[go: up one dir, main page]

RU2008129793A - Способ улучшения последующей обработки изображений с использованием деформируемых сеток - Google Patents

Способ улучшения последующей обработки изображений с использованием деформируемых сеток Download PDF

Info

Publication number
RU2008129793A
RU2008129793A RU2008129793/09A RU2008129793A RU2008129793A RU 2008129793 A RU2008129793 A RU 2008129793A RU 2008129793/09 A RU2008129793/09 A RU 2008129793/09A RU 2008129793 A RU2008129793 A RU 2008129793A RU 2008129793 A RU2008129793 A RU 2008129793A
Authority
RU
Russia
Prior art keywords
grid
processing
image
post
task
Prior art date
Application number
RU2008129793/09A
Other languages
English (en)
Other versions
RU2413995C2 (ru
Inventor
Йохен ПЕТЕРС (DE)
Йохен ПЕТЕРС
Оливер ЭКАБЕРТ (DE)
Оливер ЭКАБЕРТ
Юрген ВЕСЕ (DE)
Юрген ВЕСЕ
Кристиан ЛОРЕНЦ (DE)
Кристиан ЛОРЕНЦ
БЕРГ Йенс ФОН (DE)
БЕРГ Йенс ФОН
Original Assignee
Конинклейке Филипс Электроникс, Н.В. (Nl)
Конинклейке Филипс Электроникс, Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс, Н.В. (Nl), Конинклейке Филипс Электроникс, Н.В. filed Critical Конинклейке Филипс Электроникс, Н.В. (Nl)
Publication of RU2008129793A publication Critical patent/RU2008129793A/ru
Application granted granted Critical
Publication of RU2413995C2 publication Critical patent/RU2413995C2/ru

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/001Model-based coding, e.g. wire frame
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/149Segmentation; Edge detection involving deformable models, e.g. active contour models
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Image Processing (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Image Generation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Catching Or Destruction (AREA)

Abstract

1. Способ ускорения последующей обработки объекта в виде изображения, сегментируемого с использованием сетки, содержащий этапы, на которых: ! идентифицируют задачу последующей обработки, которая должна быть выполнена в отношении объекта после сегментирования, с использованием сетки (22); ! определяют информацию, требуемую для задачи (24) последующей обработки; ! кодируют информацию по сетке (30); ! сегментируют объект в новом изображении с использованием сетки с кодированной информацией (36) и ! выполняют задачу последующей обработки, выделяя кодированную информацию из сетки (40). ! 2. Способ по п.1, в котором информация, требуемая для задачи последующей обработки, представляет собой список треугольников или вершин сетки, для которых может быть выполнена задача последующей обработки. ! 3. Способ по п.1, в котором информация, требуемая для задачи последующей обработки, представляет собой значение расстояния, представляющее расстояние между каждым треугольником или вершиной сетки и объектом, представляющим интерес для задачи последующей обработки. ! 4. Способ по п.1, в котором информация, требуемая для задачи последующей обработки, представляет собой функцию вероятности, представляющую вероятность полезности каждого треугольника или вершины сетки для задачи последующей обработки. ! 5. Способ по п.1, в котором этап определения информации, требуемой для задачи последующей обработки, содержит: получают, по меньшей мере, одно тренировочное изображение, включающее в себя объект (20), сегментируют объект, по меньшей мере, в одном тренировочном изображении с помощью сетки (26) и получают информацию на основе сегментирования, по меньше�

Claims (21)

