RU2571523C2 - Вероятностная оптимизация сегментации, основанной на модели - Google Patents
Вероятностная оптимизация сегментации, основанной на модели Download PDFInfo
- Publication number
- RU2571523C2 RU2571523C2 RU2012143409/08A RU2012143409A RU2571523C2 RU 2571523 C2 RU2571523 C2 RU 2571523C2 RU 2012143409/08 A RU2012143409/08 A RU 2012143409/08A RU 2012143409 A RU2012143409 A RU 2012143409A RU 2571523 C2 RU2571523 C2 RU 2571523C2
- Authority
- RU
- Russia
- Prior art keywords
- volume
- interest
- organ
- segmentation
- current image
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/143—Segmentation; Edge detection involving probabilistic approaches, e.g. Markov random field [MRF] modelling
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20128—Atlas-based segmentation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Image Analysis (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Изобретение относится к области сегментации текущих диагностических изображений. Техническим результатом является повышение точности сегментации диагностических изображений. Система содержит: рабочую станцию, которая сегментирует объем интереса в ранее сформированных диагностических изображениях; процессор запрограммирован с возможностью совмещения сегментированных, ранее сформированных изображений и объединения сегментированных, ранее сформированных изображений в вероятностную карту, которая отражает вероятность того, что каждый воксель представляет объем интереса или фон, и среднюю сегментационную границу; процессор сегментации совмещает вероятностную карту с текущим диагностическим изображением, чтобы сформировать преобразованную вероятностную карту; предварительно обученный классификатор классифицирует воксели диагностического изображения с использованием вероятности того, что каждый воксель отражает объем интереса или фон; процессор объединения объединяет вероятности из классификатора и преобразованной вероятностной карты; процессор обработки сегментационной границы определяет сегментационную границу для объема интереса, основанного на текущем изображении, по вероятностям объединения. 4 н. и 9 з.п. ф-лы, 5 ил.
Description
Настоящее изобретение относится к сегментации изображений. Изобретение находит применение, в частности, в связи с медицинской диагностической визуализацией для определения границ заданных объемов, органов и т.п.
Различные способы диагностической визуализации, например КТ (компьютерная томография), МРТ (магнитно-резонансная томография), ПЭТ (позитронно-эмиссионная томография), ОФЭКТ (однофотонная эмиссионная компьютерная томография) и ультразвуковое исследование, формируют трехмерные изображения внутренних анатомических структур пациента. Разные органы, разные ткани, опухолевые и неопухолевые ткани и т.п. обычно изображаются разными уровнями яркости, при этом упомянутые уровни яркости можно преобразовывать в разные цвета для облегчения различения. Прилегающие органы, объемы тканей и т.п. часто имеют небольшое или незначительное отличие по уровню яркости. Некоторые структуры мягких тканей могут иметь слабый контраст в данных КТ. Упомянутый слабый или неясный контраст делает соответствующие граничные участки только частично видимыми, т.е. неясными и нечетко выраженными.
Для устранения упомянутой проблемы применяли сегментацию, основанную на модели. Обычно некоторые области границы выражены четко, а другие нечетко. В предшествующих методах основанной на модели сегментации разрабатывали библиотеку моделей объекта, например моделей конкретных органов. Упомянутые модели органов обычно совмещали, например поворачивали, изменяли в масштабе и т.п., чтобы совместить с четко выраженными сегментированными границами. Модели органов можно формировать посредством усреднения точно сегментированных вручную сходных объектов или органов, чтобы разработать номинальную модель для объекта или органа.
Один эффективный метод основанной на модели сегментации, предназначенный для подгонки модели к границе, содержит определение модели в виде гибкой треугольной сетки и адаптацию треугольной сетки к границам объекта или органа интереса. Один метод подгонки сеточной модели к текущим данным изображения содержит математическое приложение противоположных сил к сеточной модели. В частности, метод определяет равновесие между внешней энергией, притягивающей сетку к известным элементам изображения, например краям или границам в изображении, и противодействующей, сохраняющей форму внутренней энергией, которая принуждает модель сохранять свою форму.
К сожалению, наложение ограничений на форму модели может быть невыгодно при точном следовании границе структуры или органа интереса. Задача поиска оптимального баланса между двумя энергетическими слагаемыми обычно не проста и может приводить к неоднозначным или нескольким возможным решениям.
Настоящая заявка предлагает усовершенствованный подход, который во многих случаях обеспечивает более точные окончательные результаты сегментации посредством классификации вокселей, расположенных в области около подогнанной сетки, которая представляет зону неопределенности сегментации.
В соответствии с одним аспектом предлагается система для сегментации текущих диагностических изображений. По меньшей мере одна рабочая станция сегментирует объем интереса в ранее сформированных высококонтрастных диагностических изображениях выбранного объема интереса, сформированных для множества других пациентов. По меньшей мере один процессор запрограммирован для совмещения сегментированных, ранее сформированных изображений и объединения сегментированных, ранее сформированных изображений в вероятностную карту, которая отражает вероятность того, что каждый воксель представляет объем интереса, вероятность того, что каждый воксель представляет фон, и среднюю сегментационную границу. Процессор сегментации совмещает вероятностную карту с текущим диагностическим изображением объема интереса в текущем пациенте, чтобы сформировать преобразованную вероятностную карту.
В соответствии с другим аспектом предлагается способ сегментации диагностических изображений. Сегментируют объем интереса в предыдущих диагностических изображениях выбранного объема интереса, сформированных для множества пациентов. Сегментированные предыдущие изображения совмещают, и совмещенные сегментированные предыдущие изображения объединяют в вероятностную карту, которая отражает вероятность того, что каждый воксель представляет объем интереса, вероятность того, что каждый воксель представляет фон, и среднюю сегментационную границу.
В соответствии с другим аспектом предлагается вероятностная карта, формируемая вышеописанным способом.
В соответствии с другим аспектом предлагается материальный машиночитаемый носитель информации, содержащий по меньшей мере одну компьютерную программу для управления по меньшей мере одним процессором, чтобы выполнять вышеописанный способ.
Одно из преимуществ состоит в поддержке полностью автоматизированной точной сегментации.
Другим преимуществом является повышение надежности результатов сегментации.
Другие дополнительные преимущества настоящего изобретения будут понятны специалистам со средним уровнем компетентности в данной области техники после прочтения и изучения нижеследующего подробного описания.
