図1は、本発明の実施例1のリスク分析支援システム101の構成の一例を示すブロック図である。
リスク分析支援システム101は、コンピュータシステムであり、例えばキーボード及びマウスなどの入力部102、表示データを出力するディスプレイを表す出力部103、CPU(Central Processing Unit)104、メモリ105、通信部108及び記憶媒体106を備えている。
リスク分析支援システム101は、リスクモデル構築部111、状態判定部112、リスク値算出部113及び対象者抽出部114を有している。リスクモデル構築部111~対象者抽出部114の各部の機能は、CPU104が記憶媒体106に格納されたプログラムを実行することによって実現される。これらのプログラムがCPU104によって実行されるときに、それらの少なくとも一部が必要に応じてメモリ105にコピーされてもよい。
リスク分析支援システム101にはデータベース107が接続される。データベース107は、受診歴情報管理部120、健診情報管理部121、属性情報管理部122、分析データ管理部123、リスクモデル情報管理部124及び対象者抽出情報管理部125を有する。本実施例において、受診歴情報管理部120は、後述する受診基本情報200(図2)、傷病名情報300(図3)及び診療行為情報400(図4)を管理する。健診情報管理部121は、後述する健診情報500(図5)を管理する。属性情報管理部122は、後述する属性情報600(図6)を管理する。分析データ管理部123は、後述する重症度定義情報700(図7)、重症度判定結果情報800(図8)及び指導履歴情報900(図9)を管理する。リスクモデル情報管理部124は、後述するリスクモデルパラメータ情報1000(図10)を管理する。対象者抽出情報管理部125は、後述する対象者抽出情報(図11)を管理する。
データベース107は、例えば、ネットワークを介してリスク分析支援システム101に接続された記憶システムに格納されもよいし、リスク分析支援システム101内に(例えば記憶媒体106に格納されることによって)内蔵されてもよい。データベース107がリスク分析支援システム101の外部のシステムに格納される場合、その内容の少なくとも一部が必要に応じて記憶媒体106又はメモリ105にコピーされてもよい。また、入力部102、出力部103、CPU104、メモリ105及び記憶媒体106を有する計算機と、データベース107とを含むシステム全体をリスク分析支援システムと呼んでもよい。
また、リスク分析支援システム101は、例えば図1に示す構成を有する一つの計算機によって実現されてもよいが、複数の計算機によって実現されてもよい。例えば、前述したデータベース107が保持する情報が、複数の記憶媒体106又はメモリ105に分散して格納されてもよいし、前述したリスク分析支援システム101の機能が、複数の計算機の複数のCPU104によって分散して実行されてもよい。
図2は、本発明の実施例1の受診歴情報管理部120が管理する受診基本情報200の一例を示す説明図である。
受診基本情報200は、各人物が医療機関において受診した履歴の情報である。この情報は、例えば医療機関によって作成されたレセプトから収集されてもよいが、それに限らず、いつ誰が医療機関を利用して診療を受けたのかがわかる情報であれば、利用することができる。
受診基本情報200は、各人物を特定する個人ID201、各人物が過去に受けた診療を特定する受診歴ID202、診療を行った医療機関を示す医療機関コード203、診療が行われた年及び月を示す診療年月204、当該診療に対応する医療費の情報を示す合計点数205、受けた診療の種別(例えば入院又は外来など)の情報を示す受診種別206、及び、診療に要した日数を示す診療日数207を含む。上記のような受診履歴の情報がレセプトから収集される場合には、受診歴ID202は、レセプトを特定するものであってもよい。これらの情報によって、例えばレセプト等の受診履歴を示す情報に基づいて集計及び分析を行うことができる。
図3は、本発明の実施例1の受診歴情報管理部120が管理する傷病名情報300の一例を示す説明図である。
傷病名情報300は、受診履歴の情報から抽出された傷病に関する情報であり、受けた診療を特定するための受診歴202、治療対象となった傷病を示す傷病名302、傷病名に対応する傷病コード303、複数の疾病の中で最も医療資源を投入した疾病に付与される主傷病フラグ304、及び、当該傷病名に罹患しているかどうかを確認するために検査を実施し、未確定である状態などを示す疑いフラグ305を含む。
図3の例では、主傷病フラグ304の値「1」は、当該傷病が主傷病であることを示す。また、疑いフラグ305の値「1」は、当該傷病が疑われたことを示す。
例えば一人の患者が1カ月間に複数の病気のために診療を受けた場合、傷病名302、傷病コード303、主傷病フラグ304及び疑いフラグ305の複数の組が同じ受診歴ID202に対応付けられる。また、傷病名情報300の各レコードは、受診歴ID202を介して個人ID201と対応付けられる。傷病名情報300を用いることによって、傷病別に分析することが可能になる。
図4は、本発明の実施例1の受診歴情報管理部120が管理する診療行為情報400の一例を示す説明図である。
診療行為情報400は、受診履歴の情報から抽出された、それぞれの月に患者に対して施された診療行為に関する情報であり、受けた診療を特定するための受診歴ID202、患者に対して施された診療行為を示す診療行為名称402、診療行為に対応する診療行為コード403、診療行為ごとに定められた診療行為点数404、及び、診療行為が行われた日を示す1日の情報405から31日の情報408を含む。診療行為情報400の各レコードは、受診歴202を介して個人ID201と対応付けられる。
診療行為が行われた日を示す1日の情報405から31日の情報408は、その月の1日から31日までの各日に、診療行為名称402が示す診療行為が行われたか否かを示す情報である。図4には例として1日の情報405、2日の情報406、3日の情報407及び31日の情報408を示すが、実際には4日の情報から30日の情報も含まれる。この情報によって、診療行為別に分析することが可能になる。
図5は、本発明の実施例1の健診情報管理部121が管理する健診情報500の一例を示す説明図である。
健診情報500は、各人物が受けた健康診断(健診)の結果に関する情報であり、個人ID201、健診を特定する健診ID502、健診を受けた年度を示す受診年度503、BMI(Body Mass Index)504、空腹時血糖505、HbA1c506、クレアチニン507、及び問診結果508などを含む。問診結果508は、例えば、飲酒の習慣の有無、運動の習慣の有無等を示す情報等を含んでもよい。上記のBMI504からクレアチニン507は、健康診断の結果として得られる情報の代表的な例であり、実際には健診情報500がこれらの少なくともいずれかを含まなくてもよいし、これら以外の項目の情報(例えば収縮期血圧、拡張期血圧など)を含んでもよい。この情報によって、健康状態に基づく分析が可能になる。
図6は、本発明の実施例1の属性情報管理部122が管理する属性情報600の一例を示す説明図である。
