JP7591595B2 - Wearable Diagnostic Devices - Google Patents
Wearable Diagnostic Devices Download PDFInfo
- Publication number
- JP7591595B2 JP7591595B2 JP2023023240A JP2023023240A JP7591595B2 JP 7591595 B2 JP7591595 B2 JP 7591595B2 JP 2023023240 A JP2023023240 A JP 2023023240A JP 2023023240 A JP2023023240 A JP 2023023240A JP 7591595 B2 JP7591595 B2 JP 7591595B2
- Authority
- JP
- Japan
- Prior art keywords
- user
- test
- invasive diagnostic
- sensors
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
- A61B5/02416—Measuring pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
- A61B5/02438—Measuring pulse rate or heart rate with portable devices, e.g. worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
- A61B5/0245—Measuring pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/14535—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring haematocrit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/14542—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/14546—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/332—Portable devices specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/681—Wristwatch-type devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6824—Arm or wrist
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient; User input means
- A61B5/7405—Details of notification to user or communication with user or patient; User input means using sound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient; User input means
- A61B5/742—Details of notification to user or communication with user or patient; User input means using visual displays
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1101—Detecting tremor
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Optics & Photonics (AREA)
- Signal Processing (AREA)
- Pulmonology (AREA)
- Emergency Medicine (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Medical Treatment And Welfare Office Work (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Description
(背景)
個人がますます健康を意識するようになるにつれて、個人の健康情報を単純で便利な方
法で受信することへの需要がユーザの間で高まっている。多くの場合、ユーザは、それぞ
れがユーザの健康の一側面に関する情報を提供する複数の装置を装着する必要があり得る
。ユーザの健康の複数の側面に関する情報を単純で非侵襲的、かつ便利な方法で提供でき
る装置が必要である。
(background)
As individuals become increasingly health conscious, there is a growing demand among users to receive personal health information in a simple and convenient manner. In many cases, a user may be required to wear multiple devices, each of which provides information about one aspect of the user's health. There is a need for devices that can provide information about multiple aspects of a user's health in a simple, non-invasive, and convenient manner.
(概要)
一般に、主題の革新的な態様は、1つ又は複数の医療診断検査を行うためのウェアラブ
ル診断装置及び方法及びシステムを説明する。
(overview)
In general, the subject innovative aspects describe wearable diagnostic devices and methods and systems for performing one or more medical diagnostic tests.
いくつかの実施では、システムは、1つ又は複数のコンピュータ装置、及び該1つ又は複
数のコンピュータ装置によって実行されると該1つ又は複数のコンピュータ装置に動作を
実行させる命令を記憶する1つ又は複数の記憶装置を含む。動作は、ユーザの病状を検出
するための非侵襲的診断検査の開始要求に対応する入力を受け取ること、該非侵襲的診断
検査を行うための1つ又は複数のセンサを特定すること、非侵襲的診断検査に基づいて、
該特定された1つ又は複数のセンサを作動させること、該1つ又は複数のセンサを介して信
号データを受信すること、ユーザプロフィールに一部基づいて該非侵襲的診断検査の予測
値を得ること、該予測値及び該受信信号データに基づいて検査結果を決定すること、並び
に該検査結果をディスプレイ又はスピーカーを介して出力することを含む。
In some implementations, a system includes one or more computing devices and one or more storage devices storing instructions that, when executed by the one or more computing devices, cause the one or more computing devices to perform operations such as receiving an input corresponding to a request to initiate a non-invasive diagnostic test to detect a medical condition of a user, identifying one or more sensors for performing the non-invasive diagnostic test, and, based on the non-invasive diagnostic test,
The method includes activating the identified one or more sensors, receiving signal data via the one or more sensors, obtaining a predicted value for the non-invasive diagnostic test based in part on a user profile, determining a test result based on the predicted value and the received signal data, and outputting the test result via a display or speaker.
実施はそれぞれ、以下の機能の1つ又は複数を任意に含み得る。例えば、いくつかの実
施では、非侵襲的診断検査には、グルコース検査、コレステロール検査、ヘモグロビン検
査、酸素飽和レベル検査、及び心電図モニタリング検査の1つ又は複数が含まれる。
Each implementation may optionally include one or more of the following features: For example, in some implementations, the non-invasive diagnostic tests include one or more of a glucose test, a cholesterol test, a hemoglobin test, an oxygen saturation level test, and an electrocardiogram monitoring test.
いくつかの実施では、動作は、受信信号データから得た生データに基づいて経路を選択
すること、及び該選択された経路に基づいて決定された値のセットを得ることをさらに含
む。予測値及び受信信号データに基づいて検査結果を決定することは、決定された値に基
づいて検査結果を決定することを含む。
In some implementations, the operations further include selecting a path based on raw data obtained from the received signal data and obtaining a set of determined values based on the selected path. Determining a test result based on the predicted values and the received signal data includes determining a test result based on the determined values.
いくつかの実施では、動作は、1つ又は複数のデータベースからユーザの臨床データ及
びユーザのデモグラフィックデータを得ること、該得たユーザの臨床データ及び該ユーザ
のデモグラフィックデータに基づいて臨床データセットの範囲を決定すること、並びに該
臨床データセットの範囲を非侵襲的診断検査の予測値にマッピングすることをさらに含む
。
In some implementations, the operations further include obtaining user clinical data and user demographic data from one or more databases, determining a range of a clinical dataset based on the obtained user clinical data and user demographic data, and mapping the range of the clinical dataset to a predictive value of a non-invasive diagnostic test.
いくつかの実施では、動作は、行われるべき第2の非侵襲的診断検査を、(i)該第2の
非侵襲的診断検査を非侵襲的診断検査に関連付けるユーザパターン、及び(ii)ユーザの
病歴に基づいて決定すること;該第2の非侵襲的診断検査に基づいて1つ又は複数のセンサ
の第2のセットを作動させること;該1つ又は複数のセンサの第2のセットを介して第2の信
号データを受信すること;ユーザプロフィールに一部基づいて該第2の非侵襲的診断検査
の第2の予測値を得ること;並びに該第2の予測値及び該受信した第2の信号データに基づ
いて第2の検査結果を決定することをさらに含む。
In some implementations, the operations further include determining a second non-invasive diagnostic test to be performed based on (i) a user pattern associating the second non-invasive diagnostic test with a non-invasive diagnostic test, and (ii) the user's medical history; activating a second set of one or more sensors based on the second non-invasive diagnostic test; receiving second signal data via the second set of one or more sensors; obtaining a second predicted value of the second non-invasive diagnostic test based in part on the user profile; and determining a second test result based on the second predicted value and the received second signal data.
いくつかの実施では、非侵襲的診断検査の予測値を得ることは、第2の検査結果を使用
して非侵襲的診断検査の予測値を決定することを含む。
In some implementations, obtaining the predictive value of the non-invasive diagnostic test includes determining the predictive value of the non-invasive diagnostic test using the second test results.
いくつかの実施では、第2の非侵襲的診断検査は、グルコース検査である非侵襲的診断
検査と同時に行われるコレステロール検査である。
In some implementations, the second non-invasive diagnostic test is a cholesterol test that is run simultaneously with the non-invasive diagnostic test that is a glucose test.
いくつかの実施では、非侵襲的診断検査及び第2の非侵襲的診断検査は、1つ又は複数の
コンピュータ装置を備える時計によって行われる。
In some implementations, the non-invasive diagnostic test and the second non-invasive diagnostic test are performed by a watch that includes one or more computing devices.
いくつかの実施では、1つ又は複数のセンサは、無線心電極、圧電振動センサ、赤外線
センサ、温度センサ、加速度計、及び微小電気機械システム(MEMS)センサの1つ又は複
数を含む。
In some implementations, the one or more sensors include one or more of a wireless cardiac electrode, a piezoelectric vibration sensor, an infrared sensor, a temperature sensor, an accelerometer, and a microelectromechanical system (MEMS) sensor.
開示される主題の態様によると、時計は、1つ又は複数のコンピュータ装置、及び該1つ
又は複数のコンピュータ装置によって実行されると該1つ又は複数のコンピュータ装置に
動作を実行させる命令を記憶する1つ又は複数の記憶装置を備える。この動作は、ユーザ
プロフィールに基づいてグルコース検査及びコレステロール検査を選択すること、該グル
コース検査及び該コレステロール検査を行うための1つ又は複数のセンサを特定すること
、該特定された1つ又は複数のセンサを作動させること、該1つ又は複数のセンサを介して
信号データを受信すること、該ユーザプロフィールに一部基づいて該グルコース検査の第
1の予測値を得ること、該第1の予測値及び該受信信号データに基づいてグルコース検査結
果及びコレステロール検査結果を決定すること、並びに時計のディスプレイ又はスピーカ
ーを介して該グルコース検査結果及び該コレステロール検査結果を出力することを含む。
According to an aspect of the disclosed subject matter, a watch includes one or more computing devices and one or more storage devices storing instructions that, when executed by the one or more computing devices, cause the one or more computing devices to perform operations including selecting a glucose test and a cholesterol test based on a user profile, identifying one or more sensors for performing the glucose test and the cholesterol test, activating the identified one or more sensors, receiving signal data via the one or more sensors, and activating a first step of the glucose test based in part on the user profile.
determining a glucose test result and a cholesterol test result based on the first predicted value and the received signal data, and outputting the glucose test result and the cholesterol test result via a display or speaker of the watch.
いくつかの実施では、1つ又は複数のセンサは、赤外線センサ及び圧電振動センサを含
む。動作は、受信信号データから得られた生データに基づいて経路を選択すること、及び
該選択された経路に基づいて決定された値のセットを得ることを含む。第1の予測値及び
受信信号データに基づいてグルコース検査結果を決定することは、決定された値に基づい
て該グルコース検査結果を決定することを含む。
In some implementations, the one or more sensors include an infrared sensor and a piezoelectric vibration sensor. The operations include selecting a path based on raw data obtained from the received signal data and obtaining a set of determined values based on the selected path. Determining a glucose test result based on the first predicted value and the received signal data includes determining the glucose test result based on the determined values.
本明細書でさらに説明される上記の態様及び実施は、いくつかの利点を提供する。例え
ば、単一のウェアラブル診断装置は、非侵襲的グルコース検査、非侵襲的コレステロール
検査、及び非侵襲的ヘモグロビン検査を含む複数の非侵襲的診断検査を行うことができる
。ウェアラブル診断装置は、心電図(EKG)データ、又はユーザの手の不随意運動などパ
ーキンソン病の症状の検出を得ることもできる。無線電極を備えたウェアラブル診断装置
は、ユーザの履歴及び病状を記録することができ、かつ予測値、アルゴリズム、及びマッ
ピングデータベースを利用してグルコース検査、コレステロール検査、及び/又はヘモグ
ロビン検査の精度及び信頼性の高い結果を提供することができる。予測値は、ユーザの臨
床情報及びデモグラフィック情報を含むため、グルコースレベル又はヘモグロビンレベル
に影響を与え得る肌の色や年齢などのパラメータをより正確に考慮して計算を行うことが
できる。また、予測値を使用して、該予測値を特定の疾患に対するユーザの感受性と相関
させることもできる。
The above aspects and implementations described further herein provide several advantages. For example, a single wearable diagnostic device can perform multiple non-invasive diagnostic tests, including a non-invasive glucose test, a non-invasive cholesterol test, and a non-invasive hemoglobin test. The wearable diagnostic device can also obtain electrocardiogram (EKG) data, or detection of symptoms of Parkinson's disease, such as involuntary movements of the user's hands. The wearable diagnostic device with wireless electrodes can record the user's history and medical condition, and can utilize predictive values, algorithms, and mapping databases to provide accurate and reliable results of glucose, cholesterol, and/or hemoglobin tests. The predictive values include clinical and demographic information of the user, so that the calculations can more accurately take into account parameters such as skin color and age that may affect glucose or hemoglobin levels. The predictive values can also be used to correlate the predictive values with the user's susceptibility to certain diseases.
他の態様は、対応する方法、システム、機器、コンピュータ可読記憶媒体、及び上記の
方法の動作を実施するように構成されたコンピュータプログラムを含む。
Other aspects include corresponding methods, systems, apparatus, computer readable storage media, and computer programs configured to perform operations of the above methods.
本明細書で説明される1つ又は複数の態様の詳細は、添付の図面及び以下の説明に示さ
れる。主題の他の特徴、態様、及び利点は、以下の説明、図面、及び特許請求の範囲から
明らかになるであろう。
The details of one or more aspects described herein are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the following description, drawings, and claims.
(図面の簡単な説明)
様々な図面における同様の参照番号及び名称は同様の要素を示す。 Like reference numbers and names in the various drawings indicate like elements.
(詳細な説明)
本開示は、一般に、様々な種類の健康関連情報をユーザに提供するためにユーザの体に
装着することができるウェアラブル診断装置に関する。いくつかの実施では、ウェアラブ
ル診断装置は、1つ又は複数の医療診断検査を行い、ユーザの心拍数、ヘモグロビンレベ
ル、体温、酸素レベル、グルコースレベル、コレステロール、及び血圧に関するリアルタ
イムの非侵襲的で正確な連続データを提供することができる。いくつかの実施では、ウェ
アラブル診断装置はまた、心電図(EKG)データ、及びユーザの手の不随意運動などのパ
ーキンソン病の症状の検出を提供することもできる。ユーザは、上記の診断検査の1つ又
は複数に関する情報を提供するようにウェアラブル診断装置を構成することができる。ウ
ェアラブル診断装置の実施は、図を参照して以下に説明する。
Detailed Description
The present disclosure generally relates to a wearable diagnostic device that can be worn on a user's body to provide various types of health-related information to the user. In some implementations, the wearable diagnostic device can perform one or more medical diagnostic tests and provide real-time, non-invasive, accurate, continuous data regarding the user's heart rate, hemoglobin level, body temperature, oxygen level, glucose level, cholesterol, and blood pressure. In some implementations, the wearable diagnostic device can also provide electrocardiogram (EKG) data and detection of symptoms of Parkinson's disease, such as involuntary movements of the user's hands. A user can configure the wearable diagnostic device to provide information regarding one or more of the above diagnostic tests. Implementations of the wearable diagnostic device are described below with reference to the figures.
