RU2018143985A - Способ и устройство для диагностики патологий лап четвероногих животных - Google Patents
Способ и устройство для диагностики патологий лап четвероногих животных Download PDFInfo
- Publication number
- RU2018143985A RU2018143985A RU2018143985A RU2018143985A RU2018143985A RU 2018143985 A RU2018143985 A RU 2018143985A RU 2018143985 A RU2018143985 A RU 2018143985A RU 2018143985 A RU2018143985 A RU 2018143985A RU 2018143985 A RU2018143985 A RU 2018143985A
- Authority
- RU
- Russia
- Prior art keywords
- images
- pathology
- image
- temperature
- limbs
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
- A61B5/015—By temperature mapping of body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/1036—Measuring load distribution, e.g. podologic studies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2503/00—Evaluating a particular growth phase or type of persons or animals
- A61B2503/40—Animals
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10048—Infrared image
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Artificial Intelligence (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Radiology & Medical Imaging (AREA)
- Mathematical Physics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Radiation Pyrometers (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Claims (68)
1. Автоматический способ диагностирования патологий дистальных частей (15ps, 15pd) конечностей четвероногих животных (15), включающий операции:
- генерирования термографических изображений указанных конечностей;
- обработки (101-109, 201-206) термографических изображений;
- выдачи (109), в качестве результата обработки, диагноза о наличии одной из множества патологий, если таковые имеются, и, в случае диагностирования наличия патологии, вида патологии;
способ отличается тем, что операция обработки включает следующие этапы:
- идентификация (103, 104) на каждом термографическом изображении и для каждой конечности, имеющей отношение к диагнозу, области, содержащей указанную дистальную часть (15ps, 15рd), и формирование идентифицированного изображения дистальной части из указанной области;
- проверка идентифицированных изображений на соответствие заданным критериям в качестве изображений, используемых для диагностических целей;
- извлечение (105) признаков, которые являются существенными для обнаружения наличия и вида патологии из проверенных изображений;
- классификация (106) дистальной части конечности в качестве не пораженной патологиями или пораженной одной из указанных патологий на основе таких признаков.
2. Способ по п. 1, отличающийся тем, что:
- операцию генерирования термографических изображений выполняют во время периода наблюдения, на котором животное (15) находится в местоположении (17) для наблюдения и генерирует либо один дискретный или непрерывный поток термографических изображений для всех конечностей, подлежащих диагностике, либо разные дискретные или непрерывные потоки термографических изображений для разных конечностей;
- операция обработки выполнена с возможностью извлечения изображений, относящихся к множеству моментов периода наблюдения, из одного или каждого потока, изображения, извлеченные в данный момент из разных потоков, объединяют в одно итоговое изображение, на котором проводят идентификацию дистальных частей всех конечностей;
- диагноз о возможном наличии патологии и ее вида ставят в конце периода наблюдения на основе результатов классификации, проведенной начиная с изображений, относящихся к указанному множеству моментов.
3. Способ по п. 1 или 2, отличающийся тем, что этап идентификации изображения дистальной части включает этапы:
- вычисления средней температуры каждого изображения или части каждого изображения;
- идентификации точек изображения, в которых температура превышает среднюю температуру, в качестве относящихся к дистальным частям;
или, в качестве альтернативы, включает этапы:
- создания (201) по меньшей мере одной гистограммы температуры на каждом изображении или части каждого изображения;
- генерирования (202) по меньшей мере одного адаптивного порогового значения температуры;
- определения (203, 204) конечных краев изображения или части изображения дистальной части (15ps, 15pd) путем идентификации точек, в которых происходит переход от температурного условия выше порогового значения к температурному условию ниже порогового значения и наоборот;
- создания, начиная от таких точек, кадрового многоугольника, определяющего полезную область дистальной части.
