[go: up one dir, main page]

KR20100063344A - Calculating apparatus and method of soc of a battery in a vehicle - Google Patents

Calculating apparatus and method of soc of a battery in a vehicle Download PDF

Info

Publication number
KR20100063344A
KR20100063344A KR1020080121818A KR20080121818A KR20100063344A KR 20100063344 A KR20100063344 A KR 20100063344A KR 1020080121818 A KR1020080121818 A KR 1020080121818A KR 20080121818 A KR20080121818 A KR 20080121818A KR 20100063344 A KR20100063344 A KR 20100063344A
Authority
KR
South Korea
Prior art keywords
battery
electromotive force
calculating
remaining capacity
battery pack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020080121818A
Other languages
Korean (ko)
Other versions
KR101020904B1 (en
Inventor
성기택
박현수
김우성
민경인
황도성
조일
Original Assignee
기아자동차주식회사
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기아자동차주식회사, 현대자동차주식회사 filed Critical 기아자동차주식회사
Priority to KR1020080121818A priority Critical patent/KR101020904B1/en
Publication of KR20100063344A publication Critical patent/KR20100063344A/en
Application granted granted Critical
Publication of KR101020904B1 publication Critical patent/KR101020904B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

이 발명은 자동차에서, 소프트 컴퓨팅 기법과 시불변 시스템을 이용하여 배터리 기전력을 계산하고 이를 이용하여 배터리 잔존용량을 계산하는 시스템 및 방법에 관한 것이다.The present invention relates to a system and method for calculating a battery electromotive force using a soft computing technique and a time-invariant system and calculating a battery remaining capacity using the same.

이 발명에 따른 자동차의 배터리 잔존용량 계산 방법은, 시험대상 배터리의 배터리 온도와 배터리 전압과 실제 기전력으로부터 기전력추정모델과 이득을 학습하는 제1단계와, 하이브리드 자동차의 배터리팩으로부터 배터리 전압과 배터리 온도를 측정하는 제2단계와, 상기 배터리 전압과 배터리 온도와 이득을 상기 기전력추정모델에 적용하여 상기 배터리팩의 기전력을 계산하는 제3단계와, 상기 배터리팩의 기전력으로부터 상기 배터리팩의 잔존용량을 계산하는 제4단계를 포함한다.The method for calculating a battery remaining capacity of a vehicle according to the present invention includes a first step of learning an electromotive force estimation model and a gain from a battery temperature, a battery voltage, and an actual electromotive force of a battery under test, and a battery voltage and a battery temperature from a battery pack of a hybrid vehicle. And a third step of calculating the electromotive force of the battery pack by applying the battery voltage, the battery temperature, and the gain to the electromotive force estimation model, and calculating the remaining capacity of the battery pack from the electromotive force of the battery pack. A fourth step of calculating.

Description

자동차의 배터리 잔존용량 계산 시스템 및 방법{Calculating apparatus and method of SOC of a battery in a vehicle}Calculating apparatus and method of SOC of a battery in a vehicle

이 발명은 자동차의 배터리 관리 시스템 및 방법에 관한 것으로서, 보다 상세하게는 소프트 컴퓨팅 기법과 시불변 시스템을 이용하여 배터리 기전력을 계산하고 이를 이용하여 배터리 잔존용량을 계산하는 시스템 및 방법에 관한 것이다.The present invention relates to a battery management system and method for an automobile, and more particularly, to a system and method for calculating a battery electromotive force using a soft computing technique and a time-invariant system and using the same to calculate a battery remaining capacity.

환경오염문제가 나날이 강조되는 요즘 친환경 에너지 개발에 각 기술 분야 및 업체들이 경쟁적으로 나서고 있다. 여기에 석유 및 천연자원의 고갈 등이 대체 에너지원의 개발 경쟁을 가속화시키고 있다. 이러한 현실을 반영하듯 각 국의 자동차 업체들은 차세대 자동차 개발 경쟁을 치열하게 전개하고 있는데, 이 중에는 배터리를 에너지원으로 사용하는 순수 전기 자동차와 에너지 버퍼로 사용하는 엔진 하이브리드 전기 자동차 및 연료 전지 하이브리드 전기 자동차 등이 있다.In recent years, environmental problems are highlighted, and technology fields and companies are competing to develop eco-friendly energy. In addition, depletion of oil and natural resources is accelerating competition for development of alternative energy sources. Reflecting this reality, automakers in each country are fiercely competing for the development of next generation automobiles, including pure electric vehicles using batteries as energy sources and engine hybrid electric vehicles and fuel cell hybrid electric vehicles using energy buffers. Etc.