図1~図5は、ウェアラブル診断装置の異なる図を示す。いくつかの実施では、ウェアラ
ブル診断装置は、図1~図5に示されるように時計の形態で実施することができる。図6は
、いくつかの実施によるウェアラブル診断装置に含まれる構成要素のさらなる詳細を示す
。一般に、ウェアラブル診断装置は、様々な適切な形状、形態、及びサイズで実施するこ
とができ、かつユーザの左腕に取り付けることができ、該ユーザの複数の健康診断測定値
を得ることができるあらゆる電子装置であり得る。
Figures 1-5 show different views of a wearable diagnostic device. In some implementations, the wearable diagnostic device may be implemented in the form of a watch as shown in Figures 1-5. Figure 6 shows further details of components included in a wearable diagnostic device according to some implementations. In general, the wearable diagnostic device may be implemented in a variety of suitable shapes, forms, and sizes, and may be any electronic device that can be attached to the left arm of a user and obtain multiple health diagnostic measurements of the user.
図1~図5を参照すると、ウェアラブル時計は、ケーシング101、ディスプレイ102、取り
外し可能な無線心電極103、113、ベルト104、109、圧電振動センサ105、赤外線(IR)/
光/レーザーセンサ106、コネクタ107、温度センサ108、制御ボタン110、111、背面カバ
ー112、ベルトコネクタ114、ベルトファスナ115、充電コネクタ116、電源117、外側ベル
ト層118、120、絶縁ワイヤ119、加速度計121、電力マネージャ122、システムオンチップ
(SoC)123、及び電源スイッチ124を備えることができる。ウェアラブル時計は、ユーザ
の左腕150に装着することができる。
1 to 5, the wearable watch includes a
It may include a light/
ケーシング101は、ディスプレイ102、充電コネクタ116、制御ボタン110、111、並びに
プロセッサ、プリント回路基板(PCB)、集積回路(IC)、SoC 123、メモリ、及び無線ト
ランシーバなどの1つ又は複数の電子部品を備えるか、又はこれらに結合することができ
る。ディスプレイ102は、様々なデータを表示するために、例えば、液晶ディスプレイ(L
CD)、発光ダイオード(LED)ディスプレイ、又は有機LEDディスプレイを含むあらゆる適
切なディスプレイを使用して実施することができる。いくつかの実施では、ディスプレイ
102は、静電容量式タッチスクリーンなどのタッチスクリーンであり得る。
The
The display may be implemented using any suitable display, including a CCD, a light emitting diode (LED) display, or an organic LED display.
102 may be a touch screen, such as a capacitive touch screen.
ディスプレイ102は、ユーザにデータを出力し、かつ該ユーザからの入力を受け取るよ
うに構成されたユーザインターフェイスを表示することができる。制御ボタン110、111は
、ユーザが使用して、ユーザインターフェイスをナビゲートし、選択を行い、1つ又は複
数の動作をウェアラブル診断装置で実行することができる。いくつかの実施では、ディス
プレイ102は、ユーザから選択を受け取ることができ、該ユーザの選択を示す情報をウェ
アラブル時計又はネットワーク装置の1つ又は複数のプロセッサに提供することができる
。いくつかの実施では、ディスプレイ102は、1つ又は複数のプロセッサからデータを受け
取ることができ、そのデータをディスプレイ102に提供してユーザに出力することができ
る。例えば、場合によっては、ユーザは、ユーザインターフェイスを介してユーザのグル
コースレベルを提供する要求を入力することができる。ユーザのグルコースレベルを決定
した後、該ユーザのグルコースレベルを示す情報を、ディスプレイ102上に表示されたユ
ーザインターフェイスを介して出力することができる。
The
ケーシング101内の1つ又は複数のプロセッサは、PCB又はICで実施することができ、メ
モリ、ディスプレイ102、及び無線トランシーバなどのウェアラブル診断装置の他の電子
部品に電気的に接続することができる。例えば、プロセッサは、ディスプレイ102からユ
ーザの選択を示すデータを受け取ることができ、ユーザによって要求された情報の種類を
決定し、そして該ユーザによって要求された情報に基づいて1つ又は複数の動作を実行す
るコマンドを生成することができる。
The one or more processors in the
いくつかの実施では、1つ又は複数のプロセッサは、無線トランシーバを使用してデー
タを送受信することができる。データは、ウェアラブル診断装置と二次装置との間で送受
信することができる。二次装置は、ユーザによって選択される装置、ネットワークサーバ
、又はウェアラブル時計と通信するように構成された装置であり得る。例えば、ユーザは
、自身が所有する別の装置を選択して、ウェアラブル診断装置からそこにデータを送信す
ることができる。別の例では、ウェアラブル診断装置は、ユーザの要求又は送受信データ
の所定の予定に従って、1つ又は複数のネットワークサーバに対してデータを送受信する
ように構成することができる。
In some implementations, the one or more processors can transmit and receive data using a wireless transceiver. Data can be transmitted and received between the wearable diagnostic device and a secondary device. The secondary device can be a device configured to communicate with a device selected by a user, a network server, or a wearable watch. For example, a user can select another device that he or she owns to transmit data to from the wearable diagnostic device. In another example, the wearable diagnostic device can be configured to transmit and receive data to and from one or more network servers according to a user request or a predefined schedule for transmitting and receiving data.
1つ又は複数のネットワークサーバは、1つ又は複数のデータベース、アクセスポイント
、基地局、ストレージシステム、クラウドシステム、及びモジュールを含み得る1つ又は
複数のネットワークにサービスを提供することができる。1つ又は複数のサーバは、ネッ
トワークオペレーティングシステムを実行する一連のサーバであり得る。1つ又は複数の
サーバは、クラウド及び/又はネットワークコンピューティングに使用することもできる
し、かつ/又はこれらを提供することもできる。
The one or more network servers may provide services to one or more networks, which may include one or more databases, access points, base stations, storage systems, cloud systems, and modules. The one or more servers may be a set of servers running a network operating system. The one or more servers may be used for and/or provide cloud and/or network computing.
ネットワーク内のデータベースは、クラウドデータベース、又はデータベース管理シス
テム(DBMS)によって管理されるデータベースを含み得る。DBMSは、データベース内のデ
ータの整理、保存、管理、及び検索を制御するエンジンとして実施することができる。DB
MSは、多くの場合、問い合わせる能力、バックアップを取り、複製する能力、規則を適用
する能力、セキュリティを提供する能力、計算を行う能力、ログの変更及びログへのアク
セスを行う能力、最適化を自動化する能力を提供する。DBMSは、典型的には、モデリング
言語、データ構造、データベース問い合わせ言語、及びトランザクション機構を含む。モ
デリング言語は、データベースモデルに従ってDBMSの各データベースのスキーマを定義す
るために使用され、データベースモデルには、階層モデル、ネットワークモデル、関係モ
デル、オブジェクトモデル、又はその他の適用可能な既知若しくは便利な機構が含まれ得
る。データ構造には、フィールド、レコード、ファイル、オブジェクト、及びデータを保
存するためのその他の適用可能な既知の又は便利な構造が含まれ得る。DBMSはまた、保存
されるデータについてのメタデータを含み得る。
The databases in the network may include cloud databases or databases managed by a database management system (DBMS). A DBMS may be implemented as an engine that controls the organization, storage, management, and retrieval of data in a database.
A MS often provides the ability to query, back up, replicate, apply rules, provide security, perform calculations, change and access logs, and automate optimization. A DBMS typically includes a modeling language, data structures, a database query language, and a transaction mechanism. The modeling language is used to define the schema of each database in the DBMS according to a database model, which may include a hierarchical model, a network model, a relational model, an object model, or other applicable known or convenient mechanisms. The data structures may include fields, records, files, objects, and other applicable known or convenient structures for storing data. A DBMS may also include metadata about the data stored.
いくつかの実施では、データベースは、エイリアス名、病歴、及びユーザのあらゆる病
状などの該ユーザの情報を保存することができるユーザデータベースを含み得る。ユーザ
データベースはまた、様々なツール及びソフトウェアにアクセスするためのライセンス、
許可、及び証明書に関連するデータも保存することができる。場合によっては、ユーザは
、ユーザを識別できるいかなる情報も匿名化され、ユーザ識別情報がユーザデータベース
にデータを保存する前に削除されるように、ユーザデータを匿名化する選択肢を選択する
ことができる。
In some implementations, the database may include a user database that can store information about the user, such as alias names, medical history, and any medical conditions of the user. The user database may also store licenses to access various tools and software,
Data related to authorizations and credentials may also be stored. In some cases, the user may select the option to anonymize the user data such that any information that could identify the user is anonymized and user identifying information is removed prior to storing the data in the user database.
一般に、様々な適切な無線プロトコルを使用して、ウェアラブル診断装置との間でデー
タを通信することができる。例えば、ウェアラブル診断装置は、WiFi又はBluetooth通信
を使用して1つ又は複数のネットワーク、装置、又はサーバと通信することができる。一
般に、様々な種類のネットワークで通信することができ、様々な通信プロトコルを使用す
ることができる。
In general, data can be communicated to and from the wearable diagnostic device using a variety of suitable wireless protocols. For example, the wearable diagnostic device can communicate with one or more networks, devices, or servers using WiFi or Bluetooth communications. In general, different types of networks can be communicated and different communication protocols can be used.
充電コネクタ116は、ユニバーサルシリアルバス又は導線などの電源ケーブルに接続す
るように構成されたポートであり得る。電源ケーブルに接続されると、充電コネクタ116
は、電力インターフェイスとして機能して、外部供給源から電力を供給してウェアラブル
時計の電源117を充電することができる。電源117は、あらゆる適切なバッテリとすること
ができ、ウェアラブル診断装置内のどの電気部品にも電力を供給することができる。
The charging
serves as a power interface to provide power from an external source to charge the wearable watch's
ケーシング101は、電源スイッチ124も備える。いくつかの実施では、電源スイッチ124
が電源オフ位置にくるような該電源スイッチ124の選択に応じて、1つ又は複数のプロセッ
サがコマンドを電力マネージャ122に送信して、ディスプレイ102などのウェアラブル診断
装置の1つ又は複数の部品への電力の供給を停止することができる。いくつかの実施では
、電源スイッチ124が電源オン位置にくるような該電源スイッチ124の選択に応じて、電力
マネージャ122が、コマンドを電源117に送信して、ディスプレイ102などのウェアラブル
診断装置の1つ又は複数の部品に電力を供給することができる。
The
In response to a selection of the
ケーシング101は、ベルト104、109、コネクタ107、及びベルトコネクタ114に接続され
、これらを調整して、ウェアラブル診断装置を異なるサイズの手首の周りに固定すること
ができる。例えば、ベルト104、109及びベルトコネクタ114は、ユーザの手首に巻き付け
ることができ、ベルトファスナ115は、ベルト104、109及びベルトコネクタ114を定位置に
保持することができる。背面カバー112及び心電極113は、ケーシング101の底部に配設す
ることができる。
The
1つ又は複数の絶縁ワイヤ119をウェアラブル診断装置の構造に一体化させて、該ウェア
ラブル診断装置の様々な部品への電気的接続を提供することができる。例えば、図6に例
示されるように、1つ又は複数の絶縁ワイヤ119をウェアラブル診断装置の中心軸に沿って
配設して、電源117とケーシング101との間、及び該電源117とIR/光/レーザーセンサ106
との間に電気的接続を提供することができる。
One or more
An electrical connection can be provided between the
ウェアラブル診断装置はまた、心電極103、113、圧電振動センサ105、赤外線(IR)/
光/レーザーセンサ106、温度センサ108、加速度計121、及びインピーダンスセンサなど
の1つ又は複数のセンサも備えることができる。いくつかの実施では、圧電振動センサ105
は、微小電気機械システム(MEMS)センサを含み得る。
The wearable diagnostic device also includes
One or more sensors may also be included, such as a light/
may include a microelectromechanical system (MEMS) sensor.
無線心電極103、113は、心臓の収縮中に生成される電圧などの心臓電位波形を検出する
ように構成された金属導電性材料を含み得る。無線心電極103は、ウェアラブル診断装置
の外周に対応する外側ベルト層118に配設される。無線心電極113は、ウェアラブル診断装
置がユーザの腕150の周りに固定されたときに該ユーザの皮膚に接触できるように、背面
カバー112に配設されるか、又はこれと一体化される。無線心電極103、113は、ウェアラ
ブル診断装置から取り外し、再度取り付けることができ、かつデータを別の電子装置に無
線で通信することができる。
The wireless
IR/光/レーザーセンサ106は、信号発生器及び信号検出器を備えることができる。信
号発生器は、例えば650~1400ナノメートル(nm)の範囲の波長を有する赤外線信号を生
成して送信することができる。この範囲は、ユーザの血中の酸素、グルコース、ヘモグロ
ビン分子の存在を示すデータを得るのに特に有用である。信号検出器は、ユーザの身体か
ら受信した赤外線信号を検出するように構成することができる。
The IR/light/
いくつかの実施では、IR/光/レーザーセンサ106は、パルス信号を検出し、動脈法(A
rtery method)において脈波伝播時間(PWTT)を使用して検出された信号を処理すること
ができる。これらのパルス信号は、圧電振動センサ105によって得られたデータと組み合
わせて、血圧を非侵襲的に予測することができる。また、IR/光/レーザーセンサ106を
使用して、ユーザの血中の酸素飽和レベル(SpO2)を示すデータを非侵襲的に決定する、
又は得ることができる。
In some implementations, the IR/light/
The detected signals can be processed using Pulse Wave Transit Time (PWTT) in a time-domain method. These pulse signals can be combined with data obtained by the
or can be obtained.