4. Способ по п. 1, отличающийся тем, что этап (104) проверки включает проверку соответствия по меньшей мере одному из следующих критериев с комбинацией по меньшей мере некоторых из следующих критериев:
- размер дистальной части принимает значения в диапазоне от минимального до максимального размера;
- минимальные и максимальные значения температуры в дистальных частях находятся в диапазоне, совместимом с биологией животного;
- расстояние от краев изображения не меньше, чем заданное минимальное расстояние;
- наклон дистальной части не превышает заданный угол.
5. Способ по п. 1, отличающийся тем, что этап извлечения признаков включает этапы:
- разделения проверенного изображения на множество смежных ячеек, относящихся к растру (35, 35А); и
- извлечения признаков из каждой смежной ячейки;
и тем, что классификацию выполняют в заданный момент посредством использования признаков, извлеченных из ячеек проверенного изображения, относящегося по меньшей мере к одной конечности.
6. Способ по п. 1, отличающийся тем, что признаки, извлеченные из каждой ячейки, включают:
- признаки абсолютной температуры;
- признаки изменения температуры;
- признаки распределения температуры, полученные путем сравнения с другими ячейками на той же дистальной части;
- признаки, полученные в виде разницы между однородными признаками в разных дистальных частях;
- признаки движения дистальной части;
и тем, что этап извлечения признаков из изображений выполняют после интерполяции указанных изображений до заранее определенного стандартного размера.
7. Способ по п. 1, отличающийся тем, что этап классификации выполняют посредством методов машинного обучения, более конкретно, посредством технологии нейронных сетей.
8. Способ по п. 1, отличающийся тем, что признаки, извлеченные из каждой ячейки, включают температуру, измеренную внутри ячейки, а этап классификации включает этапы:
- сравнения температуры, измеренной в каждой ячейке с заранее определенным пороговым значением температуры, и классификации дистальной части конечности в качестве не пораженной патологиями, если измеренная температура не превышает пороговое значение, в противном случае, она классифицируется как пораженная патологией;
- определения ячеек растра (35А), указывающих на возникновение одной из множества патологий, и группировки указанных ячеек в первых строках (W0…Wn) в однозначной связи с конкретным заболеванием;
- сравнения пространственных координат (х, у) ячеек, в которых произошло превышение порогового значения температуры (Ts) с пространственными координатами (х, у) ячеек указанных первых строк (W0…Wn) и, в случае положительного результата сравнения, классифицирования дистальной части конечности в качестве пораженной патологией;
и тем, что, более того, ячейки указанных первых строк (W0...Wn) дополнительно связывают с индексом степени развития патологии, а этап классификации включает этапы:
- группировки ячеек, в которых было обнаружено превышение порогового значения, во вторые строки ячеек, и сравнения указанных вторых строк с первыми строками;
- в случае положительного результата сравнения, суммирования индексов первых строк, для которых сравнение дало положительный результат, между собой для определения степени развития патологии; и
- привязки степени развития патологии к классификации.
9. Способ по п. 1, который дополнительно включает операции:
- сохранения диагнозов, сгенерированных в множестве последовательных периодов наблюдения, в памяти, и
- сигнализирования о существовании патологии, когда последняя диагностируется в заранее определенном числе последовательных периодов наблюдения.
10. Информационно-технологический продукт, используемый системой обработки и содержащий программные коды, считываемые указанной системой для реализации способа по любому из предыдущих пунктов.
11. Автоматическое устройство для диагностирования патологий дистальных частей (15ps, 15pd) конечностей четвероногих животных (15), содержащее:
- по меньшей мере одну тепловую камеру (11) для генерирования термографических изображений указанных конечностей;
- систему (13) обработки, запрограммированную для обработки термографических изображений и для выдачи, в качестве результата обработки, диагноза о наличие одной из множества патологий, если таковые имеются, и, в случае обнаружения наличия патологии, вида патологии;
отличающееся тем, что система (13) обработки содержит:
- средства (20В) для идентификации, на каждом термографическом изображении и для каждой конечности, имеющей отношение к диагнозу, области, содержащей указанную дистальную часть (15ps, 15pd), извлечения из указанной области идентифицированного изображения дистальной части, и проверки идентифицированных изображений, соответствующих заранее определенным критериям, в качестве изображений, используемых для диагностических целей;
- средства (20С) для извлечения признаков, являющихся существенными для обнаружения наличия и вида патологии из проверенных изображений;
- средства классификации (20D) для классификации дистальной части конечности в качестве не пораженной патологиями или пораженной конкретной патологией на основе таких признаков.
