RU2422881C1 - FUNCTIONAL OUTPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) (VERSIONS) - Google Patents
FUNCTIONAL OUTPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) (VERSIONS) Download PDFInfo
- Publication number
- RU2422881C1 RU2422881C1 RU2010108238/08A RU2010108238A RU2422881C1 RU 2422881 C1 RU2422881 C1 RU 2422881C1 RU 2010108238/08 A RU2010108238/08 A RU 2010108238/08A RU 2010108238 A RU2010108238 A RU 2010108238A RU 2422881 C1 RU2422881 C1 RU 2422881C1
- Authority
- RU
- Russia
- Prior art keywords
- logical
- multiplier
- linear
- parallel
- functional
- Prior art date
Links
- 238000013178 mathematical model Methods 0.000 claims 4
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract 1
Landscapes
- Complex Calculations (AREA)
Abstract
FIELD: information technology.
SUBSTANCE: in one version, the device has two logic structures, each consisting of j AND logic elements, a logic structure consisting of j+2 AND logic elements and a logic structure consisting of j+2 OR logic elements.
EFFECT: simple design of the multiplier and high speed of operation.
4 cl
Description
Claims (4)
где - линейная логическая структура f1-8([&j])-И, которая включает «j» логических функций f(&)-И - линейная логическая структура f([}j+2])-ИЛИ, которая включает «j+2» логических функций f(})-ИЛИ.1. The functional input structure of a parallel-serial multiplier f Σ (Σ) in the positional format of the multiplier [m j ] f (2 n ) and the factor [n i ] f (2 n ), which includes an adder to form an intermediate sum [S j + 2 ] 0 and linear logical structures f 1 ([& j ]) - And and f 2 ([& j ]) - And from the "j" logical functions f (&) - And to form two conditionally "i + 1" and «i» partial products, in which the first function input connection are functional input connections for receiving input structure argument n i and n i + 1 multiplier [n i] f (2 n), and the second functional Rin dnye communications are functional input connections of the input structure for receiving the corresponding argument [m j] multiplicand [m j] f (2 n), characterized in that the upstream structure is further introduced linear logical structure of f ([& j + 2]) - and from "j + 2" logical functions f (&) - AND and the linear logical structure f ([} j + 2 ]) - OR from "j + 2" logical functions f (}) - OR to form the resulting sum [S j +2] (i + 1 & i) two conventionally «i + 1" and «i» successive partial products, wherein the functional relationship of the input structure parallel to serial factor f Σ (Σ) made in accordance with the mathematical model of the form
Where - linear logical structure f 1-8 ([& j ]) - And, which includes the "j" logical functions f (&) - And - linear logical structure f ([} j + 2 ]) - OR, which includes "j + 2" logical functions f (}) - OR.
где - линейная логическая структура f([& j])-И-НЕ, которая включает «j» логических функций f(&)-И-НЕ.2. Functional input structure of a parallel-serial multiplier f Σ (Σ) in the positional format of the multiplier [m j ] f (2 n ) and the factor [n i ] f (2 n ), which includes an adder to form an intermediate sum [S j + 2 ] 0 , characterized in that linear logical structures f 1 ([ & j ]) - AND-NOT, f 2 ([ & j ]) - AND-NOT from the “j” logical functions f ( & ) AND-NOT, f 1 ([ & j + 2 ]) - AND NOT from the “j + 2” logical functions f ( & ) -AND NOT and the linear logical structure f 1 ([ & j + 2 ]) -AND NOT from the "j + 2" logical functions f ( & ) -AND NOT to form the resulting sum [S j + 2 ] (i + 1 & i) of two conditionally “i + 1” and “i” consecutive partial products, while the functional connections in the input structure of the parallel-serial multiplier f Σ (Σ) are made in accordance with a mathematical model of the form
Where - the linear logical structure f ([ & j ]) - AND-NOT, which includes the "j" logical functions f ( & ) -AND-NOT.