圧電振動センサ105及び加速度計121を使用して、ユーザの手の振動を測定することがで
きる。例えば、加速度計121は、方向、速度、振動、及び回転の変化を検出することがで
きる。温度センサ108を使用して、ユーザの体温を測定することができる。温度センサ108
は、様々な適切な方法で実施することができる。例えば、温度センサ108は、熱電対、シ
リコンバンドギャップセンサ、温度計、又は1つ若しくは複数の検出抵抗器を含むサーミ
スタであり得る。検出抵抗器における電気抵抗の変化は、体温の変化に対応し得る。いく
つかの実施では、温度センサは、ICの単一パッケージに製造された能動及び受動素子並び
に抵抗及び半導体材料を含み得る。
The
can be implemented in a variety of suitable ways. For example, the
以下でさらに詳細に説明するように、センサを使用して1つ又は複数の測定値を得るこ
とができる。グルコースレベル、ヘモグロビンレベル、血圧レベル、EKG、心拍数レベル
、体温、及び手の振動を決定するためにウェアラブル診断装置を使用して行われる動作を
、以下でさらに詳細に説明する。この動作は、ユーザがウェアラブル診断装置を該ユーザ
の左腕150に配置して、ベルト104、109、ベルトコネクタ114、ベルトファスナ115、及び
外側ベルト層118、120の1つ又は複数を調整して、該ウェアラブル診断装置を該ユーザの
左腕150の周りに固定してから開始する。
As described in more detail below, the sensors can be used to obtain one or more measurements. Operations performed using the wearable diagnostic device to determine glucose levels, hemoglobin levels, blood pressure levels, EKG, heart rate levels, body temperature, and hand vibrations are described in more detail below. The operations begin after a user places the wearable diagnostic device on the user's
ウェアラブル診断装置がユーザの左腕150に固定されると、IR/光/レーザーセンサ106
が、該ユーザの橈骨尺骨動脈の真上の該ユーザの左手首の下部に接触し得る。上記のよう
に、IR/光/レーザーセンサ106は、赤外線信号を生成して送信するための信号発生器を
備えことができる。信号は、IR/光/レーザーセンサ106からユーザの左手首の下部にお
ける該ユーザの皮膚に向かって送信することができる。
When the wearable diagnostic device is secured to the user's
may contact the bottom of the user's left wrist just above the user's radial-ulnar artery. As described above, the IR/light/
IR/光/レーザーセンサ106は、ユーザの皮膚からの信号の反射を検出することができ
る。次いで、吸収スペクトルデータを含む検出された信号を、アナログデジタル変換器(
ADC)を使用してデジタル信号に変換することができる。変換の結果、ユーザの皮膚から
受け取った信号に対応する生のデジタルデータが生成される。生のデジタルデータを処理
して、酸素、グルコース、ヘモグロビンなど、ユーザの血中の様々な分子の存在に対応す
る吸収スペクトルを決定することができる。吸収スペクトルを決定することにより、ユー
ザの血中に存在する特定の分子の有無及び対応するレベルを推定することができる。
The IR/light/
The signal received from the user's skin can be converted into a digital signal using an ADC (analog-to-digital converter). The result of the conversion is raw digital data corresponding to the signal received from the user's skin. The raw digital data can be processed to determine an absorption spectrum corresponding to the presence of various molecules in the user's blood, such as oxygen, glucose, hemoglobin, etc. By determining the absorption spectrum, the presence or absence and corresponding levels of certain molecules present in the user's blood can be inferred.
いくつかの実施では、生のデジタルデータの複数のセットが様々な時点で得られるよう
に複数の信号測定値を得ることができる。生のデジタルデータの様々なセットを蓄積及び
平均化して、ユーザの生データの単一セットを得ることができる。
In some implementations, multiple signal measurements may be obtained such that multiple sets of raw digital data are obtained at different times. The various sets of raw digital data may be accumulated and averaged to obtain a single set of raw data for the user.
いくつかの実施では、ウェアラブル診断装置は、ユーザの健康に関連する情報を得るこ
とができる。ユーザの健康に関連する情報には、限定されるものではないが、例えば、ユ
ーザの居住地、ユーザの医師、ユーザの薬剤師、ユーザの医療記録所有者、1つ又は複数
の群とのユーザのデモグラフィック関連事項、ユーザの食生活、ユーザの子供の数を示す
もの、ユーザの病歴、1つ又は複数の過去又は現在の病状、例えばユーザのアレルギー、
手術、遺伝子の状態、ユーザの1つ又は複数の健康上の懸念、及びユーザが詳細を得るこ
とに関心のある1つ又は複数の血中含有レベルが含まれ得る。例えば、ユーザは、自身の
グルコースレベル又は血圧レベルに特に関心があることを示すことができる。ユーザはま
た、自身のグルコースレベル又は血圧レベルに関する情報を得たい頻度を示すこともでき
る。
In some implementations, the wearable diagnostic device may obtain information related to the health of the user, such as, but not limited to, the user's location, the user's physician, the user's pharmacist, the user's medical record holder, the user's demographic associations with one or more groups, the user's diet, an indication of the number of children the user has, the user's medical history, one or more past or present medical conditions, such as the user's allergies,
These may include surgeries, genetic conditions, one or more health concerns of the user, and one or more blood content levels for which the user is interested in obtaining details. For example, the user may indicate that they are particularly interested in their glucose levels or blood pressure levels. The user may also indicate how frequently they would like to obtain information about their glucose levels or blood pressure levels.
ユーザの健康に関連する情報を使用して、ユーザプロフィールを作成することができる
。ユーザプロフィールは、ウェアラブル診断装置に、又は該ウェアラブル診断装置から離
れた場所にあるデータベース若しくはサーバにローカルに保存することができる。いくつ
かの実施では、ユーザプロフィールデータは、保存又は使用される前に1つ又は複数の方
法で処理できるため、個人識別情報は削除される。例えば、ユーザの個人識別情報を特定
できないように、又はユーザの特定の詳細が特定できないように該ユーザが望む程度に該
ユーザの地理的な位置、個人情報、若しくはデモグラフィック背景を一般化するように該
ユーザの個人情報を処理することができる。従って、ユーザは、どんな情報が収集される
か、及びその情報がどのように使用されるかを制御することができる。これを実施するた
めに、本明細書に記載のシステム、プログラム、若しくは機能がユーザ情報を収集若しく
は提供できるかどうか、又はその収集若しくは提供をいつできるかのユーザによる選択を
可能にするウェアラブル診断装置を介した制御をユーザに提供することができる。
The information related to the user's health can be used to create a user profile. The user profile can be stored locally on the wearable diagnostic device or in a database or server located remotely from the wearable diagnostic device. In some implementations, the user profile data can be processed in one or more ways before being stored or used so that personally identifiable information is removed. For example, the user's personal information can be processed to generalize the user's geographic location, personal information, or demographic background to the extent desired by the user so that the user's personally identifiable information cannot be identified or specific details of the user cannot be identified. Thus, the user can control what information is collected and how that information is used. To accomplish this, the user can be provided with controls via the wearable diagnostic device that allow the user to choose whether or when the systems, programs, or functions described herein can collect or provide user information.
いくつかの実施では、ユーザは、ウェアラブル診断装置がユーザの医療情報をリアルタ
イムで受信し、更新することができるサービスに加入する、又はこれに加わることを選択
することができる。特に、ウェアラブル診断装置は、検査結果、診察結果、診断、又は処
方箋を更新することができる。例えば、ユーザは、該ユーザの医師、薬剤師、又は医療記
録所有者が、該ユーザの医療情報を、ユーザプロフィールを保存するサーバ又はデータベ
ースに提供することを許可することができる。このサーバ又はデータベースは、ユーザプ
ロフィールを更新するために様々な供給源から情報を収集することができるサブスクリプ
ションサービスによって管理することができる。ウェアラブル診断装置は、リアルタイム
で、定期的に、又はユーザの要求に応じて該ユーザの医療情報に関する更新を受け取るこ
とができる。
In some implementations, a user may choose to subscribe or join a service that allows the wearable diagnostic device to receive and update the user's medical information in real time. In particular, the wearable diagnostic device may update test results, consultation results, diagnoses, or prescriptions. For example, a user may allow the user's doctor, pharmacist, or medical record owner to provide the user's medical information to a server or database that stores a user profile. This server or database may be managed by a subscription service that may collect information from various sources to update the user profile. The wearable diagnostic device may receive updates regarding the user's medical information in real time, periodically, or upon the user's request.
いくつかの実施では、ユーザは、ウェアラブル診断装置のユーザインターフェイスを使
用して、該ユーザの健康及び背景に関する情報を直接入力することができる。次いで、入
力されたユーザの医療情報を、遠隔に保存するか、又はウェアラブル診断装置に保存する
ことができる。
In some implementations, a user can directly input information about the user's health and background using a user interface of the wearable diagnostic device, and the inputted user's medical information can then be stored remotely or on the wearable diagnostic device.
図1~図6に関連して説明した特徴は、ユーザの左腕に装着されるウェアラブル診断装置
に関するものであるが、ウェアラブル診断装置は、他の様々な形態を有することができ、
場合によっては、ユーザの身体の他の部分に装着するか、又は適用できることを理解され
たい。さらに、1つ又は複数の追加の部品を、ウェアラブル診断装置に含める、又は結合
してもよい。例えば、いくつかの実施では、ウェアラブル診断装置は、音波を使用して情
報を出力するスピーカー及び、例えばユーザのコマンド、要求、又はフィードバックに対
応する音声入力を受け取るためのマイクの1つ又は複数を備えることができる。
Although the features described in connection with FIGS. 1-6 relate to a wearable diagnostic device worn on the left arm of a user, the wearable diagnostic device may have a variety of other forms.
It should be understood that in some cases the wearable diagnostic device may be worn or applied to other parts of the user's body. Additionally, one or more additional components may be included in or coupled to the wearable diagnostic device. For example, in some implementations, the wearable diagnostic device may include a speaker that outputs information using sound waves, and one or more microphones for receiving voice input, e.g., corresponding to a user's commands, requests, or feedback.
いくつかの実施では、ウェアラブル診断装置は、ユーザの健康に関連する受け取った又
は取得した情報に基づいて、該ウェアラブル診断装置を装着しているユーザについてのグ
ルコースレベル、ヘモグロビンレベル、又は血圧レベルの1つ又は複数を得るために1つ又
は複数の診断検査を行うようにさらに構成することができる。これらのプロセスについて
は、図7~図10でさらに説明する。
In some implementations, the wearable diagnostic device may be further configured to perform one or more diagnostic tests to obtain one or more of a glucose level, a hemoglobin level, or a blood pressure level for a user wearing the wearable diagnostic device based on received or acquired information related to the user's health. These processes are further described in Figures 7-10.
図7、図9、及び図13を参照すると、ウェアラブル診断装置は、検査を行う必要があると
いう指示を受け取ることができる(702、902、1302)。例えば、ウェアラブル診断装置は
、グルコース検査(702)、ヘモグロビン検査(902)、又はコレステロール検査(1302)
を行う必要があるという指示を受け取ることができる。検査を行う必要があるという指示
には、次の1つ又は複数が含まれ得る:検査を行うためにユーザによって行われる選択;
及び予定された時間に従って1つ又は複数のプロセッサによって行われる要求。例えば、
ウェアラブル診断装置は、特定の時間に又は一定期間後に血圧測定値を提供するようにプ
ログラムすることができる。次いで、ウェアラブル診断装置は、血圧測定値などの特定の
測定値をユーザに提供するべき日時を予定することができ、該予定された時間に血圧レベ
ル及び酸素飽和レベルを測定する方法を開始することができる。
7, 9, and 13, the wearable diagnostic device may receive an indication that a test needs to be performed (702, 902, 1302). For example, the wearable diagnostic device may receive an indication that a glucose test (702), a hemoglobin test (902), or a cholesterol test (1302) needs to be performed.
An indication that a test should be performed may include one or more of the following: a selection made by a user to perform a test;
and requests made by one or more processors according to scheduled times. For example,
The wearable diagnostic device can be programmed to provide a blood pressure measurement at a particular time or after a certain period of time. The wearable diagnostic device can then schedule a date and time when a particular measurement, such as a blood pressure measurement, should be provided to the user and can initiate a method of measuring blood pressure and oxygen saturation levels at the scheduled time.
検査を行う必要があるという指示を受け取った後(702、902、1302)、ウェアラブル診
断装置の1つ又は複数のプロセッサは、検査に利用されるセンサの種類を決定し、決定さ
れた種類のセンサを作動させることができ、該センサは、グルコース検査又はヘモグロビ
ン検査の場合、1つ又は複数のIR/光/レーザーセンサを含み得る(704、904)。コレス
テロール検査の場合、作動されるセンサは、IR/光/レーザーセンサ、インピーダンスセ
ンサ、及び電磁センサの1つ又は複数を含み得る。センサを作動させることには、限定さ
れるものではないが、センサへの電力を増加させること、IR信号などの信号を発信又は受
信するためにセンサをウォーミングアップすること、又はセンサを構成若しくは較正する
ことを含む動作が含まれ得る。
After receiving an indication that a test needs to be performed (702, 902, 1302), one or more processors of the wearable diagnostic device can determine the type of sensor to be utilized for the test and activate the determined type of sensor, which in the case of a glucose test or a hemoglobin test may include one or more IR/light/laser sensors (704, 904). In the case of a cholesterol test, the activated sensors may include one or more of an IR/light/laser sensor, an impedance sensor, and an electromagnetic sensor. Activating a sensor may include operations including, but not limited to, increasing power to the sensor, warming up the sensor to emit or receive a signal, such as an IR signal, or configuring or calibrating the sensor.