Изобретение может принимать форму различных компонентов и схем компоновок компонентов и различных этапов и компоновок этапов. Чертежи предназначены только для иллюстрации предпочтительных вариантов осуществления и не подлежат истолкованию в смысле ограничения изобретения.
Фиг.1 - схематическое изображение устройства или системы для автоматической сегментации диагностических изображений.
Фиг.2 - схематическое изображение аксиального среза вероятностной карты модели ствола головного мозга.
Фиг.3 - карта, которая отображает воксели, которые безусловно принадлежат стволу головного мозга, воксели, которые безусловно принадлежат фону, и зону неопределенности.
Фиг.4 - блок-схема, которая показывает в виде схемы автоматический способ сегментации изображений.
Фиг.5 - блок-схема, которая показывает в виде схемы способ сегментации изображений с участием оператора.
Как показано на фиг.1, сканер 10 для диагностической визуализации, например сканер КТ, сканер МРТ, сканер ПЭТ, радионуклидный сканер, ультразвуковой сканер или подобное устройство, формирует данные изображения, которые реконструируются процессором 12 реконструкции для формирования текущего 3-мерного диагностического изображения, которое сохраняется в запоминающем устройстве, сегменте памяти или буфере 14.
Как также показано на фиг.1 и дополнительно показано на фиг.2, запоминающее устройство или сегмент памяти 20 хранит библиотеку 3-мерных вероятностных карт 22. Вероятностная карта задает границы объема области 24 интереса, которая, как известно, является частью области или объема интереса, в настоящем примере стволом головного мозга. Область 26 фона задает границы объектов или тканей, которые, как известно, являются фоном, т.е. не являются стволом головного мозга. То есть воксели в области 24 ствола головного мозга имеют 100% вероятность отображения ствола головного мозга и 0% вероятность отображения фона. И, наоборот, воксели в области 26 фона имеют 100% вероятность отображения фона и 0% вероятность отображения ствола головного мозга. Область 28 неопределенности находится между областью 24 ствола головного мозга и областью 26 фона. В области неопределенности каждый воксель обладает вероятностью между 100% и 0%, что он находится в органе или в объекте интереса, например стволе головного мозга, и вероятностью между 0% и 100%, что он находится в фоне.
Для формирования вероятностной карты 22 для ствола головного мозга или другого объема интереса изображения с высоким контрастом, т.е. точно сегментируемыми границами, сегментируют вручную на рабочей станции 30, чтобы задать двоичные маски, в которых всем вокселям, которые соответствуют объему интереса, например стволу головного мозга, присвоено максимальное значение вероятности, например единица, и всем вокселям, которые соответствуют фону, присвоено минимальное значение вероятности, например нуль. Граница между областями минимальной и максимальной вероятности двоичной маски задает границу масок, т.е. сегментационную границу, которая может быть задана поверхностью из треугольной сетки. По меньшей мере один процессор 32 имеет компьютерную подпрограмму 34 совмещения двоичной маски, которая составлена с возможностью совмещения множества двоичных масок и сегментационных границ. То есть двоичные маски изменяют в масштабе для подгонки к пациентам или объектам интереса разного размера, поворачивают, сдвигают и т.п. и, по желанию, упруго деформируют для компенсации, например, изображений, сформированных в разных состояниях движения объекта интереса, чтобы добиться подгонки. По меньшей мере один процессор 32 также запрограммирован или снабжен компьютерной подпрограммой 36 объединения двоичных масок, которая объединяет множество совмещенных двоичных масок. В настоящем примере областям фона, которые заданы как фон всеми двоичными масками, присваивают нулевое значение вероятности, и областям ствола головного мозга, которые всеми двоичными масками заданы как части ствола головного мозга, присваивают значение единица, т.е. определяют как область 24 ствола головного мозга. С учетом относительного местоположения границ во множестве изображений вероятности выше, чем нуль, и ниже, чем единица, присваивают другим вокселям, соответствующим области 28 неопределенности. Например, каждому вокселю в области неопределенности присваивают среднее из его значений на двоичных картах. Если воксель является фоновым, т.е. имеет значение нуль на половине карт, и находится в стволе головного мозга, т.е. имеет значение единица на половине карт, то вокселю присваивают среднее значение или 0,5. Процессор 32 также запрограммирован или снабжен компьютерной подпрограммой 38, которая определяет медианную или среднюю сегментационную границу 40, т.е. среднее, или медианное, или другое усредненное местоположение сегментационных границ всех двоичных масок. Вероятности для каждого вокселя и средняя сегментационная граница задают сегментационную карту 22. Обычно один и тот же приведенный процесс выполняется для множества органов или объемов интереса, чтобы составить библиотеку вероятностных карт, которые пригодны для многочисленных разных местоположений или прикладных задач визуализации.
В одном варианте осуществления процессор 50 основанной на модели сегментации запрограммирован с возможностью содержания компьютерной подпрограммы 52, которая выбирает обычный объем или модель органа из библиотеки 54 моделей и подгоняет к объему или органу интереса. Процессор сегментации дополнительно запрограммирован с возможностью содержания компьютерной подпрограммы 56, которая совмещает среднюю сегментационную границу 40 из вероятностной модели с обычной моделью, и запрограммирован или содержит компьютерную подпрограмму 58, которая определяет преобразование, которое точно совмещает среднюю сегментационную границу с совмещенной обычной моделью. Процессор сегментации также запрограммирован или снабжен компьютерной подпрограммой 60, которая преобразует вероятностную карту в соответствии с упомянутым найденным преобразованием, чтобы точно совместить вероятностную карту с объемом или органом интереса в текущем изображении. Преобразованная вероятностная карта сохраняется в буфере или запоминающем устройстве 62. В альтернативном варианте, вместо применения обычной модели для совмещения 56 на основе модели, в качестве модели можно применить среднюю сегментационную границу из вероятностной карты.
В полностью автоматизированном варианте осуществления классификатор 70, например процессор или компьютерную подпрограмму, сначала обучают классифицировать воксели изображений с учетом свойств изображений, например интенсивности, градиента, текстуры и т.п., как принадлежащие объему или органу интереса, как принадлежащие фону, или вероятности их принадлежности. Классификатор ранее обучали автономно, с использованием фиктивных данных. Использовать можно любой из множества известных методов классификации, например ближайших соседей, машины опорных векторов и т.п. Объем интереса, например, может иметь поверхность с известными свойствами, например гладкую, скругленную, без резких переходов и т.п. Классификатор работает с текущим изображением из буфера 14, чтобы сформировать вероятность того, что каждый воксель принадлежит к фону, или объему, или органу интереса.
