SE1350329A1 - Method and system for controlling autonomous vehicles - Google Patents
Method and system for controlling autonomous vehicles Download PDFInfo
- Publication number
- SE1350329A1 SE1350329A1 SE1350329A SE1350329A SE1350329A1 SE 1350329 A1 SE1350329 A1 SE 1350329A1 SE 1350329 A SE1350329 A SE 1350329A SE 1350329 A SE1350329 A SE 1350329A SE 1350329 A1 SE1350329 A1 SE 1350329A1
- Authority
- SE
- Sweden
- Prior art keywords
- vehicle
- analysis
- external information
- unit
- signal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000004458 analytical method Methods 0.000 claims abstract description 110
- 238000012913 prioritisation Methods 0.000 claims abstract description 7
- 238000004590 computer program Methods 0.000 claims description 11
- 230000003993 interaction Effects 0.000 claims description 10
- 238000007726 management method Methods 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 abstract description 5
- 150000003839 salts Chemical class 0.000 description 10
- 238000004891 communication Methods 0.000 description 8
- 230000001276 controlling effect Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000013439 planning Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D1/00—Steering controls, i.e. means for initiating a change of direction of the vehicle
- B62D1/24—Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted
- B62D1/28—Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers
- B62D1/283—Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers for unmanned vehicles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0287—Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
- G05D1/0291—Fleet control
- G05D1/0297—Fleet control by controlling means in a control room
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0011—Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0015—Planning or execution of driving tasks specially adapted for safety
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0027—Planning or execution of driving tasks using trajectory prediction for other traffic participants
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/60—Intended control result
- G05D1/646—Following a predefined trajectory, e.g. a line marked on the floor or a flight path
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/60—Intended control result
- G05D1/69—Coordinated control of the position or course of two or more vehicles
- G05D1/692—Coordinated control of the position or course of two or more vehicles involving a plurality of disparate vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2555/00—Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
- B60W2555/60—Traffic rules, e.g. speed limits or right of way
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D2101/00—Details of software or hardware architectures used for the control of position
- G05D2101/10—Details of software or hardware architectures used for the control of position using artificial intelligence [AI] techniques
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Radar, Positioning & Navigation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Human Computer Interaction (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Traffic Control Systems (AREA)
Abstract
19 Sammandrag Uppfinningen hanfor sig till ett system for att reglera ett autonomt fordon i ett trafiksystem innefattande ett flertal autonoma fordon. Systemet analyserar extern information enligt forutbestamda regler och genererar analyssignaler till fordonet som ges olika prioritet beroende pa vilken analys som utforts och resultatet av analysen. En sammanvagd analyssignal Sx bestams baserat pa analyssignalernas innehall samt deras prioritering. Fordonet kan sedan anpassa sin reglering efter den sammanvagda analyssignalen S. Uppfinningen hanfOr sig aven till en metod fOr att reglera ett autonomt fordon i ett trafiksystem innefattande ett flertal autonoma fordon. (Figur 2) 19 Summary The invention relates to a system for regulating an autonomous vehicle in a traffic system comprising a plurality of autonomous vehicles. The system analyzes external information according to predetermined rules and generates analysis signals to the vehicle which are given different priority depending on the analysis performed and the result of the analysis. A weighted analysis signal Sx is determined based on the content of the analysis signals and their prioritization. The vehicle can then adapt its control to the weighted analysis signal S. The invention also relates to a method for regulating an autonomous vehicle in a traffic system comprising a plurality of autonomous vehicles. (Figure 2)
Description
Metod och system far styrning av autonoma fordon Uppfinnimens omrade Foreliggande uppf inning avser teknik far att hantera olika situationer i trafiksystem som innefattar ett flertal autonoma fordon. Method and systems for controlling autonomous vehicles Field of the invention The present invention relates to technology for handling various situations in traffic systems which comprise a plurality of autonomous vehicles.
Bakarund till uppfinnimen Ett fordon som kan framfaras utan farare pa marken kallas ett forarlost markgaende fordon (Eng. Unmanned ground vehicle; UGV). Det finns tva typer 10 av fararlasa markgaende fordon, de som fjdrrstyrs och de som ãr autonoma. Back to the invention A vehicle that can be driven without a driver on the ground is called an unmanned ground vehicle (UGV). There are two types of hazardous ground vehicles, those that are remotely controlled and those that are autonomous.
Ett fjarrstyrt UGV är ett fordon som regleras av en mansklig operator via en kommunikationslank. Alla atgarder bestdms av operataren baserat pa antingen direkt visuell observation eller med anvandning av sensorer sasom digitala videokameror. Ett enkelt exempel pa en fjarrstyrd UGV är en fjdrrstyrd leksaksbil. A remote-controlled UGV is a vehicle that is regulated by a human operator via a communication link. All actions are determined by the operator based on either direct visual observation or the use of sensors such as digital video cameras. A simple example of a remote-controlled UGV is a remote-controlled toy car.
Det finns en stor variation av fjarrstyrda fordon som anvdnds idag. Ofta anvdnds dessa fordon i farliga situationer och miljaer som ãr oldmpliga for manniskor att vistas i, till exempel for att desarmera bomber och vid farliga kemiska utslapp. Fjarrstyrda fararlasa fordon anvands ocksa i samband med Overvakningsuppdrag 20och liknande. There is a wide variety of remote controlled vehicles in use today. These vehicles are often used in dangerous situations and environments that are unsuitable for people to live in, for example to disarm bombs and in case of dangerous chemical emissions. Remotely controlled hazardous vehicles are also used in connection with Monitoring assignments 20 and the like.
Med ett autonomt fordon avses hdr ett fordon som är kapabelt att navigera och manavrera utan mansklig styrning. Fordonet anvander sensorer far att skaffa sig ferstaelse far omgivningen. Sensordata anvands sedan av regleralgoritmer far att 2bestdmma vad som är ndsta steg far fordonet att ta med hdnsyn till ett Overordnat mal for fordonet, exempelvis att hamta och Idmna gods vid olika positioner. Mera specifikt maste ett autonomt fordon kunna avlasa omgivningen tillrdckligt bra for att kunna genomfora den uppgift som den blivit tilldelad, exempelvis "flytta stenblocken fran plats A till plats B via gruvgangen C". Det autonoma fordonet behaver planera och falja en vag till den valda destinationen under det att den detekterar och undviker hinder pa vagen. Dessutom maste det autonoma fordonet genomfora sin uppgift sa fort som mojligt utan att bega misstag. Autonoma fordon 2 har bland annat utvecklats far att kunna anvandas i farliga miljoer, exempelvis inom farsvars- och krigsindustrin och inom gruvindustrin, bade ovanjord och underjord. Om manniskor eller vanliga, manuellt styrda fordon narmar sig de autonoma fordonens arbetsomrade orsakar de normalt ett avbrott i arbete pa grund av sakerhetsskal. Nalr arbetsomradet ater är fritt kan de autonoma fordonen beordras att ateruppta arbetet. By an autonomous vehicle is meant hdr a vehicle that is capable of navigating and maneuvering without human control. The vehicle uses sensors to gain understanding of the surroundings. Sensor data is then used by control algorithms to determine what is the next step for the vehicle to take into account an overall goal for the vehicle, for example to pick up and load goods at different positions. More specifically, an autonomous vehicle must be able to read the surroundings well enough to be able to carry out the task assigned to it, for example "move the boulders from place A to place B via the mine passage C". The autonomous vehicle needs to plan and follow a road to the selected destination while detecting and avoiding obstacles on the road. In addition, the autonomous vehicle must carry out its task as quickly as possible without making any mistakes. Autonomous vehicles 2 have, among other things, been developed so that they can be used in dangerous environments, for example in the father defense and war industry and in the mining industry, both above ground and underground. If people or ordinary, manually controlled vehicles approach the work area of the autonomous vehicles, they normally cause a break in work due to safety concerns. When the work area is free again, the autonomous vehicles can be ordered to resume work.