作動された1つ又は複数のセンサは、ユーザを特徴付ける測定値を得ることができる(7
06、906、1306)。例えば、1つ又は複数のIR/光/レーザーセンサはそれぞれ、赤外線信
号又はパルス信号を短時間、例えば30秒間発信し、発信された信号のユーザの皮膚からの
反射を検出するように構成することができる。場合によっては、インピーダンスセンサを
使用した反射測定値及び電流測定値は、繰り返し得てもよいし、又は異なるパルス電力若
しくは磁場などの異なる環境下で得てもよい。例えば、コレステロール測定の場合、最初
の電流又は赤外線信号測定値を磁場をかけずに得ることができ、1つ又は複数の他の電流
又は赤外線測定を、様々な低電力強度の磁場が一定期間、例えば10秒間生成された後に行
うことができる。
The activated sensor or sensors can obtain measurements that characterize the user (see 7
06, 906, 1306). For example, one or more IR/light/laser sensors may each be configured to transmit an infrared or pulsed signal for a short period of time, e.g., 30 seconds, and detect reflection of the transmitted signal from the user's skin. In some cases, the reflection measurements and current measurements using the impedance sensor may be taken repeatedly or under different circumstances, such as different pulsed powers or magnetic fields. For example, for cholesterol measurements, an initial current or infrared signal measurement may be taken without applying a magnetic field, and one or more other current or infrared measurements may be taken after magnetic fields of various low power intensities are generated for a period of time, e.g., 10 seconds.
グルコース検査及びヘモグロビン検査の場合、測定された検出信号が処理され、特定の
経路が生データ値に基づいて選択される(708、908)。特に、検出された信号のそれぞれ
は、アナログ-デジタル変換器(ADC)を使用して生のデジタルデータに変換できる吸収
スペクトルデータを含む。処理には、下方変換、フィルタリング、畳み込み、混合、及び
その他の適切な信号処理作業などの追加の処理動作が任意に含まれ得る。
For glucose and hemoglobin tests, the measured detection signals are processed and a particular path is selected based on the raw data values (708, 908). In particular, each of the detected signals includes absorption spectrum data that can be converted to raw digital data using an analog-to-digital converter (ADC). Processing may optionally include additional processing operations such as down-conversion, filtering, convolution, blending, and other suitable signal processing operations.
ユーザの皮膚から受け取った信号に対応する生のデジタルデータは、特定の経路並びに
対応する予測値及び勾配回帰値(slope regression value)を選択するための基礎として
使用される(710、910)。例えば、グルコース検査が行われる場合、表Iに示されるよう
な例示的なマッピングを使用して、特定の経路並びに対応する予測値及び勾配回帰値を選
択することができる。生の値が500以上700以下の場合、経路A並びに対応する917のグルコ
ース(G)予測値及び0.838のG勾配回帰値が選択される。生の値が701以上850以下の場合
、経路B並びに対応する919のG予測値及び0.838のG勾配回帰値が選択される。生の値が851
以上950以下の場合、経路C並びに対応する1001のG予測値及び0.838のG勾配回帰値が選択
される。生の値が951以上1100以下の場合、経路D並びに対応する1004のG予測値及び0.838
のG勾配回帰値が選択される。生の値が1101以上の場合、経路E並びに対応する981のG予測
値及び0.838のG勾配回帰値が選択される。
The raw digital data corresponding to the signal received from the user's skin is used as a basis for selecting a particular pathway and corresponding predicted and slope regression values (710, 910). For example, if a glucose test is being performed, an exemplary mapping such as that shown in Table I may be used to select a particular pathway and corresponding predicted and slope regression values. If the raw value is between 500 and 700, pathway A and a corresponding glucose (G) predicted value of 917 and a G slope regression value of 0.838 are selected. If the raw value is between 701 and 850, pathway B and a corresponding G predicted value of 919 and a G slope regression value of 0.838 are selected. If the raw value is between 851 and 850, pathway C and a corresponding G predicted value of 919 and a G slope regression value of 0.838 are selected.
If the raw value is greater than or equal to 950, route C and the corresponding G-predicted value of 1001 and G-slope regression value of 0.838 are selected. If the raw value is greater than or equal to 951 and less than or equal to 1100, route D and the corresponding G-predicted value of 1004 and G-slope regression value of 0.838 are selected.
If the raw value is greater than or equal to 1101, then route E is selected with a corresponding G predicted value of 981 and G slope regression value of 0.838.
表I
次いで、得られた予測値及び勾配回帰値を使用して、ユーザのグルコースレベルを決定
することができる(712)。グルコースレベルを決定するために、ウェアラブル診断装置
は、一般化可能性理論及びG勾配回帰を生データのセットに適用して、以下に述べるよう
に[式1]を使用してグルコースレベルを示す値を決定することができる。
グルコース値=予測値(G-臨床サンプリング回帰)-(G回帰勾配)×(生データ) [
式1]
The resulting predicted and gradient regression values can then be used to determine the user's
Glucose value = predicted value ( G-clinical sampling regression ) - (G regression slope) x (raw data) [
Formula 1]
次いで、決定されたグルコース値を様々な適切な方法によって出力することができる(
714)。例えば、決定されたグルコース値は、ウェアラブル診断装置のディスプレイ上に
出力してもよいし、又は該ウェアラブル診断装置のスピーカーによって出力してもよい。
The determined glucose value can then be output by a variety of suitable methods (e.g.,
714). For example, the determined glucose value may be output on a display of the wearable diagnostic device or may be output by a speaker of the wearable diagnostic device.
ヘモグロビン検査が行われているときに、表IIに示されるような例示的なマッピングを
使用して、特定の経路並びに対応する予測値及び勾配回帰値を選択することができる。生
の値が500以上700以下の場合、経路A並びに対応する31.5のヘモグロビン(Hb)予測値及
び0.114のHb勾配回帰値が選択される。生の値が701以上850以下の場合、経路B並びに対応
する67のHb予測値及び0.114のHb勾配回帰値が選択される。生の値が851以上950以下の場
合、経路C並びに対応する81のHb予測値及び0.114のHb勾配回帰値が選択される。生の値が
951以上1100以下の場合、経路D並びに対応する98のHb予測値及び0.114のHb勾配回帰値が
選択される。生の値が1101以上の場合、経路E並びに対応する100.5のHb予測値及び0.114
のHb勾配回帰値が選択される。
When a hemoglobin test is being performed, an exemplary mapping as shown in Table II can be used to select a particular pathway and corresponding predicted and slope regression values. If the raw value is greater than or equal to 500 and less than or equal to 700, pathway A and a corresponding hemoglobin (Hb) predicted value of 31.5 and Hb slope regression value of 0.114 are selected. If the raw value is greater than or equal to 701 and less than or equal to 850, pathway B and a corresponding Hb predicted value of 67 and Hb slope regression value of 0.114 are selected. If the raw value is greater than or equal to 851 and less than or equal to 950, pathway C and a corresponding Hb predicted value of 81 and Hb slope regression value of 0.114 are selected.
If the raw value is ≥ 951 and ≤ 1100, then pathway D is selected with a corresponding Hb predicted value of 98 and a Hb slope regression value of 0.114. If the raw value is ≥ 1101, then pathway E is selected with a corresponding Hb predicted value of 100.5 and a Hb slope regression value of 0.114.
The Hb slope regression value is selected.
表II
次いで、得られた予測値及び勾配回帰値を使用して、ユーザのヘモグロビンレベルを決
定することができる(912)。ヘモグロビンレベルを決定するために、ウェアラブル診断
装置は、Hb勾配回帰を生データのセットに適用して、以下に述べるように[式2]を使用
してヘモグロビンレベルを示す値を決定することができる。
Hb値=((Hb回帰勾配)×(生データ))-予測値(Hb-臨床サンプリング回帰)[式2]
The resulting predicted and slope regression values can then be used to determine the user's
Hb value = ((Hb regression slope) x (raw data)) - predicted value ( Hb-clinical sampling regression ) [Equation 2]
次いで、決定されたヘモグロビン値を様々な適切な方法によって出力することができる
(914)。例えば、決定されたヘモグロビン値は、ウェアラブル診断装置のディスプレイ
上に出力してもよいし、又は該ウェアラブル診断装置のスピーカーによって出力してもよ
い。
The determined hemoglobin value may then be output by various suitable methods (914). For example, the determined hemoglobin value may be output on a display of the wearable diagnostic device or may be output by a speaker of the wearable diagnostic device.
グルコース検査又はヘモグロビン検査において500未満の生データ値の場合、ウェアラ
ブル診断装置は、値が誤っていると判断し、1つ又は複数のIR/光/レーザーセンサによ
って生データ値を得るために別の試みを開始することができる。3回試行しても500を超え
る値を得ることができない場合、ウェアラブル診断装置は、グルコース検査又はヘモグロ
ビン検査を現時点では行うことができないことをユーザに示すエラーメッセージを出力す
ることができる。
For a raw data value below 500 for a glucose or hemoglobin test, the wearable diagnostic device may determine that the value is erroneous and initiate another attempt to obtain a raw data value via one or more IR/light/laser sensors. If a value above 500 cannot be obtained after three attempts, the wearable diagnostic device may output an error message to the user indicating that a glucose or hemoglobin test cannot be performed at this time.
ウェアラブル診断装置を装着しているユーザについてのコレステロールレベル(例えば
、HDL、LDL、トリグリセリド分子)を決定するためにコレステロール検査が行われている
ときに、該ユーザの左手首の下部が、IR/光/レーザーセンサから発信される赤外線信号
に曝される。このユーザの皮膚の領域はまた、短期間、例えば、10秒間又は30秒間、磁場
に曝すこともでき、その後、コレステロール分子を除いた血液粒子が、正及び負の電磁極
に従ってそれ自体を配置する。磁場をかける前後に、赤外線吸収スペクトルを示すデータ
を得ることができ(1306)、この得られたデータを続いて処理することができる(1308)
。得られたデータの処理には、アナログデジタル変換器(ADC)を使用してデータをデジ
タル信号に変換すること、及び磁場をかける前と後の吸収スペクトル値の差を計算して生
の値を得ることが含まれ得る。
When a cholesterol test is being performed to determine cholesterol levels (e.g., HDL, LDL, triglyceride molecules) for a user wearing a wearable diagnostic device, the lower left wrist of the user is exposed to infrared signals emitted from an IR/light/laser sensor. This area of the user's skin can also be exposed to a magnetic field for a short period of time, e.g., 10 seconds or 30 seconds, after which the blood particles, excluding the cholesterol molecules, will orient themselves according to the positive and negative electromagnetic poles. Data indicative of infrared absorption spectra can be obtained (1306) before and after application of the magnetic field, and the obtained data can be subsequently processed (1308).
Processing of the resulting data may include converting the data into a digital signal using an analog-to-digital converter (ADC) and calculating the difference between the absorption spectrum values before and after application of the magnetic field to obtain the raw values.
次に、予測コレステロールレベル値がデータベースから得られる(1310)。データベー
スは、コレステロールレベルの生の値へのマッピングを含み得、デモグラフィッククラス
に従って整理することができる。データベースは、以下で説明するように、複数のヒト対
象の検査に基づいて構築することができる。
The predicted cholesterol level values are then obtained from a database (1310). The database may include a mapping of cholesterol levels to raw values and may be organized according to demographic classes. The database may be constructed based on testing of multiple human subjects, as described below.
最初に、対象のデモグラフィックプロフィールを記録することができる。デモグラフィ
ックプロフィールには、対象の年齢、性別、民族、肌の色、婚姻状況、及び/又は病状な
どの該対象に関する様々な種類の説明情報が含まれ得る。例えば、対象は、48歳、白人男
性、寡婦、皮膚癌のデモグラフィックプロフィールを有し得る。各対象に対して、様々な
適切な方法を使用して侵襲的コレステロール検査を行うことができ、検査結果を対象のプ
ロフィールに追加することができる。
First, a demographic profile of the subject can be recorded. The demographic profile can include various types of descriptive information about the subject, such as the subject's age, sex, ethnicity, skin color, marital status, and/or medical condition. For example, a subject can have a demographic profile of: 48 years old, white male, widowed, skin cancer. Invasive cholesterol testing can be performed on each subject using various suitable methods, and the test results can be added to the subject's profile.
次に、上記のように、対象の電流及び赤外線信号測定値をそれぞれ、抵抗センサ及び赤
外線センサを使用して得ることができる。電流及び赤外線信号の測定は、磁場をかける前
及び磁場を一定期間かけた後に行うことができる。測定した信号の微分値を計算して生の
値として保存することができる。生の値を、侵襲的コレステロール検査から得られたコレ
ステロールレベルにマッピングして、対象のプロフィールに保存する。
Current and infrared signal measurements of the subject can then be obtained using the resistive and infrared sensors, respectively, as described above. Current and infrared signal measurements can be taken before application of the magnetic field and after application of the magnetic field for a period of time. Derivatives of the measured signals can be calculated and stored as raw values. The raw values are mapped to cholesterol levels obtained from an invasive cholesterol test and stored in the subject's profile.
