SG10201600366WA - Method and precursors for manufacturing 3d devices - Google Patents
Method and precursors for manufacturing 3d devicesInfo
- Publication number
- SG10201600366WA SG10201600366WA SG10201600366WA SG10201600366WA SG10201600366WA SG 10201600366W A SG10201600366W A SG 10201600366WA SG 10201600366W A SG10201600366W A SG 10201600366WA SG 10201600366W A SG10201600366W A SG 10201600366WA SG 10201600366W A SG10201600366W A SG 10201600366WA
- Authority
- SG
- Singapore
- Prior art keywords
- precursors
- manufacturing
- devices
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title 1
- 238000000034 method Methods 0.000 title 1
- 239000002243 precursor Substances 0.000 title 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02219—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/087—Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/10—Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
- C23C16/402—Silicon dioxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B41/23—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B41/27—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B43/23—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B43/27—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
- H01L2924/143—Digital devices
- H01L2924/1434—Memory
- H01L2924/1435—Random access memory [RAM]
- H01L2924/1443—Non-volatile random-access memory [NVRAM]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Plasma & Fusion (AREA)
- Formation Of Insulating Films (AREA)
- Chemical Vapour Deposition (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562109381P | 2015-01-29 | 2015-01-29 | |
| US201562183985P | 2015-06-24 | 2015-06-24 | |
| US14/871,233 US10354860B2 (en) | 2015-01-29 | 2015-09-30 | Method and precursors for manufacturing 3D devices |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| SG10201600366WA true SG10201600366WA (en) | 2016-08-30 |
Family
ID=55272374
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SG10201600366WA SG10201600366WA (en) | 2015-01-29 | 2016-01-18 | Method and precursors for manufacturing 3d devices |
| SG10201800673TA SG10201800673TA (en) | 2015-01-29 | 2016-01-18 | Method and precursors for manufacturing 3d devices |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SG10201800673TA SG10201800673TA (en) | 2015-01-29 | 2016-01-18 | Method and precursors for manufacturing 3d devices |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US10354860B2 (en) |
| EP (1) | EP3051001A3 (en) |
| JP (2) | JP6662648B2 (en) |
| KR (2) | KR101921192B1 (en) |
| CN (1) | CN105845549B (en) |
| SG (2) | SG10201600366WA (en) |
| TW (2) | TWI664311B (en) |
Families Citing this family (88)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
| US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
| KR102079501B1 (en) * | 2014-10-24 | 2020-02-20 | 버슘머트리얼즈 유에스, 엘엘씨 | Compositions and methods using same for deposition of silicon-containing film |
| US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
| US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
| US9777025B2 (en) * | 2015-03-30 | 2017-10-03 | L'Air Liquide, Société pour l'Etude et l'Exploitation des Procédés Georges Claude | Si-containing film forming precursors and methods of using the same |
| US11124876B2 (en) | 2015-03-30 | 2021-09-21 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Si-containing film forming precursors and methods of using the same |
| US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
| US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
| US9786491B2 (en) | 2015-11-12 | 2017-10-10 | Asm Ip Holding B.V. | Formation of SiOCN thin films |
| KR102378021B1 (en) * | 2016-05-06 | 2022-03-23 | 에이에스엠 아이피 홀딩 비.브이. | Formation of SiOC thin films |