Det autonoma fordonet anvander information avseende vagen, omgivningen och andra aspekter som paverkar framfarten far att automatiskt reglera gaspadraget, bromsningen och styrningen. En noggrann bedomning och identifiering av den planerade framfarten är nadvandig far att bedoma om en vag är farbar och är nadvandig far att pa ett framgangsrikt salt kunna ersalta en manniskas bedamning nar det galler att framfera fordonet. Vagfarhallanden kan vara komplexa och vid karning av ett vanligt fararstyrt fordon gar fararen hundratals observationer per minut och justerar driften av fordonet baserat pa de uppfattade vagfarhallandena far att exempelvis finna en framkomlig vag farbi objekt som kan finnas pa vagen. For att kunna ersatta den manskliga uppfattningsfOrmagan med ett autonomt system innebar dot bland annat att pa ett exakt salt kunna uppfatta objekt far att effektivt kunna reglera fordonet sa att man styr forbi dessa objekt. 20 De tekniska metoder som anvands far att identifiera ett objekt i anslutning till fordonet innefattar bland annat att anvanda en eller flera kameror och radar for att skapa bilder av omgivningen. Avon laserteknik anvands, bade avscannande lasrar och fasta lasrar, far att detektera objekt och mala avstand. Dessa bendmns 2ofta LIDAR (Light Detection and Ranging) eller LADAR (Laser Detection and Ranging). Dessutom är fordonet forsett med olika sensorer bland annat far att avkanna hastighet och accelerationer i olika riktningar. Positioneringssystem och annan tradlos teknologi kan dessutom anvandas far att bestamma om fordonet till exempel narmar sig en korsning, en avsmalning av vagen, och/eller andra fordon. The autonomous vehicle uses information regarding the road, the surroundings and other aspects that affect the progress made to automatically regulate the throttle, braking and steering. An accurate assessment and identification of the planned progress is necessary to assess whether a road is passable and is necessary to be able to salt a person's assessment on a successful salt when it is necessary to drive the vehicle. Pedestrian behaviors can be complex and when driving a normal driver-controlled vehicle, the driver makes hundreds of observations per minute and adjusts the operation of the vehicle based on the perceived vagrancy behaviors to find, for example, a passable vagabond object that may be on the road. In order to be able to replace the human perceptual capacity with an autonomous system, this meant, among other things, being able to perceive objects on an exact salt and being able to effectively control the vehicle so that one steers past these objects. The technical methods used to identify an object in connection with the vehicle include using one or more cameras and radar to create images of the surroundings. Avon laser technology is used, both scanning lasers and fixed lasers, capable of detecting objects and grinding distance. These bends are often LIDAR (Light Detection and Ranging) or LADAR (Laser Detection and Ranging). In addition, the vehicle is equipped with various sensors, including the ability to detect speed and accelerations in different directions. Positioning systems and other wireless technology can also be used to determine if the vehicle is approaching, for example, an intersection, a narrowing of the road, and / or other vehicles.
Vid anvandande av autonoma fordon maste aven manniskans fOrmaga att folja bade trafikregler och trafikkultur emuleras av fordonens styrsystem. En forare av 3 ett vanligt fordon undviker exempelvis vanligtvis instinktivt en krock fore det hailer hastighetsgranserna. Dagens autonoma fordons uppfattning om trafiken begransar sig normalt till "stanna om nagon kommer nara eller kommer in i mitt arbetsomrade". FOr att kunna ta hansyn till manga olika parametrar maste det autonoma fordonet veta vilka eller vilken parameter som är viktigast. When using autonomous vehicles, the human ability to follow both traffic rules and traffic culture must also be emulated by the vehicle's control system. A driver of a conventional vehicle, for example, usually instinctively avoids a collision before it reaches the speed limits. Today's autonomous vehicle's perception of traffic is normally limited to "stopping if someone comes near or enters my work area". In order to be able to take into account many different parameters, the autonomous vehicle must know which parameter or which parameter is most important.
I US-8103438-B2 beskrivs en metod och ett system fOr att automatiskt styra trafik pa ett arbetsomrade. Bemannande fordon tilldelas olika prioritet beroende till exempel pa vilken vag de kOr eller hur tunga de är. Vid konflikt sa jamfors fordonens prioriteter, och fordonet med lagre prioritet far ge vag at fordonet med hogre prioritet. US-8103438-B2 describes a method and a system for automatically controlling traffic in a work area. Manning vehicles are assigned different priorities depending on, for example, the road they drive or how heavy they are. In the event of a conflict, the priorities of the vehicles are compared, and the vehicle with lower priority may give way to the vehicle with higher priority.
I US-7979174-B2 visas automatisk planering och reglering av hastigheten hos autonoma fordon. Hastighetsplaneringen sker utifran ett antal begransningar med olika prioriteringar, t ex ar det hogre prioriterat att undvika kollision an att folja hastighetsbegransningar. US-7979174-B2 discloses automatic speed planning and control of autonomous vehicles. Speed planning is based on a number of restrictions with different priorities, for example, it is a higher priority to avoid a collision than to follow speed restrictions.
For att ett helt transportsystem bestaende av manga autonoma fordon blandat med exempelvis manuellt styrda fordon och fotgangare ska kunna fungera langvarigt tillsammans, behOvs fOrbattrade metoder fOr att ta hansyn till manga olika parametrar och uppdrag samtidigt som de autonoma fordonen pa effektivaste salt nar sina uppsatta mai. In order for an entire transport system consisting of many autonomous vehicles mixed with, for example, manually controlled vehicles and pedestrians to be able to work together for a long time, improved methods are needed to take into account many different parameters and tasks while the autonomous vehicles reach their most efficient levels.
Syftet med uppfinningen är saledes att tillhandahalla en fOrbattrad metod fOr att assistera ett autonomt fordon att fatta beslut da fordonet maste ta hansyn till ett flertal olika handelser. The object of the invention is thus to provide an improved method for assisting an autonomous vehicle in making decisions as the vehicle must take into account a number of different actions.
Sammanfattnino av uppfinningen Enligt en aspekt av uppfinningen uppnas syftet genom ett system for att reglera ett autonomt fordon i ett trafiksystem innefattande ett flertal autonoma fordon enligt det forsta oberoende kravet. Systemet analyserar extern information enligt fOrutbestamda regler och genererar analyssignaler till fordonet som ges olika 4 prioritet beroende pa vilken analys som utforts och resultatet av analysen. En sammanvagd analyssignal S, bestams baserat pa analyssignalernas innehall samt deras prioritering. Fordonet kan anpassa sin reglering efter den sammanvagda analyssignalen S. SUMMARY OF THE INVENTION According to one aspect of the invention, the object is achieved by a system for regulating an autonomous vehicle in a traffic system comprising a plurality of autonomous vehicles according to the first independent claim. The system analyzes external information according to predetermined rules and generates analysis signals to the vehicle which are given different 4 priorities depending on which analysis has been performed and the result of the analysis. A weighted analysis signal S, determined based on the content of the analysis signals and their prioritization. The vehicle can adapt its regulation to the interleaved analysis signal S.
Genom systemet kan transporterna i systemet hela tiden utforas pa effektivaste salt, inte bara genom att undvika kollisioner och folja trafikregler, utan genom att kontinuerligt se till att alla delar i transportsystemet samarbetar mot de mal som angivits. Det autonoma fordonet vet i varje situation hur den ska agera far att dess agerande ska vara sakert och effektivt for hela trafiksystemet. Through the system, the transports in the system can always be carried out on the most efficient salt, not only by avoiding collisions and following traffic rules, but by continuously ensuring that all parts of the transport system cooperate against the stated goals. The autonomous vehicle knows in each situation how it should act so that its action must be safe and efficient for the entire traffic system.
Enligt en annan aspekt uppnas syftet genom en metod far att reglera ett autonomt fordon i ett trafiksystem innefattande ett flertal autonoma fordon. According to another aspect, the object is achieved by a method father to regulate an autonomous vehicle in a traffic system comprising a plurality of autonomous vehicles.
Enligt en tredje aspekt uppnas syftet med en datorprogramprodukt som innefattar datorprograminstruktioner for att forma ett datorsystem att utfora stegen enligt metoden. According to a third aspect, the object is achieved with a computer program product comprising computer program instructions for forming a computer system to perform the steps of the method.
Fordonen som beskrivs hari är faretradesvis autonoma, men kan enligt en utfaringsform aven vara delvis manuellt styrbara. Varje fordon kanner till var de andra fordonen är och vad de gar genom kommunikation mellan fordon och mellan fordon och ledningscentral. Ett autonomt fordon kan enligt en utforingsform aven upptacka andra, ej uppkopplade trafikanter som ror sig i trafikomradet och meddela detta till ledningscentralen och de andra fordonen. The vehicles described herein are dangerously autonomous, but according to one embodiment may also be partially manually steerable. Each vehicle knows where the other vehicles are and what they are doing through communication between vehicles and between vehicles and control center. According to one embodiment, an autonomous vehicle can also detect other, unconnected road users moving in the traffic area and notify the control center and the other vehicles.
Foredragna utforingsformer definieras av de beroende patentkraven. Preferred embodiments are defined by the dependent claims.
Kort fiqurbeskrivninq Figur 1 illustrerar ett trafiksystem med ett flertal autonoma fordon. Brief description of the figure Figure 1 illustrates a traffic system with a plurality of autonomous vehicles.
Figur 2 visar ett system far att reglera ett autonomt fordon i ett trafiksystem enligt en utforingsform av uppfinningen. Figure 2 shows a system for controlling an autonomous vehicle in a traffic system according to an embodiment of the invention.
Figur 3 visar ett flOdesschema for en metod enligt en utfOringsform av uppfinningen. Figure 3 shows a flow chart of a method according to an embodiment of the invention.