Как показано на фиг.3, для экономии времени обработки процесс классификации можно выполнять только для вокселей, соответствующих области 28 неопределенности преобразованной вероятностной карты. Без обработки областей 24, 26, которые были определены посредством вероятностной маски как определенно находящиеся в органе или объеме интереса или в фоне. По желанию, с преобразованной вероятностной картой может работать схема или процессор пороговой обработки, чтобы идентифицировать область 28 неопределенности посредством исключения вокселей с достоверностью нуль или единица, которые представляют 100% вероятность нахождения в органе или объеме интереса и 100% вероятность нахождения в фоне. По желанию, порог можно установить ниже, чтобы классификация выполнялась только для вокселей, которые, как определила вероятностная карта, имеют менее, чем, например, 95% вероятность нахождения в объеме или органе интереса или в фоне.
Процессор или компьютерная подпрограмма 80 объединения запрограммирован с возможностью объединения, попиксельно, вероятности, найденной классификатором 70, и вероятности из преобразованной вероятностной карты 62. Объединение в одном варианте осуществления усредняет вероятности классификации и вероятностной карты для каждого вокселя. Предполагается также возможность применения других методов объединения вероятностей. Например, можно обеспечить операторский элемент управления или первый движок (скользящий маркер) 82, чтобы настраивать относительные весовые коэффициенты для вероятностей классификатора и вероятностной карты. Оператор может избирательно настраивать относительные весовые коэффициенты для настройки пороговой границы. На основании объединенных вероятностей процессор объединения определяет для каждого вокселя, имеет ли он более высокую вероятность нахождения в объеме или органе интереса или в фоне. Определяемая граница сегмента определяется по границе раздела между двумя областями и сохраняется в подходящем запоминающем устройстве или буфере 84.
Процессор 90 изображений запрограммирован или снабжен компьютерной подпрограммой 92, которая объединяет текущее изображение из запоминающего устройства или буфера 14 с найденной сегментационной границей 84, чтобы создать сегментированное изображение. Процессор 90 изображений, по желанию, дополнительно запрограммирован или снабжен компьютерной подпрограммой 94, которая выполняет дополнительную обработку изображений, например подкрашивание, сглаживание и т.п., текущего изображения, объединенного с сегментационной границей, т.е. сегментированного текущего изображения. Сегментированное текущее изображение сохраняется в медицинской базе данных 96 пациентов в составе медицинской карточки пациента. Видеопроцессор 98 выделяет выбранные срезы, 3-мерные представления объема и т.п. из сегментированного изображения 94 и отображает их на удобочитаемом дисплее 100, например видеомониторе.
В полуавтоматизированном варианте осуществления схема, процессор или компьютерная подпрограмма 110 пороговой обработки определяет, выше ли порог, чем вероятность для каждого вокселя преобразованной вероятностной карты. Например, в вышеприведенном примере первоначально можно установить порог 0,5, указывающий, что для вокселя равновероятно нахождение в объеме интереса и в фоне. Процессор или компьютерная подпрограмма 112 задает сегментационную границу по границе раздела между вокселями, которые с большей вероятностью должны находиться в фоне, и вокселями, которые с большей вероятностью должны находиться в объеме или органе интереса. В данном варианте осуществления сегментационная граница 114 подается в подпрограмму 92 процессора изображений, которая объединяет сегментационную границу с текущим изображением. Оператор, просматривающий сегментированное изображение на дисплее 100, использует пользовательское устройство 116 ввода для настройки порога 110, в настоящем примере для сдвига порога 0,5 выше в сторону единицы или ниже в сторону нуля. Когда порог настраивают, граница раздела между объемом или органом интереса и фоном сдвигается и также сдвигается сегментационная граница 114. В одном варианте осуществления оператор перемещает движок мышью для выбора более высоких или сниженных пороговых значений, пока оператор не сочтет достаточной сегментацию, отображаемую на дисплее 100. Как только сегментация оптимизируется оператором, оптимизированная сегментация сохраняется в медицинской базе данных 96 пациентов.
После того как сегментация изображения завершается, сегментированное изображение применяют различным образом. Например, сегментированное изображение можно использовать в системе 120 лучевой терапии для планирования протокола лучевой терапии. Разумеется, предполагается также возможность многих других применений сегментированных изображений.
В вышеприведенном описании следует понимать, что различные процессоры, компьютерные подпрограммы и этапы могут быть исполнены по меньшей мере одним компьютером или процессором. Единственный процессор может выполнять по меньшей мере одну из компьютерных процедур или этапов, и любую по меньшей мере одну компьютерную подпрограмму или любой по меньшей мере один этап можно распределить среди множества компьютерных процессоров. Аналогично, вышеописанные запоминающие устройства, сегменты и буферы могут принимать форму единственного запоминающего устройства большой емкости, распределенных запоминающих устройств и т.п. Кроме того, компьютерная программа для управления по меньшей мере одним процессором с целью формирования сегментированных изображений в соответствии с вышеприведенным описанием может содержаться на компьютерно считываемом носителе информации, в частности материальном носителе информации, например компакт-диске (CD), или универсальном цифровом диске (DVD), или другом портативном запоминающем устройстве, жестком диске, в постоянном компьютерном запоминающем устройстве и т.п. Программа может также передаваться нематериальным носителем информации, например цифровым или аналоговым сигналом или подобным образом.
Как показано на фиг.4, множество изображений выбранной области интереса в каждом из множества пациентов формируют и сегментируют на этапе 130. На этапе 132 множество сегментированных изображений совмещают. На этапе 134 совмещенные изображения объединяют для формирования комбинированного изображения области интереса с множеством наложенных сегментационных границ. Среднюю сегментационную границу определяют на этапе 136. Вероятность того, что каждый воксель находится внутри объема интереса или внутри фона, определяют на этапе 138. Например, все воксели, которые находятся внутри всех наложенных сегментационных границ, назначаются объему интереса, и все воксели, которые находятся снаружи всех наложенных сегментационных границ, присваиваются фону. Вокселям, которые находятся внутри некоторых из сегментационных границ и снаружи остальных сегментационных границ, присваивается вероятность в соответствии с процентным отношением сегментационных страниц, внутри и снаружи которых находится воксель. Например, всем вокселям, которые находятся внутри объема интереса, можно присвоить единичное значение, всем вокселям, которые находятся в фоне, можно присвоить нулевое значение, и всем вокселям, которые находятся внутри некоторых из наложенных сегментационных границ и снаружи остальных сегментационных границ, присваивают дробное значение от нуля до единицы с учетом процентного отношения наложенных сегментационных границ, внутри и снаружи которых находятся упомянутые воксели. На этапе 140 вероятности и среднюю пороговую границу объединяют для формирования вероятностной карты. Вероятностные карты для каждого из множества объемов изображения можно хранить в библиотеке с возможностью вызова для сегментации текущих изображений от текущего пациента.