이러한 하이브리드 자동차에서 배터리 시스템은 차량의 품질을 결정하는 주요한 부품중의 하나이다. 하이브리드 자동차의 배터리 시스템은 주행 중 엔진의 출력을 어시스트하거나 발생한 에너지를 축적하는 자동차의 보조 에너지원으로서, 그 제어기술은 매우 중요하다.In such hybrid vehicles, the battery system is one of the major components that determine the quality of the vehicle. The battery system of a hybrid vehicle is an auxiliary energy source of a vehicle that assists or accumulates energy generated by the engine while driving, and its control technology is very important.

배터리시스템의 제어기술로는 파워제어, 냉각, 진단, 잔존용량계산 등이 있는데, 이중 배터리 잔존용량계산은 자동차의 주행전략을 위해 가장 중요하게 작용한다.The control technology of the battery system includes power control, cooling, diagnostics, and remaining capacity calculation. Among these, the remaining battery capacity calculation is most important for the driving strategy of a vehicle.

즉, 하이브리드 자동차는 배터리의 잔존용량을 계산하여 잉여의 에너지가 발생하면 배터리에 충전하고 높은 출력이 필요한 경우 배터리를 방전하여 요구출력을 충당하도록 제어하는 바, 이러한 하이브리드 자동차의 주행전략을 정확하게 구현하여 에너지 저감 및 차량의 운용 효율을 극대화하려면 배터리의 잔존용량을 정확하게 계산할 필요가 있다.In other words, the hybrid vehicle calculates the remaining capacity of the battery to charge the battery when surplus energy is generated and to discharge the battery to meet the required output when a high output is required. Accurate calculation of battery remaining capacity is necessary to maximize energy savings and vehicle operating efficiency.

배터리의 잔존용량 계산이 부정확한 경우, 자동차의 운용 효율 감소는 물론 위험한 상황까지 초래할 수 있다. 예를 들면, 실제 잔존용량은 80%이지만 계산된 잔존용량이 30%인 경우, 차량 제어기는 충전이 필요하다고 판단하여 배터리가 과충전될 수 있으며, 혹은 그 반대의 경우라면 배터리는 과방전될 수 있다. 이렇게 과충전과 과방전에 따른 배터리 발화 혹은 폭발을 일으켜 매우 위험한 상황을 초래할 수 있다.Inaccurate battery capacity calculations can lead to dangerous situations as well as reduced vehicle operating efficiency. For example, if the actual remaining capacity is 80% but the calculated remaining capacity is 30%, the vehicle controller may determine that charging is required and the battery may be overcharged, or vice versa. . The battery may ignite or explode due to overcharging and overdischarging, which may cause a very dangerous situation.

이와 같이 하이브리드 자동차의 효율적은 운용을 통한 에너지 저감 및 위험 방지를 위해서는 배터리의 잔존용량을 정확하게 계산 및 추정할 필요가 있다.As such, it is necessary to accurately calculate and estimate a battery's remaining capacity in order to reduce energy and prevent risk through efficient operation of a hybrid vehicle.

종래의 잔존용량 계산방식은 여러 가지가 있으나, 크게 다음 두 가지 방식으로 대별된다. 첫 번째 방식은 단순 전류 적산하고 충전효율을 곱하여 잔존용량을 계산하는 방식이고, 두 번째 방식은 전압 측정값을 이용하여 잔존용량을 계산하는 방식 이다.There are several conventional methods of calculating the remaining capacity, but largely classified into the following two methods. The first method is to calculate the remaining capacity by simply integrating the current and multiplying the charging efficiency, and the second method is to calculate the remaining capacity using the voltage measurement value.

첫 번째 방식인 단순 전류 적산 방식은 일반적인 방식으로 사용되나 전류센서의 오차가 계속 누적되기 때문에, 시간이 지남에 따라 잔존용량의 오차가 증가하고 장기방치에 따른 자가방전용량을 계산하지 못하며, 충전효율을 정확하게 계산하기 어렵고, 초기값을 잘못 예측했을 경우 누적 오차가 크게 발생하게 되는 문제점이 있다.The first method, the simple current integration method, is used as a general method, but since the error of the current sensor is continuously accumulated, the error of remaining capacity increases over time, and the self-discharge capacity cannot be calculated according to long-term neglect, and charging efficiency It is difficult to calculate the exact value, and there is a problem that a large accumulation error occurs when the initial value is incorrectly predicted.