属性情報600は、各人物の属性に関する情報であり、個人ID201、性別602、生年月日603、各人物の健康保険への加入日の情報を示す加入年月日604、及び、健康保険からの脱退日の情報を示す脱退年月日605を含む。この情報によって、各人物の年齢、性別及び追跡可能年数等に応じた分析が可能になる。
図7は、本発明の実施例1の分析データ管理部123が管理する重症度定義情報700の一例を示す説明図である。
重症度定義情報700は、各人物の受診歴情報及び健診情報等に基づいて重症度を判定するための定義情報であり、定義ID701、定義内容702及び判定レベル703を含む。人物の受診歴及び健診結果等から得られる情報が定義内容702の値に該当する場合、判定レベル703の値が当該人物の重症度として判定される。本実施例では、未発症を示す「0」から、最も症状が重いことを示す「3」までの4段階の重症度レベルが定義される。
例えば、図7に示す重症度定義情報700の1行目は、空腹時血糖が126未満、かつ、HbA1cが6.5未満の場合に重症度レベルが「0」と判定されることを示し、2行目は、空腹時血糖が126以上、かつ、HbA1cが6.5以上の場合に重症度レベルが「1」と判定されることを示す。3行目は、糖尿病合併症がある場合に重症度レベルが「2」と判定されることを示す。4行目は、慢性腎不全の場合に重症度レベルが「3」と判定されることを示す。例えば、各人物の空腹時血糖及びHbA1cは健診情報500から得られてもよいし、各人物に糖尿病合併症があるか否か及び各人物が慢性腎不全であるか否かは受診基本情報及び傷病名情報から得られてもよい。重症度定義情報700によって、受診歴情報及び健診情報等に基づく各人物の重症度の判定が可能になる。
図8は、本発明の実施例1の分析データ管理部123が管理する重症度判定結果情報800の一例を示す説明図である。
重症度判定結果情報800は、各人物の受診歴情報及び健診情報等と、重症度定義情報700とに基づいて重症度を判定した結果を示す情報であり、個人ID201、対象年度802、重症度レベル0該当有無803、重症度レベル1該当有無804、重症度レベル2該当有無805、重症度レベル3該当有無806及び判定結果807を含む。
個人ID201は、人物を特定する情報である。対象年度802は、重症度判定の対象の年度を示す。重症度レベル0該当有無803~重症度レベル3該当有無806は、それぞれ、各人物の対象年度の受診履歴及び健診結果等の情報が、重症度定義情報700によって定義された重症度レベル0~3に該当するか否かを示す。図8の例では、「1」が該当、「0」が非該当を示す。判定結果807は、重症度レベル0該当有無803~重症度レベル3該当有無806の情報に基づいて判定された重症度レベルを示す。
例えば、図8に示す重症度判定結果情報800の1行目は、個人ID「P001」の人物の2018年度の受診履歴及び健診結果が重症度レベル0に該当し、重症度レベル1~3には該当せず、その結果、当該人物の当該年度の重症度レベルが「0」であると判定されたことを示している。また、10~12行目は、個人ID「P003」の人物の2019年度~2021年度の判定結果を示している。2019年度において、受診履歴及び健診結果が重症度レベル1に該当し、重症度レベル2、3には該当せず、その結果、該当する重症度レベルのうち最も高い「1」が当該人物の当該年度の重症度レベルとして判定されている。2020年度において、受診履歴及び健診結果が重症度レベル1、2に該当し、重症度レベル3には該当せず、その結果、該当する重症度レベルのうち最も高い「2」が当該人物の当該年度の重症度レベルとして判定されている。2021年度において、受診履歴及び健診結果が重症度レベル1~3に該当し、その結果、該当する重症度レベルのうち最も高い「3」が当該人物の当該年度の重症度レベルとして判定されている。
図9は、本発明の実施例1の分析データ管理部123が管理する指導履歴情報900の一例を示す説明図である。
指導履歴情報900は、各人物に対して過去に行われた保健指導の履歴を管理する情報であり、個人ID201、対象年度902、重症度レベル1指導実施有無903、重症度レベル2指導実施有無904、重症度レベル3指導実施有無905、指導対象外フラグ906及び指導対象判定事由907を含む。
個人ID201は、人物を特定する情報である。対象年度902は、保健指導の対象の年度を示す。重症度レベル1指導実施有無903~重症度レベル3指導実施有無905は、各人物に対してそれぞれの重症度レベルに対応する保健指導が行われたか否かを示す。指導対象外フラグ906は、各人物が保健指導の対象外であるかを示す。指導対象判定事由907は、各人物が保健指導の対象外であると判定された場合にその理由を示す。
例えば、図9に示す指導履歴情報900の1行目は、個人ID「P001」の人物に対して2020年度にいずれの重症度レベルに対応する保健指導も行われなかったことを示す。また、4行目は、個人ID「P002」の人物に対して2019年度に重症度レベル1に対応する保健指導が行われたこと、及び、複数年にわたって当該人物に対して同一の保健指導が行われたために現在は当該人物が保健指導の対象外であることを示す。また、5行目は、個人ID「P003」の人物に対して2021年度に重症度レベル2及び3に対応する保健指導が行われたこと、及び、既に当該人物に対して医療機関による治療が開始されたために現在は当該人物が保健指導の対象外であることを示す。
保健指導の目的が、疾病の発症及び重症化を防ぐことで医療費を抑制することにあるとすると、同じ人物に何度も同じ指導をするよりも、まだ指導をしたことがない人物に指導をする方が高い効果を期待できる。また、既に重症化が進行して医療機関による治療が開始された人物については、医療費の抑制という目的を既に果たせなくなっている。このため、そのような場合には保健指導の対象から除外することで、限られたリソースを活用した医療費の抑制に寄与することができる。
図10は、本発明の実施例1のリスクモデル情報管理部124が管理するリスクモデルパラメータ情報1000の一例を示す説明図である。
リスクモデルパラメータ情報1000は、リスクを査定するモデル(リスクモデル)を特定するモデルID1001、それぞれのモデルがどのようなモデルであるかを示すモデル名1002、及び、モデルの構造とパラメータを示すモデルパラメータ1003を含む。
例えば、リスクモデル構築部111が、受診基本情報200、傷病名情報300、診療行為情報400、健診情報500、属性情報600、重症度定義情報700及び重症度判定結果情報800に基づいて、各人物の受診履歴、健診結果及び属性の少なくともいずれかの項目の値から各人物の健康状態の変化のリスク値を計算するための1以上のモデルを生成する。生成されたリスクモデルの種類、構造及びパラメータがリスクモデルパラメータ情報1000に格納される。
ここで、健康状態の変化のリスク値とは、例えばいずれかの疾病の発症リスクを示す値であってもよいし、いずれかの疾病の重症度の変化(特に悪化)のリスクを示す値であってもよい。すなわち、リスクモデルパラメータ情報1000として、例えば疾病の種類ごとの発症リスクを計算するためのリスクモデルが保持されてもよいし、特定の疾病の重症度の変化のリスクを計算するためのリスクモデルが保持されてもよい。本実施例では、特定の疾病(例えば糖尿病)の発症及び重症度の変化のリスクを計算するためのリスクモデルが保持される。以下、特定の疾病の発症及び重症度の変化のリスクを計算する場合を例として本実施例を説明するが、例えば疾病の種類ごとの発症リスクを計算する場合にも本実施例を適用できることは言うまでもない。