Detaljerad beskrivning av fOredragna utfOringsformer av uppfinningen Figur 1 visar schematiskt tre autonoma fordon 2, 3 och 4 som tar sig fram langs en vag. Pilarna i de autonoma fordonen 2, 3, 4 visar deras respektive korriktning. De autonoma fordonen 2, 3, 4 kan kommunicera med en ledningscentral 1 via exempelvis V21-kommunikation (Vehicle-to-Infrastructure) 5 och/eller med varandra via exempelvis V2V-kommunikation (Vehicle-to-Vehicle) 6. Denna kommunikation är tradlos och kan exempelvis ske via WLAN (Wireless Local Area Network) protokollet IEEE 802.11, exempelvis IEEE 802.11p. Aven andra tradlosa kommunikationssatt är dock tankbara. Ledningscentralen 1 organiserar de autonoma fordonen 2, 3, 4 och ger dem uppdrag att utfOra. Nar ett autonomt fordon fan ett uppdrag, kan fordonet sjalvstandigt se till att uppdraget utfors. Ett uppdrag kan exempelvis bestá av en instruktion att hamta gods vid en godsuthamtningsplats A. Fordonet har dã kapacitet att bestamma sin nuvarande position, bestamma en vag frail den nuvarande positionen till godsuthamtningsplatsen A, samt ta sig dit. Under vagen maste fordonet aven ha kapacitet att vaja fOr hinder, hantera andra autonoma fordon som kanske har ett viktigare uppdrag och maste ges fOretrade. Fordonet kan aven fâ ett nytt uppdrag under pagaende uppdrag som ska prioriteras hogre an det pagaende uppdraget. I ett bemannat fordon fattar fOraren dessa beslut kontinuerligt under fard. Ett autonomt fordon behOver ha forutbestamda regler fOr hur det ska prioritera i olika uppkomna handelser for att kunna styra sig sjalv pa ett salt som är det mest effektiva fOr hela trafiksystemet. Detailed Description of Preferred Embodiments of the Invention Figure 1 schematically shows three autonomous vehicles 2, 3 and 4 traveling along a wagon. The arrows in the autonomous vehicles 2, 3, 4 show their respective correction. The autonomous vehicles 2, 3, 4 can communicate with a control center 1 via eg V21 communication (Vehicle-to-Infrastructure) 5 and / or with each other via eg V2V communication (Vehicle-to-Vehicle) 6. This communication is wireless and can be done, for example, via WLAN (Wireless Local Area Network) protocol IEEE 802.11, for example IEEE 802.11p. However, other wireless means of communication are also conceivable. The command center 1 organizes the autonomous vehicles 2, 3, 4 and gives them assignments to perform. When an autonomous vehicle completes an assignment, the vehicle can independently ensure that the assignment is performed. An assignment can, for example, consist of an instruction to pick up goods at a goods collection point A. The vehicle then has the capacity to determine its current position, determine a vague frail the current position to the goods collection point A, and get there. During the journey, the vehicle must also have the capacity to sway for obstacles, handle other autonomous vehicles that may have a more important task and must be given representation. The vehicle can also be given a new assignment during the ongoing assignment, which must be given higher priority than the ongoing assignment. In a manned vehicle, the driver makes these decisions continuously while driving. An autonomous vehicle needs to have predetermined rules for how it should prioritize in various transactions in order to be able to steer itself on a salt that is the most efficient for the entire traffic system.
I figur 2 illustreras ett system 16 enligt en utforingsform av uppfinningen for att reglera ett autonomt fordon i ett trafiksystem innefattande ett flertal autonoma fordon. Det autonoma fordonet kan exempelvis vara ett av de autonoma fordonen som visas i figur 1 och refereras till som 2, 3 eller 4. Systemet 16 kan vara helt placerat antingen i det autonoma fordonet eller i ledningscentralen 1, eller delvis i fordonet och delvis i ledningscentralen 1. Systemet 16 kommer nu att fOrklaras 6 med hanvisning till figur 2. Systemet 16 innefattar en banenhet 7 som är anpassad att ta emot en uppdragssignal Su som indikerar ett uppdrag for det autonoma fordonet, varvid uppdraget innefattar destinationsinformation gallande atminstone en destination far fordonet. Uppdraget kommer foretradesvis Iran ledningscentralen 1. Uppdraget kan exempelvis innefatta destinationsinformation i form av en destination i GPS-koordinater. Banenheten 7 är vidare anpassad att bestamma atminstone delvis en bana langs vilken fordonet ska kora for att na namnda destination baserat pa atminstone destinationsinformationen, och generera en bansignal SB som indikerar banan. Banenheten 7 kan exempelvis fa kartinformation fran en extern kartenhet 15 via en kartsignal Sm, och positionsinformation fran en positionsbestamningsenhet 18 via en positionssignal SG. Detta kan ske genom satellitpositionering (Global Navigation Satellite System, ofta farkortat till GNSS) far de fall systemet 16 anvands utomhus. GNSS är ett samlingsnamn far en grupp vdrldstdckande navigeringssystem som utnyttjar signaler fran en konstellation av satelliter och pseudosatelliter for att majliggora positionsinmatning far en mottagare. Det amerikanska GPS-systemet är det mest kanda GNSS-systemet, men darutover finns bland annat det ryska GLONASS och det framtida europeiska Galileo. Fordonets position kan ocksa bestammas genom att overvaka signalstyrkan fran flera accesspunkter for tradlasa natverk (WiFi) i narheten. Ett annat satt att bestamma positionen är att mata antalet hjulvarv och med hjalp av hjulens omkrets bestamma hur langt fordonet har fardats. Tillsammans med kunskap om fordonets riktning kan fordonets position i farhallande till en karta bestammas. Pa sa satt kan man hela tiden veta var fordonet bef inner sig. Figure 2 illustrates a system 16 according to an embodiment of the invention for controlling an autonomous vehicle in a traffic system comprising a plurality of autonomous vehicles. The autonomous vehicle may, for example, be one of the autonomous vehicles shown in Figure 1 and referred to as 2, 3 or 4. The system 16 may be located entirely in the autonomous vehicle or in the control center 1, or partly in the vehicle and partly in the control center. The system 16 will now be explained 6 with reference to Figure 2. The system 16 comprises a track unit 7 which is adapted to receive a mission signal Su indicating a mission for the autonomous vehicle, the mission comprising destination information galling at least one destination of the vehicle. The assignment will preferably be Iran's command center 1. The assignment may, for example, include destination information in the form of a destination in GPS coordinates. The path unit 7 is further adapted to determine at least in part a path along which the vehicle is to drive to reach said destination based on at least the destination information, and to generate a path signal SB indicating the path. The path unit 7 can, for example, receive map information from an external map unit 15 via a map signal Sm, and position information from a position determining unit 18 via a position signal SG. This can be done by satellite positioning (Global Navigation Satellite System, often abbreviated to GNSS) in cases where the system 16 is used outdoors. GNSS is a collective name for a group of world-wide navigation systems that use signals from a constellation of satellites and pseudo-satellites to enable position input for a receiver. The American GPS system is the most well-known GNSS system, but in addition there are the Russian GLONASS and the future European Galileo. The position of the vehicle can also be determined by monitoring the signal strength from several access points for wireless networks (WiFi) nearby. Another way to determine the position is to enter the number of wheel revolutions and, with the help of the circumference of the wheels, determine how far the vehicle has traveled. Together with knowledge of the vehicle's direction, the vehicle's position in relation to a map can be determined. In this way, you can always know where the vehicle is.
Systemet 16 innefattar vidare ett flertal analysenheter 8, 9, 10, 11 som är anpassade att ta emot extern information 13 langs banan. Denna externa information 13 visas schematiskt med en pil 13 till systemet 16, och kan exempelvis vara ytterligare uppdrag fran ledningsenheten 1, information fran sensorer i det autonoma fordonet, information via V2V fran andra fordon, information via V2I fran exempelvis trafikljus, hastighetsskyltar, etc. Analysenheterna 8, 9, 10, 11 är anpassade att analysera den externa 7 informationen 13 atminstone enligt fOrutbestamda regler samt bestamma och generera analyssignaler S1, S2, S3, S4 fOr analysenheterna 8, 9, 10, 11 baserat pa resultatet av analyserna. The system 16 further comprises a plurality of analysis units 8, 9, 10, 11 which are adapted to receive external information 13 along the path. This external information 13 is shown schematically with an arrow 13 to the system 16, and can for example be additional assignments from the control unit 1, information from sensors in the autonomous vehicle, information via V2V from other vehicles, information via V2I from eg traffic lights, speed signs, etc. The analysis units 8, 9, 10, 11 are adapted to analyze the external 7 information 13 at least according to predetermined rules and to determine and generate analysis signals S1, S2, S3, S4 for the analysis units 8, 9, 10, 11 based on the results of the analyzes.