두 번째 방식은 배터리의 전압값(기전력)으로 잔존용량을 계산하는 방식으로 어떤 순간의 정확한 기전력을 계산한다면 절대 잔존용량 계산이 가능하다. 그러나, 하이브리드 자동차의 배터리 시스템의 다이나믹한 상황에서 절대 기전력을 계산하는 방법은 매우 까다로워 임베디드 시스템에 적용하기가 쉽지 않다.The second method is to calculate the remaining capacity by the voltage value (electromotive force) of the battery. If the exact electromotive force is calculated at any moment, the absolute remaining capacity can be calculated. However, the method of calculating absolute electromotive force in the dynamic situation of a hybrid vehicle battery system is very difficult and difficult to apply to an embedded system.

따라서, 최근에는 이 두 가지 방식을 서로 보완하여 사용하거나, 전류와 전압과 온도를 기본 입력으로 비선형 제어에 널리 사용되는 매우 복잡한 방법들을 이용한다. 그러나, 이러한 종래기술들은 시스템이 매우 복잡하여 임베디드 시스템에 적용하기는 매우 곤란한 바, 종래의 잔존용량 계산방식들의 문제점을 해결하고 잔존용량을 정확하게 계산하면서 복잡도가 감소되어 임베디드 시스템에 용이하게 적용할 수 있는 기술의 개발이 필요하다.Therefore, in recent years, these two methods can be complemented with each other, or very complex methods widely used for nonlinear control using current, voltage, and temperature as basic inputs. However, these conventional technologies are very difficult to apply to an embedded system because the system is very complex. Solving the problems of the conventional remaining capacity calculation methods and calculating the remaining capacity accurately, complexity can be easily applied to the embedded system. The development of skills is needed.

상술한 종래기술의 필요성을 충족하기 위한 이 발명의 목적은, 소프트컴퓨팅기법과 시불변 시스템을 이용함으로써, 복잡도가 감소되면서 정확한 배터리 잔존용량 계산 이 가능한 시스템 및 방법을 제공하기 위한 것이다.An object of the present invention to meet the needs of the prior art described above is to provide a system and method capable of accurate battery remaining capacity calculation with reduced complexity by using a soft computing technique and a time invariant system.

상술한 목적을 달성하기 위한 이 발명에 따른 자동차의 배터리 잔존용량 계산 시스템은, 배터리팩으로부터 배터리 전압을 측정하여 출력하는 배터리 전압 측정부와, 상기 배터리팩으로부터 배터리 온도를 측정하여 출력하는 배터리 온도 측정부와, 기전력추정모델과 기학습된 이득을 구비하고 상기 배터리 전압과 배터리 온도와 이득을 상기 기전력추정모델에 적용하여 상기 배터리팩의 기전력을 계산하는 시불변 시스템과, 상기 배터리팩의 기전력으로부터 상기 배터리팩의 잔존용량을 매핑하는 잔존용량 매핑부를 구비한 것을 특징으로 한다.Battery residual capacity calculation system of a vehicle according to the present invention for achieving the above object, the battery voltage measuring unit for measuring and outputting the battery voltage from the battery pack, and the battery temperature measurement to measure and output the battery temperature from the battery pack And a time-invariant system including an electromotive force estimation model and gains learned and applied to the electromotive force estimation model to calculate the electromotive force of the battery pack, and the electromotive force of the battery pack. Characterized in that the remaining capacity mapping unit for mapping the remaining capacity of the battery pack.

또한, 이 발명에 따른 자동차의 배터리 잔존용량 계산 방법은, 시험대상 배터리의 배터리 온도와 배터리 전압과 실제 기전력으로부터 기전력추정모델과 이득을 학습하는 제1단계와, 배터리팩으로부터 배터리 전압과 배터리 온도를 측정하는 제2단계와, 상기 배터리 전압과 배터리 온도와 이득을 상기 기전력추정모델에 적용하여 상기 배터리팩의 기전력을 계산하는 제3단계와, 상기 배터리팩의 기전력으로부터 상기 배터리팩의 잔존용량을 계산하는 제4단계를 포함한 것을 특징으로 한다.In addition, a method for calculating a battery remaining capacity of a vehicle according to the present invention includes a first step of learning an electromotive force estimation model and a gain from a battery temperature, a battery voltage, and an actual electromotive force of a battery under test, and a battery voltage and a battery temperature from a battery pack. A second step of measuring, a third step of calculating an electromotive force of the battery pack by applying the battery voltage, a battery temperature and a gain to the electromotive force estimation model, and calculating a remaining capacity of the battery pack from an electromotive force of the battery pack It is characterized by including a fourth step.

