RU2018143409A - Способы классификации пациентов с солидным раком - Google Patents
Способы классификации пациентов с солидным раком Download PDFInfo
- Publication number
- RU2018143409A RU2018143409A RU2018143409A RU2018143409A RU2018143409A RU 2018143409 A RU2018143409 A RU 2018143409A RU 2018143409 A RU2018143409 A RU 2018143409A RU 2018143409 A RU2018143409 A RU 2018143409A RU 2018143409 A RU2018143409 A RU 2018143409A
- Authority
- RU
- Russia
- Prior art keywords
- density
- cancer
- biological markers
- cell density
- cells
- Prior art date
Links
- 206010028980 Neoplasm Diseases 0.000 title claims 17
- 238000000034 method Methods 0.000 title claims 16
- 201000011510 cancer Diseases 0.000 title claims 9
- 210000004027 cell Anatomy 0.000 claims 24
- 239000000090 biomarker Substances 0.000 claims 17
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 claims 8
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 claims 8
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 claims 6
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 claims 6
- 108090000623 proteins and genes Proteins 0.000 claims 6
- 230000028993 immune response Effects 0.000 claims 4
- 239000007787 solid Substances 0.000 claims 4
- 230000004044 response Effects 0.000 claims 3
- 102100031151 C-C chemokine receptor type 2 Human genes 0.000 claims 2
- 101710149815 C-C chemokine receptor type 2 Proteins 0.000 claims 2
- 102100032367 C-C motif chemokine 5 Human genes 0.000 claims 2
- 206010009944 Colon cancer Diseases 0.000 claims 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims 2
- 101000974815 Homo sapiens BTB/POZ domain-containing protein KCTD11 Proteins 0.000 claims 2
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 claims 2
- 101001046687 Homo sapiens Integrin alpha-E Proteins 0.000 claims 2
- 101000599940 Homo sapiens Interferon gamma Proteins 0.000 claims 2
- 101000598002 Homo sapiens Interferon regulatory factor 1 Proteins 0.000 claims 2
- 101000998146 Homo sapiens Interleukin-17A Proteins 0.000 claims 2
- 101000987581 Homo sapiens Perforin-1 Proteins 0.000 claims 2
- 101000610551 Homo sapiens Prominin-1 Proteins 0.000 claims 2
- 101000579218 Homo sapiens Renin Proteins 0.000 claims 2
- 101000713602 Homo sapiens T-box transcription factor TBX21 Proteins 0.000 claims 2
- 101000946860 Homo sapiens T-cell surface glycoprotein CD3 epsilon chain Proteins 0.000 claims 2
- 101000738413 Homo sapiens T-cell surface glycoprotein CD3 gamma chain Proteins 0.000 claims 2
- 101000845170 Homo sapiens Thymic stromal lymphopoietin Proteins 0.000 claims 2
- 102100022341 Integrin alpha-E Human genes 0.000 claims 2
- 102100037850 Interferon gamma Human genes 0.000 claims 2
- 102100036981 Interferon regulatory factor 1 Human genes 0.000 claims 2
- 102000003812 Interleukin-15 Human genes 0.000 claims 2
- 108090000172 Interleukin-15 Proteins 0.000 claims 2
- 102100033461 Interleukin-17A Human genes 0.000 claims 2
- 102100028467 Perforin-1 Human genes 0.000 claims 2
- 102100040120 Prominin-1 Human genes 0.000 claims 2
- 102100036840 T-box transcription factor TBX21 Human genes 0.000 claims 2
- 102100035794 T-cell surface glycoprotein CD3 epsilon chain Human genes 0.000 claims 2
- 102100037911 T-cell surface glycoprotein CD3 gamma chain Human genes 0.000 claims 2
- 102100031294 Thymic stromal lymphopoietin Human genes 0.000 claims 2
- 230000033289 adaptive immune response Effects 0.000 claims 2
- 238000011394 anticancer treatment Methods 0.000 claims 2
- 210000000987 immune system Anatomy 0.000 claims 2
- 230000001506 immunosuppresive effect Effects 0.000 claims 2
- 238000000338 in vitro Methods 0.000 claims 2
- 238000011002 quantification Methods 0.000 claims 2
- 230000004083 survival effect Effects 0.000 claims 2
- 102100022790 BTB/POZ domain-containing protein KCTD11 Human genes 0.000 claims 1
- 206010005003 Bladder cancer Diseases 0.000 claims 1
- 206010006187 Breast cancer Diseases 0.000 claims 1
- 208000026310 Breast neoplasm Diseases 0.000 claims 1