| US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
| KR102337153B1 (en) * | 2016-06-28 | 2021-12-07 | 어플라이드 머티어리얼스, 인코포레이티드 | Cvd based oxide-metal multi structure for 3d nand memory devices |
| US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
| US10468244B2 (en) * | 2016-08-30 | 2019-11-05 | Versum Materials Us, Llc | Precursors and flowable CVD methods for making low-K films to fill surface features |
| US11017998B2 (en) | 2016-08-30 | 2021-05-25 | Versum Materials Us, Llc | Precursors and flowable CVD methods for making low-K films to fill surface features |
| US10703915B2 (en) * | 2016-09-19 | 2020-07-07 | Versum Materials Us, Llc | Compositions and methods for the deposition of silicon oxide films |
| US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
| US10062579B2 (en) * | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
| US10249489B2 (en) * | 2016-11-02 | 2019-04-02 | Versum Materials Us, Llc | Use of silyl bridged alkyl compounds for dense OSG films |
| US10192734B2 (en) | 2016-12-11 | 2019-01-29 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploration des Procédés Georges Claude | Short inorganic trisilylamine-based polysilazanes for thin film deposition |
| US10332839B2 (en) * | 2017-01-06 | 2019-06-25 | United Microelectronics Corp. | Interconnect structure and fabricating method thereof |
| US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
| US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
| JP6564802B2 (en) * | 2017-03-22 | 2019-08-21 | 株式会社Kokusai Electric | Substrate processing apparatus, semiconductor device manufacturing method, and program |
| US10847529B2 (en) | 2017-04-13 | 2020-11-24 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by the same |
| KR102093227B1 (en) | 2017-04-20 | 2020-03-25 | (주)디엔에프 | Disilyl amine compound, method for preparing the same and composition for depositing silicon-containing thin film containing the same |
| KR102548405B1 (en) * | 2017-04-20 | 2023-06-28 | (주)디엔에프 | composition for depositing silicon-containing thin film containing a disilylamine compound and method for manufacturing a silicon-containing thin film using the same |
| US11158500B2 (en) | 2017-05-05 | 2021-10-26 | Asm Ip Holding B.V. | Plasma enhanced deposition processes for controlled formation of oxygen containing thin films |
| US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
| JP7176860B6 (en) | 2017-05-17 | 2022-12-16 | アプライド マテリアルズ インコーポレイテッド | Semiconductor processing chamber to improve precursor flow |
| US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
| EP3649670B1 (en) | 2017-07-06 | 2024-12-11 | Applied Materials, Inc. | Methods of forming a stack of multiple deposited semiconductor layers |
| US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
| CN107564800B (en) * | 2017-08-31 | 2020-02-18 | 长江存储科技有限责任公司 | A kind of preparation method of silicon nitride layer |
| US11049714B2 (en) * | 2017-09-19 | 2021-06-29 | Versum Materials Us, Llc | Silyl substituted organoamines as precursors for high growth rate silicon-containing films |
| CN107895724B (en) * | 2017-11-13 | 2021-01-22 | 中国科学院微电子研究所 | A kind of three-dimensional memory and its production method |
| US10991573B2 (en) | 2017-12-04 | 2021-04-27 | Asm Ip Holding B.V. | Uniform deposition of SiOC on dielectric and metal surfaces |
| US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
| US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
| CN110028971B (en) * | 2017-12-28 | 2021-11-09 | Oci有限公司 | Etching composition and etching method using same |
| US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
| KR102700220B1 (en) * | 2018-02-06 | 2024-08-29 | 주식회사 동진쎄미켐 | Silicon compound precursor composition and method for producing silicon-containing thin film using the same |