또한, 이 발명에 따른 자동차의 배터리 잔존용량 계산 방법은, 기전력추정모델과 이득이 학습된 시불변 시스템을 이용하여 하이브리드 자동차의 배터리팩의 잔존용량을 계산하는 방법에 있어서, 상기 배터리팩으로부터 배터리 전압과 배터리 온도를 측정하는 제1단계와, 상기 배터리 전압과 배터리 온도와 상기 이득을 상기 기전 력추정모델에 적용하여 상기 배터리팩의 기전력을 계산하는 제2단계와, 상기 배터리팩의 기전력으로부터 상기 배터리팩의 잔존용량을 계산하는 제3단계를 포함한 것을 특징으로 한다.In addition, the method for calculating the battery remaining capacity of a vehicle according to the present invention is a method for calculating the remaining capacity of a battery pack of a hybrid vehicle using an electromotive force estimation model and a gain learned time invariant system, wherein the battery voltage from the battery pack And a second step of measuring a battery temperature, a second step of calculating an electromotive force of the battery pack by applying the battery voltage, the battery temperature and the gain to the electromotive force estimation model, and the battery from the electromotive force of the battery pack. And a third step of calculating the remaining capacity of the pack.

이 발명에 따르면 배터리의 전압 및 온도와 배터리 기전력과의 상관관계를 오프라인에서 학습하여 시불변 시스템으로 구축하고, 자동차에는 이 시불변 시스템만을 적용함으로써 임베디드 시스템의 복잡성을 개선할 수 있다. 또한, 이 발명에 따르면 배터리의 전압 및 온도만을 이용하여 배터리 절대 기전력을 계산할 수 있기 때문에 전류센서가 제거되어 원가절감을 이룰 수 있다. 또한, 이 발명에 따르면 배터리 절대 기전력을 이용하여 배터리 잔존용량을 계산하기 때문에 간단한 시스템으로 좀더 정확한 잔존용량을 계산할 수 있다.According to the present invention, the correlation between the voltage and temperature of the battery and the electromotive force of the battery can be learned offline to build a time invariant system, and by applying only this time invariant system to an automobile, the complexity of the embedded system can be improved. In addition, according to the present invention, since the absolute electromotive force of the battery can be calculated using only the voltage and temperature of the battery, the current sensor can be removed to achieve cost reduction. In addition, according to the present invention, since the remaining battery capacity is calculated using the absolute electromotive force of the battery, the remaining capacity can be calculated more accurately with a simple system.

이하, 첨부된 도면을 참조하며 이 발명에 따른 자동차의 배터리 잔존용량 계산 시스템 및 방법을 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a system and method for calculating the battery remaining capacity of a vehicle according to the present invention.

참고로, 본 발명은 배터리를 탑재한 모든 차량에 적용 가능한 것이며, 이하에서는 본 발명의 더욱 유용하게 적용될 수 있는 하이브리드 차량을 구체적인 실시예로서 상정하고 설명하기로 한다.For reference, the present invention is applicable to all vehicles equipped with a battery, and hereinafter, a hybrid vehicle which can be more usefully applied to the present invention will be assumed and described.

이 발명은 하이브리드 자동차의 배터리의 전압과 온도로부터 배터리 기전력을 계산하고, 그 배터리 기전력을 이용하여 잔존용량을 계산한다. 배터리 기전력으로부터 잔존용량을 계산하는 방법은 통상적인 방법을 적용할 수 있다.The present invention calculates the battery electromotive force from the voltage and temperature of the battery of the hybrid vehicle, and calculates the remaining capacity using the battery electromotive force. As a method of calculating the remaining capacity from the battery electromotive force, a conventional method may be applied.

이 발명은 배터리 전압과 배터리 온도로부터 배터리 기전력을 계산하기 위해, 배터리 전압과 배터리 온도를 입력받아 배터리 기전력을 출력하는 기전력추정모델이 구축된 시불변 시스템을 이용한다. 이 시불변 시스템은 배터리 특성 시험을 통해 전압, 온도, 기전력을 학습 데이터로 취득하고, 전압과 온도에 대한 기전력을 기전력추정모델로서 구축한다.In order to calculate the battery electromotive force from the battery voltage and the battery temperature, the present invention uses a time-invariant system in which an electromotive force estimation model is constructed which receives the battery voltage and the battery temperature and outputs the battery electromotive force. This time-invariant system obtains voltage, temperature, and electromotive force as training data through battery characteristic tests, and builds electromotive force for voltage and temperature as an electromotive force estimation model.

이러한 모델 구축과정은 별도의 오프라인에서 수행되고, 하이브리드 자동차에는 모델링 결과인 기전력추정모델이 구축된 시불변 시스템이 장착되기 때문에 하이브리드 자동차에 임베디드되는 시스템의 복잡도가 개선될 수 있다.The model construction process is performed separately in a separate offline, and since the hybrid vehicle is equipped with a time-invariant system in which an electromotive force estimation model is built, which is a modeling result, the complexity of the system embedded in the hybrid vehicle may be improved.