1. Способ ускорения последующей обработки объекта в виде изображения, сегментируемого с использованием сетки, содержащий этапы, на которых:
идентифицируют задачу последующей обработки, которая должна быть выполнена в отношении объекта после сегментирования, с использованием сетки (22);
определяют информацию, требуемую для задачи (24) последующей обработки;
кодируют информацию по сетке (30);
сегментируют объект в новом изображении с использованием сетки с кодированной информацией (36) и
выполняют задачу последующей обработки, выделяя кодированную информацию из сетки (40).
2. Способ по п.1, в котором информация, требуемая для задачи последующей обработки, представляет собой список треугольников или вершин сетки, для которых может быть выполнена задача последующей обработки.
3. Способ по п.1, в котором информация, требуемая для задачи последующей обработки, представляет собой значение расстояния, представляющее расстояние между каждым треугольником или вершиной сетки и объектом, представляющим интерес для задачи последующей обработки.
4. Способ по п.1, в котором информация, требуемая для задачи последующей обработки, представляет собой функцию вероятности, представляющую вероятность полезности каждого треугольника или вершины сетки для задачи последующей обработки.
5. Способ по п.1, в котором этап определения информации, требуемой для задачи последующей обработки, содержит: получают, по меньшей мере, одно тренировочное изображение, включающее в себя объект (20), сегментируют объект, по меньшей мере, в одном тренировочном изображении с помощью сетки (26) и получают информацию на основе сегментирования, по меньшей мере, одного тренировочного изображения (28).
6. Способ по п.1, дополнительно содержащий этап, на котором определяют множество задач последующей обработки, каждая из которых имеет разную требуемую информацию для обеспечения ее выполнения.
7. Способ по п.1, в котором задачу последующей обработки выполняют автоматически, без взаимодействия с пользователем после сегментирования объекта в новом изображении.
8. Способ по п.1, в котором кодирование информации на сетку содержит кодирование различных типов данных, требуемых для задачи последующей обработки в разных областях сетки, таким образом, что разные задачи последующей обработки применяют к разным областям сетки.
9. Способ по п.1, в котором задача последующей обработки включает в себя выполнение алгоритма последующей обработки и кодирование информации на сетку содержит этап, на котором кодируют регионально изменяющийся параметр, который управляет алгоритмом последующей обработки.
10. Способ по п.1, в котором объект в изображении представляет собой сердце, информация, требуемая для задачи последующей обработки, представляет собой идентификацию треугольников или вершин сетки в пределах заданного расстояния до фактических положений отверстия, сетку кодируют с идентифицированными треугольниками или вершинами на расстоянии между каждым треугольником или вершинами и положением отверстия, выполнение задачи последующей обработки содержит: выполняют алгоритм для анализа идентифицированных треугольников или вершин для определения вероятности того, что отверстие присутствует в нем или на нем.
11. Способ по п.1, в котором объект изображения представляет собой сердце, информация, требуемая для задачи последующей обработки, представляет собой вероятность того, что каждый треугольник или вершина сетки содержит поверхность, близко на которой расположен коронарный сосуд, выполняют задачу последующей обработки, содержащую выполнение алгоритма для анализа только тех треугольников или вершин, которые с высокой вероятностью содержат поверхность, близко на которой расположен коронарный сосуд.
12. Способ по п.11, в котором информация, требуемая для задачи последующей обработки, представляет собой расстояние между каждым треугольником или вершиной сетки и координатами коронарного сосуда, причем выполнение задачи последующей обработки содержит этап, на котором выполняют алгоритм для анализа только тех треугольников или вершин, которые находятся в пределах заданного расстояния от координат коронарного сосуда.
13. Способ по п.1, в котором информация, требуемая для задачи последующей обработки, представляет собой идентификацию областей сетки, которые подвергают улучшенному сегментированию, при этом сетка кодируется треугольниками или вершинами в каждой идентифицированной области, выполняют задачу последующей обработки, содержащую выполнение улучшенного алгоритма сегментирования для дополнительного сегментирования части изображения, представленного кодированными треугольниками или вершинами.
14. Способ по п.1, в котором объект изображения представляет собой сердце, информация, требуемая для задачи последующей обработки, представляет собой идентификацию треугольников или вершин в области клапана, который будет искусственно уплощен, выполняют задачу последующей обработки, содержащую выполнение алгоритма уплощения, для сдвига идентифицированных треугольников или вершин.