| US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
| US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
| SG10201903201XA (en) * | 2018-04-11 | 2019-11-28 | Versum Materials Us Llc | Organoamino-functionalized cyclic oligosiloxanes for deposition of silicon-containing films |
| US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
| KR102346832B1 (en) * | 2018-05-23 | 2022-01-03 | 삼성에스디아이 주식회사 | Etching composition for silicon nitride layer and etching process using the same |
| JP7461926B2 (en) * | 2018-07-31 | 2024-04-04 | アプライド マテリアルズ インコーポレイテッド | Improved ON Stack Overlay for 3D NAND |
| US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
| US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
| US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
| US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
| JP6903040B2 (en) * | 2018-09-21 | 2021-07-14 | 株式会社Kokusai Electric | Semiconductor device manufacturing methods, substrate processing devices, and programs |
| US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
| KR102492488B1 (en) | 2018-10-22 | 2023-01-27 | 현대모비스 주식회사 | Apparatus for controlling braking of vehicle and method thereof |
| US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
| CN113302716B (en) * | 2018-11-08 | 2025-05-13 | 朗姆研究公司 | Nitride films with improved etch selectivity for 3D NAND integration |
| US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
| EP3900022A4 (en) | 2018-12-21 | 2022-09-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | PRECURSORS AND PROCESSES FOR DEPOSITION OF SI-CONTAINING FILMS USING ALD AT TEMPERATURE OF 550ºC OR HIGHER |
| US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
| US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
| WO2020159707A1 (en) | 2019-01-31 | 2020-08-06 | Lam Research Corporation | Low stress films for advanced semiconductor applications |
| KR102783961B1 (en) * | 2019-03-20 | 2025-03-18 | 어플라이드 머티어리얼스, 인코포레이티드 | Method for growing thick oxide films in low temperature thermal oxide quality |
| KR20200115061A (en) * | 2019-03-27 | 2020-10-07 | 고려대학교 세종산학협력단 | Thin film transistor and manufacturing method thereof |
| US11189635B2 (en) * | 2019-04-01 | 2021-11-30 | Applied Materials, Inc. | 3D-NAND mold |
| CN110176459B (en) * | 2019-06-19 | 2020-07-03 | 英特尔半导体(大连)有限公司 | Channel pillar for memory and method of manufacturing the same |
| US12195846B2 (en) | 2019-08-07 | 2025-01-14 | Applied Materials, Inc. | Modified stacks for 3D NAND |
| JP2022548021A (en) * | 2019-09-13 | 2022-11-16 | バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー | Monoalkoxysilanes and high-density organosilica films made therefrom |
| KR20220092573A (en) * | 2019-11-01 | 2022-07-01 | 어플라이드 머티어리얼스, 인코포레이티드 | surface encasing material layer |
| KR102760678B1 (en) * | 2019-11-28 | 2025-02-04 | 삼성전자주식회사 | Three-dimensional semiconductor memory device |
| US12341005B2 (en) | 2020-01-17 | 2025-06-24 | Asm Ip Holding B.V. | Formation of SiCN thin films |
| US12142479B2 (en) | 2020-01-17 | 2024-11-12 | Asm Ip Holding B.V. | Formation of SiOCN thin films |
| US11740211B2 (en) | 2020-01-31 | 2023-08-29 | Waters Technologies Corporation | LC/MS adduct mitigation by vapor deposition coated surfaces |
| JP7675095B2 (en) * | 2020-03-31 | 2025-05-12 | バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー | Novel precursors for depositing films with high elastic modulus |
| US11476268B2 (en) * | 2020-05-29 | 2022-10-18 | Micron Technology, Inc. | Methods of forming electronic devices using materials removable at different temperatures |