먼저, 도 1을 참조하여, 배터리 전압과 배터리 온도와 실제 기전력을 이용한 학습을 통해 시불변 시스템을 구축하는 과정을 설명한다.First, referring to FIG. 1, a process of building a time invariant system through learning using battery voltage, battery temperature, and actual electromotive force will be described.

앞서 언급하였듯이 이 시불변 시스템을 구축하는 과정은 오프라인 상태에서 수행된다. 시험대상 배터리로부터 과거 시점의 기전력(eOCVt??2, eOCVt??1), 배터리 전압(Vt), 배터리 온도(Tt)를 입력받는다. 이 입력된 값들은 레퍼런스모델(11)로 전달된다. 레퍼런스모델(11)은 실제 입력된 값들(과거 시점의 기전력(eOCVt??2, eOCVt??1), 배터리 전압(Vt), 배터리 온도(Tt))을 기준으로 현재 시점의 실제 기전 력(OCVt_real)을 계산하여 출력한다.As mentioned earlier, the process of building this invariant system is performed offline. The electromotive force (eOCV t ?? 2 , eOCV t ?? 1 ), battery voltage (V t ), and battery temperature (T t ) of the past are input from the battery under test. These input values are transferred to the reference model 11. The reference model 11 is based on actual input values (eOCV t ?? 2 , eOCV t ?? 1 ), battery voltage (V t ), and battery temperature (T t ) at the present time. Compute the output power (OCV t_real ) and output it.

한편, 시험대상 배터리로부터 입력된 값들(과거 시점의 기전력(eOCVt??2, eOCVt??1), 배터리 전압(Vt), 배터리 온도(Tt))은 학습부(12)에 전달되며, 학습부(12)는 입력된 값들로부터 시불변 시스템(13)에 구축된 기전력추정모델에 필요한 선형화된 이득(gain)을 계산하여 시불변 시스템(13)에게 제공한다.On the other hand, the values input from the battery under test (eOCV t ?? 2 , eOCV t ?? 1 ), battery voltage (V t ), and battery temperature (T t ) at the past are transmitted to the learner 12. The learning unit 12 calculates a linearized gain required for the electromotive force estimation model built in the time invariant system 13 from the input values and provides the calculated value to the time invariant system 13.

시불변 시스템(13)은 학습부(12)에서 제공되는 현재 시점의 배터리 전압(Vt)과 배터리 온도(Tt)와 이득(gain)을 입력받아 현재 시점의 기전력을 추정하여, 그 현재 시점의 추정 기전력(OCVt_estimated)을 출력한다.The time-invariant system 13 receives the battery voltage V t , the battery temperature T t , and the gain at the present time provided from the learner 12, estimates the electromotive force at the present time, and estimates the current time. Output the estimated EMF of (OCV t_estimated ).

그러면, 감산기(14)는 현재 시점의 실제 기전력(OCVt_real)에서 현재 시점의 추정 기전력(OCVt_estimated)을 감산하여 그 오차값(error)을 학습부(12)에 제공하고, 학습부(12)는 그 오차값(error)을 이용하여 시불변시스템(13)에 구축된 기전력추정모델에 필요한 선형화된 이득(gain)을 재학습한다.Then, the subtractor 14, the learning section 12 subtracts the current estimate the electromotive force (OCV t_estimated) of the start point from the current actual electromotive force (OCV t_real) of the start point and provides that the error value (error) in the learning portion 12, Re-learns the linearized gain required for the electromotive force estimation model built in the time invariant system 13 using the error value.

학습부(12)는 다양한 소프트 컴퓨팅(soft computing) 또는 최소자승법(LMS : Least Mean Square)으로 구현이 가능한 바, 신경망(NN : Neural Network), 퍼지(fuzzy)추론기, 유전자알고리즘(Genetic Algorithm), 뉴로??퍼지 알고리즘, 뉴로??퍼지??유전자 알고리즘, 면역시스템(Immune System) 등 중 하나의 방법을 구현할 수 있다. 시불변시스템의 이득(gain)은 온도에 관한 함수로써 1차에서 10차까지 구현할 수 있다.The learning unit 12 may be implemented in various soft computing or least squares (LMS) bars, such as a neural network (NN), a fuzzy reasoner, and a genetic algorithm (Genetic Algorithm). One can implement one of the following methods: the neurofuzzy algorithm, the neurofuzzy genetic algorithm, and the immune system. The gain of a time-invariant system can be implemented from first to tenth order as a function of temperature.

학습부(12)가 더 많은 시험대상 배터리로부터 배터리 전압과 배터리 온도에 따른 기전력의 선형적인 학습을 반복할수록, 시불변 시스템(13)은 기전력추정모델에 필요한 함수의 정확한 이득을 획득할 수 있게 된다.As the learner 12 repeats linear learning of electromotive force according to battery voltage and battery temperature from more batteries under test, the time-invariant system 13 can obtain an accurate gain of a function required for the electromotive force estimation model. .