Когда требуется приготовить сегментированные изображения текущего пациента, то на этапе 150 формируют множество текущих изображений. На этапе 152 из памяти вызывают модель органа и на этапе 154 модель органа подгоняют к текущему изображению. На этапе 156 определяют преобразование, которое совмещает модель органа с текущим изображением. Предполагается возможность применения различных моделей органов, например обычной модели органа, средней сегментационной границы и т.п.
На этапе 160 вероятностную карту преобразуют с использованием найденного преобразования, чтобы сформировать преобразованную вероятностную карту 162, которая представляет вероятность того, что каждый воксель находится в объеме интереса или в фоне. Параллельно на этапе 170 каждый воксель текущего изображения классифицируют с учетом свойств изображения, например интенсивности, градиента, текстуры и т.п., и, на основании свойств изображения, присваивают вероятность того, что воксель принадлежит объему интереса или фону.
На этапе 180 повоксельно объединяют вероятности из преобразованной вероятностной карты и вероятности, полученные на основании классификации. На этапе 182 формируют сегментационную границу для области интереса в текущем изображении на основании объединенных вероятностей. Например, все воксели, которые находятся в объеме интереса с вероятностью выше, чем предварительно выбранный или настраиваемый порог, относят к объему интереса, а воксели, которые ниже порога, относят к фону. Граница раздела представляет сегментационную границу объема интереса. В вышеприведенном примере, в котором объему интереса присваивают единичное значение, а фону присваивают нулевое значение, порог можно установить равным, например, 0,5.
На этапе 190 сегментационную границу объединяют с текущим изображением, например накладывают на него, чтобы сформировать сегментированное текущее изображение. На этапе 192 сегментированное текущее изображение сохраняют в памяти, например в медицинской базе данных пациентов. На этапе 194 сегментированное текущее изображение отображают на мониторе или другом дисплее, удобном для просмотра врачом.
Как показано на фиг.5, в режиме с участием оператора вероятностную карту сегментируют методом пороговой обработки на этапе 200. В вышеупомянутом примере, в котором объем интереса имеет единичное значение и фон имеет нулевое значение, первоначально можно установить порог, например, 0,5. На этапе 202 сегментационную границу задают как границу раздела между вокселями, которые с большей вероятностью находятся в области интереса, и вокселями, которые с большей вероятностью находятся в фоне, например имеют вероятность выше или ниже 0,5. На этапе 204 сегментационную границу накладывают на сформированное текущее изображение 150, чтобы сформировать сегментированное текущее изображение. На этапе 206 сегментированное текущее изображение отображают для радиолога или другого медицинского специалиста. На этапе 208 радиолог или другой медицинский специалист просматривает отображенное сегментированное изображение и определяет, удовлетворяет ли сегментация требованиям. Если сегментация на этапе 210 является удовлетворительной, то сегментированное текущее изображение сохраняют, например, в медицинской базе данных пациентов. Если сегментированное изображение не удовлетворяет требованиям, то радиолог или другой медицинский специалист настраивает порог на этапе 212. Когда порог настраивают, то этап 202 задания сегментационной границы переопределяет сегментационную границу, при этом переопределенная сегментационная граница налагается на текущее изображение на этапе 204 и отображается на этапе 206. Приведенная процедура настройки итерационно продолжается, пока радиолог или другой медицинский специалист не сочтет сегментацию достаточной.
Выше приведено описание изобретения со ссылкой на предпочтительные варианты осуществления. После прочтения и изучения вышеприведенного подробного описания другими специалистами могут быть созданы модификации и внесены изменения. Предполагается, что настоящее изобретение следует интерпретировать как включающее в себя все подобные модификации и изменения в такой степени, насколько они не выходят за пределы объема притязаний прилагаемой формулы изобретения или ее эквивалентов.
Claims (13)
1. Система для сегментации текущих диагностических изображений, содержащая:
по меньшей мере одну рабочую станцию (30), которая сегментирует представляющий интерес объем или орган в ранее сформированных диагностических изображениях выбранного представляющего интерес объема или органа, сформированных для множества пациентов;
по меньшей мере один процессор (32), запрограммированный с возможностью:
совмещения (34) сегментированных ранее сформированных изображений и
объединения (36) сегментированных ранее сформированных изображений в вероятностную карту (22), которая отражает (1) вероятность того, что каждый воксель представляет представляющий интерес объем или орган, (2) вероятность того, что каждый воксель представляет фон, и (3) среднюю сегментационную границу (40); и
процессор (50) сегментации, который совмещает вероятностную карту (40) с текущим диагностическим изображением (14) представляющего интерес объема или органа в текущем пациенте, чтобы сформировать преобразованную вероятностную карту (62), при этом процессор (50) сегментации запрограммирован с возможностью совмещения вероятностной карты с текущим изображением посредством выполнения этапов:
сегментации (52) представляющего интерес объема или органа в текущем диагностическом изображении (14) посредством извлечения обычной модели объема из библиотеки (54) моделей и подгонки ее к представляющему интерес объему,
совмещения (56) средней сегментационной границы (40) с сегментированным представляющим интерес объемом одного из текущего изображения и модели, совмещенной с текущим изображением,
определения (58) преобразования, посредством которого средняя сегментационная граница была преобразована для совмещения с упомянутым сегментированным объемом или моделью органа,
преобразования (60) вероятностной карты с использованием определенного преобразования, чтобы сформировать преобразованную вероятностную карту;
процессор сегментационной границы, который определяет сегментационную границу для представляющего интерес объема или органа на основании преобразованной вероятностной карты.