Enligt en utforingsform innefattar analysenheterna 8, 9, 10, 11 en kollisionsenhet 8, en navigeringsenhet 9, en samverkansenhet 10 och/eller en uppdragsenhet 11. En analysenhet 8, 9, 10, 11 kan vara anpassad att ta emot extern information 13 i form av sensorsignaler fran olika sensorer i det autonoma fordonet, exempelvis kamera, laser (ex LIDAR eller LADAR), radar, hastighetssensorer, accelerationssensorer, samt information om andra fordon eller hinder via V2V- och/eller V21-kommunikation. Den externa informationen 13 kan aven innefatta ett nytt uppdrag for fordonet, eller annan information fran ledningscentralen 1. Denna externa information 13 kan sedan anvandas av de olika analysenheterna 8, 9, 10, 11 pa olika salt. Harnast kommer de olika analysenheterna 8, 9, 10, 11 att fOrklaras mer i detalj. According to one embodiment, the analysis units 8, 9, 10, 11 comprise a collision unit 8, a navigation unit 9, a collaboration unit 10 and / or a mission unit 11. An analysis unit 8, 9, 10, 11 may be adapted to receive external information 13 in the form of sensor signals from various sensors in the autonomous vehicle, for example camera, laser (eg LIDAR or LADAR), radar, speed sensors, acceleration sensors, and information about other vehicles or obstacles via V2V and / or V21 communication. The external information 13 may also include a new assignment for the vehicle, or other information from the control center 1. This external information 13 can then be used by the various analysis units 8, 9, 10, 11 on different salts. Most recently, the various analysis units 8, 9, 10, 11 will be explained in more detail.
Kollisionsenheten 8 är anpassad att anvanda den externa informationen 13 for att fOrutse en risk fOr kollision med ett annat fordon eller objekt langs banan som indikeras av bansignalen Sg. Enligt en utfOringsform är kollisionsenheten 8 anpassad att analysera den externa information 13 baserat pa regler fOr risk far kollision med det egna fordonet. Pa sã salt kan risken fOr kollision kontinuerligt utvarderas. Den externa informationen 13 analyseras alltsa enligt forutbestamda regler och en analyssignal Si bestams for kollisionsenheten 8 baserat pa resultatet av analysen. Analyssignal Si indikerar exempelvis om det finns risk for kollision. Analyssignalen Si kan enligt en utf6ringsform Oven innefattar styrinstruktioner som indikerar hur fordonet ska styras fOr att undvika hindret, exempelvis en sankt hastighet, vajningsinstruktioner, stop, eller en ny bana for fordonet. FOreligger det ingen risk for kollision, indikerar analyssignalen Si enligt en utforingsform Oven detta. The collision unit 8 is adapted to use the external information 13 to anticipate a risk of collision with another vehicle or object along the path indicated by the path signal Sg. According to one embodiment, the collision unit 8 is adapted to analyze the external information 13 based on rules for the risk of a collision with one's own vehicle. On such salt, the risk of collision can be continuously evaluated. The external information 13 is thus analyzed according to predetermined rules and an analysis signal Si is determined for the collision unit 8 based on the result of the analysis. Analysis signal Si indicates, for example, whether there is a risk of a collision. The analysis signal Si may, according to one embodiment, also include steering instructions indicating how the vehicle is to be steered to avoid the obstacle, for example a slow speed, turning instructions, stops, or a new lane for the vehicle. If there is no risk of collision, the analysis signal Si indicates according to an embodiment Above this.
Navigeringsenheten 9 kan anvanda den externa informationen 13 fOr att se till att fordonet inte bryter mot nagra trafikregler och/eller se till att fordonet hittar 8 ndrmsta vdgen till sitt uppdrag under fordonets vd.g Idngs banan som indikeras av bansignalen SB. Trafikreglerna kan vara olika beroende pa vilken miljo trafiksystemet är i. Exempelvis kan det vara olika trafikregler i en gruva och i vanlig, civil trafik. Enligt en utforingsform är navigeringsenheten 9 anpassad att analysera den externa informationen 13 baserat pa trafikregler och/eller for att finna ndrmsta vdgen fOr att uppna uppdraget. Trafikregler kan exempelvis innebdra ett max antal fordon pa en vagstracka, eller max- och minhastigheter for det autonoma fordonet. Navigeringsenheten 9 kan fa' kartinformation fran kartenheten 15 via en kartsignal Sm, och positionsinformation fran en positionsbestdmningsenhet 18 via en positionssignal SG, vilket visas som streckade linjer i figur 2, for att kunna bestdmma den ndrmsta vdgen fOr att utf6ra uppdraget. Genom att kombinera krav pa att fOlja trafikregler samt att kora narmsta vagen, kan man uppnä en effektiv kOrning i enlighet med trafikregler. Navigeringsenheten 9 är anpassad att bestdmma och generera en analyssignal S2 fOr navigeringsenheten 9 baserat pa resultatet av analysen. Analyssignalen S2 kan exempelvis indikera att den fOrut bestdmda banan som indikeras av bansignalen SB inte gar att folja pa grund av trafikreglerna, eller att den inte är den ndrmsta vagen. Enligt en utfOringsform är navigeringsenheten 9 anpassad att bestdmma en ny bana som foljer trafikreglerna och/eller är den narmsta vagen fOr att utfOra uppdraget. Analyssignalen S2 kan dâ indikera detta. FOreligger det ingen fOrandring av banans strdckning baserat pa trafikregler och/eller fordonet redan kat' den nermsta vdgen, indikerar analyssignalen S2 enligt en utfOringsform detta. The navigation unit 9 can use the external information 13 to ensure that the vehicle does not violate any traffic rules and / or to ensure that the vehicle finds the 8th narrowest turn to its mission under the vehicle's CEO. Idngs lane indicated by the lane signal SB. The traffic rules may be different depending on the environment in which the traffic system is located. For example, there may be different traffic rules in a mine and in ordinary, civilian traffic. According to one embodiment, the navigation unit 9 is adapted to analyze the external information 13 based on traffic rules and / or to find the narrowest path to achieve the task. Traffic rules can, for example, mean a maximum number of vehicles on a carriageway, or maximum and minimum speeds for the autonomous vehicle. The navigation unit 9 can receive map information from the map unit 15 via a map signal Sm, and position information from a position determining unit 18 via a position signal SG, which is shown as dashed lines in Figure 2, in order to determine the narrowest path to perform the task. By combining requirements to follow traffic rules and to drive the nearest road, you can achieve efficient driving in accordance with traffic rules. The navigation unit 9 is adapted to determine and generate an analysis signal S2 for the navigation unit 9 based on the result of the analysis. The analysis signal S2 may, for example, indicate that the predetermined path indicated by the path signal SB cannot be followed due to the traffic rules, or that it is not the narrowest road. According to one embodiment, the navigation unit 9 is adapted to determine a new path that follows the traffic rules and / or is the closest route to performing the task. The analysis signal S2 can then indicate this. If there is no change in the length of the track based on traffic rules and / or the vehicle has already reached the nearest road, the analysis signal S2 according to one embodiment indicates this.
Samverkansenheten 10 kan anvanda den externa informationen 13 fOr att se till att det autonoma fordonet samverkar med andra fordon i trafiksystemet pa ett sdtt som är effektivt for hela trafiksystemet. Enligt en utfOringsform är samverkansenheten 10 anpassad att analysera den externa informationen 13 baserat pa samverkansregler med andra trafikanter. Bade de enskilda autonoma fordonen och ledningscentralen 1 tar vid samverkan hansyn till effektiviteten i hela trafiksystemet. Vad effektivitet innebdr kan skilja sig at fran trafiksystem till trafiksystem och kan valjas av trafiksystemets manskliga overvakare. Om tvâ olika tunga fordon mots vid en flaskhals, exempelvis en tunnel eller gruvgang med bara 9 en vagbana, och det tyngre ãr pa vag uppfor kan det vara effektivare att det tyngre fordonet lamnas fOretrdde av det lattare fordonet som är pa vag nedfor. Samverkansenheten 10 kan da vara anpassad att jamfOra parametrar fran de olika fordonen med varandra, exempelvis viktparametrar. Om ett ensamt autonomt fordon mOter ett fordonstag kan det vara effektivare att det ensamma autonoma fordonet stannar aven om det ãr tyngre, men inte om det leder till att det inte kommer att kunna komma igang igen efter stoppet. I samma situationer kan nagot av fordonen istallet sanka hastigheten i god tid fOr att helt undvika konflikt. Samverkansenheten 10 är sedan anpassad att bestamma och generera en analyssignal S3 fOr samverkansenheten 10 baserat pd resultatet av analysen. The interoperability unit 10 can use the external information 13 to ensure that the autonomous vehicle interacts with other vehicles in the traffic system in a way that is efficient for the entire traffic system. According to one embodiment, the interaction unit 10 is adapted to analyze the external information 13 based on interaction rules with other road users. In collaboration, both the individual autonomous vehicles and the control center 1 take into account the efficiency of the entire traffic system. What efficiency means can differ from traffic system to traffic system and can be chosen by the traffic system's human supervisors. If two different heavy vehicles meet at a bottleneck, for example a tunnel or mine with only 9 a lane, and the heavier one is on the way up, it may be more efficient for the heavier vehicle to be left in front of the lighter vehicle that is on the way down. The interaction unit 10 can then be adapted to compare parameters from the different vehicles with each other, for example weight parameters. If a lone autonomous vehicle meets a vehicle roof, it may be more efficient for the lone autonomous vehicle to stop even if it is heavier, but not if it means that it will not be able to start again after the stop. In the same situations, some of the vehicles may instead slow down in good time to avoid conflict altogether. The interaction unit 10 is then adapted to determine and generate an analysis signal S3 for the interaction unit 10 based on the result of the analysis.