15. Способ обработки изображения и отображения обработанного изображения, содержащий
на подготовительном этапе
идентифицируют задачу обработки, которая должна быть выполнена в отношении объекта после сегментирования с использованием сетки (22),
определяют информацию, требуемую для задачи (24) обработки, и
кодируют информацию на сетке (30); и
на операционном этапе
получают новое изображение, содержащее тот же объект (34),
сегментируют объект на новом изображении, используя сетку с кодированной информацией (36),
выполняют задачу обработки путем выделения кодированной информации из сетки (38, 40) и
отображают отклонение нового изображения, модифицированного при выполнении задачи (42) обработки.
16. Способ по п.15, в котором этап определения информации, требуемой для задачи обработки, содержит этапы, на которых: получают, по меньшей мере, одно тренировочное изображение, включающее с себя объект (20), сегментируют объект на, по меньшей мере, одном тренировочном изображении с помощью сетки (26) и получают информацию на основе сегментирования, по меньшей мере, одного тренировочного изображения (28).
17. Способ по п.15, в котором информация, требуемая для задачи обработки, представляет собой список треугольников или вершин сетки, для которых будет выполнена задача обработки.
18. Способ по п.15, в котором информация, требуемая для задачи обработки, представляет собой значение расстояния, представляющего расстояние между каждым треугольником или вершиной сетки и объектом, представляющим интерес для задачи обработки.
19. Способ по п.15, в котором информация, требуемая для задачи обработки, представляет собой функцию вероятности, представляющую вероятность полезности каждого треугольника или вершины сетки для задачи обработки.
20. Система обработки изображений (10), содержащая:
устройство (12) получения изображений, предназначенное для получения изображений объектов, предназначенных для обработки;
дисплей (16), предназначенный для отображения изображений, получаемых упомянутым устройством (12) получения изображений до и после обработки;
модуль (14) обработки, соединенный с упомянутым устройством (12) получения изображений и упомянутым дисплеем (16); и
интерфейс (18) пользователя, предназначенный для управления упомянутым устройством (12) получения изображений и упомянутым модулем (14) обработки,
упомянутый модуль (14) обработки выполнен так, что обеспечивает возможность через упомянутый интерфейс (18) пользователя инициирования получения изображений, инициирования сегментация на основе модели сетки объектов изображения, идентификации задачи последующей обработки, которая должна быть выполнена после сегментирования объекта, используя сетку, и определения информации, требуемой для задачи последующей обработки,
упомянутый модуль (14) обработки дополнительно выполнен с возможностью кодировать информацию, требуемую для задачи последующей обработки, на сетке, сегментировать объект в новом изображении, полученном упомянутым устройством (12) получения изображений, с использованием сетки с кодированной информацией, автоматически выполняя задачу последующей обработки путем выделения кодированной информации из сетки и отображая изображение, полученное в результате последующей обработки нового изображения, на упомянутом дисплее (16).
21. Считываемый компьютером носитель информации для обеспечения обработки изображения в системе (10) обработки изображения, включающей в себя устройство (12) получения изображения, предназначенное для получения изображения объектов, предназначенных для обработки, дисплей (16) для отображения изображений, полученных устройством (12) получения изображений, перед и после обработки и интерфейс (18) пользователя для управления устройством (12) получения изображения, причем носитель информации выполнен с возможностью
инициировать получение изображений через интерфейс (18) пользователя;
инициировать сегментирование на основе модели сетки объекта в изображении через интерфейс (18) пользователя;
идентифицировать выполнение задачи последующей обработки в отношении объекта после сегментирования с использованием сетки через интерфейс (18) пользователя;
определять информацию, требуемую для задачи последующей обработки через интерфейс (18) пользователя;
кодировать информацию по сетке;
сегментировать объект в новом изображении, полученном устройством (12) получения изображений, используя сетку с кодированной информацией;
автоматически выполнять задачу последующей обработки путем выделения кодированной информации из сетки и
отображать изображение, полученное в результате последующей обработки нового изображения, на дисплее (16).
RU2008129793/08A 2005-12-19 2006-12-14 Способ улучшения последующей обработки изображений с использованием деформируемых сеток RU2413995C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75153605P 2005-12-19 2005-12-19
US60/751,536 2005-12-19