対象の大きいサンプルサイズを使用して、1つ又は複数のデモグラフィッククラス(例
えば、性別、民族、年齢など)に従って生の値をコレステロールレベルにマッピングする
データベースを構築することができるように、数百及び数千の対象を検査することができ
る。いくつかの実施では、コレステロールレベル及び生の値の平均値、中央値、及び最頻
値をデモグラフィッククラスごとに決定できるように、統計データを検査から抽出するこ
とができる。
With a large sample size of subjects, hundreds and thousands of subjects can be tested so that a database can be constructed that maps raw values to cholesterol levels according to one or more demographic classes (e.g., gender, ethnicity, age, etc.) In some implementations, statistical data can be extracted from the tests so that mean, median, and mode cholesterol levels and raw values can be determined by demographic class.
一般に、様々な種類のデモグラフィッククラスを形成することができる。例えば、場合
によっては、デモグラフィッククラスを、年齢、例えば40代の年齢層の人々に限定するこ
とができる。場合によっては、デモグラフィッククラスには、年齢と民族、又は年齢と民
族と性別などの複数のデモグラフィック特性が含まれ得る。従って、データベースは、特
定のデモグラフィッククラスに関連する生の値に基づいて推定コレステロールレベルをマ
ッピングするマッピングテーブルを含み得る。ここで、データベースは、対象の個人情報
が明らかにされたり、知られたりすることがないように匿名で構築することができること
に留意されたい。
In general, various kinds of demographic classes can be formed. For example, in some cases, a demographic class can be limited to age, e.g., people in the 40s age group. In some cases, a demographic class can include multiple demographic characteristics, such as age and ethnicity, or age, ethnicity, and gender. Thus, the database can include a mapping table that maps estimated cholesterol levels based on raw values associated with a particular demographic class. It is noted that the database can be constructed anonymously such that personal information of the subjects is not revealed or known.
図13に戻ると、予測コレステロールレベル値は、動作1308で得られた生の値に基づいて
データベースから得られる(1310)。特に、動作1308で得られた生の値にマッピングされ
たコレステロールレベル、及びウェアラブル診断装置を装着しているユーザのデモグラフ
ィックプロフィールは、データベースのマッピングテーブルを参照することによって得ら
れる。
Returning to Figure 13, a predicted cholesterol level value is obtained (1310) from a database based on the raw value obtained in
次に、予測コレステロールレベル値を、ウェアラブル診断装置を装着しているユーザの
推定コレステロールレベルであると決定することができる(1312)。いくつかの実施では
、予測コレステロールレベル値を、以前に得られたユーザのコレステロールレベルと比較
することができる。予測コレステロールレベルとユーザの最後に得られたコレステロール
レベルとの間の差が、閾値、例えば3%より大きい場合、ウェアラブル診断装置は、動作1
302から1310を繰り返して、新たな予測コレステロールレベルを得ることができる。その
ような繰り返しは、予測コレステロールレベル値が、ユーザの最後に得られたコレステロ
ールレベルの閾値の差の範囲内になるまで継続することができる。場合によっては、閾値
の差を満たさずに3回の繰り返しが行われた場合、3回目の繰り返しで得られた予測コレス
テロールレベル値を、ウェアラブル診断装置を装着しているユーザの推定コレステロール
レベルとして決定することができる。次いで、ユーザの決定された推定コレステロールレ
ベルを、ウェアラブル診断装置のディスプレイ102によって表示することができる。
The predicted cholesterol level value may then be determined to be an estimated cholesterol level for the user wearing the wearable diagnostic device (1312). In some implementations, the predicted cholesterol level value may be compared to a previously obtained cholesterol level for the user. If the difference between the predicted cholesterol level and the user's last obtained cholesterol level is greater than a threshold, for example 3%, the wearable diagnostic device performs operation 1.
302 through 1310 may be repeated to obtain a new predicted cholesterol level. Such iterations may continue until the predicted cholesterol level value is within a threshold difference of the user's last obtained cholesterol level. In some cases, if three iterations have been performed without meeting the threshold difference, the predicted cholesterol level value obtained in the third iteration may be determined as the estimated cholesterol level of the user wearing the wearable diagnostic device. The determined estimated cholesterol level of the user may then be displayed by the
上記の例示的な実施では、予測値を利用して、グルコースレベル、ヘモグロビンレベル
、又はコレステロールレベルを決定した。予測値は、様々な異なる方法を使用して、いく
つかの因子に基づいて決定することができる。コレステロールレベルの予測値を得る方法
は、上で説明している。グルコースレベル及びヘモグロビンレベルの予測値を得るための
方法は、図8及び図10に関連してさらに説明する。
In the above exemplary implementations, the predicted values were utilized to determine glucose levels, hemoglobin levels, or cholesterol levels. The predicted values can be determined based on a number of factors using a variety of different methods. Methods for obtaining predicted values for cholesterol levels are described above. Methods for obtaining predicted values for glucose levels and hemoglobin levels are further described in connection with FIG. 8 and FIG. 10.
図8を参照すると、ユーザのグルコースレベルの予測値を得るために、ウェアラブル診
断装置は、ユーザプロフィール情報を得ることができる(802)。ユーザプロフィール情
報には、ユーザの居住地、ユーザの医師、ユーザの薬剤師、ユーザの医療記録所有者、1
つ又は複数の群とのユーザのデモグラフィック関連事項、ユーザの食生活、ユーザの子供
の数を示すもの、ユーザの病歴、1つ又は複数の過去又は現在の病状、例えばユーザのア
レルギー、手術、遺伝子の状態、ユーザの1つ又は複数の健康上の懸念、及びユーザが詳
細を得ることに関心のある1つ又は複数の血中含有レベルの1つ又は複数が含まれ得る。
8, to obtain a predicted glucose level for a user, the wearable diagnostic device can obtain user profile information (802). The user profile information can include information about the user's location, the user's physician, the user's pharmacist, the user's medical record owner, and the user's current medical record.
These may include one or more of the user's demographic associations with one or more groups, the user's diet, an indication of the number of children the user has, the user's medical history, one or more past or current medical conditions, such as the user's allergies, surgeries, genetic status, one or more health concerns of the user, and one or more blood content levels about which the user is interested in obtaining details.
ユーザのプロフィールからの情報を使用して、ウェアラブル診断装置は、該ユーザの血
圧及び体温に基づいて、該ユーザのグルコースの臨床相関情報値(cCIG)を決定すること
ができる(804)。いくつかの実施では、cCIGは、推定血圧及び推定体温を表す値のマト
リックスであり得る。一般に、様々な適切な方法を利用して、ユーザの血圧及び体温を得
ることができる。いくつかの実施では、血圧は、図11及び図12を参照して本明細書で説明
されるように得ることができ、体温は、ウェアラブル診断装置に含まれる温度センサを使
用して得ることができる。場合によっては、cCIGは、医師のレポート、過去又は現在の病
状、臨床診断などのデータを含むユーザの病歴などのユーザプロフィールから得られた臨
床情報を使用して決定することができる。
Using information from the user's profile, the wearable diagnostic device can determine a clinical correlation information value (cCIG) for glucose for the user based on the user's blood pressure and body temperature (804). In some implementations, the cCIG can be a matrix of values representing estimated blood pressure and estimated body temperature. In general, various suitable methods can be utilized to obtain the user's blood pressure and body temperature. In some implementations, the blood pressure can be obtained as described herein with reference to FIGS. 11 and 12, and the body temperature can be obtained using a temperature sensor included in the wearable diagnostic device. In some cases, the cCIG can be determined using clinical information obtained from the user profile, such as the user's medical history, which can include data such as physician reports, past or current medical conditions, clinical diagnoses, etc.
次に、ウェアラブル診断装置は、ユーザのグルコースの臨床関連デモグラフィック値(
cLDG)を決定することができる(806)。cLDGは、ユーザのデモグラフィック群、ユーザ
の年齢、及びユーザの他の個人的特性などの1つ又は複数のユーザの特性に一部基づいて
決定することができる。例として、上記の生のグルコース値が経路Aなどの特定の経路に
関連する場合、又はユーザプロフィールがユーザの特定のデモグラフィック起源若しくは
プロフィールを示す場合、cLDG値は、cLDG値が生のグルコース値又はユーザの特定のデモ
グラフィック起源若しくはプロフィールに対応するように決定することができる。いくつ
かの実施では、cLDGは、ユーザが次の個人情報を提供することに同意した場合、様々な特
性、例えば該ユーザの年齢、食生活、性別を表す値のマトリックスであり得る。
The wearable diagnostic device then measures the user’s glucose clinically relevant demographic values (
A cLDG (cLDG) may be determined (806). The cLDG may be determined in part based on one or more characteristics of the user, such as the user's demographic group, the user's age, and other personal characteristics of the user. As an example, if the raw glucose values above are associated with a particular route, such as route A, or if the user profile indicates a particular demographic origin or profile of the user, a cLDG value may be determined such that the cLDG value corresponds to the raw glucose value or the particular demographic origin or profile of the user. In some implementations, the cLDG may be a matrix of values representing various characteristics, such as the user's age, diet, and sex, if the user agrees to provide the following personal information:
cCIG及びcLDGを得た後、ウェアラブル診断装置は、cCIG及びcLDGに基づいて臨床データ
セットの範囲を決定することができる(810)。決定された臨床データセットの範囲は、
ユーザのグルコースレベルのグルコース予測値にマッピングされる(812)。様々な臨床
データセットの範囲及びグルコース予測値を保存するデータベースは、決定された臨床デ
ータセットの範囲で問い合わせを行うことができ、かつ該決定された臨床データセットの
範囲にマッピングするグルコース予測値を返すことができる。次いで、グルコース予測値
を提供することができ、該グルコース予測値を、ユーザのグルコースレベルの決定に利用
することができる(814)。
After obtaining the cCIG and cLDG, the wearable diagnostic device can determine 810 a range of clinical datasets based on the cCIG and cLDG. The determined range of clinical datasets can be:
The user's glucose level is mapped to a glucose predicted
図10を参照すると、ユーザのヘモグロビンレベルの予測値を得るために、ウェアラブル
診断装置は、ユーザプロフィール情報を得ることができる(1002)。ユーザプロフィール
情報には、ユーザの居住地、ユーザの医師、ユーザの薬剤師、ユーザの医療記録所有者、
1つ又は複数の群とのユーザのデモグラフィック関連事項、ユーザの食生活、ユーザの子
供の数を示すもの、ユーザの病歴、1つ又は複数の過去又は現在の病状、例えばユーザの
アレルギー、手術、遺伝子の状態、ユーザの1つ又は複数の健康上の懸念、及びユーザが
詳細を得ることに関心のある1つ又は複数の血中含有レベルの1つ又は複数が含まれ得る。
10, to obtain a predicted value of a user's hemoglobin level, the wearable diagnostic device can obtain user profile information (1002), including the user's location, the user's physician, the user's pharmacist, the user's medical record owner,
This may include one or more of the user's demographic associations with one or more groups, the user's diet, an indication of the user's number of children, the user's medical history, one or more past or current medical conditions, such as the user's allergies, surgeries, genetic conditions, the user's one or more health concerns, and one or more blood content levels about which the user is interested in obtaining details.
ユーザのプロフィールからの情報を使用して、ウェアラブル診断装置は、ユーザのヘモ
グロビンの臨床相関情報値(cCIHb)を決定することができる(1004)。cCIHbは、医師の
レポート、過去又は現在の病状、臨床診断などのデータを含むユーザの病歴などのユーザ
プロフィールから得た臨床情報を使用して決定することができる。いくつかの実施では、
cCIHbは、ユーザが次の個人情報を提供することに同意した場合、該ユーザの病歴の様々
な側面を表す値のマトリックスであり得る。
Using information from the user's profile, the wearable diagnostic device can determine the user's clinical correlate of hemoglobin (cCIHb) value (1004). The cCIHb can be determined using clinical information from the user profile, such as the user's medical history, which can include data such as physician reports, past or current medical conditions, clinical diagnoses, etc. In some implementations,
The cCIHb can be a matrix of values representing various aspects of a user's medical history, provided that the user agrees to provide the following personal information:
次に、ウェアラブル診断装置は、ユーザの酸素飽和度データ及び体温データを得ること
によって該ユーザのヘモグロビンの臨床関連デモグラフィック値(cLDHb)を決定するこ
とができる(1006)。いくつかの実施では、cLDHbは、ユーザの推定酸素飽和度及び体温
を表す値のマトリックスであり得る。一般に、様々な適切な方法を利用して、ユーザの酸
素飽和度及び体温を得ることができる。いくつかの実施では、酸素飽和度は、図11を参照
して本明細書で説明されるように得ることができ、体温は、ウェアラブル診断装置に含ま
れる温度センサを使用して得ることができる。いくつかの実施では、cLDHbは、ユーザの
デモグラフィック群、ユーザの年齢、及びユーザの他の個人的特性などの1つ又は複数の
ユーザ特性などのユーザプロフィールによって提供される情報に一部基づいて決定するこ
とができる。
The wearable diagnostic device may then determine 1006 a clinically relevant demographic value for hemoglobin (cLDHb) for the user by obtaining the oxygen saturation data and temperature data for the user. In some implementations, the cLDHb may be a matrix of values representing the user's estimated oxygen saturation and temperature. In general, various suitable methods may be utilized to obtain the user's oxygen saturation and temperature. In some implementations, the oxygen saturation may be obtained as described herein with reference to FIG. 11, and the temperature may be obtained using a temperature sensor included in the wearable diagnostic device. In some implementations, the cLDHb may be determined in part based on information provided by a user profile, such as one or more user characteristics, such as the user's demographic group, the user's age, and other personal characteristics of the user.
cCIHb及びcLDHbを得た後、ウェアラブル診断装置は、cCIHb及びcLDHbに基づいて臨床デ
ータセットの範囲を決定することができる(1010)。決定された臨床データセットの範囲
は、ユーザのヘモグロビンレベルのヘモグロビン予測値にマッピングされる(1012)。様
々な臨床データセットの範囲及びヘモグロビン予測値を保存するデータベースは、決定さ
れた臨床データセットの範囲で問い合わせを行うことができ、かつ該決定された臨床デー
タセットの範囲にマッピングするヘモグロビン予測値を返すことができる。次いで、ヘモ
グロビン予測値を提供することができ、該ヘモグロビン予測値を、ユーザのヘモグロビン
レベルを決定するために利用することができる(1014)。
After obtaining the cCIHb and cLDHb, the wearable diagnostic device can determine a clinical dataset range based on the cCIHb and cLDHb (1010). The determined clinical dataset range is mapped to a hemoglobin predicted value for the user's hemoglobin level (1012). A database storing various clinical dataset ranges and hemoglobin predicted values can be queried with the determined clinical dataset range and can return a hemoglobin predicted value that maps to the determined clinical dataset range. A hemoglobin predicted value can then be provided, and the hemoglobin predicted value can be utilized to determine the user's hemoglobin level (1014).