| TWI797640B (en) | 2020-06-18 | 2023-04-01 | 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 | Silicon-based self-assembling monolayer compositions and surface preparation using the same |
| CN114373677A (en) * | 2020-10-14 | 2022-04-19 | 长鑫存储技术有限公司 | Preparation process of semiconductor structure and semiconductor structure |
| CN112670167A (en) * | 2020-12-29 | 2021-04-16 | 光华临港工程应用技术研发(上海)有限公司 | Method for preparing superlattice structure of silicon oxide and silicon nitride |
| US20220216048A1 (en) * | 2021-01-06 | 2022-07-07 | Applied Materials, Inc. | Doped silicon nitride for 3d nand |
| CN112885713A (en) * | 2021-01-29 | 2021-06-01 | 合肥维信诺科技有限公司 | Method for improving film quality and display panel |
| KR20220117596A (en) | 2021-02-17 | 2022-08-24 | 삼성전자주식회사 | Integrated circuit device and electronic system having the same |
| JP2022141009A (en) | 2021-03-15 | 2022-09-29 | キオクシア株式会社 | Semiconductor memory and method for manufacturing the same |
| US20220415651A1 (en) * | 2021-06-29 | 2022-12-29 | Applied Materials, Inc. | Methods Of Forming Memory Device With Reduced Resistivity |
| US20250011924A1 (en) * | 2021-11-15 | 2025-01-09 | Versum Materials Us, Llc | Multilayered silicon nitride film |
| CN120051849A (en) * | 2022-10-26 | 2025-05-27 | 应用材料公司 | Alumina carbon hybrid hard mask and method of manufacturing the same |
| US20240332028A1 (en) * | 2023-03-29 | 2024-10-03 | Applied Materials, Inc. | Compressive films for large area gapfill |
| KR20250029648A (en) * | 2023-08-23 | 2025-03-05 | 주식회사 원익아이피에스 | Method of etching thin film |
Family Cites Families (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3094688B2 (en) | 1992-10-12 | 2000-10-03 | 富士電機株式会社 | Manufacturing method of insulating film |
| US5953635A (en) | 1996-12-19 | 1999-09-14 | Intel Corporation | Interlayer dielectric with a composite dielectric stack |
| US6013584A (en) | 1997-02-19 | 2000-01-11 | Applied Materials, Inc. | Methods and apparatus for forming HDP-CVD PSG film used for advanced pre-metal dielectric layer applications |
| US6060400A (en) | 1998-03-26 | 2000-05-09 | The Research Foundation Of State University Of New York | Highly selective chemical dry etching of silicon nitride over silicon and silicon dioxide |
| KR20010080412A (en) * | 1998-11-12 | 2001-08-22 | 조이스 브린톤 | Diffusion barrier materials with improved step coverage |
| ATE342384T1 (en) * | 2000-04-06 | 2006-11-15 | Asm Inc | BARRIER LAYER FOR GLASSY MATERIALS |
| WO2003030224A2 (en) * | 2001-07-25 | 2003-04-10 | Applied Materials, Inc. | Barrier formation using novel sputter-deposition method |
| US6541370B1 (en) | 2001-09-17 | 2003-04-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Composite microelectronic dielectric layer with inhibited crack susceptibility |
| US7365029B2 (en) | 2002-12-20 | 2008-04-29 | Applied Materials, Inc. | Method for silicon nitride chemical vapor deposition |
| US7129171B2 (en) * | 2003-10-14 | 2006-10-31 | Lam Research Corporation | Selective oxygen-free etching process for barrier materials |
| US20050101135A1 (en) * | 2003-11-12 | 2005-05-12 | Lam Research Corporation | Minimizing the loss of barrier materials during photoresist stripping |
| JP4470023B2 (en) | 2004-08-20 | 2010-06-02 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method for manufacturing silicon nitride film |
| JP2009500857A (en) | 2005-07-08 | 2009-01-08 | アヴィザ テクノロジー インコーポレイテッド | Method for depositing silicon-containing film |
| US7875312B2 (en) * | 2006-05-23 | 2011-01-25 | Air Products And Chemicals, Inc. | Process for producing silicon oxide films for organoaminosilane precursors |
| US8530361B2 (en) * | 2006-05-23 | 2013-09-10 | Air Products And Chemicals, Inc. | Process for producing silicon and oxide films from organoaminosilane precursors |
