of cells using convolutional neural networks |
| US10366166B2 (en) * | 2017-09-07 | 2019-07-30 | Baidu Usa Llc | Deep compositional frameworks for human-like language acquisition in virtual environments |
| US10671083B2 (en) * | 2017-09-13 | 2020-06-02 | Tusimple, Inc. | Neural network architecture system for deep odometry assisted by static scene optical flow |
| US20190079533A1 (en) * | 2017-09-13 | 2019-03-14 | TuSimple | Neural network architecture method for deep odometry assisted by static scene optical flow |
| US10223610B1 (en) * | 2017-10-15 | 2019-03-05 | International Business Machines Corporation | System and method for detection and classification of findings in images |
-
2017
- 2017-02-23 US US15/441,194 patent/US10360494B2/en active Active
- 2017-07-21 US US15/657,109 patent/US10268947B2/en active Active
- 2017-10-03 US US15/724,256 patent/US10558908B2/en active Active
- 2017-11-28 CA CA2986860A patent/CA2986860A1/en not_active Abandoned
- 2017-11-28 CA CA2986863A patent/CA2986863A1/en not_active Abandoned
- 2017-11-30 KR KR1020170162650A patent/KR20180062422A/en not_active Withdrawn
- 2017-11-30 KR KR1020170162656A patent/KR20180062423A/en not_active Withdrawn
- 2017-11-30 SG SG10201709943RA patent/SG10201709943RA/en unknown
- 2017-11-30 SG SG10201709945UA patent/SG10201709945UA/en unknown
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109711384A (en) * | 2019-01-09 | 2019-05-03 | 江苏星云网格信息技术有限公司 | A kind of face identification method based on depth convolutional neural networks |
| CN110097021A (en) * | 2019-05-10 | 2019-08-06 | 电子科技大学 | Face pose estimation based on MTCNN |
Also Published As
| Publication number | Publication date |
|---|---|
| US10268947B2 (en) | 2019-04-23 |
| US10360494B2 (en) | 2019-07-23 |
| KR20180062423A (en) | 2018-06-08 |
| US20180150681A1 (en) | 2018-05-31 |
| KR20180062422A (en) | 2018-06-08 |
| CA2986860A1 (en) | 2018-05-30 |
| SG10201709943RA (en) | 2018-06-28 |
| US20180150684A1 (en) | 2018-05-31 |
| US20180150740A1 (en) | 2018-05-31 |
| CA2986863A1 (en) | 2018-05-30 |
| US10558908B2 (en) | 2020-02-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| SG10201709945UA (en) | Face detection using small-scale convolutional neural network (cnn) modules for embedded systems | |
| MX2022000398A (en) | Systems and methods for generating and consuming power from natural gas. | |
| EP4517529A3 (en) | Methods, systems and apparatus to dynamically facilitate boundaryless, high availability system management | |
| GB2573221A (en) | System and method for CNN layer sharing | |
| GB2590804A8 (en) | Data pipeline for process control system analytics | |
| WO2018217165A3 (en) | System and method for implementing a centralized customizable operating solution | |
| MX2019001845A (en) | Indexing architecture including a fan-out arrangement. | |
| MX2018005690A (en) | Systems and methods for processing content using convolutional neural networks. | |
| WO2015112304A3 (en) | Nuclear reactor protection systems and methods | |
| EP2977899A3 (en) | Integrating execution of computing analytics within a mapreduce processing environment | |
| GB2559932A (en) | Methods and systems for providing a vehicle repair tip | |
| EA201791047A1 (en) | SYSTEM AND REGULATORY METHOD FOR SYSTEMS AND METHODS FOR POWER GENERATION | |
| EP3900180A4 (en) | DYNAMIC BUILDING-INTEGRATED PHOTOVOLTAIC (DBIPV) SYSTEMS USING SOLAR TREES AND SOLAR SAILS AND THE LIKE | |
| Golovneva et al. | Windows of opportunity for synchronization in stochastically coupled maps | |
| IL242218B (en) | System and method for maintaining a dynamic dictionary | |
| GB2566172A (en) | Method and system for tracking a plurality of communication devices | |
| EP3688532A4 (en) | System and method for depicting and using one logical connection with collection of input/output (i/o) modules as multiple individual logical connections | |
| GB2549037A (en) | Using augmented reality to collect,process and share information | |
| IN2013MU02122A (en) | ||
| WO2014200478A3 (en) | Distributed worker-sourced process engineering | |
| AU2016410289A1 (en) | Parallel, distributed processing in a heterogeneous, distributed environment | |
| MX348232B (en) | Methods and apparatuses for reducing common mode failures of nuclear safety-related software control systems. | |
| Leela-Apiradee et al. | An algorithm for solving two-sided interval system of max-plus linear equations | |
| RU2015124059A (en) | INTERACTIVE AUTOMATED LEARNING SYSTEM | |
| Rossi et al. | A general modular framework for the integrated optimal management of an industrial gases supply-chain and its production systems |