血圧データ及び体温データを利用することに加えて、予測値を利用してユーザのグルコ
ースレベル及びヘモグロビンレベルを決定することにより、ユーザの決定されたグルコー
スレベル及びヘモグロビンレベルは、予測値を利用しないでグルコースレベル及びヘモグ
ロビンレベルを決定する方法と比較してはるかに高い精度を有する。予測値には、ユーザ
の臨床情報及びデモグラフィック情報が含まれているため、グルコースレベル又はヘモグ
ロビンレベルに影響を与え得る肌の色や年齢などのパラメータをより正確に考慮して計算
を行うことができる。予測値を使用して、該予測値を特定の疾患に対するユーザの感受性
に関連付けることもでき、これにより、ユーザは予防措置を講じて、これらの疾患に罹患
する確率を最小限に抑え、該ユーザの健康及び平均余命を改善することができる。さらに
、これらの複数の検査を行うことができ、検査結果を要求に応じて単一装置によって得る
ことができ、ユーザに高度の利便性を提供する。
By utilizing the blood pressure and temperature data as well as the predicted values to determine the glucose and hemoglobin levels of the user, the determined glucose and hemoglobin levels of the user have a much higher accuracy compared to methods of determining glucose and hemoglobin levels without utilizing the predicted values. The predicted values include the clinical and demographic information of the user, so that the calculations can more accurately take into account parameters such as skin color and age that may affect the glucose or hemoglobin levels. The predicted values can also be used to correlate the user's susceptibility to certain diseases, so that the user can take preventative measures to minimize the probability of contracting these diseases and improve the health and life expectancy of the user. Furthermore, these multiple tests can be performed and the test results can be obtained on demand by a single device, providing a high degree of convenience to the user.
ユーザのグルコースレベル及びヘモグロビンレベルを得ることに加えて、ウェアラブル
診断装置は、ユーザの血圧レベル及び酸素飽和レベルを決定することができる。ユーザの
血圧レベル及び酸素飽和レベルを決定するための例示的な方法のフローチャートが図11に
示されている。最初に、ウェアラブル診断装置は、血圧測定を行う必要があるという指示
を受け取ることができる(1102)。血圧測定を行う必要があるという指示は、血圧測定値
を提供するためにユーザによって行われる1つ又は複数の選択、及び予定された時間に従
って1つ又は複数のプロセッサによって行われる要求を含み得る。例えば、ウェアラブル
診断装置は、特定の時間に、又は一定期間後に血圧測定値を提供するようにプログラムす
ることができる。次いで、ウェアラブル診断装置は、血圧測定値をユーザに提供する必要
がある日時を予定することができ、予定された時間に血圧レベル及び酸素飽和レベルを決
定する方法を開始することができる。
In addition to obtaining the user's glucose and hemoglobin levels, the wearable diagnostic device can determine the user's blood pressure and oxygen saturation levels. A flow chart of an exemplary method for determining a user's blood pressure and oxygen saturation levels is shown in FIG. 11. Initially, the wearable diagnostic device can receive an indication that a blood pressure measurement needs to be taken (1102). The indication that a blood pressure measurement needs to be taken can include one or more selections made by the user to provide a blood pressure measurement and a request made by one or more processors according to a scheduled time. For example, the wearable diagnostic device can be programmed to provide a blood pressure measurement at a specific time or after a certain period of time. The wearable diagnostic device can then schedule a date and time when a blood pressure measurement needs to be provided to the user and can initiate a method of determining blood pressure and oxygen saturation levels at the scheduled time.
血圧測定を行う必要があるという指示を受け取った後(1102)、ウェアラブル診断装置
は、血圧検査に利用されるセンサの種類を決定し、決定された種類のセンサを作動させる
ことができ、血圧検査の場合には、該決定された種類のセンサには、圧電振動センサ及び
IR/光/レーザーセンサが含まれ得る(1104)。センサを作動させることには、限定され
るものではないが、センサへの電力の増加させること、及びセンサを構成又は較正するこ
とを含むいくつかの動作が含まれ得る。
After receiving an indication that a blood pressure measurement needs to be performed (1102), the wearable diagnostic device can determine the type of sensor to be utilized for the blood pressure test and activate the determined type of sensor, which in the case of a blood pressure test may include a piezoelectric vibration sensor and
An IR/light/laser sensor may be included 1104. Activating the sensor may include several operations including, but not limited to, increasing power to the sensor and configuring or calibrating the sensor.
作動された圧電振動センサ及びIR/光/レーザーセンサは、ユーザの測定値を得ること
ができる(1106)。例えば、圧電振動センサは、ユーザの手の動き、位置、接近、速度、
及び方向の1つ又は複数を感知又は検出して、検出された接触、振動、及び衝撃による動
きの1つ又は複数に対応する電気信号を生成するように構成されている。IR/光/レーザ
ーセンサは、赤外線信号を発信し、発信された赤外線信号のユーザの皮膚から反射を検出
するように構成されている。いくつかの実施では、前置増幅器を使用して、圧電振動セン
サによって得られた弱いパルス信号を増幅することができる。
The activated piezoelectric vibration sensor and IR/light/laser sensor can obtain measurements of the user (1106). For example, the piezoelectric vibration sensor can obtain measurements of the user's hand movement, position, proximity, speed,
and direction to generate an electrical signal corresponding to one or more of the detected touch, vibration, and shock motion. The IR/light/laser sensor is configured to emit an infrared signal and detect a reflection of the emitted infrared signal from the user's skin. In some implementations, a preamplifier can be used to amplify the weak pulse signal obtained by the piezoelectric vibration sensor.
圧電振動センサ及びIR/光/レーザーセンサによって検出された信号を、例えば、アナ
ログ-デジタル変換(ADC)及びフィルタリング動作を行うことによって処理して、赤外
線標的検出(IRTD)値及び圧電振動(PV)値を生成することができる(1108)。一般に、
圧電振動センサ及びIR/光/レーザーセンサによって検出された信号に対して、様々な信
号処理動作を行うことができる。いくつかの実施では、動作1104~1108を複数回繰り返す
ことができ、複数のIRTD値及びPV値の平均値を決定することができる。
The signals detected by the piezoelectric vibration sensor and the IR/light/laser sensor may be processed, for example, by performing analog-to-digital conversion (ADC) and filtering operations to generate an infrared target detection (IRTD) value and a piezoelectric vibration (PV) value (1108).
Various signal processing operations may be performed on the signals detected by the piezoelectric vibration sensor and the IR/light/laser sensor. In some implementations, operations 1104-1108 may be repeated multiple times and averages of multiple IRTD and PV values may be determined.
処理には、決定されたIRTD値及びPV値を予測IRTD値及びPV値と比較することも含まれ得
る。この比較により、2セットの血圧値が生成される。2セットの血圧値のそれぞれを平均
して、収縮期血圧値及び拡張期血圧値をそれぞれ得る(1112)。収縮期血圧値及び拡張期
血圧値を利用して、下記の[式3]を使用して平均動脈圧(MAP)を決定することができる
。
MAP=拡張期血圧+(1/3)(収縮期血圧-拡張期血圧) [式3]
Processing may also include comparing the determined IRTD and PV values to predicted IRTD and PV values. This comparison produces two sets of blood pressure values. Each of the two sets of blood pressure values is averaged 1112 to obtain a systolic blood pressure value and a diastolic blood pressure value, respectively. The systolic and diastolic blood pressure values may be utilized to determine a mean arterial pressure (MAP) using Equation 3 below.
MAP = diastolic blood pressure + (1/3) (systolic blood pressure - diastolic blood pressure) [Formula 3]
血圧測定値についての予測値の生成は、図12を参照して以下に説明する。いくつかの実
施では、ユーザの血液の酸素飽和レベルは、[式4]を使用して決定することもできる(1
110)。
酸素飽和レベル=((CHbO2)/(CHbO2+CHb))×100 [式4]
The generation of predicted values for blood pressure measurements is described below with reference to Figure 12. In some implementations, the oxygen saturation level of the user's blood may also be determined using Equation 4 (1
110).
Oxygen saturation level = (( CHbO2 )/( CHbO2 + CHb )) x 100 [Equation 4]
[式4]において、CHbO2は、酸素化ヘモグロビンの濃度に等しく、CHbは、脱酸素化ヘ
モグロビンの濃度に等しい。CHbO2及びCHbの値は、赤外線センサを使用することによって
得ることができる。
In Equation 4, C HbO2 is equal to the concentration of oxygenated hemoglobin, and C Hb is equal to the concentration of deoxygenated hemoglobin. The values of C HbO2 and C Hb can be obtained by using an infrared sensor.
動作1110及び1112の後、血圧値及び酸素飽和値が出力される(1114)。例えば、いくつ
かの実施では、血圧値及び酸素飽和値がディスプレイに表示される。いくつかの実施では
、血圧値及び酸素飽和値が音声スピーカーから出力される。いくつかの実施では、血圧値
及び酸素飽和値は、電子メール、SMS、又はMMSなどのメッセージを使用して別の電子装置
に通信することができる。メッセージは、ユーザの入力なしで自動的に生成して追加する
ことができる。ユーザは、血圧値及び酸素飽和値を含むメッセージを他の電子装置に送信
する必要があるかどうかを確認するように指示され得る。
After
上記の例示的な実施では、ユーザの血圧を決定するために予測値が利用された。予測値
は、様々な異なる方法を使用して、いくつかの因子に基づいて決定することができる。図
12を参照すると、ユーザの血圧の予測値を得るために、ウェアラブル診断装置は、動作80
2及び1002で説明されているように、ユーザプロフィール情報を得ることができる(1202
)。ウェアラブル診断装置は、ユーザプロフィールからユーザの臨床情報及びデモグラフ
ィック情報を得ることができる。
In the above exemplary implementation, a predictive value was utilized to determine the user's blood pressure. The predictive value can be determined based on a number of factors using a variety of different methods.
Referring to FIG. 12, to obtain a predicted value of the user's blood pressure, the wearable diagnostic device performs operation 80.
2 and 1002, user profile information can be obtained (1202
). The wearable diagnostic device can obtain clinical and demographic information about the user from the user profile.
ユーザのプロフィールからの情報を使用して、ウェアラブル診断装置は、ユーザの血圧
の臨床相関情報値(cCIBP)を決定し、EKGデータを得ることができる(1204)。cCIBPは
、医師のレポート、過去又は現在の病状、臨床診断などのデータを含むユーザの病歴など
のユーザプロフィールから得た臨床情報を使用して決定することができる。EKGデータは
、様々な適切な供給源、例えばユーザの病歴などから得ることができる。
Using information from the user's profile, the wearable diagnostic device can determine the user's clinical correlate of blood pressure (cCIBP) and obtain EKG data (1204). The cCIBP can be determined using clinical information obtained from the user's profile, such as the user's medical history, which may include data such as physician reports, past or current medical conditions, clinical diagnoses, etc. The EKG data can be obtained from a variety of suitable sources, such as the user's medical history.
次に、ピーク値、及びピーク値間、特にR波間の時差を決定するために、EKGデータが処
理される(1206)。ウェアラブル診断装置はまた、ユーザの血圧の臨床関連デモグラフィ
ック値(cLDBP)を決定することもできる(1206)。いくつかの実施では、ウェアラブル
診断装置の1つ又は複数のプロセッサが、ユーザのEKGでピーク値及び検出されたピーク値
間の時差を検出する1つ又は複数のプログラム及びアルゴリズムを実行することができる
。いくつかの実施では、cLDBPは、ユーザのデモグラフィック群、ユーザの年齢、及びユ
ーザの他の個人的特性などの1つ又は複数のユーザ特性に一部基づいて決定することがで
きる。いくつかの実施では、cLDBPは、ユーザが次の個人情報を提供することに同意した
場合、様々な特性、例えば、該ユーザの年齢、食生活、性別などを表す値のマトリックス
であり得る。
The EKG data is then processed (1206) to determine peak values and time differences between peak values, particularly between R-waves. The wearable diagnostic device may also determine (1206) a clinically relevant demographic value of the user's blood pressure (cLDBP). In some implementations, one or more processors of the wearable diagnostic device may execute one or more programs and algorithms to detect peak values and time differences between peak values detected in the user's EKG. In some implementations, the cLDBP may be determined in part based on one or more user characteristics, such as the user's demographic group, the user's age, and other personal characteristics of the user. In some implementations, the cLDBP may be a matrix of values representing various characteristics, such as the user's age, diet, sex, etc., if the user agrees to provide the following personal information:
cCIBP及びcLDBPを得た後、ウェアラブル診断装置は、cCIBP及びcLDBPに基づいて臨床デ
ータセットの範囲を決定することができる(1208)。決定された臨床データセットの範囲
は、ユーザのグルコースレベルの血圧予測値にマッピングされる(1210)。様々な臨床デ
ータセットの範囲及び血圧予測値を保存するデータベースは、決定された臨床データセッ
トの範囲で問い合わせを行うことができ、かつ該決定された臨床データセットの範囲にマ
ッピングする血圧予測値を返すことができる。次いで、血圧予測値を提供することができ
、該血圧予測値を、ユーザの血圧レベルを決定するために利用することができる(1212)
。
After obtaining the cCIBP and cLDBP, the wearable diagnostic device can determine a clinical dataset range based on the cCIBP and cLDBP (1208). The determined clinical dataset range is mapped to a blood pressure prediction value for the user's glucose level (1210). A database storing various clinical dataset ranges and blood pressure prediction values can be queried with the determined clinical dataset range and can return a blood pressure prediction value that maps to the determined clinical dataset range. A blood pressure prediction value can then be provided and the blood pressure prediction value can be utilized to determine the user's blood pressure level (1212).