по меньшей мере одну рабочую станцию (30), которая сегментирует представляющий интерес объем или орган в ранее сформированных диагностических изображениях выбранного представляющего интерес объема или органа, сформированных для множества пациентов;
по меньшей мере один процессор (32), запрограммированный с возможностью:
совмещения (34) сегментированных ранее сформированных изображений и
объединения (36) сегментированных ранее сформированных изображений в вероятностную карту (22), которая отражает (1) вероятность того, что каждый воксель представляет представляющий интерес объем или орган, (2) вероятность того, что каждый воксель представляет фон, и (3) среднюю сегментационную границу (40); и
процессор (50) сегментации, который совмещает вероятностную карту (40) с текущим диагностическим изображением (14) представляющего интерес объема или органа в текущем пациенте, чтобы сформировать преобразованную вероятностную карту (62), при этом процессор (50) сегментации запрограммирован с возможностью совмещения вероятностной карты с текущим изображением посредством выполнения этапов:
сегментации (52) представляющего интерес объема или органа в текущем диагностическом изображении (14) посредством извлечения обычной модели объема из библиотеки (54) моделей и подгонки ее к представляющему интерес объему,
совмещения (56) средней сегментационной границы (40) с сегментированным представляющим интерес объемом одного из текущего изображения и модели, совмещенной с текущим изображением,
определения (58) преобразования, посредством которого средняя сегментационная граница была преобразована для совмещения с упомянутым сегментированным объемом или моделью органа,
преобразования (60) вероятностной карты с использованием определенного преобразования, чтобы сформировать преобразованную вероятностную карту;
процессор сегментационной границы, который определяет сегментационную границу для представляющего интерес объема или органа на основании преобразованной вероятностной карты.
2. Система по п. 1, дополнительно включающая в себя:
классификатор (70), который предварительно обучен классификации диагностических изображений представляющего интерес объема или органа на основании характеристик диагностического изображения, чтобы определять вероятность того, что по меньшей мере выбранные воксели текущего изображения обозначают (1) представляющий интерес объем или орган и (2) фон; и
процессор или компьютерную подпрограмму (80) объединения, который(ая) объединяет вероятности из классификатора и вероятности соответствующих вокселей из преобразованной вероятностной карты, совмещенной с текущим изображением.
классификатор (70), который предварительно обучен классификации диагностических изображений представляющего интерес объема или органа на основании характеристик диагностического изображения, чтобы определять вероятность того, что по меньшей мере выбранные воксели текущего изображения обозначают (1) представляющий интерес объем или орган и (2) фон; и
процессор или компьютерную подпрограмму (80) объединения, который(ая) объединяет вероятности из классификатора и вероятности соответствующих вокселей из преобразованной вероятностной карты, совмещенной с текущим изображением.
3. Система по п. 2, дополнительно включающая в себя:
пользовательское устройство (82) ввода, посредством которого вводят относительные весовые коэффициенты, с использованием которых объединяют вероятности классификатора и вероятностной карты.
пользовательское устройство (82) ввода, посредством которого вводят относительные весовые коэффициенты, с использованием которых объединяют вероятности классификатора и вероятностной карты.
4. Система по п. 2, в которой:
упомянутый процессор сегментационной границы дополнительно определяет упомянутую сегментационную границу для представляющего интерес объема или органа в текущем изображении на основании объединенных вероятностей и дополнительно включает в себя:
процессор или компьютерную подпрограмму (90), который(ая) объединяет определенную сегментационную границу с текущим изображением (14).
упомянутый процессор сегментационной границы дополнительно определяет упомянутую сегментационную границу для представляющего интерес объема или органа в текущем изображении на основании объединенных вероятностей и дополнительно включает в себя:
процессор или компьютерную подпрограмму (90), который(ая) объединяет определенную сегментационную границу с текущим изображением (14).
5. Система по п. 1, дополнительно включающая в себя:
устройство или процессор (110) пороговой обработки, которое(ый) присваивает воксели текущего изображения, которые в преобразованной вероятностной карте имеют вероятности выше порогового значения, одному из представляющего интерес объема или органа и фона, и если воксели имеют вероятности ниже упомянутого порога, то другому из представляющего интерес объема или органа и фона.
устройство или процессор (110) пороговой обработки, которое(ый) присваивает воксели текущего изображения, которые в преобразованной вероятностной карте имеют вероятности выше порогового значения, одному из представляющего интерес объема или органа и фона, и если воксели имеют вероятности ниже упомянутого порога, то другому из представляющего интерес объема или органа и фона.
6. Система по п. 5, в которой:
процессор (112) сегментационной границы дополнительно определяет сегментационную границу из границы раздела между вокселями, назначенным представляющему интерес объему или органу, и вокселями, назначенными фону, и дополнительно включает в себя:
процессор (90) изображений, запрограммированный с возможностью объединения сегментационной границы с текущим изображением;
дисплей (100), на котором отображается сегментированное текущее изображение; и
устройство (116) ввода, посредством которого пользователь настраивает вероятностный порог для настройки сегментационной границы и для настройки сегментации отображенного сегментированного текущего изображения.
процессор (112) сегментационной границы дополнительно определяет сегментационную границу из границы раздела между вокселями, назначенным представляющему интерес объему или органу, и вокселями, назначенными фону, и дополнительно включает в себя:
процессор (90) изображений, запрограммированный с возможностью объединения сегментационной границы с текущим изображением;
дисплей (100), на котором отображается сегментированное текущее изображение; и
устройство (116) ввода, посредством которого пользователь настраивает вероятностный порог для настройки сегментационной границы и для настройки сегментации отображенного сегментированного текущего изображения.
7. Способ сегментации диагностических изображений, содержащий этапы:
сегментируют представляющий интерес объем или орган в предыдущих диагностических изображениях выбранного представляющего интерес объема или органа, сформированных для множества пациентов;
совмещают сегментированные предыдущие изображения;
объединяют сегментированные предыдущие изображения в вероятностную карту, которая обозначает (1) вероятность того, что каждый воксель представляет представляющий интерес объем или орган, (2) вероятность того, что каждый воксель представляет фон, и (3) среднюю сегментационную границу; и
совмещают вероятностную карту с текущим диагностическим изображением представляющего интерес объема или органа текущего пациента, чтобы сформировать преобразованную вероятностную карту (62),
отличающийся этапами:
сегментации (52) представляющего интерес объема или органа в текущем диагностическом изображении посредством извлечения обычной модели объема или органа из библиотеки (54) моделей и подгонки ее к представляющему интерес объему или органу,
совмещения (56) средней сегментационной границы (40) с моделью объема или органа,
определения (58) преобразования, посредством которого средняя сегментационная граница была преобразована для совмещения с текущим изображением,
преобразования (60) вероятностной карты с использованием определенного преобразования, чтобы сформировать преобразованную вероятностную карту;
определения сегментационной границы для представляющего интерес объема или органа на основании по меньшей мере преобразованной вероятностной карты.