図10の例では、モデルID「1」のリスクモデルとして、特定の疾病(例えば糖尿病)をまだ発症していない人物が、重症度レベル1以上の当該疾病を発症するリスクを計算するためのモデルが保持される。この例では、年齢及び空腹時血糖等を説明変数、重症度レベル1以上の当該疾病の発症確率を目的変数とするモデルのパラメータが登録されている。
同様に、モデルID「2」のリスクモデルとして、重症度レベル1以下の人物が重症度レベル2以上の当該疾病を発症するリスクを計算するためのモデルが保持される。この例では、年齢、性別、空腹時血糖及びクレアチニン等を説明変数、重症度レベル2以上の当該疾病の発症確率を目的変数とするモデルのパラメータが登録されている。さらに、モデルID「3」のリスクモデルとして、重症度レベル2以下の人物が重症度レベル3以上の当該疾病を発症するリスクを計算するためのモデルが保持される。この例では、年齢、性別、尿蛋白及びクレアチニン等を説明変数、重症度レベル3以上の当該疾病の発症確率を目的変数とするモデルのパラメータが登録されている。
この例では、あるレベル以上の重症度の発症確率を計算するためのモデルを示しているが、例えば重症度レベル1の疾病の発症確率を計算するためのモデルなど、特定のレベルの重症度の疾病の発症確率を計算するためのモデルが作成されてもよい。また、モデルパラメータとして、例えば回帰モデルのパラメータが登録されてもよいが、リスク値を予測できるモデルであれば、その他のモデルのパラメータが登録されてもよい。この情報によって、各人物の重症度レベルごとの発症リスクを計算することが可能になる。
図11は、本発明の実施例1の対象者抽出情報管理部125が管理する対象者抽出情報1100の一例を示す説明図である。
対象者抽出情報1100は、リスクモデルパラメータ情報1000に基づいて計算された各人物の発症リスクと、それに基づいて計算された介入優先順位とを管理する情報である。図11には、一例として、テーブル1110、1120及び1130からなる対象者抽出情報1100を示す。
テーブル1110には、現在の重症度レベルが「2」である人物の重症度レベル3以上の発症確率と、それに基づいて計算された、保健指導等の介入を行う優先順位とが保持される。具体的には、個人ID1111は、各人物を特定する情報である。現在レベル1112は、各人物の現在の重症度レベル(この例ではレベル「2」)を示す。レベル3以上発症確率1113は、例えば、リスクモデルパラメータ情報1000のモデルID「3」のリスクモデルを用いて計算された各人物の重症度レベル3以上の発症確率を示す。介入優先順位1114は、各人物への保健指導等の介入の優先順位を示す。この例では、発症確率が高い人物に高い介入優先順位が付与されている。
テーブル1120には、現在の重症度レベルが「1」である人物の重症度レベル2以上の発症確率と、それに基づいて計算された介入優先順位とが保持される。具体的には、個人ID1121は、各人物を特定する情報である。現在レベル1122は、各人物の現在の重症度レベル(この例ではレベル「1」)を示す。レベル2以上発症確率1123は、例えば、リスクモデルパラメータ情報1000のモデルID「2」のリスクモデルを用いて計算された各人物の重症度レベル2以上の発症確率を示す。介入優先順位1124は、各人物への保健指導等の介入の優先順位を示す。この例では、発症確率が高い人物に高い介入優先順位が付与されている。
テーブル1130には、現在の重症度レベルが「0」(すなわち未発症)である人物の重症度レベル1以上の発症確率と、それに基づいて計算された介入優先順位とが保持される。具体的には、個人ID1131は、各人物を特定する情報である。現在レベル1132は、各人物の現在の重症度レベル(この例ではレベル「0」)を示す。レベル1以上発症確率1133は、例えば、リスクモデルパラメータ情報1000のモデルID「1」のリスクモデルを用いて計算された各人物の重症度レベル1以上の発症確率を示す。介入優先順位1134は、各人物への保健指導等の介入の優先順位を示す。この例では、発症確率が高い人物に高い介入優先順位が付与されている。
図11の例では、テーブルごとに介入優先順位が設定されるため、例えば介入優先順位が1位の人物が複数存在することとなる。この場合に、最終的にどの重症度レベルの人物の介入を優先するかは、例えば、治療のための医療リソースの種類、量、及び、保健指導のためのリソースの種類、量等に応じて決定することができる。例えば、重症度レベル3の発症確率に基づく介入優先順位が高い人物を最優先としてもよい。
また、図11の例では説明のために対象者抽出情報1100を3つのテーブルに分けて示したが、実際には一つのテーブルであってもよい。例えば、各人物の個人IDと、各人物の現在の重症度レベルと、各人物の現在の重症度レベルの1段上の重症度レベルの発症確率と、それに基づいて計算された各人物の介入優先順位と、を含む一つのテーブルが対象者抽出情報1100として保持されてもよい。
図12は、本発明の実施例1の状態判定部112が実行する処理の一例を示すフローチャートである。
処理が開始されると(ステップ1201)、状態判定部112は、属性情報、健診情報、受診歴情報及び重症度定義を読み込む(ステップ1202~1205)。これによって、例えば、属性情報600、健診情報500、受診基本情報200、傷病名情報300、診療行為情報400及び重症度定義情報700が読み込まれる。
次に、状態判定部112は、読み込んだ情報に基づいて、各人物の各年度の重症度フラグを生成する(ステップ1206)。これによって、例えば重症度判定結果情報800の重症度レベル0該当有無803~重症度レベル3該当有無806の値が生成される。
次に、状態判定部112は、ステップ1206で生成した重症度フラグに基づいて、各人物の各年度の重症度判定結果情報を生成する(ステップ1207)。これによって、例えば重症度判定結果情報800の判定結果807の値が生成され、重症度判定結果情報800が完成する。
以上で処理が終了する(ステップ1208)。
図13は、本発明の実施例1のリスクモデル構築部111が実行する処理の一例を示すフローチャートである。
処理が開始されると(ステップ1301)、リスクモデル構築部111は、リスクモデル構築の条件を設定する(ステップ1302)。これによって、例えば、説明変数及び目的変数の時期的範囲、対象となる人物の年齢の範囲等が設定される。
次に、リスクモデル構築部111は、属性情報、健診情報、受診歴情報及び重症度判定結果を読み込む(ステップ1303~1306)。これによって、例えば、属性情報600、健診情報500、受診基本情報200、傷病名情報300、診療行為情報400及び重症度判定結果情報800が読み込まれる。
次に、リスクモデル構築部111は、ステップ1303~1306で読み込んだ情報と、ステップ1302で設定した条件とに基づいて、分析データセットを作成する(ステップ1307)。例えば、リスクモデル構築部111は、ステップ1303~1306で読み込んだ情報から、ステップ1302で設定した条件に適合する情報を抽出して、それを人物のIDに基づいて突き合わせることによって、目的変数の値(この例では重症度の判定結果)とそれに対応する説明変数の値とを含む分析データセットを作成する。