- 102100021943 C-C motif chemokine 2 Human genes 0.000 claims 1
- 102100028990 C-X-C chemokine receptor type 3 Human genes 0.000 claims 1
- 102100025248 C-X-C motif chemokine 10 Human genes 0.000 claims 1
- 102100025279 C-X-C motif chemokine 11 Human genes 0.000 claims 1
- 102100025277 C-X-C motif chemokine 13 Human genes 0.000 claims 1
- 102100036170 C-X-C motif chemokine 9 Human genes 0.000 claims 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 claims 1
- 102100025137 Early activation antigen CD69 Human genes 0.000 claims 1
- 102100020997 Fractalkine Human genes 0.000 claims 1
- 101150043363 GZMK gene Proteins 0.000 claims 1
- 102100021186 Granulysin Human genes 0.000 claims 1
- 102100030386 Granzyme A Human genes 0.000 claims 1
- 102100030385 Granzyme B Human genes 0.000 claims 1
- 102100038393 Granzyme H Human genes 0.000 claims 1
- 102100038395 Granzyme K Human genes 0.000 claims 1
- 102100022087 Granzyme M Human genes 0.000 claims 1
- 101150063370 Gzmb gene Proteins 0.000 claims 1
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 claims 1
- 101710083479 Hepatitis A virus cellular receptor 2 homolog Proteins 0.000 claims 1
- 101000897480 Homo sapiens C-C motif chemokine 2 Proteins 0.000 claims 1
- 101000916050 Homo sapiens C-X-C chemokine receptor type 3 Proteins 0.000 claims 1
- 101000858088 Homo sapiens C-X-C motif chemokine 10 Proteins 0.000 claims 1
- 101000858060 Homo sapiens C-X-C motif chemokine 11 Proteins 0.000 claims 1
- 101000858064 Homo sapiens C-X-C motif chemokine 13 Proteins 0.000 claims 1
- 101000947172 Homo sapiens C-X-C motif chemokine 9 Proteins 0.000 claims 1
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 claims 1
- 101000934374 Homo sapiens Early activation antigen CD69 Proteins 0.000 claims 1
- 101000854520 Homo sapiens Fractalkine Proteins 0.000 claims 1
- 101001040751 Homo sapiens Granulysin Proteins 0.000 claims 1
- 101001009599 Homo sapiens Granzyme A Proteins 0.000 claims 1
- 101001009603 Homo sapiens Granzyme B Proteins 0.000 claims 1
- 101001033000 Homo sapiens Granzyme H Proteins 0.000 claims 1
- 101001033007 Homo sapiens Granzyme K Proteins 0.000 claims 1
- 101000900697 Homo sapiens Granzyme M Proteins 0.000 claims 1
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 claims 1
- 101000582950 Homo sapiens Platelet factor 4 Proteins 0.000 claims 1
- 101000611936 Homo sapiens Programmed cell death protein 1 Proteins 0.000 claims 1
- 101000946863 Homo sapiens T-cell surface glycoprotein CD3 delta chain Proteins 0.000 claims 1
- 101000808011 Homo sapiens Vascular endothelial growth factor A Proteins 0.000 claims 1
- -1 ICOS Proteins 0.000 claims 1
- 102100026214 Indian hedgehog protein Human genes 0.000 claims 1
- 101710139099 Indian hedgehog protein Proteins 0.000 claims 1
- 102000017578 LAG3 Human genes 0.000 claims 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims 1
- 206010033128 Ovarian cancer Diseases 0.000 claims 1
- 206010061535 Ovarian neoplasm Diseases 0.000 claims 1
- 102100030304 Platelet factor 4 Human genes 0.000 claims 1
- 102100040678 Programmed cell death protein 1 Human genes 0.000 claims 1
- 206010060862 Prostate cancer Diseases 0.000 claims 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims 1
- 108010044012 STAT1 Transcription Factor Proteins 0.000 claims 1
- 102000005886 STAT4 Transcription Factor Human genes 0.000 claims 1
- 108010019992 STAT4 Transcription Factor Proteins 0.000 claims 1
- 102100029904 Signal transducer and activator of transcription 1-alpha/beta Human genes 0.000 claims 1
- 229940126547 T-cell immunoglobulin mucin-3 Drugs 0.000 claims 1
- 102100035891 T-cell surface glycoprotein CD3 delta chain Human genes 0.000 claims 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 claims 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 claims 1
- 102100039037 Vascular endothelial growth factor A Human genes 0.000 claims 1
- 210000003719 b-lymphocyte Anatomy 0.000 claims 1
- 201000010536 head and neck cancer Diseases 0.000 claims 1