сегментируют представляющий интерес объем или орган в предыдущих диагностических изображениях выбранного представляющего интерес объема или органа, сформированных для множества пациентов;
совмещают сегментированные предыдущие изображения;
объединяют сегментированные предыдущие изображения в вероятностную карту, которая обозначает (1) вероятность того, что каждый воксель представляет представляющий интерес объем или орган, (2) вероятность того, что каждый воксель представляет фон, и (3) среднюю сегментационную границу; и
совмещают вероятностную карту с текущим диагностическим изображением представляющего интерес объема или органа текущего пациента, чтобы сформировать преобразованную вероятностную карту (62),
отличающийся этапами:
сегментации (52) представляющего интерес объема или органа в текущем диагностическом изображении посредством извлечения обычной модели объема или органа из библиотеки (54) моделей и подгонки ее к представляющему интерес объему или органу,
совмещения (56) средней сегментационной границы (40) с моделью объема или органа,
определения (58) преобразования, посредством которого средняя сегментационная граница была преобразована для совмещения с текущим изображением,
преобразования (60) вероятностной карты с использованием определенного преобразования, чтобы сформировать преобразованную вероятностную карту;
определения сегментационной границы для представляющего интерес объема или органа на основании по меньшей мере преобразованной вероятностной карты.
8. Способ по п. 7, дополнительно включающий в себя следующие этапы:
классифицируют текущее изображение представляющего интерес объема или органа с использованием предварительно обученной подпрограммы классификатора на основании характеристик текущего изображения, чтобы определять вероятность того, что по меньшей мере выбранные воксели текущего изображения отображают (1) представляющий интерес объем или орган и (2) фон; и
объединяют вероятности из подпрограммы классификатора и вероятности из преобразованной вероятностной карты, совмещенной с текущим изображением.
классифицируют текущее изображение представляющего интерес объема или органа с использованием предварительно обученной подпрограммы классификатора на основании характеристик текущего изображения, чтобы определять вероятность того, что по меньшей мере выбранные воксели текущего изображения отображают (1) представляющий интерес объем или орган и (2) фон; и
объединяют вероятности из подпрограммы классификатора и вероятности из преобразованной вероятностной карты, совмещенной с текущим изображением.
9. Способ по п. 8, дополнительно включающий в себя этапы:
определяют сегментационную границу для представляющего интерес объема или органа в текущем изображении на основании объединенных вероятностей и
объединяют определенную сегментационную границу с текущим изображением.
определяют сегментационную границу для представляющего интерес объема или органа в текущем изображении на основании объединенных вероятностей и
объединяют определенную сегментационную границу с текущим изображением.
10. Способ по п. 7, дополнительно включающий в себя этапы:
назначают воксели текущего изображения, которые в преобразованной вероятностной карте имеют вероятности выше порога, одному из представляющего интерес объема или органа и фона и воксели ниже порога - другому из представляющего интерес объема или органа и фона;
определяют сегментационную границу из границы раздела между вокселями, назначенными представляющему интерес объему или органу, и вокселями, назначенными фону;
объединяют сегментационную границу с текущим изображением, чтобы сформировать сегментированное текущее изображение; и
отображают сегментированное текущее изображение.
назначают воксели текущего изображения, которые в преобразованной вероятностной карте имеют вероятности выше порога, одному из представляющего интерес объема или органа и фона и воксели ниже порога - другому из представляющего интерес объема или органа и фона;
определяют сегментационную границу из границы раздела между вокселями, назначенными представляющему интерес объему или органу, и вокселями, назначенными фону;
объединяют сегментационную границу с текущим изображением, чтобы сформировать сегментированное текущее изображение; и
отображают сегментированное текущее изображение.
11. Способ по п. 10, дополнительно включающий в себя этап:
настраивают порог для настройки сегментационной границы и для настройки сегментации отображенного сегментированного текущего изображения.
настраивают порог для настройки сегментационной границы и для настройки сегментации отображенного сегментированного текущего изображения.
12. Материальный машиночитаемый носитель информации, содержащий по меньшей мере одну компьютерную программу для управления по меньшей мере одним процессором, чтобы выполнять способ по любому из пп. 7-11.