도 2는 도 1과 같이 구축된 시불변 시스템을 이용하여 하이브리드 자동차의 잔존용량을 계산하는 시스템을 도시한 도면이다.FIG. 2 is a diagram illustrating a system for calculating remaining capacity of a hybrid vehicle using a time invariant system constructed as shown in FIG. 1.

이 발명에 따른 하이브리드 자동차의 배터리 잔존용량 계산 장치는, 배터리팩(21)으로부터 배터리 전압을 측정하여 출력하는 배터리 전압 측정부(23)와, 배터리팩(21)으로부터 배터리 온도를 측정하여 출력하는 배터리 온도 측정부(24)와, 기전력추정모델과 학습된 이득을 구비하며 배터리 전압 측정부(23)와 배터리 온도 측정부(24)로부터 각각 입력된 배터리 전압과 배터리 온도를 기전력추정모델에 적용하여 배터리의 기전력을 계산하는 시불변 시스템(25)과, 배터리의 기전력으로부터 배터리의 잔존용량을 산출하는 잔존용량 매핑부(26)를 포함한다.The apparatus for calculating a battery remaining capacity of a hybrid vehicle according to the present invention includes a battery voltage measuring unit 23 measuring and outputting a battery voltage from a battery pack 21, and a battery measuring and outputting a battery temperature from the battery pack 21. The battery has a temperature measuring unit 24, an electromotive force estimation model and learned gains, and the battery voltage and battery temperature input from the battery voltage measuring unit 23 and the battery temperature measuring unit 24 are applied to the electromotive force estimation model. It includes a time-invariant system 25 for calculating the electromotive force of and a remaining capacity mapping unit 26 for calculating the remaining capacity of the battery from the electromotive force of the battery.

도 3은 이 발명에 따른 하이브리드 자동차의 배터리 잔존용량 계산 방법을 도시한 동작 흐름도이다.3 is an operation flowchart illustrating a method of calculating a battery remaining capacity of a hybrid vehicle according to the present invention.

배터리 잔존용량 계산이 시작되면, 배터리팩으로부터 배터리 전압과 배터리 온도를 취득한다(S31). 이 배터리 전압과 배터리 온도 및 기 학습된 이득을 선형 시불변 시스템의 기전력추정모델에 적용하여 배터리 기전력을 계산한다(S32). 아울러, 배터리 온도와 배터리 기전력을 이용하여 현재 보간법 계산을 수행하여(S33), 배터리 의 잔존용량을 계산한다(S34).When the battery remaining capacity calculation starts, the battery voltage and the battery temperature are acquired from the battery pack (S31). The battery electromotive force is calculated by applying the battery voltage, the battery temperature, and the learned gain to the electromotive force estimation model of the linear time invariant system (S32). In addition, by performing the current interpolation calculation using the battery temperature and the battery electromotive force (S33), the remaining capacity of the battery is calculated (S34).

도 1은 시험대상 배터리의 배터리 전압과 배터리 온도와 실제 기전력을 이용한 학습을 통해 시불변 시스템을 구축하는 과정을 도시한 도면,1 is a view showing a process of building a time-invariant system by learning using a battery voltage and a battery temperature of the battery under test and the actual electromotive force;

도 2는 도 1과 같이 구축된 시불변 시스템을 이용하여 하이브리드 자동차의 배터리 잔존용량을 계산하는 시스템을 도시한 도면,FIG. 2 is a diagram illustrating a system for calculating a battery remaining capacity of a hybrid vehicle using a time invariant system constructed as shown in FIG. 1;

도 3은 이 발명의 한 실시예에 따른 하이브리드 자동차의 배터리 잔존용량 계산 방법을 도시한 동작 흐름도이다.3 is a flowchart illustrating a method of calculating a battery remaining capacity of a hybrid vehicle according to an exemplary embodiment of the present invention.

< 도면의 주요 부분에 대한 부호의 간단한 설명 >      BRIEF DESCRIPTION OF THE DRAWINGS FIG.