.
いくつかの実施では、ウェアラブル診断装置は、該ウェアラブル診断装置を装着してい
るユーザのEKG及び心拍数レベルを得るためのプロセスを実行することができる。
In some implementations, the wearable diagnostic device may execute a process to obtain an EKG and heart rate level of a user wearing the wearable diagnostic device.
ウェアラブル診断装置がユーザの左腕に固定されるときに、第1の心電極を、該ウェア
ラブル診断装置の底面又はその内部に配置することができ、ユーザの左手首の上側に接触
させることができる。第2の心電極は、ユーザの左腕の皮膚に接触することなくウェアラ
ブル診断装置の上面又はその内部に配置される。第1の心電極は、ユーザの左腕の手首の
上部から信号を得ることができ、第2の心電極は、該第2の心電極がユーザの胸に配置され
た状態で2つの信号を得ることができる。得られた信号には、心臓の収縮中に生成される
電圧などの心電位波形が含まれ得る。3つの信号から得られるデータは、PQRST(Provocat
ion, Quality, Radiation, Severity, Time)波に変換される。PQRST波を使用して、アイ
ントホーフェンの三角形、EKGプロットを生成し、ユーザの心拍などの追加情報を計算す
ることができる。場合によっては、PQRST波を使用して心臓の状態を診断することができ
る。
When the wearable diagnostic device is fixed to the left arm of a user, a first cardiac electrode can be disposed on or within the bottom surface of the wearable diagnostic device and can be in contact with the upper side of the user's left wrist. A second cardiac electrode is disposed on or within the top surface of the wearable diagnostic device without contacting the skin of the user's left arm. The first cardiac electrode can obtain a signal from the upper part of the wrist of the user's left arm, and the second cardiac electrode can obtain two signals with the second cardiac electrode disposed on the user's chest. The obtained signals can include cardiac potential waveforms, such as voltages generated during contraction of the heart. Data obtained from the three signals is measured using a PQRST (Provocat
The PQRST waves are converted into PQRST (proportional, ion, quality, radiation, severity, time) waves. The PQRST waves can be used to generate Einthoven's triangle, EKG plots, and to calculate additional information such as the user's heart rate. In some cases, the PQRST waves can be used to diagnose cardiac conditions.
いくつかの実施では、ウェアラブル診断装置は、該ウェアラブル診断装置を装着してい
るユーザについての体温を得るためのプロセスを実行することができる。ウェアラブルな
診断装置が、ユーザの腕に巻き付けられて該ユーザの皮膚に接触すると、該ウェアラブル
診断装置の温度センサが、該皮膚の接触に基づいて該ユーザの体温を得る。例えば、温度
センサは、手首に接触することができ、一定期間にわたってユーザの体温データを得るこ
とができる。温度センサは、センサデータを1つ又は複数のプロセッサに提供し、該プロ
セッサは、受け取ったデータを華氏スケールに変換し、1つ又は複数の期間にわたって得
た体温データを平均して、ユーザの推定体温を得ることができる。
In some implementations, a wearable diagnostic device can execute a process to obtain a body temperature for a user wearing the wearable diagnostic device. When the wearable diagnostic device is wrapped around a user's arm and in contact with the user's skin, a temperature sensor of the wearable diagnostic device obtains the user's body temperature based on the skin contact. For example, a temperature sensor can be in contact with a wrist and obtain body temperature data of the user over a period of time. The temperature sensor provides sensor data to one or more processors, which can convert the received data to a Fahrenheit scale and average the obtained body temperature data over one or more periods of time to obtain an estimated body temperature of the user.
いくつかの実施では、ウェアラブル診断装置は、該ウェアラブル診断装置を装着してい
るユーザについての手の振動を得るためのプロセスを実行することができる。1つ又は複
数のプロセッサは、タイマー及び加速度計又は圧電振動センサを用いて動作を実行して、
手の振動測定値を得ることができる。例えば、ユーザが手の振動に関する情報を確認する
ことに関心があるという指示を受け取ると、プロセッサは、特定の期間、例えば60秒にタ
イマーを設定し、一定期間にわたって振動データを得るように加速度計又は圧電振動セン
サに指示することができる。加速度計又は圧電振動センサは、一定期間におけるユーザの
手の振動の数及び強さを感知し、振動の数を示すデータをプロセッサに提供することがで
きる。
In some implementations, the wearable diagnostic device may execute a process to obtain hand vibrations for a user wearing the wearable diagnostic device. The one or more processors may execute operations using a timer and an accelerometer or piezoelectric vibration sensor to:
Hand vibration measurements can be obtained. For example, upon receiving an indication that a user is interested in reviewing information regarding hand vibrations, the processor can set a timer for a particular period of time, e.g., 60 seconds, and instruct the accelerometer or piezoelectric vibration sensor to obtain vibration data over the period of time. The accelerometer or piezoelectric vibration sensor can sense the number and strength of vibrations of the user's hands over a period of time and provide data indicative of the number of vibrations to the processor.
プロセッサは、振動の数を示すデータを受け取ることができ、振動の周波数を決定する
ことができる。振動が3~7ヘルツ(Hz)の周波数を有する場合、該振動は、パーキンソン
病の振戦に関連する振動として分類することができる。プロセッサはまた、加速度計又は
圧電振動センサから振幅情報を得て、パーキンソン病の振戦に関連するあらゆる振動の強
さを決定することもできる。振動のタイミング、強度、及び周波数を示すデータは、記憶
装置内のユーザプロフィールに保存することができ、かつ/又はディスプレイによってユ
ーザに提示することができる。
The processor may receive data indicative of the number of vibrations and may determine the frequency of the vibrations. If the vibrations have a frequency between 3 and 7 Hertz (Hz), the vibrations may be classified as vibrations associated with Parkinson's tremor. The processor may also obtain amplitude information from an accelerometer or piezoelectric vibration sensor to determine the strength of any vibrations associated with Parkinson's tremor. Data indicative of the timing, intensity, and frequency of the vibrations may be stored in a user profile in storage and/or presented to the user via a display.
ユーザのグルコースレベル、ヘモグロビンレベル、血圧レベル、EKG、心拍数レベル、
体温、手の振動、及びコレステロールレベルに関する情報を得るための上記のプロセスは
、並行して、同時に、又は異なる時間に行うことができる。ウェアラブル診断装置は、い
つでも及びユーザの要求に応じてこれらのどのプロセスも実行するのに十分な処理能力を
備えている。
User's glucose level, hemoglobin level, blood pressure level, EKG, heart rate level,
The above processes for obtaining information on body temperature, hand vibration, and cholesterol levels can be performed in parallel, simultaneously, or at different times, with the wearable diagnostic device having sufficient processing power to perform any of these processes at any time and upon the user's request.
いくつかの実施では、複数の診断検査を順次又は同時に行うことができる。例えば、EK
G検査は、血圧検査の前又は最中に行うことができる。酸素飽和度検査及び体温検査は、
ヘモグロビン検査の前又は最中に行うことができる。血圧検査及び体温検査は、グルコー
ス検査の前又は最中に行うことができる。他のバリエーション及び組み合わせも可能であ
る。一例として、ユーザが糖尿病であるなどの特定の状態の病歴を有する場合、ウェアラ
ブル診断装置は、ユーザの状態に最も関連するグルコース診断検査などの検査を定期的に
行うことができ、該最も適切な診断検査の前、後、又は最中に、血圧検査、コレステロー
ル検査、又は酸素飽和度検査などの他の検査を行うことができる。
In some implementations, multiple diagnostic tests can be performed sequentially or simultaneously. For example,
G tests can be done before or during blood pressure tests. Oxygen saturation tests and temperature tests can be done
The hemoglobin test may be performed before or during the glucose test. The blood pressure and temperature tests may be performed before or during the glucose test. Other variations and combinations are possible. As an example, if a user has a history of a particular condition, such as diabetes, the wearable diagnostic device may periodically perform a test, such as a glucose diagnostic test, that is most relevant to the user's condition, and other tests, such as a blood pressure test, cholesterol test, or oxygen saturation test, may be performed before, after, or during the most appropriate diagnostic test.
いくつかの実施では、ユーザは、1種類の診断検査、例えばグルコース検査を行うため
の要求を入力することができるが、ウェアラブル診断装置は、ユーザが要求した診断検査
と共に行われるべき1つ又は複数の検査、例えば血圧検査を決定することができる。追加
の検査、例えば、ユーザによって、デフォルトの設定によって、メーカーの設定によって
、医師の勧めによって同時に、順次、又は対で行われる、頻繁に選択される検査などは、
1つ又は複数の基準に基づいて決定することができる。いくつかの実施では、追加の検査
は、ユーザの病歴に基づいて決定することができる。例えば、ユーザが糖尿病及び高血圧
に罹患している場合、該ユーザが血圧検査を選択するたびに、ウェアラブル診断装置は、
グルコース検査も行うことができる。ユーザがグルコース検査を選択した場合、ウェアラ
ブル診断装置は血圧検査も行うことができる。
In some implementations, a user may input a request to perform one type of diagnostic test, e.g., a glucose test, but the wearable diagnostic device may determine one or more tests, e.g., a blood pressure test, to be performed along with the diagnostic test requested by the user. Additional tests, e.g., frequently selected tests, performed simultaneously, sequentially, or paired by the user, by default settings, by manufacturer settings, or by physician recommendation, may be selected from the list of tests, e.g., the wearable diagnostic device may determine one or more tests, e.g., a blood pressure test, to be performed along with the diagnostic test requested by the user, by default settings, by manufacturer settings, or by physician recommendation ...
The decision may be based on one or more criteria. In some implementations, the decision to perform the additional test may be based on the user's medical history. For example, if a user has diabetes and high blood pressure, each time the user selects a blood pressure test, the wearable diagnostic device:
Glucose testing can also be performed, and if the user selects glucose testing, the wearable diagnostic device can also perform a blood pressure test.
上記のプロセスの1つ又は複数の実行から得られる結果は、ウェアラブル診断装置内の
メモリに保存するか、又はユーザに関連するデータベース若しくはクラウドアカウントに
保存することができる。上記のプロセスの1つ又は複数の実行から得られる結果はまた、
ディスプレイに表示してもよい。いくつかの実施では、ウェアラブル診断装置は、決定さ
れたグルコースレベル、ヘモグロビンレベル、血圧レベル、EKG、心拍数レベル、体温、
及び手の振動の1つ又は複数が深刻な病状を示している場合、視覚アラーム、音声アラー
ム、又は電子アラームを出力することができる。例えば、ウェアラブル診断装置は、例え
ば、EKGに異常な心臓の動きの兆候が含まれている場合、又は体温が華氏102度を超えてい
る場合、ユーザに医師の診察を勧める、音波などの音声出力を生成することができる。
Results from one or more of the above processes can be stored in memory within the wearable diagnostic device, or in a database or cloud account associated with the user. Results from one or more of the above processes can also be stored in a memory within the wearable diagnostic device, or in a database or cloud account associated with the user.
In some implementations, the wearable diagnostic device may display the determined glucose level, hemoglobin level, blood pressure level, EKG, heart rate level, body temperature,
If one or more of the physical, mental, and hand vibrations indicate a serious medical condition, a visual, audio, or electronic alarm may be output. For example, the wearable diagnostic device may generate an audio output, such as a sound wave, that advises the user to see a doctor if, for example, an EKG contains signs of abnormal heart activity or if the temperature is above 102 degrees Fahrenheit.
本明細書で説明される実施及び/又は動作は、デジタル電子回路、又は本明細書に開示
される構造及びその構造的等価物を含むコンピュータソフトウェア、ファームウェア、若
しくはハードウェア、又はこれらの1つ若しくは複数の組み合わせで実施できることを理
解されたい。実施は、1つ又は複数のコンピュータプログラム製品、例えば、データ処理
装置によって実行される、又は該データ処理装置の動作を制御するためのコンピュータ可
読媒体に符号化されたコンピュータプログラム命令の1つ又は複数のモジュールとして実
施することができる。コンピュータ可読媒体は、機械可読記憶装置、機械可読記憶基板、
メモリ装置、機械可読伝播信号を発生する組成物(composition of matter)、又はそれ
らの1つ又は複数の組み合わせであり得る。「データ処理装置」という用語は、例として
、プログラム可能なプロセッサ、コンピュータ、又は複数のプロセッサ若しくはコンピュ
ータを含む、データを処理するためのすべての機器、装置、及び機械を包含する。機器は
、ハードウェアに加えて、当該コンピュータプログラムの実行環境を生成するコード、例
えば、プロセッサファームウェア、プロトコルスタック、データベース管理システム、オ
ペレーティングシステム、又はそれらの1つ又は複数の組み合わせを構成するコードを含
み得る。伝播信号は、人工的に生成された信号、例えば、適切な受信機器への送信のため
の情報を符号化するために生成される機械生成の電気信号、光学信号、又は電磁信号であ
る。
It will be understood that the implementations and/or operations described herein can be implemented in digital electronic circuitry, or computer software, firmware, or hardware, including the structures disclosed herein and structural equivalents thereof, or a combination of one or more of these. The implementations can be implemented as one or more computer program products, e.g., one or more modules of computer program instructions encoded in a computer-readable medium for execution by or controlling the operation of a data processing apparatus. A computer-readable medium can be a machine-readable storage device, a machine-readable storage substrate,
A data processing device may be a memory device, a composition of matter that generates a machine-readable propagated signal, or one or more combinations thereof. The term "data processing device" encompasses all devices, apparatus, and machines for processing data, including, by way of example, a programmable processor, a computer, or multiple processors or computers. In addition to hardware, a device may include code that creates an execution environment for the computer program, such as code that constitutes a processor firmware, a protocol stack, a database management system, an operating system, or one or more combinations thereof. A propagated signal is an artificially generated signal, such as a machine-generated electrical, optical, or electromagnetic signal that is generated to encode information for transmission to an appropriate receiving device.