12. Устройство по п. 11, содержащее либо одну тепловую камеру (11) для диагностирования всех конечностей, либо разные тепловые камеры (11) для диагностирования разных конечностей, и отличающееся тем, что:
- одна или каждая тепловая камера (11) подает в систему (13) обработки дискретный или непрерывный поток термографических изображений в течение периода наблюдения, и
- система (13) обработки содержит:
- средства (20А) для извлечения из одного или каждого потока и обработки изображений, относящихся к отдельным моментам периода наблюдения;
- первый блок (16) хранения для временного хранения результатов классификации, относящихся к каждому указанному моменту; и
- блок (21) принятия решений, выполненный с возможностью выдачи диагноза о возможном наличии патологии и ее вида в конце периода наблюдения на основе результатов классификации, выполненной в течение периода наблюдения.
13. Устройство по п. 11 или 12, отличающееся тем, что:
- средства (20В) идентификации и проверки связаны со вторым блоком (22) хранения для временного хранения, в отдельной очереди (22S, 22D) для каждой конечности, проверенных изображений дистальных частей, относящихся к разным моментам периода наблюдения; и
- средства (20С) для извлечения признаков выполнены с возможностью извлечения признаков из проверенных изображений, относящихся к тому же моменту для всех конечностей, или из проверенных изображений, относящихся к разным моментам для разных конечностей, в зависимости от того, была или нет проверка, относящаяся к определенному моменту периода наблюдения, успешной для всех конечностей, средства (20С) для извлечения признаков управляют удалением из второго блока (22) хранения изображений, из которых были извлечены признаки.
14. Устройство по п. 11, отличающееся тем, что средства (20D) классификации содержат логические сети, функционирующие в соответствии с методами машинного обучения, более конкретно, нейронными сетями (41-44).
15. Устройство по п. 11, отличающееся тем, что система (13) обработки дополнительно содержит блок (23) хранения и передачи сигналов для сохранения диагнозов, выданных блоком (21) принятия решения, и генерирования сигнала, уведомляющего о наличии патологии, когда патология была диагностирована за заранее определенное количество последовательных периодов наблюдения.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP16178313.9A EP3266371A1 (en) | 2016-07-07 | 2016-07-07 | Method of and apparatus for diagnosing leg pathologies in quadrupeds |
| EP16178313.9 | 2016-07-07 | ||
| PCT/IB2017/054069 WO2018007968A1 (en) | 2016-07-07 | 2017-07-06 | Method of and apparatus for diagnosing leg pathologies in quadrupeds |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| RU2018143985A true RU2018143985A (ru) | 2020-08-07 |
Family
ID=57226721
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| RU2018143985A RU2018143985A (ru) | 2016-07-07 | 2017-07-06 | Способ и устройство для диагностики патологий лап четвероногих животных |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20190244350A1 (ru) |
| EP (2) | EP3266371A1 (ru) |
| BR (1) | BR112018076567A2 (ru) |
| RU (1) | RU2018143985A (ru) |