21 : 배터리팩 23 : 배터리 전압 측정부21: battery pack 23: battery voltage measuring unit

24 : 배터리 온도 측정부 25 : 시불변 시스템24: battery temperature measuring unit 25: time invariant system

26 : 잔존용량 매핑부26: remaining capacity mapping unit

Claims (6)

배터리팩으로부터 배터리 전압을 측정하여 출력하는 배터리 전압 측정부와,Battery voltage measuring unit for measuring and outputting the battery voltage from the battery pack, 상기 배터리팩으로부터 배터리 온도를 측정하여 출력하는 배터리 온도 측정부와,A battery temperature measuring unit measuring and outputting a battery temperature from the battery pack; 기전력추정모델과 기학습된 이득을 구비하고 상기 배터리 전압과 배터리 온도와이득을 상기 기전력추정모델에 적용하여 상기 배터리팩의 기전력을 계산하는 시불변 시스템과,A time invariant system having an electromotive force estimation model and gains learned and applied to the electromotive force estimation model by applying the battery voltage, battery temperature and gain to the electromotive force estimation model; 상기 배터리팩의 기전력으로부터 상기 배터리팩의 잔존용량을 매핑하는 잔존용량 매핑부를 구비한 것을 특징으로 하는 자동차의 배터리 잔존용량 계산 시스템.And a remaining capacity mapping unit for mapping the remaining capacity of the battery pack from the electromotive force of the battery pack. 제 1 항에 있어서, 상기 시불변 시스템은 시험대상 배터리의 배터리 온도와 배터리 전압과 실제 기전력으로부터 상기 기전력추정모델의 이득을 학습하는 것을 특징으로 하는 자동차의 배터리 잔존용량 계산 시스템.The system of claim 1, wherein the time-invariant system learns a gain of the electromotive force estimation model from a battery temperature, a battery voltage, and an actual electromotive force of the battery under test. 제 1 항에 있어서, 상기 이득에 대한 학습은 소프트 컴퓨팅 또는 최소자승법을 이용한 것을 특징으로 하는 자동차의 배터리 잔존용량 계산 시스템.The system of claim 1, wherein the learning about the gain is performed using soft computing or least squares method. 시험대상 배터리의 배터리 온도와 배터리 전압과 실제 기전력으로부터 기전력추정모델과 이득을 학습하는 제1단계와,The first step of learning the electromotive force estimation model and the gain from the battery temperature, the battery voltage and the actual electromotive force of the battery under test, 배터리팩으로부터 배터리 전압과 배터리 온도를 측정하는 제2단계와,A second step of measuring battery voltage and battery temperature from the battery pack, 상기 배터리 전압과 배터리 온도와 이득을 상기 기전력추정모델에 적용하여 상기 배터리팩의 기전력을 계산하는 제3단계와,Calculating an electromotive force of the battery pack by applying the battery voltage, the battery temperature, and the gain to the electromotive force estimation model; 상기 배터리팩의 기전력으로부터 상기 배터리팩의 잔존용량을 계산하는 제4단계를 포함한 것을 특징으로 하는 자동차의 배터리 잔존용량 계산 방법.And a fourth step of calculating the remaining capacity of the battery pack from the electromotive force of the battery pack. 제 4 항에 있어서, 상기 제1단계의 상기 이득에 대한 학습은 소프트 컴퓨팅 또는 최소자승법을 이용한 것을 특징으로 하는 자동차의 배터리 잔존용량 계산 방법.5. The method of claim 4, wherein the learning about the gain of the first step is performed using soft computing or least squares method. 기전력추정모델과 이득이 학습된 시불변 시스템을 이용하여 하이브리드 자동차의 배터리팩의 잔존용량을 계산하는 방법에 있어서,In the method of calculating the remaining capacity of the battery pack of a hybrid vehicle using the electromotive force estimation model and gain-informed time-invariant system, 상기 배터리팩으로부터 배터리 전압과 배터리 온도를 측정하는 제1단계와,A first step of measuring a battery voltage and a battery temperature from the battery pack; 상기 배터리 전압과 배터리 온도와 상기 이득을 상기 기전력추정모델에 적용하여 상기 배터리팩의 기전력을 계산하는 제2단계와,Calculating an electromotive force of the battery pack by applying the battery voltage, the battery temperature, and the gain to the electromotive force estimation model; 상기 배터리팩의 기전력으로부터 상기 배터리팩의 잔존용량을 계산하는 제3단계를 포함한 것을 특징으로 하는 자동차의 배터리 잔존용량 계산 방법.And calculating a remaining capacity of the battery pack from the electromotive force of the battery pack.
KR1020080121818A 2008-12-03 2008-12-03 System and method for calculating battery remaining capacity of car Expired - Fee Related KR101020904B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080121818A KR101020904B1 (en) 2008-12-03 2008-12-03 System and method for calculating battery remaining capacity of car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080121818A KR101020904B1 (en) 2008-12-03 2008-12-03 System and method for calculating battery remaining capacity of car

Publications (2)

Publication Number Publication Date
KR20100063344A true KR20100063344A (en) 2010-06-11
KR101020904B1 KR101020904B1 (en) 2011-03-09