| US20080038486A1 (en) * | 2006-08-03 | 2008-02-14 | Helmuth Treichel | Radical Assisted Batch Film Deposition |
| US20080124946A1 (en) | 2006-11-28 | 2008-05-29 | Air Products And Chemicals, Inc. | Organosilane compounds for modifying dielectrical properties of silicon oxide and silicon nitride films |
| DE102007009914B4 (en) | 2007-02-28 | 2010-04-22 | Advanced Micro Devices, Inc., Sunnyvale | Semiconductor device in the form of a field effect transistor with an interlayer dielectric material with increased internal stress and method for producing the same |
| US7678715B2 (en) | 2007-12-21 | 2010-03-16 | Applied Materials, Inc. | Low wet etch rate silicon nitride film |
| KR101532366B1 (en) | 2009-02-25 | 2015-07-01 | 삼성전자주식회사 | Semiconductor memory element |
| KR101603731B1 (en) | 2009-09-29 | 2016-03-16 | 삼성전자주식회사 | Vertical nand charge trap flash memory device and method for manufacturing same |
| KR101758944B1 (en) | 2009-12-09 | 2017-07-18 | 노벨러스 시스템즈, 인코포레이티드 | Novel gap fill integration |
| US8709551B2 (en) | 2010-03-25 | 2014-04-29 | Novellus Systems, Inc. | Smooth silicon-containing films |
| US20130157466A1 (en) | 2010-03-25 | 2013-06-20 | Keith Fox | Silicon nitride films for semiconductor device applications |
| JP5495940B2 (en) | 2010-05-21 | 2014-05-21 | 三菱重工業株式会社 | Silicon nitride film of semiconductor element, method and apparatus for manufacturing silicon nitride film |
| KR20110132865A (en) | 2010-06-03 | 2011-12-09 | 삼성전자주식회사 | 3D semiconductor memory device and manufacturing method thereof |
| KR101793047B1 (en) | 2010-08-03 | 2017-11-03 | 삼성디스플레이 주식회사 | flexible display and Method for manufacturing the same |
| US20120064682A1 (en) | 2010-09-14 | 2012-03-15 | Jang Kyung-Tae | Methods of Manufacturing Three-Dimensional Semiconductor Memory Devices |
| US8771807B2 (en) * | 2011-05-24 | 2014-07-08 | Air Products And Chemicals, Inc. | Organoaminosilane precursors and methods for making and using same |
| US20130220410A1 (en) | 2011-09-07 | 2013-08-29 | Air Products And Chemicals, Inc. | Precursors for Photovoltaic Passivation |
| US8933502B2 (en) | 2011-11-21 | 2015-01-13 | Sandisk Technologies Inc. | 3D non-volatile memory with metal silicide interconnect |
| KR20140138272A (en) * | 2012-03-09 | 2014-12-03 | 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 | Barrier materials for display devices |
| US9165788B2 (en) | 2012-04-06 | 2015-10-20 | Novellus Systems, Inc. | Post-deposition soft annealing |
| KR101583232B1 (en) | 2012-12-31 | 2016-01-07 | 제일모직 주식회사 | Methods of producing polymers and compositions for forming silica insulation films |
| US9018093B2 (en) | 2013-01-25 | 2015-04-28 | Asm Ip Holding B.V. | Method for forming layer constituted by repeated stacked layers |
| JP6024484B2 (en) | 2013-01-29 | 2016-11-16 | 東京エレクトロン株式会社 | Film forming method and film forming apparatus |
| US20140273531A1 (en) | 2013-03-14 | 2014-09-18 | Asm Ip Holding B.V. | Si PRECURSORS FOR DEPOSITION OF SiN AT LOW TEMPERATURES |
| JP6013313B2 (en) * | 2013-03-21 | 2016-10-25 | 東京エレクトロン株式会社 | Method of manufacturing stacked semiconductor element, stacked semiconductor element, and manufacturing apparatus thereof |
| US9012322B2 (en) * | 2013-04-05 | 2015-04-21 | Intermolecular, Inc. | Selective etching of copper and copper-barrier materials by an aqueous base solution with fluoride addition |
| US9796739B2 (en) * | 2013-06-26 | 2017-10-24 | Versum Materials Us, Llc | AZA-polysilane precursors and methods for depositing films comprising same |
| CN105849221B (en) * | 2013-09-27 | 2019-06-18 | 乔治洛德方法研究和开发液化空气有限公司 | Amine-substituted trisilylamine and tris-disilylamine compounds |
| US9233990B2 (en) * | 2014-02-28 | 2016-01-12 | Air Products And Chemicals, Inc. | Organoaminosilanes and methods for making same |