次に、リスクモデル構築部111は、ステップ1307で作成した分析データセットに基づいてモデル構築対象のデータを抽出し(ステップ1308)、リスクモデルを構築する(ステップ1309)。構築したモデルのパラメータは、リスクモデルパラメータ情報1000として保持される。
以上で処理が終了する(ステップ1310)。
図14は、本発明の実施例1のリスク値算出部113が実行する処理の一例を示すフローチャートである。
処理が開始されると(ステップ1401)、リスク値算出部113は、属性情報、健診情報及び受診歴情報を読み込む(ステップ1402~1404)。これによって、例えば、属性情報600、健診情報500、受診基本情報200、傷病名情報300及び診療行為情報400が読み込まれる。
次に、リスク値算出部113は、読み込んだ情報に基づいて、評価用データセットを構築する(ステップ1405)。例えば、リスク値算出部113は、ステップ1402~1404で読み込んだ情報から、これからリスク値を評価して介入優先順位を決定しようとする対象の各人物の説明変数に相当するデータを抽出して、リスクモデルに入力するデータを構築する。
次に、リスク値算出部113は、構築した評価用データセットに基づいて、各人物の現在の重症度レベルを判定して、各人物に適用するリスクモデルを判定する(ステップ1406)。
次に、リスク値算出部113は、ステップ1405で構築した評価用データセットにステップ1406で判定したリスクモデルを適用することによって、対象の各人物の重症度ごとのリスク値(すなわち重症度レベルの発症確率)を算出する(ステップ1407)。
次に、リスク値算出部113は、ステップ1407で算出したリスク値を格納する(ステップ1408)。例えば、算出されたリスク値は、対象者抽出情報1100のレベル3以上発症確率1113、レベル2以上発症確率1123及びレベル1以上発症確率1133のいずれかに格納される。
以上で処理が終了する(ステップ1409)。
図15は、本発明の実施例1の対象者抽出部114が実行する処理の一例を示すフローチャートである。
処理が開始されると(ステップ1501)、対象者抽出部114は、抽出条件を設定する(ステップ1502)。例えば、対象となる人物の年齢の範囲等が設定されてもよいし、介入優先順位が上位の何人までを抽出するか、重症度レベルごとに何人ずつ抽出するか、重症度レベルが高い人物と低い人物のどちらを優先するか、といった条件が設定されてもよい。
次に、対象者抽出部114は、リスク評価結果を読み込む(ステップ1503)。例えば、リスク値算出部113が算出した各人物の各重症度レベルの発症確率が読み込まれる。
次に、対象者抽出部114は、ステップ1503で読み込んだリスク評価結果に、保健指導等の介入を行う優先順位を付加する(ステップ1504)。例えば、対象者抽出情報1100のレベル3以上発症確率1113、レベル2以上発症確率1123及びレベル1以上発症確率1133のようなリスク評価結果が読み込まれた場合、介入優先順位1114、1124及び1134のような優先順位が付加される。
次に、対象者抽出部114は、ステップ1504で付加された優先順位を対象者抽出情報1100として格納する(ステップ1505)。
以上で処理が終了する(ステップ1506)。これによって、例えばリスク値が高い人物に高い優先順位が付加され、優先的に保健指導が行われることとなる。
なお、対象者抽出部114は、上記のように新たに計算したリスク値だけでなく、過去に計算したリスク値と新たに計算したリスク値とからリスク値の変化の傾向を特定して、その結果を優先順位の決定に反映させてもよい。例えば、対象者抽出情報管理部125は、過去のリスク値の計算結果を管理し、過去のリスク値と新たに計算したリスク値とに基づいてリスク値の増加の傾向が所定の条件を超えた人物について、介入優先順位を上げてもよい。これによって、例えば現在のリスク値はそれほど高くなくても、増加傾向が著しい人物には高い優先順位が付加される。
次に、図12から図15に示した処理を実行するときにリスク分析支援システム101が提供するユーザインターフェースの一例を、図16及び図17を参照して説明する。
図16は、本発明の実施例1の状態判定部112及びリスクモデル構築部111の処理に対応するユーザインターフェースの一例を示す説明図である。
図16に示すリスクモデル構築画面1600は、リスク分析支援システム101によって出力される表示データの一例であり、例えば、データ読込部1601、モデル構築条件設定部1602、モデル構築処理実行ボタン1603、分析データセット作成結果表示部1604及びモデル構築結果表示部1605を含む。
なお、この表示データは、出力部103によって画像として出力されてもよいし、通信部108によって出力されてもよい。後者の場合、表示データは通信部108からネットワーク(図示省略)を介して外部の装置(例えばユーザが使用する端末装置など、図示省略)に転送され、当該外部の装置によって画像として出力されてもよい。その場合、画面を介して入力される情報は、当該外部の装置の入力部(図示省略)を用いて入力され、ネットワーク及び通信部108を介してリスク分析支援システム101に入力される。後述する他の画面についても同様である。
データ読込部1601では、状態判定のために読み込まれるデータの条件が指定される。例えば、健康状態の判定条件(具体的には例えば重症度レベルの判定条件)の定義、対象の人物の属性情報、対象の健診結果及び対象の受診歴等を指定することができる。ここで指定された条件に基づいて、ステップ1202~1205の読み込みが行われる。
モデル構築条件設定部1602では、リスクモデル構築の条件が設定される。例えば、説明変数として使用されるデータの時期的範囲、目的変数として使用されるデータの時期的範囲、及び、対象となる人物の年齢の範囲を指定することができる。これらの条件の指定は、ステップ1302で行われ、指定された条件に適合するデータがステップ1303~1306で読み込まれる。
モデル構築処理実行ボタン1603が操作されると、データ読込部1601及びモデル構築条件設定部1602で指定された条件に従って状態判定部112及びリスクモデル構築部111の処理が実行される。
分析データセット作成結果表示部1604には、ステップ1307で作成された分析データセットが表示される。具体的には、例えば、人物ごとに、説明変数となる重症度レベル、性別及び年齢等の属性、健診結果等から得られるBMI及び問診結果等の情報、受診歴情報から得られる既往症の有無、及び、目的変数となる重症度レベル等が表示される。
モデル構築結果表示部1605には、リスクモデル構築部111によって構築されたモデルの情報が表示される。例えば、リスクモデルパラメータ情報1000に相当する情報が表示されてもよい。
図17は、本発明の実施例1のリスク値算出部113及び対象者抽出部114の処理に対応するユーザインターフェースの一例を示す説明図である。