- 208000014829 head and neck neoplasm Diseases 0.000 claims 1
- 201000005202 lung cancer Diseases 0.000 claims 1
- 208000020816 lung neoplasm Diseases 0.000 claims 1
- 201000005112 urinary bladder cancer Diseases 0.000 claims 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6862—Ligase chain reaction [LCR]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57419—Specifically defined cancers of colon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/118—Prognosis of disease development
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/50—Determining the risk of developing a disease
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/60—Complex ways of combining multiple protein biomarkers for diagnosis
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Cell Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Claims (28)
1. Способ in vitro прогнозирования времени выживания пациента, страдающего от солидного рака, включающий следующие стадии:
а) количественное определение двух или больше биологических маркеров, показывающих статус иммунного ответа указанного пациента против указанного рака, причем каждый биологический маркер, показывающий статус иммунного ответа, определяют количественно в образце опухоли, полученном от указанного пациента;
b) сравнение каждой из величин, полученных на стадии а) для указанных двух или больше биологических маркеров, с распределением величин, полученных для каждого из указанных двух или больше биологических маркеров от контрольной группы пациентов, страдающих от указанного рака;
с) определение для каждой величины, полученной на стадии а) для указанных двух или больше биологических маркеров, процентиля распределения, которому соответствуют величины, полученные на стадии а);
d) вычисление среднеарифметического значения или медианы процентиля; и
е) сравнение среднеарифметического значения или медианы процентиля, полученных на стадии d), с предварительно установленным контрольным среднеарифметическим значением или предварительно установленной контрольной медианой процентиля, которые коррелируют с временем выживания.
2. Способ оценки in vitro восприимчивости пациента, страдающего от солидного рака, к противораковому лечению, который включает следующие стадии:
а) количественное определение двух или больше биологических маркеров, показывающих статус иммунного ответа указанного пациента против указанного рака, причем каждый биологический маркер, показывающий статус иммунного ответа, определяют количественно в образце опухоли, полученном от указанного пациента;
b) сравнение каждой из величин, полученных на стадии а) для указанных двух или больше биологических маркеров, с распределением величин, полученных для каждого из указанных двух или больше биологических маркеров от контрольной группы пациентов, страдающих от указанного рака;
с) определение для каждой величины, полученной на стадии а) для указанных двух или больше биологических маркеров, процентиля распределения, которому соответствуют величины, полученные на стадии а);
d) вычисление среднеарифметического значения или медианы процентиля; и
е) сравнение среднеарифметического значения или медианы процентиля, полученных на стадии d), с предварительно установленным контрольным среднеарифметическим значением или предварительно установленной контрольной медианой процентиля, которые коррелируют с реакцией на указанное противораковое лечение.
3. Способ по п. 1 или 2, причем указанный солидный рак представляет собой колоректальный рак, рак молочной железы, рак легких, рак головы и шеи, рак мочевого пузыря, рак яичников или рак предстательной железы.
4. Способ по п.3, причем солидный рак представляет собой колоректальный рак.
5. Способ по любому из пп. 1-4, причем два или больше биологических маркеров включают клеточную плотность клеток из иммунной системы.
6. Способ по п.5, причем два или больше биологических маркеров включают плотность CD3+ клеток, плотность CD8+ клеток, плотность CD45RO+ клеток, плотность GZM-B+ клеток, плотность B-клеток и/или плотность DC клеток.