3. The functional input structure of a parallel-serial multiplier f Σ (Σ) in the positional format of the multiplier [m j ] f (2 n ) and the factor [n i ] f (2 n ), which includes an adder to form an intermediate sum [ S j + 2 ] 0 with a changed level of the analog signal, characterized in that linear logic structures f 1 ([} j ]) - OR, f 2 ([} j ]) - OR from "j" logic functions f ( }) - OR, the linear logical structure f 1 ([} j + 2 ]) - OR from the "j + 2" logical functions f (}) - OR and the linear logical structure f 1 ([ & j + 2 ]) - AND -NOT of the "j + 2" logs eskih functions f (&) -And-NO to form the resultant sum [S j + 2] (i + 1 & i) two conventionally «i + 1" and «i» successive partial products, wherein the functional relationship of the input structure parallel to serial the multipliers f Σ (Σ) are made in accordance with a mathematical model of the form
где - линейная логическая структура f1,2([}& j])-ИЛИ-НЕ, которая включает «j» логических функций f(}&)-ИЛИ-НЕ. 4. Functional input structure of a parallel-serial multiplier f Σ (Σ) in the positional format of the multiplier [m j ] f (2 n ) and the factor [n i ] f (2 n ), which includes an adder to form an intermediate sum [ S j + 2 ] 0 with a changed analog signal level, characterized in that linear logical structures f 1 ([} & j ]) - OR-NOT, f 2 ([} & j ]) - OR-NOT from " j "of logical functions f (} & ) - OR NOT, linear logical structure f ([} & j + 2 ]) - OR NOT from" j + 2 "logical functions f (} & ) - OR NOT and linear logical structure f ([} j + 2 ]) - OR from “j + 2” logical functions f (}) - OR to form the resulting sum [S j + 2 ] (i + 1 & i) of two conditionally “i + 1” and “i” consecutive partial products, while the functional relationships in the input structure of a parallel-serial multiplier f Σ (Σ) is made in accordance with a mathematical model of the form
Where - the linear logical structure f 1,2 ([} & j ]) - OR NOT, which includes the "j" logical functions f (} & ) - OR NOT.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RU2010108238/08A RU2422881C1 (en) | 2010-03-04 | 2010-03-04 | FUNCTIONAL OUTPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) (VERSIONS) |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RU2010108238/08A RU2422881C1 (en) | 2010-03-04 | 2010-03-04 | FUNCTIONAL OUTPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) (VERSIONS) |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| RU2422881C1 true RU2422881C1 (en) | 2011-06-27 |
Family
ID=44739390
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| RU2010108238/08A RU2422881C1 (en) | 2010-03-04 | 2010-03-04 | FUNCTIONAL OUTPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) (VERSIONS) |
Country Status (1)
| Country | Link |
|---|---|
| RU (1) | RU2422881C1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2753184C1 (en) * | 2020-12-26 | 2021-08-12 | Акционерное общество Научно-производственный центр «Электронные вычислительно-информационные системы» (АО НПЦ «ЭЛВИС») | Parametrizable single-stroke binary multiplier with fixed dot in direct and auxiliary code |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2012039C1 (en) * | 1988-12-06 | 1994-04-30 | Пензенский научно-исследовательский электротехнический институт | Single-ended binary-digit multiplier |
| JP2000172487A (en) * | 1998-12-10 | 2000-06-23 | Nec Ic Microcomput Syst Ltd | Multiplier circuit and method therefor |