Analyssignalen S3 kan exempelvis indikera att samverkan behOver ske och/eller vilken samverkan som behover ske. Foreligger det inget behov av samverkan, indikerar analyssignalen S3 enligt en utfOringsform detta. The analysis signal S3 can, for example, indicate that collaboration needs to take place and / or which collaboration needs to take place. If there is no need for cooperation, the analysis signal S3 according to an embodiment indicates this.
Den externa informationen 13 kan enligt en utfOringsform innefatta ett externt trafikledningsbeslut. Ett externt trafikledningsbeslut kan exempelvis vara ett beslut till ett autonomt fordon att ta sig ut ur en gruva efter avslutat uppdrag for att det skett en olycka. Trafikledningsbeslutet innebar dâ dven ett nytt uppdrag — att ta sig ut ur gruvan till en fOrutbestamd plats. Enligt en utfOringsform är 20 uppdragsenheten 11 da anpassad att analysera den externa informationen 13 baserat pd regler fOr externa trafikledningsbeslut. Uppdragsenheten 11 är sedan anpassad att bestamma och generera en analyssignal S4 fOr uppdragsenheten 11 baserat pd resultatet av analysen. Analyssignalen S4 kan da innefatta informationen om att ett nytt uppdrag har inkommit och exempelvis 2destinationsinformation. According to one embodiment, the external information 13 may comprise an external traffic management decision. An external traffic management decision can, for example, be a decision for an autonomous vehicle to get out of a mine after completing an assignment because an accident has occurred. The traffic management decision then meant a new assignment - to get out of the mine to a predetermined place. According to one embodiment, the assignment unit 11 is then adapted to analyze the external information 13 based on rules for external traffic management decisions. The assignment unit 11 is then adapted to determine and generate an analysis signal S4 for the assignment unit 11 based on the result of the analysis. The analysis signal S4 can then include the information that a new assignment has been received and, for example, 2-destination information.
I svara specialfall dâ det saknas klara regler for hur fordonen ska agera i den uppkomna situationen, exempelvis hur tva fordon ska samverka, kan systemet 16 be en ledningscentral 1 eventuellt inkluderande en mansklig overvakare om rad fOr att komma till ett beslut. Enligt en utfOringsform är dtminstone en av analysenheterna 8, 9, 10, 11 anpassad att sanda en forfragansignal 131 som indikerar en forfragan till en ledningscentral 1 relaterat till den externa informationen 13. Forfragan behandlas sedan i ledningscentralen 1 och ett beslut tas. Beslutet kan exempelvis tas av en mansklig Overvakare eller operator. Analysenheten 8, 9, 10, 11 är sedan anpassad att mottaga en beslutsignal 132 som indikerar beslutet fran ledningscentralen 1, och att analysera den externa information 13 baserat pa beslutet fran ledningscentralen 1. Pa sa salt kan dven svara eller komplexa situationer i systemet 16 hanteras. In special cases where there are no clear rules for how the vehicles should act in the situation that has arisen, for example how two vehicles should interact, the system 16 can ask a command center 1, possibly including a human supervisor, for a row to reach a decision. According to one embodiment, at least one of the analysis units 8, 9, 10, 11 is adapted to send a request signal 131 indicating a request to a control center 1 related to the external information 13. The request is then processed in the control center 1 and a decision is made. The decision can, for example, be made by a human supervisor or operator. The analysis unit 8, 9, 10, 11 is then adapted to receive a decision signal 132 indicating the decision from the control center 1, and to analyze the external information 13 based on the decision from the control center 1. On such salt can also respond or complex situations in the system 16 are handled .
Systemet 16 innefattar vidare en resultatenhet 12 som är anpassad att ta emot analyssignaler S1, S2, S3, S4. Resultatenheten 12 är anpassad att relatera en prioritering till atminstone en analyssignal S1, S2, S3, S4 baserat pa vilken analysenhet 8, 9, 10, 11 de kommer ifran samt deras innehall. Hall analyssignalen 51 inte indikerar nagon risk fOr kollision, far inte denna analyssignal flagon prioritet. Samma galler for analyssignalen S2, och ifall donna analyssignal indikerar att ingen fOrandring behover ske far inte analyssignalen S2 flagon prioritet. lfall analyssignalen S3 inte anger nagot behov av samverkan, far inte analyssignalen S3 flagon tilldelad prioritet. lfall analyssignalen S4 inte anger nagot nytt uppdrag far inte denna flagon prioritet. Hall ingen av analyssignalerna indikerar nagot behov av forandring fran nuvarande bana, foljer fordonet enligt en utfOringsform en bestamd bana, exempelvis SB. Enligt en utforingsform är 20analyssignalen Si fran kollisionsenheten 8 hOgst rankad, fOljt av analyssignalen S3 Iran samverkansenheten 10 och sedan analyssignalen S2 fran navigeringsenheten 9 och till sist analyssignalen S4 fran uppdragsenheten 11. Pa sã salt far alltid en kollisionsrisk den hogsta prioriteten if all det fOreligger en risk fOr kollision. Den exemplifierade prioriteringen kan dock pas annorlunda. 2Resultatenheten 12 är vidare anpassad att bestamma en sammanvagd analyssignal S, baserat pa analyssignalernas innehall samt deras eventuella prioriteringar. For att bestamma en sammanvdgd analyssignal Sx är resultatenheten anpassad att ta hansyn till mOjligheten fOr fordonet att exempelvis undvika att krocka genom att kora forbi ett hinder, samverka med andra fordon, fOlja trafikregler och ta emot ett nytt uppdrag, utan att det bryter mot nagot resultat fran flagon annan analysenhet 8, 9, 10, 11. Denna analys Ors genom att kontinuerligt jamfOra innehallet i de olika analyssignalerna S1-S4. Resultatenheten 11 12 är alltsa anpassad att bestamma ifall fordonet kan agera enligt den analyssignal S1-S4 som har hOgst prioritering, utan att komma i konflikt med nagot av resultaten fran de andra analysenheterna 8, 9, 10, 11 som har lagre prioritet. The system 16 further comprises a result unit 12 which is adapted to receive analysis signals S1, S2, S3, S4. The result unit 12 is adapted to relate a priority to at least one analysis signal S1, S2, S3, S4 based on which analysis unit 8, 9, 10, 11 they come from and their contents. If the analysis signal 51 does not indicate any risk of collision, this analysis signal will not be given priority. The same grid for the analysis signal S2, and if this analysis signal indicates that no change needs to take place, the analysis signal S2 does not receive priority. If the analysis signal S3 does not indicate any need for cooperation, the analysis signal S3 flag will not be given priority. If the analysis signal S4 does not indicate a new assignment, this flag does not take priority. If none of the analysis signals indicates any need for change from the current trajectory, the vehicle follows a specific trajectory according to one embodiment, for example SB. According to one embodiment, the analysis signal S1 from the collision unit 8 is ranked highest, followed by the analysis signal S3 from the interaction unit 10 and then the analysis signal S2 from the navigation unit 9 and finally the analysis signal S4 from the mission unit 11. risk of collision. However, the exemplified prioritization may be different. The result unit 12 is further adapted to determine a weighted analysis signal S, based on the content of the analysis signals and their possible priorities. In order to determine a combined analysis signal Sx, the results unit is adapted to take into account the possibility for the vehicle to, for example, avoid a collision by driving past an obstacle, cooperating with other vehicles, following traffic rules and receiving a new assignment, without violating any results. from flagon other analysis unit 8, 9, 10, 11. This analysis is caused by continuously comparing the contents of the different analysis signals S1-S4. The result unit 11 12 is thus adapted to determine whether the vehicle can act according to the analysis signal S1-S4 which has the highest priority, without coming into conflict with any of the results from the other analysis units 8, 9, 10, 11 which have lower priority.