Family

ID=42363308

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080121818A Expired - Fee Related KR101020904B1 (en) 2008-12-03 2008-12-03 System and method for calculating battery remaining capacity of car

Country Status (1)

Country Link
KR (1) KR101020904B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10059222B2 (en) 2014-04-15 2018-08-28 Ford Global Technologies, Llc Battery temperature estimation system
WO2018194225A1 (en) * 2017-04-20 2018-10-25 이정환 Battery monitoring and protection system
US20210263109A1 (en) * 2018-09-17 2021-08-26 Volvo Truck Corporation A method and system for estimating the state-of-health of a battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4049959B2 (en) * 1999-11-11 2008-02-20 本田技研工業株式会社 Battery charging method
KR100793616B1 (en) * 2005-06-13 2008-01-10 주식회사 엘지화학 Apparatus and method for testing state of charge in battery
JP4495116B2 (en) * 2005-06-30 2010-06-30 エルジー・ケム・リミテッド Battery remaining capacity estimation method and battery management system using the same
JP5077513B2 (en) * 2005-12-26 2012-11-21 スズキ株式会社 Device for estimating open-circuit voltage of vehicle battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10059222B2 (en) 2014-04-15 2018-08-28 Ford Global Technologies, Llc Battery temperature estimation system
WO2018194225A1 (en) * 2017-04-20 2018-10-25 이정환 Battery monitoring and protection system
US20210263109A1 (en) * 2018-09-17 2021-08-26 Volvo Truck Corporation A method and system for estimating the state-of-health of a battery
US11953558B2 (en) * 2018-09-17 2024-04-09 Volvo Truck Corporation Method and system for estimating the state-of-health of a battery

Also Published As

Publication number Publication date
KR101020904B1 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
Saji et al. SoC estimation of lithium ion battery using combined coulomb counting and fuzzy logic method
KR20100063343A (en) Estimating apparatus and method of soh of a battery in a hybrid car
Liu et al. A state of charge estimation method based on $ H_\infty $ observer for switched systems of lithium-ion nickel–manganese–cobalt batteries
US8207706B2 (en) Method of estimating battery state of charge
Chen et al. State of charge estimation of lithium-ion batteries in electric drive vehicles using extended Kalman filtering
Hu et al. Model-based dynamic power assessment of lithium-ion batteries considering different operating conditions
Xu et al. An online state of charge estimation method with reduced prior battery testing information
Hussein Adaptive artificial neural network-based models for instantaneous power estimation enhancement in electric vehicles’ Li-ion batteries
CN115243928B (en) Method for determining the state of charge of a battery used in an electric vehicle
US10124696B2 (en) Estimation and compensation of battery measurement and asynchronization biases
US20150326038A1 (en) System and method for battery power management
Eddahech et al. Adaptive voltage estimation for EV Li-ion cell based on artificial neural networks state-of-charge meter
CN105277892B (en) Battery system identification by pulse injection
CN105277893A (en) Real-time battery estimation
Chaoui et al. Online parameter identification of lithium-ion batteries with surface temperature variations
US20160001670A1 (en) System and method for battery management
Zou et al. PDE battery model simplification for SOC and SOH estimator design
KR101486629B1 (en) Apparatus and method of estimating state of health for battery
KR101020904B1 (en) System and method for calculating battery remaining capacity of car
KR20160006443A (en) Battery System and Method for Operating Internal Resistance
Sangwan et al. Estimation of model parameters and state-of-charge for battery management system of li-ion battery in evs
Chaoui et al. Accurate state of charge (SOC) estimation for batteries using a reduced-order observer
EP3475711B1 (en) Method and device for estimating a voltage of a battery
US9987942B2 (en) Method of operating vehicle powertrain based on prediction of how different chemical type batteries connected in parallel will operate to output demanded current
Yang et al. Stochastic predictive boundary management for a hybrid powertrain

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

PN2301 Change of applicant

St.27 status event code: A-3-3-R10-R13-asn-PN2301

St.27 status event code: A-3-3-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-3-3-R10-R13-asn-PN2301

St.27 status event code: A-3-3-R10-R11-asn-PN2301

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

D13-X000 Search requested

St.27 status event code: A-1-2-D10-D13-srh-X000

D14-X000 Search report completed

St.27 status event code: A-1-2-D10-D14-srh-X000

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

FPAY Annual fee payment

Payment date: 20140227

Year of fee payment: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 5

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 7

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

FPAY Annual fee payment

Payment date: 20180227

Year of fee payment: 8

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 8

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

FPAY Annual fee payment

Payment date: 20190227

Year of fee payment: 9

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 9

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

FPAY Annual fee payment

Payment date: 20200227

Year of fee payment: 10

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 10

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 11

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20220303

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20220303