図17に示す対象者抽出画面1700は、リスク分析支援システム101によって出力される表示データの一例であり、例えば、データ読込部1701、対象者抽出条件設定部1702、対象者抽出実行ボタン1703及び対象者抽出結果表示部1704を含む。
データ読込部1701は、図16のデータ読込部1601と同様である。
対象者抽出条件設定部1702では、介入の対象者の抽出の条件が設定される。例えば、説明変数として使用されるデータの時期的範囲、及び、対象となる人物の年齢の範囲を指定することができる。
対象者抽出実行ボタン1703が操作されると、対象者抽出条件設定部1702で指定された条件に従ってリスク値算出部113及び対象者抽出部114の処理が実行される。
対象者抽出結果表示部1704には、リスク値算出部113及び対象者抽出部114の処理の結果が表示される。例えば、対象者抽出情報1100に相当する情報が表示されてもよい。
以上の実施例1によれば、疾病の発症又は重症化といった健康状態の変化を予防するための健康指導の優先順位を適切に決定することができる。例えば、発症リスク又は重症化リスクが高い人物を適切に選択して優先的に保健指導を行うことで、限られたリソースを活用して医療費の増大の抑制を期待することができる。
次に、本発明の実施例2を説明する。以下に説明する相違点を除き、実施例2のシステムの各部は、図1~図17に示された実施例1の同一の符号を付された各部と同一の機能を有するため、それらの説明は省略する。
図18は、本発明の実施例2のリスク分析支援システム101の構成の一例を示すブロック図である。
実施例2のリスク分析支援システム101において、記憶媒体106は、さらにリスク値補正部115を有する。また、リスクモデル構築部111及び対象者抽出部114の処理に後述する相違がある。また、データベース107において、分析データ管理部123、リスクモデル情報管理部124及び対象者抽出情報管理部125が管理する情報に後述する相違がある。なお、リスク値補正部115の機能は、他の各部の機能と同様に、CPU104が記憶媒体106に格納されたプログラムを実行することによって実現される。
また、実施例1では、特定の疾病を対象として、各人物の重症度レベルごとの発症リスクが計算され、それに基づいて介入優先度が計算された。これに対して、実施例2では、複数の疾病を対象として、各人物の各疾病の発症リスクが計算され、それに基づいて介入優先度が計算される。実施例1における特定の疾病の重症度レベルごとの発症リスク及び実施例2における疾病ごとの発症リスクは、いずれも、人物の健康状態の変化のリスクの一例である。以下の実施例2を特定の疾病の重症度レベルごとの発症リスクにも適用できることは言うまでもない。
図19は、本発明の実施例2の分析データ管理部123が管理する対象疾病定義情報1900の一例を示す説明図である。
対象疾病定義情報1900は、各人物の受診歴情報及び健診情報等に基づいて各人物が疾病を発症しているか否かを判定するための定義情報であり、それぞれの定義を特定する定義ID1901、定義の対象の疾病を特定する対象疾病名称1902及び定義の内容を示すICD10定義1903を含む。ICD10定義1903には、ICD10(国際疾病分類第10版)のコードが記載される。例えば、2型糖尿病、心血管疾患、脳血管疾患等を定義する情報を示すコードがICD10定義1903として記載される。実施例2では説明のために上記の3つの疾病を対象として説明するが、実際には対象疾病定義情報1900はより多くの疾病の定義情報を含むことができ、後述する処理において多くの疾病の発症の有無を判定することができる。対象疾病定義情報1900によって、受診歴情報及び健診情報等に基づいて各人物の各疾病の発症の有無を判定することが可能になる。
図20は、本発明の実施例2の分析データ管理部123が管理する重症度判定結果情報2000の一例を示す説明図である。
重症度判定結果情報2000は、各人物の受診歴情報及び健診情報等と、対象疾病定義情報1900とに基づいて各人物の各疾病の発症の有無を判定した結果を示す情報であり、個人ID201、対象年度2002、2型糖尿病該当有無2003、心血管疾患該当有無2004及び脳血管疾患該当有無2005を含む。
個人ID201は、人物を特定する情報である。対象年度2002は、判定の対象の年度を示す。2型糖尿病該当有無2003、心血管疾患該当有無2004及び脳血管疾患該当有無2005は、各人物の対象年度の受診履歴及び健診結果等の情報が、それぞれ、対象疾病定義情報1900によって定義された2型糖尿病、心血管疾患及び脳血管疾患に該当するか否かを示す。図20の例では、「1」が該当、「0」が非該当を示す。
図21は、本発明の実施例2のリスクモデル情報管理部124が管理するモデル別識別閾値情報2100の一例を示す説明図である。
モデル別識別閾値情報2100は、リスクモデルを特定するモデルID2101、それぞれのモデルがどのようなモデルであるかを示すモデル名2102、モデルの構造とパラメータを示すモデルパラメータ2103、及び、リスクモデルによって算出されたリスク値に基づいて、各疾病の発症の有無を判定するための識別閾値2104を含む。
例えば、リスクモデル構築部111が、受診基本情報200、傷病名情報300、診療行為情報400、健診情報500、属性情報600、対象疾病定義情報1900及び重症度判定結果情報2000に基づいて、各人物の受診履歴、健診結果及び属性の少なくともいずれかの項目の値から各人物の健康状態の変化(実施例2では各疾病の発症)のリスク値を計算するための1以上のモデルを生成する。生成されたリスクモデルの種類、構造及びパラメータ等がモデル別識別閾値情報2100に格納される。
図21の例では、モデルID「1」のリスクモデルとして、2型糖尿病の発症リスクを計算するためのモデルが保持される。この例では、年齢、性別、空腹時血糖及びHbA1c等を説明変数、2型糖尿病の発症確率を目的変数とするモデルのパラメータが登録され、さらに、識別閾値として0.19が登録されている。これは、当該モデルによって計算された発症確率が0.19を超える場合に2型糖尿病の発症有りと判定されることを示す。
同様に、モデルID「2」のリスクモデルとして、心血管疾患の発症リスクを計算するためのモデルが保持される。この例では、年齢、性別、収縮期血圧及び拡張期血圧等を説明変数、心血管疾患の発症確率を目的変数とするモデルのパラメータが登録され、さらに、識別閾値として0.20が登録されている。さらに、モデルID「3」のリスクモデルとして、脳血管疾患の発症リスクを計算するためのモデルが保持される。この例では、年齢、性別、収縮期血圧及び中性脂肪等を説明変数、脳血管疾患の発症確率を目的変数とするモデルのパラメータが登録され、さらに、識別閾値として0.02が登録されている。
識別閾値2104の値の設定方法は限定されないが、識別性能が最も高くなるように設定することが望ましい。一例を挙げると、ROC(Receiver Operating Characteristic)曲線において感度+特異度-1が最大となる点を閾値として設定してもよい。モデル別識別閾値情報2100によって、各人物の疾病ごとの発症リスクを計算することが可能になる。
図22は、本発明の実施例2のリスクモデル情報管理部124が管理するリスク補正結果情報2200の一例を示す説明図である。