| RU2378684C1 (en) * | 2008-04-29 | 2010-01-10 | Лев Петрович Петренко | FUNCTIONAL INPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER OF POSITION-SIGN SYSTEM f(+/-) FORMAT |
-
2010
- 2010-03-04 RU RU2010108238/08A patent/RU2422881C1/en active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2012039C1 (en) * | 1988-12-06 | 1994-04-30 | Пензенский научно-исследовательский электротехнический институт | Single-ended binary-digit multiplier |
| JP2000172487A (en) * | 1998-12-10 | 2000-06-23 | Nec Ic Microcomput Syst Ltd | Multiplier circuit and method therefor |
| RU2378684C1 (en) * | 2008-04-29 | 2010-01-10 | Лев Петрович Петренко | FUNCTIONAL INPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER OF POSITION-SIGN SYSTEM f(+/-) FORMAT |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2753184C1 (en) * | 2020-12-26 | 2021-08-12 | Акционерное общество Научно-производственный центр «Электронные вычислительно-информационные системы» (АО НПЦ «ЭЛВИС») | Parametrizable single-stroke binary multiplier with fixed dot in direct and auxiliary code |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU2378682C2 (en) | INPUT STRUCTURE FOR PARALLEL ADDER IN POSITION-SIGN CODES f(+/-)(VERSIONS) | |
| RU2386162C2 (en) | FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS) | |
| RU2378684C1 (en) | FUNCTIONAL INPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER OF POSITION-SIGN SYSTEM f(+/-) FORMAT | |
| RU2422881C1 (en) | FUNCTIONAL OUTPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) (VERSIONS) | |
| RU2429565C1 (en) | FUNCTIONAL STRUCTURE FOR LOGIC-DYNAMIC PROCESS OF CONVERTING POSITION CONDITIONALLY NEGATIVE ARGUMENTS «-»[ni]f(2n) INTO STRUCTURE OF ARGUMENTS "COMPLEMENTARY CODE" OF POSITION-SIGN FORMAT USING ARITHMETIC AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS) | |
| RU2373563C1 (en) | FUNCTIONAL STRUCTURE OF MULTIPLIER, IN WHICH INPUT ARGUMENTS HAVE FORMAT OF BINARY NUMERATION SYSTEM f(2n), AND OUTPUT ARGUMENTS ARE FORMMED IN FORMAT OF POSITION-SIGN NUMERATION SYSTEM f(+/-) | |
| RU2443008C1 (en) | FUNCTIONAL STRUCTURE OF A TRANSFORMER OF PRELIMINARY FA fΣ [ni]&[mi](2n) OF PARALLEL-SERIAL MULTIPLICATOR fΣ (Σ) CONDITIONALLY, OF "i" DIGIT TO SUM UP OF POSITIONAL ADDITIVE OF SUMS [ni]f(2n) AND [mi]f(2n) OF PARTIAL PRODUCTS USING ARITHMETICAL AXIOMS OF TERNARY NOTATION f(+1, 0, -1) WITH THE FORMATION OF A RESULTING SUM [SΣ]f(2n) IN A POSITIONAL FORMAT | |
| RU2424549C1 (en) | FUNCTIONAL STRUCTURE OF PRE-ADDER fΣ([mj]&[mj,0]) OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) WITH PROCEDURE FOR LOGIC DIFFERENTIATION d/dn OF FIRST INTERMEDIATE SUM [S1 Σ]f(})- OR STRUCTURE OF ACTIVE ARGUMENTS OF MULTIPLICAND [0,mj]f(2n) and [mj,0]f(2n) (VERSIONS) | |
| RU2422880C1 (en) | FUNCTIONAL STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICANT [mj]f(2n) AND MULTIPLIER [ni]f(2n) WITH MINIMISED PROCEDURE OF FORMING FIRST LEVEL INTERMEDIATE SUMS f1..k[Sj+2] OF PARTIAL PRODUCTS, WHERE k IS NUMBER OF FIRST LEVEL INTERMEDIAT SUMS (VERSIONS) | |
| RU2422879C1 (en) | FUNCTIONAL STRUCTURE FOR PRE-ADDER OF PARALLEL-SERIAL MULTIPLIER fΣ(Σ) WITH MULTIPLICAND ARGUMENTS [mj]f(2n) AND MULTIPLIER ARGUMENTS [ni]f(2n) IN POSITION FORMAT (VERSIONS) | |