Publications (2)

Publication Number Publication Date
RU2008129793A true RU2008129793A (ru) 2010-01-27
RU2413995C2 RU2413995C2 (ru) 2011-03-10

Family

ID=38051374

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008129793/08A RU2413995C2 (ru) 2005-12-19 2006-12-14 Способ улучшения последующей обработки изображений с использованием деформируемых сеток

Country Status (8)

Country Link
US (1) US8144950B2 (ru)
EP (1) EP1966756B1 (ru)
JP (1) JP5113077B2 (ru)
CN (1) CN101331517B (ru)
AT (1) ATE437421T1 (ru)
DE (1) DE602006008040D1 (ru)
RU (1) RU2413995C2 (ru)
WO (1) WO2007072363A2 (ru)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7715627B2 (en) * 2005-03-25 2010-05-11 Siemens Medical Solutions Usa, Inc. Automatic determination of the standard cardiac views from volumetric data acquisitions
US9275190B2 (en) * 2007-04-23 2016-03-01 Siemens Aktiengesellschaft Method and system for generating a four-chamber heart model
US8582854B2 (en) * 2008-09-15 2013-11-12 Siemens Aktiengesellschaft Method and system for automatic coronary artery detection
US8498846B2 (en) * 2010-02-25 2013-07-30 Microsoft Corporation Joint-aware manipulation of deformable models
US8675943B2 (en) * 2010-11-29 2014-03-18 Siemens Aktiengesellschaft Method and system for heart isolation in cardiac computed tomography volumes for patients with coronary artery bypasses
CA2858166C (en) * 2011-12-05 2020-10-20 Commonwealth Scientific And Industrial Research Organisation Method and system for characterising plant phenotype
JP2015500083A (ja) 2011-12-12 2015-01-05 コーニンクレッカ フィリップス エヌ ヴェ 心エコー検査のための自動的な画像化平面選択
JP6180539B2 (ja) 2012-11-20 2017-08-16 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. リアルタイム胎児心臓評価に対する標準面に自動配置
US9280819B2 (en) 2013-08-26 2016-03-08 International Business Machines Corporation Image segmentation techniques
JP6400725B2 (ja) * 2014-03-21 2018-10-03 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 関心領域を区分化するための画像処理機器及び方法
JP6644795B2 (ja) 2015-01-06 2020-02-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 解剖学的オブジェクトをセグメント化する超音波画像装置及び方法
US10325412B2 (en) 2015-11-05 2019-06-18 Shenyang Neusoft Medical Systems Co., Ltd. Cutting three-dimensional image
CN108475428B (zh) * 2015-12-22 2022-04-29 皇家飞利浦有限公司 心脏模型引导的冠状动脉分割的系统及方法
CN106920282B (zh) * 2015-12-25 2020-11-20 中国科学院深圳先进技术研究院 一种血管数字模型的编辑方法及系统
JP7256115B2 (ja) * 2016-08-22 2023-04-11 コーニンクレッカ フィリップス エヌ ヴェ モデル正規化動き補償医用画像再構成
DE102016218899B4 (de) * 2016-09-29 2022-06-15 Siemens Healthcare Gmbh Auswertung medizinischer Daten mit einer Zeitauflösung
US10321878B2 (en) 2016-12-22 2019-06-18 Biosense Webster (Israel) Ltd. Pulmonary vein display in two dimensions
US10575746B2 (en) 2017-12-14 2020-03-03 Biosense Webster (Israel) Ltd. Epicardial mapping
EP3570249A1 (en) 2018-05-14 2019-11-20 Koninklijke Philips N.V. Preprocessing medical image data for machine learning
US11823421B2 (en) * 2019-03-14 2023-11-21 Nokia Technologies Oy Signalling of metadata for volumetric video
CN116744855A (zh) 2020-12-18 2023-09-12 皇家飞利浦有限公司 基于超声图像的解剖扫描窗口、探头取向和/或患者位置的识别
EP4588429A1 (en) 2024-01-17 2025-07-23 Hemolens Diagnostics Spólka Z Ograniczona Odpowiedzialnoscia A computer implemented method, computer program product and computer system for enhancing diagnosis