| WO (1) | WO2018007968A1 (ru) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018015519A1 (en) * | 2016-07-20 | 2018-01-25 | Farm Robotics And Automation Sl | Robot assisted surveillance of livestock |
| CN110447562B (zh) * | 2019-09-02 | 2024-04-19 | 中国农业科学院农业信息研究所 | 跛牛识别及自动分群方法及其系统 |
| CN111310596A (zh) * | 2020-01-20 | 2020-06-19 | 北京海益同展信息科技有限公司 | 一种动物患病状态监测系统及方法 |
| US12262697B2 (en) | 2020-04-17 | 2025-04-01 | The Governors Of The University Of Alberta | Apparatus and methodologies for improved detection of important biological states in animals |
| SE2150575A1 (en) * | 2021-05-05 | 2022-11-06 | Sleip Ai Ab | Synchronous Display of Quadruped Motion Metrics |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040158156A1 (en) | 2003-02-11 | 2004-08-12 | Thermal View Wraps Llc | Liquid crystal thermal imaging of equine lameness |
-
2016
- 2016-07-07 EP EP16178313.9A patent/EP3266371A1/en not_active Withdrawn
-
2017
- 2017-07-06 US US16/312,423 patent/US20190244350A1/en not_active Abandoned
- 2017-07-06 EP EP17737883.3A patent/EP3481291A1/en not_active Withdrawn
- 2017-07-06 RU RU2018143985A patent/RU2018143985A/ru not_active Application Discontinuation
- 2017-07-06 BR BR112018076567-8A patent/BR112018076567A2/pt not_active Application Discontinuation
- 2017-07-06 WO PCT/IB2017/054069 patent/WO2018007968A1/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| WO2018007968A1 (en) | 2018-01-11 |
| EP3481291A1 (en) | 2019-05-15 |
| BR112018076567A2 (pt) | 2019-04-02 |
| EP3266371A1 (en) | 2018-01-10 |
| US20190244350A1 (en) | 2019-08-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU2018143985A (ru) | Способ и устройство для диагностики патологий лап четвероногих животных | |
| CN107077626B (zh) | 动物用非侵入式多模态生物特征辨识系统 | |
| Baek et al. | Using machine vision to analyze and classify Caenorhabditis elegans behavioral phenotypes quantitatively | |
| Lamping et al. | ChickenNet-an end-to-end approach for plumage condition assessment of laying hens in commercial farms using computer vision | |
| KR20180057785A (ko) | 영상분석을 통한 어류 개체수 측정 시스템 및 그 측정방법 | |
| CN115100512A (zh) | 一种海洋经济物种的监测识别捕捞方法、系统及存储介质 | |
| CN110705531B (zh) | 缺失字符检测、缺失字符检测模型的建立方法及装置 | |
| EP3213257B1 (en) | Image processing system | |
| CN110532899A (zh) | 基于热成像的母猪产前行为分类方法及系统 | |
| KR20230101121A (ko) | 영상을 기반으로 동물 개체를 식별하는 장치 및 방법 | |
| CN110298239B (zh) | 目标监控方法、装置、计算机设备及存储介质 | |
| Chowdhury et al. | Deep learning based computer vision technique for automatic heat detection in cows | |
| CN118196699A (zh) | 笼养蛋鸡的行为自动监测方法、装置和电子设备 | |
| JP2016015016A (ja) | 動作認識装置及び動作認識方法 | |
| CN114187659A (zh) | 用于对猪只姿态进行识别的姿态识别方法及其相关产品 | |
| JP6920944B2 (ja) | 物体検出装置 | |
| JP5253195B2 (ja) | 物体検出装置 | |
| CN111652084A (zh) | 一种异常蛋鸡识别方法及装置 | |
| KR20230163195A (ko) | 영상 기반 군집 개체들의 군집 행동 패턴 분석 장치 및 방법 | |
| JP7184195B2 (ja) | 学習装置、学習方法及びプログラム | |
| CN116386030B (zh) | 宠物食盆余粮检测方法、系统、装置及可读存储介质 | |
| JP6893812B2 (ja) | 物体検出装置 | |
| JP6851246B2 (ja) | 物体検出装置 | |
| CN119625816A (zh) | 鱼类行为识别方法及装置 | |
| CN110633710B (zh) | 一种生猪疾病预警系统 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FA93 | Acknowledgement of application withdrawn (no request for examination) |
Effective date: 20200707 |