If all exempelvis tva fordon kat' mot var sin ande av en trang tunnel, och det fordon som har lagst prioritering ur transportsystemets synvinkel raknar med att det ska hinna igenom tunneln innan det motande h6gre prioriterade fordonet kommer fram till tunneln, sa satsar det lagre prioriterade fordonet pa det och kOr pa. Detta kan exempelvis indikeras i analyssignalen S3 som att samverkan inte behOver ske ifall fordonet med lagst prioritering hailer en viss hastighet eller nar tunneln inom en sarskild tid etc. Precis innan tunneln sa upptacker kollisionsenheten 8 dock ett hinder, vilket enligt regler fOr risk fOr kollision med det egna fordonet ger en analyssignal S1 som indikerar en risk fOr kollision. Att ta sig runt hindret är mejligt, men den extratid det kommer att ta gar att det m6tande fordonet under tiden kommer att hinna fram till tunneln. Resultatenheten 12 är dá anpassad att analysera ifall det lagre prioriterade fordonet kan ta sig f6rbi hindret, men anda nã tunneln inom den sarskilda tiden, och att bestamma en sammanvagd analyssignal Sx som indikerar resultatet av analysen. I detta fall kan inte det lagre prioriterade fordonet ta sig runt hindret och anda na tunneln i tid, vilket resulterar i en 20sammanvagd analyssignal som innefattar instruktioner till fordonet att det maste stanna och invanta det motande fordonet innan det kan ta sig forbi hindret. If, for example, all two vehicles are facing a narrow tunnel, and the vehicle that has the lowest priority from the point of view of the transport system finds that it has to get through the tunnel before the oncoming higher priority vehicle arrives at the tunnel, then the lower priority the vehicle on it and drive on. This can be indicated, for example, in the analysis signal S3 that cooperation does not have to take place if the vehicle with the lowest priority reaches a certain speed or reaches the tunnel within a certain time, etc. Just before the tunnel, however, the collision unit 8 discovers an obstacle, which according to rules for risk of collision with the own vehicle gives an analysis signal S1 which indicates a risk of collision. Getting around the obstacle is possible, but the extra time it will take means that the oncoming vehicle will meanwhile reach the tunnel. The result unit 12 is then adapted to analyze whether the lower priority vehicle can get past the obstacle, but breathe reach the tunnel within the particular time, and to determine a weighted analysis signal Sx which indicates the result of the analysis. In this case, the lower priority vehicle cannot get around the obstacle and breathe the tunnel in time, resulting in an interleaved analysis signal that includes instructions to the vehicle to stop and overtake the oncoming vehicle before it can pass the obstacle.
Resultatenheten 12 är sedan anpassad att sanda den sammanvagda analyssignalen Sx till ett styrsystem 17 i det autonoma fordonet, varefter fordonet 2anpassar sin reglering i enlighet med den sammanvagda analyssignalen S. Pa sã salt kan det autonoma fordonet prioritera i olika situationer sâ att hela trafiksystemet blir sá effektivt som mOjligt. Analyssignalen S, kan enligt en utfOringsform aven innefatta styrparametrar som styrsystemet 17 kan styra efter. The result unit 12 is then adapted to transmit the interleaved analysis signal Sx to a control system 17 in the autonomous vehicle, after which the vehicle 2 adjusts its control in accordance with the interleaved analysis signal S. In this case, the autonomous vehicle can prioritize in different situations so that the entire traffic system efficiently as possible. The analysis signal S, according to an embodiment, may also comprise control parameters which the control system 17 can control according to.
De beskrivna enheterna kan vara inkorporerade i en processorenhet som innefattar en eller flera processorer samt tillhorande datorminne 19. I datorminnet 12 19 kan instruktioner lagras for att fa processorn eller processorerna att utfora stegen som beskrivs har. The described units may be incorporated in a processor unit comprising one or more processors and associated computer memory 19. In the computer memory 12 19 instructions may be stored to cause the processor or processors to perform the steps described.
Uppfinningen hanfOr sig aven till en metod far att reglera ett autonomt fordon i ett trafiksystem innefattande ett flertal autonoma fordon, metoden kommer harnast att forklaras med hanvisning till flOdesschemat i figur 3. Metoden innefattar ett fOrsta steg Al) att ta emot ett uppdrag fOr det autonoma fordonet, varvid uppdraget innefattar destinationsinformation gallande atminstone en destination fOr fordonet. Uppdraget kan exempelvis komma fran en ledningscentral 1. The invention also relates to a method for controlling an autonomous vehicle in a traffic system comprising a plurality of autonomous vehicles, the method will be explained with reference to the flow chart in Figure 3. The method comprises a first step A1) to receive an assignment for the autonomous the vehicle, the assignment including destination information galling at least one destination for the vehicle. The assignment can, for example, come from a command center 1.
Metoden innefattar vidare ett andra steg A2) att bestamma alminstone delvis en bana langs vilken fordonet ska kora for att nâ namnda destination. I samband med beskrivningen av systemet 16 har det fOrklarats hur en bana kan bestammas, vilket aven galler fOr metoden. I ett tredje steg A3) tas extern information 13 emot langs banan. Under tiden det autonoma fordonet framf6rs langs den bestamda ban an sâ tar fordonet hela tiden emot extern information 13, vilket kan innebara information via kamera, laser (t ex LIDAR eller LADAR), radar, hastighetssensorer, accelerationssensorer, samt information om andra fordon eller hinder via V2V- och/eller V21-kommunikation. Den externa informationen 13 kan aven innefatta ett nytt uppdrag for fordonet, eller annan information fran ledningscentralen 1. I ett fjarde steg A4) analyseras den externa informationen atminstone enligt fOrutbestamda regler. Beroende pa vad man vill unders6ka, analyseras den externa informationen 13 enligt bestamda regler. Enligt en utfOringsform innefattar analyssteget A4) att analysera den externa informationen 13 baserat pa regler for risk for kollision med det egna fordonet. Pa sâ satt kan risken fOr att fordonet krockar med ett annat fordon eller objekt bestammas. Det autonoma fordonet kan i senare steg sedan regleras for att undvika kollisionen. Enligt en annan utforingsform innefattar analyssteget A4) att analysera den externa informationen 13 baserat pa trafikregler och/eller for att finna narmsta vagen for att uppna. uppdraget. Olika trafiksystem kan ha olika trafikregler som de autonoma fordonen maste anpassa sig otter. Hur den narmsta vagen kan bestammas har beskrivits med hanvisning till systemet 16, vilket aven galler fOr metoden. Enligt en annan utforingsform innefattar analyssteget A4) att analysera 13 den externa information 13 baserat pa samverkansregler med andra trafikanter. Pa sa salt kan en effektiv korning uppnas som är effektiv far ett flertal fordon. Enligt en annan utfOringsform innefattar analyssteget A4) att analysera den externa informationen 13 baserat pa regler far externa trafikledningsbeslut. Pa sa salt kan externa trafikledningsbeslut hanteras. De ovan angivna exemplen pa steg A4) kan exempelvis goras parallellt. I ett femte steg A5) bestams analyssignaler S1, S2, S3, S4 som indikerar resultatet av analyserna. I ett sjatte steg A6) relateras en prioritering till atminstone en analyssignal S1, S2, S3, S4 baserat pa vilken analys som gjorts samt analyssignalernas innehall. Enligt en utforingsform sa far analyssignalen Si som indikerar risken fOr kollision hogst proritet, foljt av analyssignalen S3 som indikerar behovet av samverkan, sedan analyssignalen S2 som indikerar huruvida den forut bestamda banan som indikeras av bansignalen SB inte gar att fOlja pa grund av trafikreglerna, eller att den into är den narmsta vagen. Lagst prioritet har da analyssignalen fran analyssignalen S4 SOM exempelvis kan indikera ett nytt uppdrag. Detta baserat pa att en analyssignal som far en prioritet ocksa indikerar en forandring for fordonet. The method further comprises a second step A2) to determine at least in part a path along which the vehicle is to run to reach said destination. In connection with the description of the system 16, it has been explained how a path can be determined, which also applies to the method. In a third step A3) external information 13 is received along the path. While the autonomous vehicle is driving along the designated path, the vehicle constantly receives external information 13, which may include information via camera, laser (eg LIDAR or LADAR), radar, speed sensors, acceleration sensors, and information about other vehicles or obstacles. via V2V and / or V21 communication. The external information 13 may also include a new assignment for the vehicle, or other information from the control center 1. In a fourth step A4), the external information is analyzed at least according to predetermined rules. Depending on what you want to examine, the external information 13 is analyzed according to certain rules. According to one embodiment, the analysis step A4) comprises analyzing the external information 13 based on rules for the risk of collision with one's own vehicle. In this way, the risk of the vehicle colliding with another vehicle or object can be determined. The autonomous vehicle can in later stages then be regulated to avoid the collision. According to another embodiment, the analysis step A4) comprises analyzing the external information 13 based on traffic rules and / or finding the nearest path to achieve. the mission. Different traffic systems may have different traffic rules that the autonomous vehicles must adapt to. How the nearest wagon can be determined has been described with reference to the system 16, which also applies to the method. According to another embodiment, the analysis step A4) comprises analyzing the external information 13 based on interaction rules with other road users. On such salt, an efficient grain can be achieved which is efficient for several vehicles. According to another embodiment, the analysis step A4) comprises analyzing the external information 13 based on rules for external traffic management decisions. On that salt, external traffic management decisions can be handled. The above examples of step A4) can, for example, be done in parallel. In a fifth step A5) analysis signals S1, S2, S3, S4 are determined which indicate the result of the analyzes. In a sixth step A6) a prioritization is related to at least one analysis signal S1, S2, S3, S4 based on which analysis has been performed and the content of the analysis signals. According to one embodiment, the analysis signal Si indicating the risk of collision has the highest priority, followed by the analysis signal S3 indicating the need for cooperation, then the analysis signal S2 indicating whether the predetermined path indicated by the path signal SB cannot be followed due to the traffic rules, that it into is the narrowest way. The lowest priority is then given to the analysis signal from the analysis signal S4, which can, for example, indicate a new assignment. This is based on the fact that an analysis signal that is given a priority also indicates a change for the vehicle.