7. Способ по п.6, причем два или больше биологических маркеров включают плотность CD3+ клеток и плотность CD8+ клеток, плотность CD3+ клеток и плотность CD45RO+ клеток, плотность CD3+ клеток и плотность GZM-B+ клеток, плотность CD8+ клеток и плотность CD45RO+ клеток, плотность CD8+ клеток и плотность GZM-B+ клеток или плотность CD45RO+ клеток и плотность GZM-B+ клеток.
8. Способ по любому из пп. 5-7, причем плотность клеток из иммунной системы определяют количественно в центре опухоли и/или в инвазивном крае опухоли.
9. Способ по п.8, причем два или больше биологических маркеров включают плотность CD3+ клеток в центре опухоли, плотность CD8+ клеток в центре опухоли, плотность CD3+ клеток в инвазивном крае и плотность CD8+ клеток в инвазивном крае.
10. Способ по любому из пп. 5-9, причем плотность измеряют в участке образца опухоли, где плотность является наименьшей.
11. Способ по любому из пп. 5-9, причем плотность измеряют в участке образца опухоли, где плотность является наибольшей.
12. Способ по любому из пп. 1-11, причем два или больше биологических маркеров включают уровень экспрессии одного или нескольких генов из группы, включающей CCR2, CD3D, CD3E, CD3G, CD8A, CXCL10, CXCL11, GZMA, GZMB, GZMK, GZMM, IL15, IRF1, PRF1, STAT1, CD69, ICOS, CXCR3, STAT4, CCL2 и TBX21.
13. Способ по любому из пп. 1-12, причем два или больше биологических маркеров включают уровень экспрессии одного или нескольких генов из группы, включающей GZMH, IFNG, CXCL13, GNLY, LAG3, ITGAE, CCL5, CXCL9, PF4, IL17A, TSLP, REN, IHH, PROM1 и VEGFA.
14. Способ по любому из пп. 1-12, причем два или больше биологических маркеров включают уровень экспрессии по меньшей мере одного гена, характеризующего адаптивный иммунный ответ человека, и уровень экспрессии по меньшей мере одного гена, характеризующего иммуносупрессорный ответ человека.
15. Способ по п.14, причем по меньшей мере одни ген, характеризующий адаптивный иммунный ответ человека, выбирают из группы, включающей
и указанный по меньшей мере одни ген, характеризующий иммуносупрессорный ответ человека, выбирают из группы, включающей
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP16305536 | 2016-05-09 | ||
| EP16305536.1 | 2016-05-09 | ||
| PCT/EP2017/061089 WO2017194556A1 (en) | 2016-05-09 | 2017-05-09 | Methods for classifying patients with a solid cancer |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| RU2018143409A true RU2018143409A (ru) | 2020-06-10 |
| RU2018143409A3 RU2018143409A3 (ru) | 2020-06-29 |
| RU2745730C2 RU2745730C2 (ru) | 2021-03-31 |
Family
ID=56014938
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| RU2018143409A RU2745730C2 (ru) | 2016-05-09 | 2017-05-09 | Способы классификации пациентов с солидным раком |
Country Status (13)
| Country | Link |
|---|---|
| US (1) | US20190309369A1 (ru) |
| EP (1) | EP3455631B1 (ru) |
| JP (3) | JP7281903B2 (ru) |
| KR (1) | KR102245021B1 (ru) |
| CN (2) | CN109690314B (ru) |
| AU (1) | AU2017261685B2 (ru) |
| ES (1) | ES2808004T3 (ru) |
| MX (1) | MX393482B (ru) |
| PL (1) | PL3455631T3 (ru) |
| RU (1) | RU2745730C2 (ru) |
| SG (1) | SG11201809317VA (ru) |
| WO (1) | WO2017194556A1 (ru) |
| ZA (1) | ZA201807020B (ru) |
Families Citing this family (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2018102201A4 (en) | 2017-06-13 | 2021-01-21 | Bostongene Corporation | Systems and methods for identifying cancer treatments from normalized biomarker scores |