リスク補正結果情報2200は、リスクモデルに基づいて各人物の各疾病の発症リスクを計算した結果と、それを識別閾値に基づいて補正した結果とを示す情報である。具体的には、リスク補正結果情報2200は、個人ID201、2型糖尿病発症リスク値2202、心血管疾患発症リスク値2203、脳血管疾患発症リスク値2204、2型糖尿病発症補正リスク値2205、心血管疾患発症補正リスク値2206、脳血管疾患発症補正リスク値2207及び最も発症リスクの高い疾病2208を含む。
個人ID201は、人物を特定する情報である。2型糖尿病発症リスク値2202、心血管疾患発症リスク値2203及び脳血管疾患発症リスク値2204は、それぞれ、対応するリスクモデルに基づいて計算された各人物が2型糖尿病を発症するリスクを示す値(例えば発症確率)、心血管疾患を発症するリスクを示す値(例えば発症確率)、及び、脳血管疾患を発症するリスクを示す値(例えば発症確率)である。
2型糖尿病発症補正リスク値2205、心血管疾患発症補正リスク値2206及び脳血管疾患発症補正リスク値2207は、それぞれ、2型糖尿病発症リスク値2202、心血管疾患発症リスク値2203及び脳血管疾患発症リスク値2204を、対応する識別閾値に基づいて補正した値である。最も発症リスクの高い疾病2208は、補正後のリスク値に基づいて最も発症リスクが高いと判定される疾病を示す。
例えば、図22に示すリスク補正結果情報2200の1行目は、個人ID「P001」の人物についてリスクモデルを用いて計算された2型糖尿病の発症リスク値が「0.25」であり、それに対応する識別閾値「0.19」に基づいて補正したリスク値が「0.06」であることを示している。この例では、リスクモデルを用いて計算された発症リスク値から識別閾値を減算することで補正が行われる。
同様に、1行目は、個人ID「P001」の人物の心血管疾患の発症リスク値「0.24」が識別閾値「0.20」に基づいて「0.04」に補正され、脳血管疾患の発症リスク値「0.23」が識別閾値「0.02」に基づいて「0.21」に補正されることを示している。その結果、個人ID「P001」の人物について最も発症リスクが高い疾病は、補正後のリスク値に基づいて、脳血管疾患と判定される。
一般に、発生頻度が低い疾病では、そうでない疾病と比較して、リスクモデルの出力である発症確率が低くなることから、単に発症確率を疾病間で比較することでリスクを評価することは難しい。これに対して、発症確率が低ければ、発症するか否かを判定するための識別閾値も低くなることから、識別閾値を使用して発症確率を補正した値をリスク値として使用することで、疾病間の発症リスクを比較することが可能になる。
例えば、上記の例において、個人ID「P001」の人物の2型糖尿病及び心血管疾患の発症リスク値はいずれも識別閾値よりやや高い程度であるが、脳血管疾患の発症リスク値は識別閾値より大幅に高い。このことから、当該人物については、これらの3つの疾病のうち、脳血管疾患の発症リスクが最も高い(すなわち、脳血管疾患の発症を防ぐための保健指導等の介入を行う必要性が高い)といえる。しかし、単にリスクモデルの出力である発症確率を比較した場合には、2型糖尿病の発症リスクが最も高いと判定され、2型糖尿病の発症を防ぐための保健指導等が行われることとなる。
これに対して、本実施例では、上記のように識別閾値を使用して発症確率を補正した値をリスク値として使用することで、脳血管疾患の発症リスクが最も高いと判定することが可能になる。
上記の例では、リスクモデルを用いて計算された発症リスク値から識別閾値を減算することで補正が行われるが、これは補正方法の一例であり、識別閾値が相対的に高い疾病の発症リスク値を低くする方向に補正する、及び、識別閾値が相対的に低い疾病の発症リスク値を高くする方向に補正する、の少なくともいずれかの補正が行われてもよい。
図23は、本発明の実施例2の対象者抽出情報管理部125が管理する対象者抽出情報2300の一例を示す説明図である。
対象者抽出情報2300は、リスクモデルパラメータ情報1000に基づいて計算された各人物の発症リスクと、それを識別閾値に基づいて補正した発症リスクと、補正後の発症リスクに基づいて計算された介入優先順位とを管理する情報である。図23には、一例として、テーブル2310、2320及び2330からなる対象者抽出情報2300を示す。
テーブル2310には、2型糖尿病の発症リスクと、それを識別閾値に基づいて補正した発症リスクと、補正後の発症リスクに基づいて計算された、保健指導等の介入を行う優先順位とが保持される。具体的には、個人ID2311は、各人物を特定する情報である。対象疾病2312は、発症リスク及びそれに基づく介入優先順位の算出の対象となる疾病(この例では2型糖尿病)を示す。発症リスク2313は、例えば、モデル別識別閾値情報2011のモデルID「1」のリスクモデルを用いて計算された各人物の2型糖尿病の発症確率を示す。補正発症リスク2314は、各人物の2型糖尿病の発症確率を、当該モデルの識別閾値2104の値「0.19」を用いて補正した発症リスクを示す。介入優先順位2315は、各人物への保健指導等の介入の優先順位を示す。この例では、補正後の発症リスクが高い人物に高い介入優先順位が付与されている。
テーブル2320には、心血管疾患の発症リスクと、それを識別閾値に基づいて補正した発症リスクと、補正後の発症リスクに基づいて計算された、保健指導等の介入を行う優先順位とが保持される。具体的には、個人ID2321は、各人物を特定する情報である。対象疾病2322は、発症リスク及びそれに基づく介入優先順位の算出の対象となる疾病(この例では心血管疾患)を示す。発症リスク2323は、例えば、モデル別識別閾値情報2011のモデルID「2」のリスクモデルを用いて計算された各人物の心血管疾患の発症確率を示す。補正発症リスク2324は、各人物の心血管疾患の発症確率を、当該モデルの識別閾値2104の値「0.20」を用いて補正した発症リスクを示す。介入優先順位2325は、各人物への保健指導等の介入の優先順位を示す。この例では、補正後の発症リスクが高い人物に高い介入優先順位が付与されている。
テーブル2330には、脳血管疾患の発症リスクと、それを識別閾値に基づいて補正した発症リスクと、補正後の発症リスクに基づいて計算された、保健指導等の介入を行う優先順位とが保持される。具体的には、個人ID2331は、各人物を特定する情報である。対象疾病2332は、発症リスク及びそれに基づく介入優先順位の算出の対象となる疾病(この例では脳血管疾患)を示す。発症リスク2333は、例えば、モデル別識別閾値情報2011のモデルID「3」のリスクモデルを用いて計算された各人物の脳血管疾患の発症確率を示す。補正発症リスク2334は、各人物の脳血管疾患の発症確率を、当該モデルの識別閾値2104の値「0.02」を用いて補正した発症リスクを示す。介入優先順位2335は、各人物への保健指導等の介入の優先順位を示す。この例では、補正後の発症リスクが高い人物に高い介入優先順位が付与されている。
なお、テーブル2310には、補正後の発症リスクに基づいて、2型糖尿病の発症リスクが最も高いと判定された人物に関する情報のみが含まれてもよい。同様に、テーブル2320には、補正後の発症リスクに基づいて、心血管疾患の発症リスクが最も高いと判定された人物に関する情報のみが含まれてもよく、テーブル2330には、補正後の発症リスクに基づいて、脳血管疾患の発症リスクが最も高いと判定された人物に関する情報のみが含まれてもよい。