I ett sjatte steg A6) bestams en sammanvagd analyssignal S, baserat pa analyssignalernas innehall samt deras prioritering. I ett sjunde steg A7) sands den sammanvagda analyssignalen S, till ett styrsystem 17 i det autonoma fordonet, varefter fordonet anpassar sin reglering i enlighet med den sammanvagda analyssignalen S. In a sixth step A6) a weighted analysis signal S is determined, based on the content of the analysis signals and their prioritization. In a seventh step A7), the interleaved analysis signal S is sent to a control system 17 in the autonomous vehicle, after which the vehicle adjusts its control in accordance with the interleaved analysis signal S.
Enligt en utforingsform innefattar analyssteget A4) understegen A41) — A43) att A41) sanda en ferfragan relaterat till den externa informationen 13 till en ledningscentral 1, A42) mottaga ett beslut fran ledningscentralen 1, samt A43) analysera den externa informationen 13 baserat pa beslutet. Pa sã satt kan man fa experthjalp cla en komplicerad situation uppstar. According to one embodiment, the analysis step A4) comprises sub-steps A41) - A43) that A41) sends a query related to the external information 13 to a control center 1, A42) receives a decision from the control center 1, and A43) analyzes the external information 13 based on the decision . In this way, you can get expert help if a complicated situation arises.
Uppfinningen hanfOr sig aven till ett datorprogram P vid ett autonomt fordon 2, dar datorprogrammet P innefattar programkod for att forma systemet 16 att utfOra stegen enligt metoden. I Figur 2 visas datorprogrammet P som en del av 14 datorminnet 19. Datorprogrammet P är alltsã lagrat pa. datorminnet 19. Datorminnet 19 ãr anslutet till enheterna 7, 8, 9, 10, 11, 12 i systemet 16, och ndr hela eller delar av datorprogrammet P exekveras av nagon eller flora av enheterna 7, 8, 9, 10, 11, 12, sã utfors dtminstone delar av metoderna som har beskrivits hari. Uppfinningen innefattar vidare en datorprogramprodukt innefattande en programkod lagrad pa ett av en dator lasbart medium for att utfOra metodstegen som beskrivits hari, ndr programkoden kOrs pa systemet 16. The invention also relates to a computer program P in an autonomous vehicle 2, wherein the computer program P comprises program code for shaping the system 16 to perform the steps according to the method. Figure 2 shows the computer program P as part of the 14 computer memory 19. The computer program P is thus stored on. the computer memory 19. The computer memory 19 is connected to the units 7, 8, 9, 10, 11, 12 in the system 16, and when all or part of the computer program P is executed by one or more of the units 7, 8, 9, 10, 11, 12 , at least parts of the methods described herein are performed. The invention further comprises a computer program product comprising a program code stored on a computer readable medium for performing the method steps described herein, when the program code is run on the system 16.
FOreliggande uppf inning är into begrdnsad till ovan-beskrivna fOredragna utfOringsformer. Olika alternativ, modifieringar och ekvivalenter kan anvandas. The present invention is limited to the above-described preferred embodiments. Various alternatives, modifications and equivalents can be used.
Utforingsformerna ovan skall dello!' inte betraktas som begransande uppfinningens skyddsomfang vilket definieras av de bifogade patentkraven. The embodiments above shall be dello! ' is not to be construed as limiting the scope of the invention as defined by the appended claims.
Claims (15)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE1350329A SE537184C2 (en) | 2013-03-19 | 2013-03-19 | Method and system for controlling autonomous vehicles |
| DE112014001058.8T DE112014001058T5 (en) | 2013-03-19 | 2014-03-06 | Method and system for controlling autonomous vehicles |
| PCT/SE2014/050278 WO2014148975A1 (en) | 2013-03-19 | 2014-03-06 | Method and system for control of autonomous vehicles |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE1350329A SE537184C2 (en) | 2013-03-19 | 2013-03-19 | Method and system for controlling autonomous vehicles |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| SE1350329A1 true SE1350329A1 (en) | 2014-09-20 |
| SE537184C2 SE537184C2 (en) | 2015-02-24 |
Family
ID=51580501
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SE1350329A SE537184C2 (en) | 2013-03-19 | 2013-03-19 | Method and system for controlling autonomous vehicles |
Country Status (3)
| Country | Link |
|---|---|
| DE (1) | DE112014001058T5 (en) |
| SE (1) | SE537184C2 (en) |
| WO (1) | WO2014148975A1 (en) |
Families Citing this family (54)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9932033B2 (en) | 2007-05-10 | 2018-04-03 | Allstate Insurance Company | Route risk mitigation |
| US8606512B1 (en) | 2007-05-10 | 2013-12-10 | Allstate Insurance Company | Route risk mitigation |
| US10157422B2 (en) | 2007-05-10 | 2018-12-18 | Allstate Insurance Company | Road segment safety rating |
| US10096038B2 (en) | 2007-05-10 | 2018-10-09 | Allstate Insurance Company | Road segment safety rating system |
| US9390451B1 (en) | 2014-01-24 | 2016-07-12 | Allstate Insurance Company | Insurance system related to a vehicle-to-vehicle communication system |
| US9355423B1 (en) | 2014-01-24 | 2016-05-31 | Allstate Insurance Company | Reward system related to a vehicle-to-vehicle communication system |
| US10096067B1 (en) | 2014-01-24 | 2018-10-09 | Allstate Insurance Company | Reward system related to a vehicle-to-vehicle communication system |
| US9886036B2 (en) | 2014-02-10 | 2018-02-06 | John Bean Technologies Corporation | Routing of automated guided vehicles |
| US9940676B1 (en) | 2014-02-19 | 2018-04-10 | Allstate Insurance Company | Insurance system for analysis of autonomous driving |
| US10783586B1 (en) | 2014-02-19 | 2020-09-22 | Allstate Insurance Company | Determining a property of an insurance policy based on the density of vehicles |
| US10803525B1 (en) | 2014-02-19 | 2020-10-13 | Allstate Insurance Company | Determining a property of an insurance policy based on the autonomous features of a vehicle |
| US10796369B1 (en) | 2014-02-19 | 2020-10-06 | Allstate Insurance Company | Determining a property of an insurance policy based on the level of autonomy of a vehicle |
| US10783587B1 (en) | 2014-02-19 | 2020-09-22 | Allstate Insurance Company | Determining a driver score based on the driver's response to autonomous features of a vehicle |
| US9864371B2 (en) | 2015-03-10 | 2018-01-09 | John Bean Technologies Corporation | Automated guided vehicle system |
| EP3303083B1 (en) * | 2015-06-08 | 2024-05-08 | Arity International Limited | Route risk mitigation |
| US9869560B2 (en) | 2015-07-31 | 2018-01-16 | International Business Machines Corporation | Self-driving vehicle's response to a proximate emergency vehicle |
| US9483948B1 (en) | 2015-08-07 | 2016-11-01 | International Business Machines Corporation | Automated control of interactions between self-driving vehicles and pedestrians |
| US9785145B2 (en) | 2015-08-07 | 2017-10-10 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
| US9721397B2 (en) | 2015-08-11 | 2017-08-01 | International Business Machines Corporation | Automatic toll booth interaction with self-driving vehicles |
| US9718471B2 (en) | 2015-08-18 | 2017-08-01 | International Business Machines Corporation | Automated spatial separation of self-driving vehicles from manually operated vehicles |
| US9481366B1 (en) | 2015-08-19 | 2016-11-01 | International Business Machines Corporation | Automated control of interactions between self-driving vehicles and animals |
| US9896100B2 (en) | 2015-08-24 | 2018-02-20 | International Business Machines Corporation | Automated spatial separation of self-driving vehicles from other vehicles based on occupant preferences |
| US9731726B2 (en) | 2015-09-02 | 2017-08-15 | International Business Machines Corporation | Redirecting self-driving vehicles to a product provider based on physiological states of occupants of the self-driving vehicles |
| US9587952B1 (en) | 2015-09-09 | 2017-03-07 | Allstate Insurance Company | Altering autonomous or semi-autonomous vehicle operation based on route traversal values |