| WO2019020556A1 (en) | 2017-07-24 | 2019-01-31 | Ventana Medical Systems, Inc. | METHODS AND SYSTEMS FOR ASSESSING INFILTRAT OF IMMUNE CELLS IN TUMOR SAMPLES |
| WO2019149817A1 (en) * | 2018-01-31 | 2019-08-08 | Ventana Medical Systems, Inc. | Methods and systems for evaluation of immune cell infiltrate in stage iii colorectal cancer |
| FR3079617B1 (fr) | 2018-03-29 | 2023-12-22 | Office National Detude Et De Rech Aerospatiales Onera | Methode de detection de cellules presentant au moins une anomalie dans un echantillon cytologique |
| SG11202112712RA (en) * | 2019-06-03 | 2021-12-30 | Inst Nat Sante Rech Med | Methods for modulating a treatment regimen |
| WO2022240261A1 (ko) * | 2021-05-13 | 2022-11-17 | 주식회사 센트릭스바이오 | 항-cd300c 단클론 항체 및 이의 암 예방 또는 치료용 바이오마커 |
| CN110988324B (zh) * | 2019-11-29 | 2021-08-24 | 广州市雷德医学检验实验室有限公司 | 免疫状态确定系统、方法、装置及存储介质 |
| CN111257563B (zh) * | 2020-01-22 | 2022-08-23 | 广州泛恩生物科技有限公司 | Cxcl13检测剂在制备预测免疫治疗效果的试剂盒中的用途 |
| CN111999503B (zh) * | 2020-05-28 | 2022-05-20 | 首都医科大学附属北京地坛医院 | 一组用于预测急性病毒性呼吸道传染病重症化的标志物及其应用和试剂盒 |
| WO2022002874A1 (en) * | 2020-06-30 | 2022-01-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the risk of recurrence and/or death of patients suffering from a solid cancer after preoperative adjuvant therapy and radical surgery |
| CN113174439B (zh) * | 2021-03-30 | 2022-06-28 | 中国医学科学院肿瘤医院 | 一种基于免疫基因对评分体系在预测非小细胞肺癌患者免疫治疗效果中的应用 |
| WO2022229136A1 (en) * | 2021-04-27 | 2022-11-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the risk of lymph node metastasis and/or recurrence of patients suffering from a t1 cancer treated by endoscopic resection |
| CA3245129A1 (en) | 2022-03-17 | 2023-09-21 | Univ Paris Cite | METHODS FOR PREDICTING RESPONSE TO IMMUNOTHERAPEUTIC TREATMENT IN A CANCER PATIENT |
| WO2023233310A1 (en) * | 2022-06-03 | 2023-12-07 | Universita' Degli Studi Di Roma "La Sapienza" | Method for determining the prognostic score in patients with metastatic renal carcinoma |
| CN115058504B (zh) * | 2022-07-14 | 2025-07-04 | 广州医科大学 | 膀胱癌th17 cd4+t细胞亚群及其特征基因与应用 |
| CN115747331B (zh) * | 2022-09-22 | 2023-08-25 | 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) | 用于预测鼻咽癌预后的三级淋巴结构成分标志物组合、系统及应用 |
| TWI826081B (zh) * | 2022-10-28 | 2023-12-11 | 臺北醫學大學 | 癌症進展評估方法及其系統 |
| CN117476097B (zh) * | 2023-10-25 | 2024-06-07 | 中山大学附属第六医院 | 一种基于三级淋巴结构特征基因的结直肠癌预后和治疗反应预测模型及其构建方法和应用 |
| CN119685476A (zh) * | 2024-05-29 | 2025-03-25 | 深圳湾实验室 | 一种与癌症预后相关的基因标志物及其应用 |
| CN120259410B (zh) * | 2025-06-05 | 2025-09-23 | 北京大橡科技有限公司 | 基于双Panel多重生物标志物分析的肿瘤免疫响应可能性的评分方法 |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7560230B2 (en) * | 2003-03-07 | 2009-07-14 | Threshold Pharmaceuticals, Inc. | Method for determining susceptibility of tumor to treatment with anti-neoplastic agent |
| AR053272A1 (es) * | 2005-05-11 | 2007-04-25 | Hoffmann La Roche | Determinacion de responsivos a la quimioterapia |
| NZ562237A (en) * | 2007-10-05 | 2011-02-25 | Pacific Edge Biotechnology Ltd | Proliferation signature and prognosis for gastrointestinal cancer |
| EP2960342A1 (en) * | 2009-04-14 | 2015-12-30 | Nestec S.A. | Inflammatory bowel disease prognostics |