13. Вероятностная карта, сформированная способом по п. 7.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US31272510P | 2010-03-11 | 2010-03-11 | |
| US61/312,725 | 2010-03-11 | ||
| PCT/IB2011/050601 WO2011110960A1 (en) | 2010-03-11 | 2011-02-14 | Probabilistic refinement of model-based segmentation |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| RU2012143409A RU2012143409A (ru) | 2014-04-20 |
| RU2571523C2 true RU2571523C2 (ru) | 2015-12-20 |
Family
ID=43978061
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| RU2012143409/08A RU2571523C2 (ru) | 2010-03-11 | 2011-02-14 | Вероятностная оптимизация сегментации, основанной на модели |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US9659364B2 (ru) |
| EP (1) | EP2545527B1 (ru) |
| JP (1) | JP5931755B2 (ru) |
| CN (1) | CN102947862B (ru) |
| CA (1) | CA2792736C (ru) |
| RU (1) | RU2571523C2 (ru) |
| WO (1) | WO2011110960A1 (ru) |
Families Citing this family (46)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013040673A1 (en) * | 2011-09-19 | 2013-03-28 | The University Of British Columbia | Method and systems for interactive 3d image segmentation |
| CN103679189B (zh) | 2012-09-14 | 2017-02-01 | 华为技术有限公司 | 场景识别的方法和装置 |
| US9122950B2 (en) | 2013-03-01 | 2015-09-01 | Impac Medical Systems, Inc. | Method and apparatus for learning-enhanced atlas-based auto-segmentation |
| FR3004834B1 (fr) | 2013-04-18 | 2015-05-15 | Univ Rennes | Procede de production de donnees representatives de contraintes de traitement de radiotherapie, dispositifs et programme correspondant |
| US10025479B2 (en) * | 2013-09-25 | 2018-07-17 | Terarecon, Inc. | Advanced medical image processing wizard |
| CA3187156A1 (en) * | 2013-12-03 | 2015-06-11 | Viewray Technologies, Inc. | Single- and multi-modality alignment of medical images in the presence of non-rigid deformations using phase correlation |
| CN104751163B (zh) * | 2013-12-27 | 2018-06-19 | 同方威视技术股份有限公司 | 对货物进行自动分类识别的透视检查系统和方法 |
| CN106030655B (zh) * | 2014-01-06 | 2019-07-23 | 皇家飞利浦有限公司 | 脑的磁共振图像中的铰接结构配准 |
| WO2015109331A1 (en) * | 2014-01-17 | 2015-07-23 | The Johns Hopkins University | Automated anatomical labeling by multi-contrast diffeomorphic probability fusion |
| US9058692B1 (en) | 2014-04-16 | 2015-06-16 | Heartflow, Inc. | Systems and methods for image-based object modeling using multiple image acquisitions or reconstructions |
| JP6469731B2 (ja) * | 2014-06-12 | 2019-02-13 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 画像をセグメント化するためのパラメータの最適化 |
| CA2960889C (en) * | 2014-09-15 | 2022-04-19 | Synaptive Medical (Barbados) Inc. | System and method for image processing |
| JP6789933B2 (ja) * | 2014-10-22 | 2020-11-25 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 画像化不確実性の可視化 |
| US10504252B2 (en) * | 2014-12-15 | 2019-12-10 | Canon Medical Systems Corporation | Method of, and apparatus for, registration and segmentation of medical imaging data |
| CN107111881B (zh) * | 2014-12-16 | 2021-06-15 | 皇家飞利浦有限公司 | 对应性概率图驱动的可视化 |
| CN107106128B (zh) * | 2015-01-06 | 2020-07-03 | 皇家飞利浦有限公司 | 用于分割解剖目标的超声成像装置和方法 |
| WO2016173957A1 (en) * | 2015-04-30 | 2016-11-03 | Koninklijke Philips N.V. | Brain tissue classification |
| US9858675B2 (en) | 2016-02-11 | 2018-01-02 | Adobe Systems Incorporated | Object segmentation, including sky segmentation |
| US9972092B2 (en) * | 2016-03-31 | 2018-05-15 | Adobe Systems Incorporated | Utilizing deep learning for boundary-aware image segmentation |
| CN115407252A (zh) | 2016-06-22 | 2022-11-29 | 优瑞技术公司 | 低场强磁共振成像 |
| US11284811B2 (en) | 2016-06-22 | 2022-03-29 | Viewray Technologies, Inc. | Magnetic resonance volumetric imaging |
| JP6884211B2 (ja) * | 2016-12-15 | 2021-06-09 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 合成視野を有するx線装置 |
| US10325413B2 (en) * | 2017-02-28 | 2019-06-18 | United Technologies Corporation | Generating smooth optimized parts |
| CN110914866B (zh) * | 2017-05-09 | 2024-04-30 | 哈特弗罗公司 | 用于在图像分析中进行解剖结构分割的系统和方法 |
| US11234635B2 (en) | 2017-05-19 | 2022-02-01 | University Of Louisville Research Foundation, Inc | Method and system for monitoring and evaluation of pressure ulcer severity |
| TWI768096B (zh) * | 2017-08-25 | 2022-06-21 | 瑞士商西克帕控股有限公司 | 光學效果層、用於產生此光學效果層的裝置及進程、及此裝置的使用方法 |
| CN110020354B (zh) * | 2017-09-30 | 2021-02-26 | 北京国双科技有限公司 | 点击热力图异常检测方法及装置 |
| EP3691536A4 (en) * | 2017-10-03 | 2021-03-17 | The Regents of the University of California | APPARATUS AND METHOD FOR DETERMINING THE SPATIAL PROBABILITY OF PROSTATE CANCER |
| US11633146B2 (en) * | 2019-01-04 | 2023-04-25 | Regents Of The University Of Minnesota | Automated co-registration of prostate MRI data |
| US11631171B2 (en) | 2019-01-10 | 2023-04-18 | Regents Of The University Of Minnesota | Automated detection and annotation of prostate cancer on histopathology slides |
| CN110120052B (zh) * | 2019-05-13 | 2021-05-07 | 上海联影医疗科技股份有限公司 | 一种靶区图像分割系统及装置 |
| US11055849B2 (en) | 2019-10-18 | 2021-07-06 | Omniscient Neurotechnology Pty Limited | Processing of brain image data to assign voxels to parcellations |
| US20210142480A1 (en) * | 2019-11-12 | 2021-05-13 | Canon Medical Systems Corporation | Data processing method and apparatus |
| JP7564616B2 (ja) * | 2019-11-21 | 2024-10-09 | オムロン株式会社 | モデル生成装置、推定装置、モデル生成方法、及びモデル生成プログラム |
| US11532084B2 (en) * | 2020-05-11 | 2022-12-20 | EchoNous, Inc. | Gating machine learning predictions on medical ultrasound images via risk and uncertainty quantification |
| CN111754530B (zh) * | 2020-07-02 | 2023-11-28 | 广东技术师范大学 | 一种前列腺超声图像分割分类方法 |
| CA3189445A1 (en) | 2020-08-07 | 2022-02-10 | Reflexion Medical, Inc. | Multi-sensor guided radiation therapy |
| JP7551419B2 (ja) * | 2020-09-23 | 2024-09-17 | キヤノン株式会社 | 情報処理装置、情報処理方法及びプログラム |
| US11625813B2 (en) | 2020-10-30 | 2023-04-11 | Adobe, Inc. | Automatically removing moving objects from video streams |
| EP4012662A1 (en) * | 2020-12-09 | 2022-06-15 | Koninklijke Philips N.V. | Method for identifying a material boundary in volumetric image data |
| CA3206872A1 (en) * | 2021-01-04 | 2022-07-07 | Hinge Health, Inc. | Object identifications in images or videos |