| US9513632B1 (en) | 2015-09-16 | 2016-12-06 | International Business Machines Corporation | Driving mode alerts from self-driving vehicles |
| US9566986B1 (en) | 2015-09-25 | 2017-02-14 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
| US9481367B1 (en) | 2015-10-14 | 2016-11-01 | International Business Machines Corporation | Automated control of interactions between self-driving vehicles and animals |
| US9834224B2 (en) | 2015-10-15 | 2017-12-05 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
| US9751532B2 (en) | 2015-10-27 | 2017-09-05 | International Business Machines Corporation | Controlling spacing of self-driving vehicles based on social network relationships |
| US9944291B2 (en) | 2015-10-27 | 2018-04-17 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
| US10607293B2 (en) | 2015-10-30 | 2020-03-31 | International Business Machines Corporation | Automated insurance toggling for self-driving vehicles |
| US10176525B2 (en) | 2015-11-09 | 2019-01-08 | International Business Machines Corporation | Dynamically adjusting insurance policy parameters for a self-driving vehicle |
| US9791861B2 (en) | 2015-11-12 | 2017-10-17 | International Business Machines Corporation | Autonomously servicing self-driving vehicles |
| US10061326B2 (en) | 2015-12-09 | 2018-08-28 | International Business Machines Corporation | Mishap amelioration based on second-order sensing by a self-driving vehicle |
| US9836973B2 (en) | 2016-01-27 | 2017-12-05 | International Business Machines Corporation | Selectively controlling a self-driving vehicle's access to a roadway |
| US10269075B2 (en) | 2016-02-02 | 2019-04-23 | Allstate Insurance Company | Subjective route risk mapping and mitigation |
| US10685391B2 (en) | 2016-05-24 | 2020-06-16 | International Business Machines Corporation | Directing movement of a self-driving vehicle based on sales activity |
| US10093322B2 (en) | 2016-09-15 | 2018-10-09 | International Business Machines Corporation | Automatically providing explanations for actions taken by a self-driving vehicle |
| US10643256B2 (en) | 2016-09-16 | 2020-05-05 | International Business Machines Corporation | Configuring a self-driving vehicle for charitable donations pickup and delivery |
| US10202118B2 (en) | 2016-10-14 | 2019-02-12 | Waymo Llc | Planning stopping locations for autonomous vehicles |
| US10259452B2 (en) | 2017-01-04 | 2019-04-16 | International Business Machines Corporation | Self-driving vehicle collision management system |
| US10363893B2 (en) | 2017-01-05 | 2019-07-30 | International Business Machines Corporation | Self-driving vehicle contextual lock control system |
| US10529147B2 (en) | 2017-01-05 | 2020-01-07 | International Business Machines Corporation | Self-driving vehicle road safety flare deploying system |
| US10152060B2 (en) | 2017-03-08 | 2018-12-11 | International Business Machines Corporation | Protecting contents of a smart vault being transported by a self-driving vehicle |
| US10988143B2 (en) * | 2017-08-25 | 2021-04-27 | International Business Machines Corporation | Using cloud-based traffic policies to alleviate issues with cross geographic traffic in autonomous vehicles |
| US10768637B2 (en) * | 2018-08-30 | 2020-09-08 | Pony Ai Inc. | Prioritizing vehicle navigation |
| DE102018220835A1 (en) * | 2018-12-03 | 2020-06-04 | Zf Friedrichshafen Ag | Method and sensor system for autonomous operation of a group of vehicles |
| US11860643B2 (en) * | 2019-07-02 | 2024-01-02 | Liebherr Mining Equipment Newport News Co. | System for controlling a plurality of autonomous vehicles on a mine site |
| DE102019214445A1 (en) | 2019-09-23 | 2021-03-25 | Robert Bosch Gmbh | Method for assisting a motor vehicle |
| DE102019214448A1 (en) * | 2019-09-23 | 2021-03-25 | Robert Bosch Gmbh | Method for assisting a motor vehicle |
| US11847919B2 (en) | 2020-05-19 | 2023-12-19 | Toyota Motor North America, Inc. | Control of transport en route |
| CN111832965B (en) * | 2020-07-24 | 2024-04-12 | 上海海得控制系统股份有限公司 | Unmanned same-span multi-crown block cooperative scheduling method and system, medium and terminal |
| KR20220126311A (en) * | 2021-03-08 | 2022-09-16 | 현대모비스 주식회사 | Vehicle driving system and control method |
| CN113220476B (en) * | 2021-04-22 | 2024-02-23 | 行云新能科技(深圳)有限公司 | Driving teaching system compatible method, automobile practical training platform and readable storage medium |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5586030A (en) * | 1994-10-24 | 1996-12-17 | Caterpillar Inc. | System and method for managing access to a resource in an autonomous vehicle system |
| IL117792A (en) * | 1995-05-08 | 2003-10-31 | Rafael Armament Dev Authority | Autonomous command and control unit for mobile platform |
| DE59809476D1 (en) * | 1997-11-03 | 2003-10-09 | Volkswagen Ag | Autonomous vehicle and method for controlling an autonomous vehicle |
| US8577538B2 (en) * | 2006-07-14 | 2013-11-05 | Irobot Corporation | Method and system for controlling a remote vehicle |
| US7734387B1 (en) * | 2006-03-31 | 2010-06-08 | Rockwell Collins, Inc. | Motion planner for unmanned ground vehicles traversing at high speeds in partially known environments |
| US20070288132A1 (en) * | 2006-06-07 | 2007-12-13 | Raytheon Company | Cooperative swarm of unmanned vehicles |
| US8255092B2 (en) * | 2007-05-14 | 2012-08-28 | Irobot Corporation | Autonomous behaviors for a remote vehicle |
| US7979174B2 (en) * | 2007-09-28 | 2011-07-12 | Honeywell International Inc. | Automatic planning and regulation of the speed of autonomous vehicles |
-
2013
- 2013-03-19 SE SE1350329A patent/SE537184C2/en unknown
-
2014
- 2014-03-06 DE DE112014001058.8T patent/DE112014001058T5/en not_active Withdrawn
- 2014-03-06 WO PCT/SE2014/050278 patent/WO2014148975A1/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| DE112014001058T5 (en) | 2015-12-31 |
| SE537184C2 (en) | 2015-02-24 |
| WO2014148975A1 (en) | 2014-09-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| SE1350329A1 (en) | Method and system for controlling autonomous vehicles | |
| US12434766B2 (en) | Methods and systems for lane changes using a multi-corridor representation of local route regions | |
| EP4042252B1 (en) | Methods and systems for topological planning in autonomous driving | |
| RU2761270C2 (en) | System and method for providing transportation | |
| US11551554B2 (en) | Systems and methods for coordinating movement of assets within a transfer hub | |
| US11934194B2 (en) | Adaptive vehicle motion control system | |
| US11851083B2 (en) | Methods and system for constructing data representation for use in assisting autonomous vehicles navigate intersections | |
| CN117255755A (en) | Method and system for generating a trajectory for an autonomous vehicle to traverse an intersection | |
| EP4222035B1 (en) | Methods and systems for performing outlet inference by an autonomous vehicle to determine feasible paths through an intersection | |
| JP7060398B2 (en) | Server device | |
| US20230324188A1 (en) | Autonomous vehicle fleet scheduling to maximize efficiency | |
| SE537265C2 (en) | Control system and method for controlling vehicles when detecting obstacles | |
| EP4285083A1 (en) | Methods and system for generating a lane-level map for an area of interest for navigation of an autonomous vehicle | |
| WO2022150250A1 (en) | Methods and system for predicting trajectories of uncertain road users by semantic segmentation of drivable area boundaries | |
| CN115071749B (en) | Vehicle control device, vehicle control method, and storage medium | |
| JP7408793B2 (en) | Driving route generation device, driving route generation method, and automatic driving system | |
| US20230386326A1 (en) | Systems and methods for detecting pedestrians with crosswalking or jaywalking intent | |
| US20230384797A1 (en) | System and method for inbound and outbound autonomous vehicle operations | |
| JP7605004B2 (en) | Control equipment and control system | |
| US20240402721A1 (en) | Methods and apparatus for providing assistance to an autonomy system using a teleoperations system | |
| WO2023229731A1 (en) | System and method for inbound and outbound autonomous vehicle operations | |
| CN117723075A (en) | Scene understanding systems and methods |