| DK2619576T3 (da) * | 2010-09-24 | 2020-09-07 | Niels Grabe | Midler og fremgangsmåder til forudsigelse af behandlingsrespons hos en cancerpatient |
| GB201021289D0 (en) | 2010-12-15 | 2011-01-26 | Immatics Biotechnologies Gmbh | Novel biomarkers for a prediction of the outcome of an immunotherapy against cancer |
| WO2013107900A1 (en) * | 2012-01-20 | 2013-07-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of a patient suffering from a solid cancer based on density of b cells |
| CN104541167B (zh) * | 2012-06-14 | 2018-05-01 | 国家医疗保健研究所 | 用于定量肿瘤组织中的免疫细胞的方法及其应用 |
| ES2648176T3 (es) * | 2012-07-12 | 2017-12-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Métodos de predicción del tiempo de supervivencia y de la respuesta al tratamiento de un paciente que padece un cáncer sólido con un distintivo de al menos 7 genes |
| TR201819211T4 (tr) * | 2012-08-06 | 2019-01-21 | Hopitaux Paris Assist Publique | Kanserli Hastaların Taranmasına Yönelik Yöntemler Ve Kitler |
| US20160030561A1 (en) * | 2013-03-15 | 2016-02-04 | Oncomed Pharmaceuticals, Inc. | Methods of Treating Pancreatic Cancer |
| WO2015007625A1 (en) * | 2013-07-15 | 2015-01-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for the prognosis of survival time of a patient suffering from a solid cancer |
-
2017
- 2017-05-09 KR KR1020187035300A patent/KR102245021B1/ko active Active
- 2017-05-09 WO PCT/EP2017/061089 patent/WO2017194556A1/en not_active Ceased
- 2017-05-09 MX MX2018013744A patent/MX393482B/es unknown
- 2017-05-09 RU RU2018143409A patent/RU2745730C2/ru active
- 2017-05-09 CN CN201780028301.7A patent/CN109690314B/zh active Active
- 2017-05-09 PL PL17725195T patent/PL3455631T3/pl unknown
- 2017-05-09 EP EP17725195.6A patent/EP3455631B1/en active Active
- 2017-05-09 SG SG11201809317VA patent/SG11201809317VA/en unknown
- 2017-05-09 AU AU2017261685A patent/AU2017261685B2/en active Active
- 2017-05-09 JP JP2018559227A patent/JP7281903B2/ja active Active
- 2017-05-09 ES ES17725195T patent/ES2808004T3/es active Active
- 2017-05-09 CN CN202210976807.3A patent/CN115198018A/zh active Pending
- 2017-05-09 US US16/099,451 patent/US20190309369A1/en active Pending
-
2018
- 2018-10-22 ZA ZA2018/07020A patent/ZA201807020B/en unknown
-
2021
- 2021-11-19 JP JP2021188647A patent/JP7654318B2/ja active Active
-
2023
- 2023-12-14 JP JP2023211166A patent/JP2024019551A/ja active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| JP2022027788A (ja) | 2022-02-14 |
| AU2017261685B2 (en) | 2023-09-07 |
| JP7281903B2 (ja) | 2023-05-26 |
| CN109690314B (zh) | 2022-08-02 |
| EP3455631A1 (en) | 2019-03-20 |
| SG11201809317VA (en) | 2018-11-29 |
| RU2018143409A3 (ru) | 2020-06-29 |
| ZA201807020B (en) | 2020-05-27 |
| JP2019516979A (ja) | 2019-06-20 |
| CN109690314A (zh) | 2019-04-26 |
| AU2017261685A1 (en) | 2018-11-15 |
| KR20190016025A (ko) | 2019-02-15 |
| BR112018072993A2 (pt) | 2019-03-06 |
| MX393482B (es) | 2025-03-24 |
| RU2745730C2 (ru) | 2021-03-31 |
| WO2017194556A1 (en) | 2017-11-16 |
| MX2018013744A (es) | 2019-08-16 |
| US20190309369A1 (en) | 2019-10-10 |
| KR102245021B1 (ko) | 2021-04-26 |
| JP2024019551A (ja) | 2024-02-09 |
| PL3455631T3 (pl) | 2021-04-06 |
| JP7654318B2 (ja) | 2025-04-01 |
| BR112018072993A8 (pt) | 2022-11-08 |
| ES2808004T3 (es) | 2021-02-25 |
| EP3455631B1 (en) | 2020-06-24 |