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3538639A1 (de) * 1984-10-31 1986-04-30 Canon K.K., Tokio/Tokyo Bildverarbeitungssystem
KR100215451B1 (ko) * 1996-05-29 1999-08-16 윤종용 임의형태 물체를 포함한 동화상의 부호화 및 복호화시스템
US6009435A (en) * 1997-11-21 1999-12-28 International Business Machines Corporation Progressive compression of clustered multi-resolution polygonal models
US6606095B1 (en) * 1998-06-08 2003-08-12 Microsoft Corporation Compression of animated geometry using basis decomposition
US6718290B1 (en) * 1998-12-10 2004-04-06 Georgia Tech Research Corporation Systems and methods for encoding tetrahedral meshes
WO2003021532A2 (en) 2001-09-06 2003-03-13 Koninklijke Philips Electronics N.V. Method and apparatus for segmentation of an object
US6985612B2 (en) * 2001-10-05 2006-01-10 Mevis - Centrum Fur Medizinische Diagnosesysteme Und Visualisierung Gmbh Computer system and a method for segmentation of a digital image
US20030076319A1 (en) * 2001-10-10 2003-04-24 Masaki Hiraga Method and apparatus for encoding and decoding an object
RU2208391C1 (ru) * 2001-11-05 2003-07-20 Демин Виктор Владимирович Способ прижизненной трехмерной визуализации атероматозного субстрата при облитерирующих поражениях артерий
US7421122B2 (en) 2002-07-19 2008-09-02 Koninklijke Philips Electronics N.V. Simultaneous segmentation of multiple or composed objects by mesh adaptation
JP4758353B2 (ja) 2003-11-13 2011-08-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 変形可能表面を使った三次元セグメント化
CN1954340A (zh) * 2004-05-18 2007-04-25 皇家飞利浦电子股份有限公司 使用三维可变形网格模型对物体的三维树状管形表面自动分段的图像处理系统

Also Published As

Publication number Publication date
DE602006008040D1 (de) 2009-09-03
CN101331517A (zh) 2008-12-24
EP1966756B1 (en) 2009-07-22
JP5113077B2 (ja) 2013-01-09
US8144950B2 (en) 2012-03-27
WO2007072363A3 (en) 2007-10-11
ATE437421T1 (de) 2009-08-15
JP2009519740A (ja) 2009-05-21
EP1966756A2 (en) 2008-09-10
RU2413995C2 (ru) 2011-03-10
CN101331517B (zh) 2011-09-07
WO2007072363A2 (en) 2007-06-28
US20080304744A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
RU2008129793A (ru) Способ улучшения последующей обработки изображений с использованием деформируемых сеток
CN109815865B (zh) 一种基于虚拟水尺的水位识别方法及系统
CN110910343A (zh) 路面裂缝检测的方法、装置及计算机设备
CN112070137B (zh) 训练数据集的生成方法、目标对象检测方法及相关设备
CN108596102B (zh) 基于rgb-d的室内场景物体分割分类器构造方法
CN115116083B (zh) 监控画面电力图元自动标识及修正方法、系统及存储介质
JP2009211179A (ja) 画像処理方法、パターン検出方法、パターン認識方法及び画像処理装置
CN112329751A (zh) 一种基于深度学习的多尺度遥感影像目标识别系统及方法
CN108009547A (zh) 一种变电站设备的铭牌识别方法和装置
CN110689134A (zh) 执行机器学习过程的方法、装置、设备以及存储介质
CN114255352B (zh) 一种河道提取方法、装置及计算机可读存储介质
CN109118494A (zh) 一种基于凹点匹配的重叠区域分割方法及装置
CN117036715A (zh) 一种基于卷积神经网络的形变区边界自动提取方法
CN115438945A (zh) 基于电力设备巡检的风险识别方法、装置、设备及介质
CN118941500A (zh) 一种基于机器视觉的钢筋绑扎自动检测方法及系统
CN114219073A (zh) 属性信息的确定方法、装置、存储介质及电子装置
CN115115806B (zh) 一种基于单基元解析的屋顶参数化重构方法及系统
CN115908988A (zh) 一种缺陷检测模型生成方法、装置、设备以及存储介质
CN120198367A (zh) 螺栓松动检测方法、装置、电子设备及存储介质
CN109325441B (zh) 一种输电线路绝缘子对象识别方法
CN117037075A (zh) 一种基于图像处理的工程检测方法及系统
CN117132566A (zh) 一种基于改进YOLOv5模型的螺栓检测方法及系统
CN116152669A (zh) 一种基于注意力机制的土地变化类型检测方法及装置
CN111860123B (zh) 一种识别工作区域边界的方法
CN110853001B (zh) 一种变电站防异物干扰图像识别方法、系统及介质