次に、実施例2のリスク分析支援システム101が実行する処理についてフローチャートを参照して説明する。実施例2の状態判定部112が実行する処理は、実施例1と同様である(図12参照)。ただし、状態判定部112は、ステップ1205において対象疾病定義情報1900を読み込み、ステップ1206において、各疾病の該当有無を判定し、その結果を重症度判定結果情報2000として保持する。
図24は、本発明の実施例2のリスクモデル構築部111が実行する処理の一例を示すフローチャートである。
処理が開始されると(ステップ2401)、リスクモデル構築部111は、リスクモデル構築の条件を設定し(ステップ2402)、属性情報、健診情報及び受診歴情報を読み込む(ステップ2403~2405)。これらは、実施例1のステップ1302~1305(図13)と同様である。
次に、リスクモデル構築部111は、重症度判定結果情報2000を読み込む(ステップ2406)。
次に、リスクモデル構築部111は、ステップ2403~2406で読み込んだ情報と、ステップ2402で設定した条件とに基づいて、分析データセットを作成する(ステップ2407)。例えば、リスクモデル構築部111は、ステップ2403~2406で読み込んだ情報から、ステップ2402で設定した条件に適合する情報を抽出して、それを人物のIDに基づいて突き合わせることによって、目的変数の値(この例では、それぞれの疾病の該当有無)とそれに対応する説明変数の値とを含む分析データセットを作成する。
次に、リスクモデル構築部111は、ステップ2407で作成した分析データセットに基づいてモデル構築対象のデータを抽出し(ステップ2408)、リスクモデルを構築する(ステップ2409)。構築したモデルのパラメータは、モデル別識別閾値情報2100のモデルパラメータ2103として保持される。
次に、リスクモデル構築部111は、識別閾値を算出する(ステップ2410)。前述のように、この閾値を算出する方法は限定されないが、識別性能が最も高くなるように設定することが望ましい。算出した識別閾値は、モデル別識別閾値情報2100の識別閾値2104として保持される。
以上で処理が終了する(ステップ2411)。
実施例2のリスク値算出部113は、上記の図24の処理によって構築されたリスクモデルを使用して、リスク値を算出する。その手順は実施例1と同様であるため、説明を省略する(図14参照)。算出されたリスク値は、例えば、リスク補正結果情報2200の2型糖尿病発症リスク値2202~脳血管疾患発症リスク値2204として保持される。
図25は、本発明の実施例2の対象者抽出部114及びリスク値補正部115が実行する処理の一例を示すフローチャートである。
処理が開始されると(ステップ2501)、対象者抽出部114は、抽出条件を設定する(ステップ2502)。この処理は、実施例1のステップ1502(図15)と同様である。
次に、対象者抽出部114は、リスク評価結果を読み込む(ステップ2503)。ここで、リスク値算出部113が算出した各人物の各疾病の発症リスク(例えば、リスク補正結果情報2200の2型糖尿病発症リスク値2202~脳血管疾患発症リスク値2204)が読み込まれる。
次に、リスク値補正部115が、ステップ2503で読み込まれたリスク値を補正する(ステップ2504)。この補正は、例えば、図22を参照して説明した方法で行われる。補正後のリスク値は、例えば、リスク補正結果情報2200の2型糖尿病発症補正リスク値2205~脳血管疾患発症補正リスク値2207として保持される。
次に、対象者抽出部114は、ステップ2504で補正されたリスク値に基づいて、保健指導等の介入を行う優先順位を付加する(ステップ2505)。例えば、対象者抽出情報2300の補正発症リスク2314、2324及び2334のような補正後のリスク値が読み込まれた場合、介入優先順位2315、2325及び2335のような優先順位が付加される。このとき、対象者抽出部114は、補正後の発症リスクに基づいて、2型糖尿病の発症リスクが最も高いと判定された人物に関する情報のみがテーブル2310に含まれ、心血管疾患の発症リスクが最も高いと判定された人物に関する情報のみがテーブル2320に含まれ、脳血管疾患の発症リスクが最も高いと判定された人物に関する情報のみがテーブル2330に含まれるように、優先順位を付加する対象の人物を選択してもよい。
次に、対象者抽出部114は、ステップ2305で付加された優先順位を対象者抽出情報2300として格納する(ステップ2506)。
以上で処理が終了する(ステップ2507)。
次に、実施例2のリスク分析支援システム101が提供するユーザインターフェースの一例を、図26及び図27を参照して説明する。
図26は、本発明の実施例2の状態判定部112及びリスクモデル構築部111の処理に対応するユーザインターフェースの一例を示す説明図である。
図26に示すリスクモデル構築画面2600は、リスク分析支援システム101によって出力される表示データの一例であり、例えば、データ読込部2601、モデル構築条件設定部2602、モデル構築処理実行ボタン2603、分析データセット作成結果表示部2604及びモデル構築結果表示部2605を含む。これらは、以下の相違点を除き、実施例1のリスクモデル構築画面1600のデータ読込部1601、モデル構築条件設定部1602、モデル構築処理実行ボタン1603、分析データセット作成結果表示部1604及びモデル構築結果表示部1605と同様である。以下、相違点を説明する。
分析データセット作成結果表示部2604には、ステップ2407で作成された分析データセットが表示される。具体的には、例えば、人物ごとに、説明変数となる性別及び年齢等の属性、健診結果等から得られるBMI及び問診結果等の情報、受診歴情報から得られる既往症の有無、及び、目的変数となる発症疾病等が表示される。
モデル構築結果表示部2605には、リスクモデル構築部111によって構築されたモデルの情報が表示される。例えば、モデル別識別閾値情報2100に含まれる情報のうち、モデルID2101、モデル名2102及びモデルパラメータ2103に相当する情報が表示されてもよい。
図27は、本発明の実施例2のリスク値算出部113、対象者抽出部114及びリスク値補正部115の処理に対応するユーザインターフェースの一例を示す説明図である。
図27に示す対象者抽出画面1700は、リスク分析支援システム101によって出力される表示データの一例であり、例えば、データ読込部2701、対象者抽出条件設定部2702、対象者抽出実行ボタン2703及び対象者抽出結果表示部2704を含む。これらは、以下の相違点を除き、実施例1の対象者抽出画面1700のデータ読込部1701、対象者抽出条件設定部1702、対象者抽出実行ボタン1703及び対象者抽出結果表示部1704と同様である。以下、相違点を説明する。
対象者抽出結果表示部2704には、リスク値算出部113、対象者抽出部114及びリスク値補正部115の処理の結果が表示される。例えば、対象者抽出情報2300に相当する情報が表示されてもよい。