| RU2480817C1 (en) | FUNCTIONAL STRUCTURE OF ADDER f2(ΣCD) OF CONDITIONAL "k" BIT OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF INPUT STRUCTURES OF ARGUMENTS OF TERMS [1,2Sj h1]f(2n) AND [1,2Sj h2]f(2n) OF "COMPLEMENTARY CODE RU" POSITIONAL FORMAT BY APPLYING ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn OF ARGUMENTS IN COMBINED STRUCTURE THEREOF (VERSIONS OF RUSSIAN LOGIC) | |
| Jujjavarapu et al. | Verilog design, synthesis, and netlisting of IoT-based arithmetic logic and compression unit for 32 nm HVT cells | |
| RU2445680C1 (en) | FUNCTIONAL STRUCTURE OF THROUGH CARRY f1(←←)i+1 AND f2(←←)i OF CONVENTIONALLY "i+1" AND CONVENTIONALLY "i" DIGITS OF "k" GROUP OF ARGUMENTS OF MULTIPLICAND [ni]f(2n) OF PRELIMINARY SUMMATOR fΣ([ni]&[ni,0]) OF PARALLEL SERIES MULTIPLIER fΣ(Σ) (VERSIONS) | |
| RU2429564C1 (en) | FUNCTIONAL STRUCTURE OF PROCEDURE OF CONVERTING POSITION CONDITIONALLY NEGATIVE ARGUMENTS «-»[ni]f(2n) INTO STRUCTURE OF ARGUMENTS "COMPLEMENTARY CODE" OF POSITION-SIGN FORMAT USING ARITHMETIC AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS) | |
| RU2363978C2 (en) | Device for parallel boolean summation of analogue signals of terms equivalent to binary number system | |
| RU2380740C2 (en) | FUNCTIONAL STRUCTURE OF POSITION-SIGN ACCUMULATOR f(+/-) FOR COMBINATORIAL MULTIPLIER WHERE SUBPRODUCT OUTPUT ARGUMENTS ARE REPRESENTED IN BINARY FORMAT f(2n) (VERSIONS) | |
| RU2439660C2 (en) | FUNCTIONAL STRUCTURE OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) | |
| RU2424550C1 (en) | FUNCTIONAL STRUCTURE OF SERIAL RIPPLE CARRIES fj+1(←←)+ and fj(←←)+ OF CONDITIONAL "I" FORMATION ZONE FOR CORRECTING RESULTANT SUM OF PRESUMMATION OF ACTIVE ARGUMENTS OF MULTIPLICANT [mj]f(2n) OF POSITIONAL FORMAT IN PARALLEL-SERIAL MULTIPLIER fΣ(Σ) (VERSIONS) | |
| RU2375742C2 (en) | Method of parallel boolean summation of analogue signals of terms equivalent to binary number system and device for realising said method | |
| RU2390050C2 (en) | FUNCTIONAL DESIGN OF PARALLEL POSITION-SIGN ADDER OF ARGUMENTS OF TERMS OF TWO FORMATS OF BINARY NUMBER SYSTEM f(2n) AND POSITION-SIGN NUMBER SYSTEM f(+/-) (VERSIONS) | |
| RU2480814C1 (en) | FUNCTIONAL OUTPUT STRUCTURE OF CONDITIONAL BIT "j" OF ADDER fCD(Σ)RU WITH MAXIMALLY MINIMISED PROCESS CYCLE ∆tΣ FOR ARGUMENTS OF TERMS OF INTERMEDIATE ARGUMENTS (2Sj)2 d1/dn "LEVEL 2" AND (1Sj)2 d1/dn "LEVEL 1" OF SECOND TERM AND INTERMEDIATE ARGUMENTS (2Sj)1 d1/dn "LEVEL 2" AND (1Sj)1 d1/dn "LEVEL 1" OF FIRST TERM OF "COMPLENTARY CODE RU" FORMAT WITH GENERATION OF RESULTANT ARGUMENTS OF SUM (2Sj)f(2n) "LEVEL 2" AND (1Sj)f(2n) "LEVEL 1" IN SAME FORMAT (VERSIONS OF RUSSIAN LOGIC) | |
| RU2420868C1 (en) | METHOD OF GENERATING TRANSFORMED ARGUMENTS OF ANALOGUE SIGNALS (0j)i AND (0j+1)i; END-TO-END PARALLEL SHIFT f(←←) FOR TRANSFORMING POSITION-SIGN ARGUMENTS OF ANALOGUE SIGNALS ±[nj]f(+/-) IN CONDITIONAL "i" MINIMISATION ZONE AND FUNCTIONAL STRUCTURE FOR IMPLEMENTING SAID METHOD (VERSIONS) | |
| TW200502782A (en) | Digital signal processor based on jumping floating point arithmetic | |
| RU2437142C2 (en) | METHOD OF PARALLEL-SERIAL MULTIPLICATION OF POSITIONAL ARGUMENTS OF ANALOGUE SIGNALS OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) | |
| RU2439659C1 (en) | METHOD OF LOGIC-DYNAMIC PROCESS OF SUMMATION OF POSITIONAL ARGUMENTS OF ANALOGUE SIGNALS [ni]f(2n) AND [mi]f(2n) WITH APPLICATION OF ARITHMETIC AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND GENERATION OF RESULTING SUM OF ANALOGUE SIGNALS [Sj]f(2n) IN POSITIONAL FORMAT (RUSSIAN LOGIC) |