| KR102079501B1 (en) * | 2014-10-24 | 2020-02-20 | 버슘머트리얼즈 유에스, 엘엘씨 | Compositions and methods using same for deposition of silicon-containing film |
-
2015
- 2015-09-30 US US14/871,233 patent/US10354860B2/en active Active
-
2016
- 2016-01-18 SG SG10201600366WA patent/SG10201600366WA/en unknown
- 2016-01-18 SG SG10201800673TA patent/SG10201800673TA/en unknown
- 2016-01-22 KR KR1020160008008A patent/KR101921192B1/en active Active
- 2016-01-25 TW TW107103894A patent/TWI664311B/en active
- 2016-01-25 TW TW105102222A patent/TWI617689B/en active
- 2016-01-26 JP JP2016012325A patent/JP6662648B2/en active Active
- 2016-01-28 CN CN201610061517.0A patent/CN105845549B/en active Active
- 2016-01-29 EP EP16153514.1A patent/EP3051001A3/en active Pending
-
2018
- 2018-05-09 JP JP2018090824A patent/JP2018133590A/en not_active Withdrawn
- 2018-11-15 KR KR1020180141054A patent/KR102243988B1/en active Active
-
2019
- 2019-06-04 US US16/430,882 patent/US10985013B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| KR20160093551A (en) | 2016-08-08 |
| TWI617689B (en) | 2018-03-11 |
| JP6662648B2 (en) | 2020-03-11 |
| JP2016149537A (en) | 2016-08-18 |
| JP2018133590A (en) | 2018-08-23 |
| TW201627519A (en) | 2016-08-01 |
| US10354860B2 (en) | 2019-07-16 |
| CN105845549A (en) | 2016-08-10 |
| US10985013B2 (en) | 2021-04-20 |
| SG10201800673TA (en) | 2018-03-28 |
| US20160225616A1 (en) | 2016-08-04 |
| TWI664311B (en) | 2019-07-01 |
| EP3051001A3 (en) | 2016-11-09 |
| CN105845549B (en) | 2020-03-03 |
| US20190304775A1 (en) | 2019-10-03 |
| KR20180125928A (en) | 2018-11-26 |
| KR101921192B1 (en) | 2018-11-22 |
| EP3051001A2 (en) | 2016-08-03 |
| KR102243988B1 (en) | 2021-04-22 |
| TW201819669A (en) | 2018-06-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| SG10201600366WA (en) | Method and precursors for manufacturing 3d devices | |
| IL293991B1 (en) | Additive manufacturing system and apparatus | |
| GB201510220D0 (en) | Additive manufacturing apparatus and method | |
| GB201505458D0 (en) | Additive manufacturing apparatus and methods | |
| GB201415953D0 (en) | Additive manufacturing method and powder | |
| EP3132919A4 (en) | Three-dimensional fabricated object manufacturing apparatus and manufacturing method | |
| GB201416223D0 (en) | Manufacturing method | |
| EP3219468A4 (en) | Three-dimensional object manufacturing method and three-dimensional object | |
| GB201420886D0 (en) | Manufacturing method and manufacturing apparatus | |
| ZA201505683B (en) | Additive manufacturing system and method | |
| EP3172040A4 (en) | Method and apparatus for manufacturing three-dimensional object | |
| GB201517188D0 (en) | Additive manufacturing apparatus and methods | |
| PL3263478T3 (en) | Package and method for manufacturing same | |
| SG11201801027SA (en) | Apparatus and manufacturing method | |
| SG11201709884UA (en) | Spout-equipped container and method for manufacturing same | |
| GB2560293B (en) | Biochip and method for manufacturing biochip | |
| LT3130548T (en) | Method for manufacturing an object and packaging | |
| HUE043330T2 (en) | Ceramic object and method for producing same | |
| EP3360668A4 (en) | Three-dimensional object manufacturing method and manufacturing apparatus | |
| TWI562884B (en) | Manufacturing method and manufacturing system | |
| SG11201801589SA (en) | Free-polyunsaturated-fatty-acid-containing composition and method for manufacturing same | |
| LT3288930T (en) | Method and device for manufacturing lactide | |
| GB201718144D0 (en) | Manufacturing method | |
| PL3150368T3 (en) | Apparatus and method for manufacturing discrete portions | |
| GB201506480D0 (en) | Manufacturing method and apparatus |