以上の実施例2によれば、疾病の発症又は重症化といった健康状態の変化を予防するための健康指導の優先順位を適切に決定することができる。特に、健康状態の変化の態様によってその発生頻度が異なる場合にも、適切に健康状態の変化のリスクを比較して優先順位を決定することができ、発生頻度が低い疾病等のリスクを見落とすことが防止される。
また、本発明の実施形態のシステムは次のように構成されてもよい。
(1)リスク分析支援システムであって、プロセッサ(例えばCPU104)と、プロセッサに接続される記憶装置(例えばメモリ105、記憶媒体106、及び、データベース107を格納する他の記憶媒体の少なくともいずれか)と、を有し、記憶装置は、複数の人物の健康に関する健康情報(例えば受診歴情報管理部120及び健診情報管理部121によって管理される情報)と、複数の人物の属性情報(例えば属性情報管理部122によって管理される情報)と、複数の健康状態の定義情報(例えば重症度定義情報700及び対象疾病定義情報1900の少なくともいずれか)と、を保持し、プロセッサは、健康情報、属性情報及び複数の健康状態の定義情報に基づいて、健康状態が変化するリスクを計算するためのリスクモデルを構築し(例えばステップ1309又はステップ2409)、健康情報、属性情報及びリスクモデルに基づいて、複数の人物の健康状態が変化するリスクを示すリスク値を計算し(例えばステップ1407)、リスク値に基づいて、複数の人物に対する保健指導の優先順位を計算する(例えばステップ1504又はステップ2505)。
これによって、疾病の発症又は重症化といった健康状態の変化を予防するための健康指導の優先順位を適切に決定することができる。
(2)上記(1)において、複数の健康状態の定義情報は、特定の疾病の複数の重症度レベルを定義する情報(例えば重症度定義情報700)を含み、リスクモデルは、健康状態が各重症度レベルからそれより高い重症度レベルに変化するリスクを計算するためのモデル(例えばリスクモデルパラメータ情報1000)を含み、プロセッサは、健康情報及び複数の健康状態の定義情報に基づいて、複数の人物の現在の重症度レベルを計算し(例えばステップ1206及びステップ1207)、健康情報、属性情報及びリスクモデルに基づいて、複数の人物の健康状態が現在の重症度レベルからそれより高い重症度レベルに変化するリスクを、リスク値として計算し(例えばステップ1407)、複数の人物の現在の重症度レベルごとに、健康状態が現在の重症度レベルからそれより高い重症度レベルに変化するリスクが高いほど順位が高くなるように、複数の人物に対する保健指導の優先順位を計算する(例えばステップ1504)。
(3)上記(1)において、複数の健康状態の定義情報は、複数の疾病の発症を定義する情報(例えば対象疾病定義情報1900)を含み、リスクモデルは、複数の疾病の各々を発症するリスクを計算するためのモデル(例えばモデル別識別閾値情報2100に含まれるリスクモデル)を含み、プロセッサは、健康情報、属性情報及びリスクモデルに基づいて、複数の人物が複数の疾病の各々を発症するリスクを、リスク値として計算し(例えばステップ1407)、疾病ごとに、疾病を発症するリスクが高いほど順位が高くなるように、複数の人物に対する保健指導の優先順位を計算する(例えばステップ2505)。
(4)上記(1)において、記憶装置は、複数の人物に対して過去に行われた保健指導の履歴情報(例えば指導履歴情報900)を保持し、プロセッサは、履歴情報に基づいて保健指導が不要であると判定された人物を保健指導の優先順位の計算から除外する。
(5)上記(4)において、プロセッサは、履歴情報に基づいて、過去に所定回数以上実施されたものと同一の保健指導を不要であると判定する。
(6)上記(4)において、履歴情報は、複数の人物の各々に対する医療機関による治療が開始されたかを示す情報を含み、プロセッサは、履歴情報に基づいて、医療機関による治療が開始された人物に対する保健指導を不要であると判定する。
(7)上記(1)において、記憶装置は、複数の人物について過去に計算されたリスク値を保持し、プロセッサは、過去に計算されたリスク値と新たに判定されたリスク値とから特定されるリスク値の変化の傾向に基づいて、複数の人物に対する保健指導の優先順位を計算する。
(8)上記(1)において、健康情報は、複数の人物の医療機関の受診履歴を示す情報(例えば受診歴情報管理部120によって管理される情報)、及び、複数の人物が受けた健康診断の結果を示す情報(例えば健診情報管理部121によって管理される情報)の少なくとも一方を含む。
(9)上記(1)において、リスクモデルは、健康状態ごとに、当該健康状態への変化が発生するリスクを計算するためのリスクモデル(例えばモデル別識別閾値情報2100に含まれるリスクモデル)を含み、記憶装置は、健康状態ごとに、当該健康状態への変化が発生するリスクに基づいて当該健康状態への変化が発生するか否かを判定する閾値(例えばモデル別識別閾値情報2100に含まれる識別閾値2104)を保持し、プロセッサは、健康状態ごとに、当該健康状態への変化が発生するリスクを示すリスク値を計算し(例えばステップ1407)、健康状態ごとに、閾値に基づいて、リスク値を補正し(例えばステップ2504)、補正後のリスク値に基づいて、複数の人物に対する保健指導の優先順位を計算する(例えばステップ2505)。
(10)上記(9)において、プロセッサは、閾値が高い健康状態の前記リスク値を低くすること、及び、閾値が低い健康状態のリスク値を高くすること、の少なくとも一方によって、リスク値を補正する。
(11)上記(9)において、複数の健康状態の定義情報は、複数の疾病の発症を定義する情報(例えば対象疾病定義情報1900)を含み、リスクモデルは、複数の疾病の各々を発症するリスクを計算するためのモデル(例えばモデル別識別閾値情報2100に含まれるリスクモデル)を含み、閾値は、複数の疾病の各々を発症するか否かを判定するための閾値であり、プロセッサは、健康情報、属性情報及びリスクモデルに基づいて、複数の人物が複数の疾病の各々を発症するリスクを、リスク値として計算し(例えばステップ1407)、複数の人物の各々について、補正後のリスク値が最も高い疾病を、発症リスクが最も高い疾病として特定し、疾病ごとに、疾病の発症リスクが最も高い人物の中で、補正後のリスク値が高いほど順位が高くなるように、複数の人物に対する保健指導の優先順位を計算する(例えばステップ2505)。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によってハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによってソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、不揮発性半導体メモリ、ハードディスクドライブ、SSD(Solid State Drive)等の記憶デバイス、または、ICカード、SDカード、DVD等の計算機読み取り可能な非一時的データ記憶媒体に格納することができる。
また、制御線及び情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線及び情報線を示しているとは限らない。実際にはほとんど全ての構成が相互に接続されていると考えてもよい。