| CN115198018A (zh) | 2022-10-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU2018143409A (ru) | Способы классификации пациентов с солидным раком | |
| JP2019516979A5 (ru) | ||
| Szabo et al. | Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease | |
| Simon et al. | PD-1 and TIGIT coexpression identifies a circulating CD8 T cell subset predictive of response to anti-PD-1 therapy | |
| RU2017119231A (ru) | Способы и биомаркеры для прогнозирования эффективности и оценки лечения агонистом ох40 | |
| WO2014009535A3 (en) | Methods for predicting the survival time and treatment responsiveness of a patient suffering from a solid cancer with a signature of at least 7 genes | |
| JP2017536842A5 (ru) | ||
| US20230049525A1 (en) | Methods of identifying cell-type-specific gene expression levels by deconvolving bulk gene expression | |
| Sarkozy et al. | Quantitative assessment of circulating clonal IG-VDJ sequences in plasma of follicular lymphoma at diagnosis is highly predictive of progression free survival (PFS) | |
| JPWO2022002873A5 (ru) | ||
| Tahri et al. | Single-cell transcriptomic analysis of NK cell dynamics in myeloma patients reveal persistent reduction of cytotoxic NK cells from diagnosis to relapse | |
| Lim et al. | homeRNA self-blood collection by exposed close contacts enables high-frequency temporal profiling of the pre-symptomatic host immune kinetics to respiratory viral infection. | |
| Sawalha et al. | Risk of Post-Transplant Lymphoproliferative Disorders (PTLD) in Solid Organ Transplantation Patients with EBV Viremia | |
| Nishiyama et al. | Validation of Transcription Factors Underlying the Control of CD8+ T Cell Differentiation Along the Paths of Exhaustion and Senescence in Acute Myeloid Leukemia Using an Artificial Neural Network Model | |
| Garnett et al. | 853 Pharmacogenomic Profiling of Drugs in Cancer Cells Identifies Novel Biomarkers of Sensitivity | |
| Cuadros et al. | 852 Gene Expression Profiling of Advanced Rectal Tumor Patients Reveals Molecular Signature Related to Response to Neoadjuvant Chemoradiation | |
| Goncalves et al. | 854 Investigating Tumour Vascular Connectivity With MRI and Independent Component Analysis | |
| Samuel | Rationally developing the next generation of personalised drug-chemoradiotherapy combination trials in anal cancer | |
| Yu | Leveraging human tissue samples to investigate tumor heterogeneity in the context of cancer models, therapeutics, and patient outcomes | |
| Aybey | Comprehensive characterization of gene expression response to type-I and type-II interferon in healthy and diseased conditions | |
| Batra et al. | 160P LungMetrics India: Molecular epidemiology and testing patterns in 4,773 non squamous NSCLC patients | |
| Robbe et al. | Identifying High-Risk CLL to Predict Early Relapse after FCR Based Treatment Using Whole Genome Sequencing: First Results from the Genomics England CLL Pilot | |
| Brown et al. | Next-generation sequencing reveals clonal evolution at the immunoglobulin loci in chronic lymphocytic leukemia | |
| Leelatian et al. | COMP-11. SINGLE CELL MASS CYTOMETRY SIGNALING PROFILES AND A NOVEL COMPUTATIONAL TOOL IDENTIFY HIGH RISK GLIOBLASTOMA CELLS | |
| Bulfoni et al. | 18P Molecular characterization of circulating tumor cells in metastatic breast cancer using shallow whole genome sequencing |