| CN113902690B (zh) * | 2021-09-24 | 2024-12-10 | 杭州脉流科技有限公司 | 基于血管腔内影像计算血流储备分数的方法、装置、计算设备以及存储介质 |
| US20240037808A1 (en) * | 2022-07-27 | 2024-02-01 | Stryker Corporation | Systems and methods for real-time processing of medical imaging data utilizing an external processing device |
| US20240041430A1 (en) * | 2022-08-03 | 2024-02-08 | GE Precision Healthcare LLC | Method and system for defining a boundary of a region of interest by applying threshold values to outputs of a probabilistic automatic segmentation model based on user-selected segmentation sensitivity levels |
| EP4361942A1 (en) * | 2022-10-27 | 2024-05-01 | Koninklijke Philips N.V. | System and method for segmenting an object in image data |
| CN116531089B (zh) * | 2023-07-06 | 2023-10-20 | 中国人民解放军中部战区总医院 | 基于图像增强的阻滞麻醉超声引导数据处理方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2171630C2 (ru) * | 1999-06-18 | 2001-08-10 | Пестряков Андрей Витальевич | Способ совмещения трехмерных изображений, полученных с помощью компьютерных томографов, работающих на основе различных физических принципов |
| US20080008369A1 (en) * | 2006-05-18 | 2008-01-10 | Sergei Koptenko | Methods and systems for segmentation using boundary reparameterization |
| US20090226060A1 (en) * | 2008-03-04 | 2009-09-10 | Gering David T | Method and system for improved image segmentation |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007098028A (ja) * | 2005-10-07 | 2007-04-19 | Konica Minolta Medical & Graphic Inc | モデリング装置、モデリング方法、領域抽出装置、およびプログラム |
| US8126244B2 (en) | 2007-09-21 | 2012-02-28 | Siemens Medical Solutions Usa, Inc. | User interface for polyp annotation, segmentation, and measurement in 3D computed tomography colonography |
| US8600130B2 (en) | 2008-03-25 | 2013-12-03 | Elekta Ab (Publ) | 3D medical image segmentation |
| US9785858B2 (en) * | 2008-09-26 | 2017-10-10 | Siemens Healthcare Gmbh | Method and system for hierarchical parsing and semantic navigation of full body computed tomography data |
-
2011
- 2011-02-14 US US13/581,512 patent/US9659364B2/en not_active Expired - Fee Related
- 2011-02-14 WO PCT/IB2011/050601 patent/WO2011110960A1/en not_active Ceased
- 2011-02-14 EP EP11714103.6A patent/EP2545527B1/en not_active Not-in-force
- 2011-02-14 RU RU2012143409/08A patent/RU2571523C2/ru active
- 2011-02-14 JP JP2012556615A patent/JP5931755B2/ja not_active Expired - Fee Related
- 2011-02-14 CA CA2792736A patent/CA2792736C/en active Active
- 2011-02-14 CN CN201180013397.2A patent/CN102947862B/zh not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2171630C2 (ru) * | 1999-06-18 | 2001-08-10 | Пестряков Андрей Витальевич | Способ совмещения трехмерных изображений, полученных с помощью компьютерных томографов, работающих на основе различных физических принципов |
| US20080008369A1 (en) * | 2006-05-18 | 2008-01-10 | Sergei Koptenko | Methods and systems for segmentation using boundary reparameterization |
| US20090226060A1 (en) * | 2008-03-04 | 2009-09-10 | Gering David T | Method and system for improved image segmentation |
Non-Patent Citations (1)
| Title |
|---|
| Commowick O. et al, "Atlas-Based Delineation of Lymph Node Levels in Head and Neck Computed Tomography Images", Elsevier Science, 18.01.2008. * |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2545527A1 (en) | 2013-01-16 |
| CA2792736A1 (en) | 2011-09-15 |
| JP2013521844A (ja) | 2013-06-13 |
| CN102947862B (zh) | 2015-09-09 |
| RU2012143409A (ru) | 2014-04-20 |
| US20120320055A1 (en) | 2012-12-20 |
| EP2545527B1 (en) | 2014-07-02 |
| US9659364B2 (en) | 2017-05-23 |
| WO2011110960A1 (en) | 2011-09-15 |
| JP5931755B2 (ja) | 2016-06-08 |
| CN102947862A (zh) | 2013-02-27 |
| CA2792736C (en) | 2018-07-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU2571523C2 (ru) | Вероятностная оптимизация сегментации, основанной на модели | |
| US11227683B2 (en) | Methods and systems for characterizing anatomical features in medical images | |
| JP6877868B2 (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
| US8751961B2 (en) | Selection of presets for the visualization of image data sets | |
| RU2677764C2 (ru) | Координатная привязка медицинских изображений | |
| US8335359B2 (en) | Systems, apparatus and processes for automated medical image segmentation | |
| US20150356730A1 (en) | Quantitative predictors of tumor severity | |
| EP2620909B1 (en) | Method, system and computer readable medium for automatic segmentation of a medical image | |
| WO2007044508A2 (en) | System and method for whole body landmark detection, segmentation and change quantification in digital images | |
| EP2620885A2 (en) | Medical image processing apparatus | |
| US7860331B2 (en) | Purpose-driven enhancement filtering of anatomical data | |
| Zeng et al. | Liver segmentation in magnetic resonance imaging via mean shape fitting with fully convolutional neural networks | |
| EP3989172A1 (en) | Method for use in generating a computer-based visualization of 3d medical image data | |
| Ruppert et al. | Medical image registration based on watershed transform from greyscale marker and multi-scale parameter search | |
| Akilandeswari et al. | Enhanced Liver Image Segmentation using Custom Metrics and UNet with FastAI | |
| US20240249414A1 (en) | 3d interactive annotation using projected views | |
| US20250022138A1 (en) | Image segmentation apparatus and image segmentation method | |
| US20240055124A1 (en) | Image analysis method for improved clinical decision making | |
| Kubicek et al. | Autonomous segmentation and modeling of brain pathological findings based on iterative segmentation from MR images | |
| EP4657379A1 (en) | Hybrid intelligence for knowledge driven synthesis of realistic lesions | |
| Eichner | Interactive co-registration for multi-modal cancer imaging data based on segmentation masks | |
| 鈴木裕紀 | Segmentation of Blood Vessels and Pathological Regions from Computed Tomography Images using Convolutional Neural Networks | |
| Li | Computer generative method on brain tumor segmentation in MRI images | |
| CN119723071A (zh) | 用于医学图像分割模型的精确训练的图像级注释的改进描绘 | |
| Grandhe et al. | Fusion Based Integrated Advance Magnetic Visualization of MRI 3D Images Using Advance Matlab Tools |