コンピュータプログラム(プログラム、ソフトウェア、ソフトウェアアプリケーション
、スクリプト、又はコードとしても知られている)は、コンパイラ型言語又はインタープ
リタ型言語を含むあらゆる形式のプログラミング言語で記述することができ、スタンドア
ロンプログラムとして、又はモジュール、コンポーネント、サブルーチン、若しくはコン
ピューティング環境での使用に適したその他のユニットとしてを含め、任意の形式で展開
することができる。コンピュータプログラムは、必ずしもファイルシステム内のファイル
に対応しているとは限らない。プログラムは、他のプログラム又はデータ(例えば、マー
クアップ言語ドキュメントに保存された1つ又は複数のスクリプト)を保持するファイル
の一部に、当該プログラム専用の単一ファイルに、又は複数の連携ファイル(例えば、1
つ又は複数のモジュール、サブプログラム、又はコードの一部を保存するファイル)に保
存することができる。コンピュータプログラムは、1つのコンピュータ上で、又は1つのサ
イトに配置されているか、若しくは複数のサイトに分散し、通信ネットワークによって相
互接続された複数のコンピュータ上で実行することができる。
A computer program (also known as a program, software, software application, script, or code) can be written in any type of programming language, including compiled or interpreted languages, and can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program may be part of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to that program, or in several cooperating files (e.g., one
The computer program may be stored in a program or a file that stores one or more modules, subprograms, or portions of code. A computer program may be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
本明細書で説明されるプロセス及び論理の流れは、入力データ上で動作して出力を生成
することによって動作を行うために1つ又は複数のコンピュータプログラムを実行する1つ
又は複数のプログラム可能なプロセッサによって行うことができる。プロセス及び論理の
流れはまた、専用論理回路、例えばFPGA(フィールドプログラマブルゲートアレイ)又は
ASIC(特定用途向け集積回路)によって行ってもよく、また機器を専用論理回路として実
施してもよい。
The processes and logic flows described herein may be performed by one or more programmable processors executing one or more computer programs to perform operations by operating on input data to generate output. The processes and logic flows may also be implemented using special purpose logic circuitry, such as FPGAs (Field Programmable Gate Arrays) or
This may be done by ASIC (Application Specific Integrated Circuit) or the apparatus may be implemented as special purpose logic circuitry.
コンピュータプログラムを実行するコンピュータのプロセッサは、例として、汎用マイ
クロプロセッサ及び専用マイクロプロセッサの両方、及びあらゆる種類のデジタルコンピ
ュータの任意の1つ又は複数のプロセッサを含む。一般に、プロセッサは、読み取り専用
メモリ若しくはランダムアクセスメモリ、又はその両方から命令及びデータを受け取る。
A processor of a computer that executes a computer program includes, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor receives instructions and data from a read-only memory or a random access memory, or both.
本明細書は多数の特定のものを含むが、これらは、開示の範囲又は請求され得るものに
対する制限として解釈されるべきではなく、むしろ特定の実施態様に特有の特徴の説明と
して解釈されるべきである。別個の実施態様の文脈における本明細書で説明されている特
定の特徴は、単一の実施態様において組み合わせて実施することもできる。逆に、単一の
実施態様の文脈において説明されている様々な特徴は、複数の実施態様で個別に、又は任
意の適切な部分的な組み合わせで実施することもできる。さらに、特徴は、特定の組み合
わせで作用するとして上記の通りであり得、そのようなものとして請求されることさえあ
り得るが、請求される組み合わせからの1つ又は複数の特徴は、場合によっては、組み合
わせから削除してもよく、かつ請求される組み合わせは、部分的な組み合わせ又は部分的
な組み合わせの変形を対象としてもよい。
Although the present specification contains many specifics, these should not be interpreted as limitations on the scope of the disclosure or what may be claimed, but rather as descriptions of features specific to a particular embodiment. Certain features described in the present specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features described in the context of a single embodiment can also be implemented in multiple embodiments individually or in any suitable subcombination. Furthermore, features may be described above as acting in a particular combination and may even be claimed as such, but one or more features from the claimed combination may, in some cases, be deleted from the combination, and the claimed combination may be directed to a subcombination or a variation of the subcombination.
1つ又は複数の句及び少なくとも1つの句は、要素のあらゆる組み合わせを含むことを理
解されたい。例えば、A及びBの1つ又は複数という句は、A、B、又はAとBの両方を含む。
同様に、A及びBの少なくとも一方という句は、A、B、又はAとBの両方を含む。
It should be understood that the phrases "one or more" and "at least one" include any combination of elements. For example, the phrase "one or more of A and B" includes A, B, or both A and B.
Similarly, the phrase "at least one of A and B" includes A, B, or both A and B.
従って、特定の実施を説明してきた。他の実施は以下の特許請求の範囲内である。例え
ば、特許請求の範囲に記載される動作は、異なる順序で行われてもなお、望ましい結果を
達成することができる。
本件出願は、以下の態様の発明を提供する。
(態様1)
1つ又は複数のコンピュータ装置及び1つ又は複数の記憶装置を備えるシステムであって
、該1つ又は複数の記憶装置が、該1つ又は複数のコンピュータ装置によって実行されると
該1つ又は複数のコンピュータ装置に次の動作:
ユーザの病状を検出するための非侵襲的診断検査の開始要求に対応する入力を受け取る
こと;
該非侵襲的診断検査を行うための1つ又は複数のセンサを特定すること;
該非侵襲的診断検査に基づいて、該特定された1つ又は複数のセンサを作動させること
;
該1つ又は複数のセンサを介して信号データを受信すること;
ユーザプロフィールに一部基づいて該非侵襲的診断検査の予測値を得ること;
該予測値及び該受信信号データに基づいて検査結果を決定すること;並びに
該検査結果をディスプレイ又はスピーカーを介して出力すること、を実行させる命令を
記憶している、前記システム。
(態様2)
前記非侵襲的診断検査には、グルコース検査、コレステロール検査、ヘモグロビン検査
、酸素飽和レベル検査、及び心電図モニタリング検査の1つ又は複数が含まれる、態様1記
載のシステム。
(態様3)
前記動作が:
前記受信信号データから得た生データに基づいて経路を選択すること;及び
該選択された経路に基づいて決定された値のセットを得ることをさらに含み、
前記予測値及び受信信号データに基づいて検査結果を決定することが、該決定された値
に基づいて該検査結果を決定することを含む、態様1記載のシステム。
(態様4)
前記動作が:
1つ又は複数のデータベースからユーザの臨床データ及びユーザのデモグラフィックデ
ータを得ること;
該得たユーザの臨床データ及び該ユーザのデモグラフィックデータに基づいて臨床デー
タセットの範囲を決定すること;並びに
該臨床データセットの範囲を前記非侵襲的診断検査の予測値にマッピングすることをさ
らに含む、態様1記載のシステム。
(態様5)
前記動作が:
行われるべき第2の非侵襲的診断検査を、(i)該第2の非侵襲的診断検査を前記非侵襲
的診断検査に関連付けるユーザパターン、及び(ii)ユーザの病歴に基づいて決定するこ
と;
該第2の非侵襲的診断検査に基づいて1つ又は複数のセンサの第2のセットを作動させる
こと;
該1つ又は複数のセンサの第2のセットを介して第2の信号データを受信すること;
前記ユーザプロフィールに一部基づいて、該第2の非侵襲的診断検査の第2の予測値を得
ること;並びに
該第2の予測値及び該受信した第2の信号データに基づいて第2の検査結果を決定するこ
とをさらに含む、態様1記載のシステム。
(態様6)
前記非侵襲的診断検査の予測値を得ることが、前記第2の検査結果を使用して前記非侵
襲的診断検査の予測値を決定することを含む、態様5記載のシステム。
(態様7)
前記第2の非侵襲的診断検査が、グルコース検査である前記非侵襲的診断検査と同時に
行われるコレステロール検査である、態様5記載のシステム。
(態様8)
前記非侵襲的診断検査及び前記第2の非侵襲的診断検査が、前記1つ又は複数のコンピュ
ータ装置を備える時計によって行われる、態様5記載のシステム。
(態様9)
前記1つ又は複数のセンサが、無線心電極、圧電振動センサ、赤外線センサ、温度セン
サ、加速度計、及び微小電気機械システム(MEMS)センサの1つ又は複数を含む、態様1記
載のシステム。
(態様10)
ユーザの病状を検出するための非侵襲的診断検査の開始要求に対応する入力を受け取る
こと;
該非侵襲的診断検査を行うための1つ又は複数のセンサを、1つ又は複数のコンピュータ
装置によって特定すること;
該非侵襲的診断検査に基づいて、該特定された1つ又は複数のセンサを作動させること
;
該1つ又は複数のセンサを介して信号データを受信すること;
該1つ又は複数のコンピュータ装置によって、ユーザプロフィールに一部基づいて該非
侵襲的診断検査の予測値を得ること;
該1つ又は複数のコンピュータ装置によって、該予測値及び該受信した信号データに基
づいて検査結果を決定すること;並びに
1つ又は複数のコンピュータ装置によって、該検査結果をディスプレイ又はスピーカー
を介して出力することを含む、コンピュータ実施方法。
(態様11)
前記非侵襲的診断検査には、グルコース検査、コレステロール検査、ヘモグロビン検査
、酸素飽和レベル検査、心電図モニタリング検査の1つ又は複数が含まれる、態様10記載
のコンピュータ実施方法。
(態様12)
前記動作が:
前記受信した信号データから得た生データに基づいて経路を選択すること;並びに
該選択された経路に基づいて決定された値のセットを得ることをさらに含み、
前記予測値及び受信信号データに基づいて検査結果を決定することが、該決定された値
に基づいて該検査結果を決定することを含む、態様10記載のコンピュータ実施方法。
(態様13)
前記動作が:
ユーザの臨床データ及びユーザのデモグラフィックデータを1つ又は複数のデータベー
スから得ること;
該得られたユーザの臨床データ及び該ユーザのデモグラフィックデータに基づいて臨床
データセットの範囲を決定すること;並びに
該臨床データセットの範囲を前記非侵襲的診断検査の予測値にマッピングすることをさ
らに含む、態様10記載のコンピュータ実施方法。
(態様14)
前記動作が:
行われるべき第2の非侵襲的診断検査を、(i)該第2の非侵襲的診断検査を前記非侵襲
的診断検査に関連付けるユーザパターン、及び(ii)ユーザの病歴に基づいて決定するこ
と;
該第2の非侵襲的診断検査に基づいて1つ又は複数のセンサの第2のセットを作動させる
こと;
該1つ又は複数のセンサの第2のセットを介して第2の信号データを受信すること;
前記ユーザプロフィールに一部基づいて、第2の非侵襲的診断検査の第2の予測値を得る
こと;並びに
該第2の予測値及び該受信した第2の信号データに基づいて該第2の検査結果を決定する
ことをさらに含む、態様10記載のコンピュータ実施方法。
(態様15)
前記非侵襲的診断検査の予測値を得ることが、前記第2の検査結果を使用して前記非侵
襲的診断検査の予測値を決定することを含む、態様14記載のコンピュータ実施方法。
(態様16)
前記第2の非侵襲的診断検査が、グルコース検査である非侵襲的診断検査と同時に行わ
れるコレステロール検査である、態様14記載のコンピュータ実施方法。
(態様17)
前記非侵襲的診断検査及び前記第2の非侵襲的診断検査が、前記1つ又は複数のコンピュ
ータ装置を備える時計によって行われる、態様14記載のコンピュータ実施方法。
(態様18)
前記1つ又は複数のセンサが、無線心電極、圧電振動センサ、赤外線センサ、温度セン
サ、加速度計、及び微小電気機械システム(MEMS)センサの1つ又は複数を含む、態様10
記載のコンピュータ実施方法。
(態様19)
1つ又は複数のコンピュータ装置及び1つ又は複数の記憶装置を備える時計であって、該
1つ又は複数の記憶装置が、該1つ又は複数のコンピュータ装置によって実行されると該1
つ又は複数のコンピュータ装置に次の動作:
ユーザプロフィールに基づいてグルコース検査及びコレステロール検査を選択すること
;
該グルコース検査及び該コレステロール検査を行うための1つ又は複数のセンサを特定
すること;
該特定された1つ又は複数のセンサを作動させること;
該1つ又は複数のセンサを介して信号データを受信すること;
該ユーザプロフィールに一部基づいて該グルコース検査の第1の予測値を得ること;
該第1の予測値及び該受信信号データに基づいてグルコース検査結果及びコレステロー
ル検査結果を決定すること;並びに
該グルコース検査結果及び該コレステロール検査結果を、該時計のディスプレイ又はス
ピーカーを介して出力すること、を実行させる命令を記憶している、前記時計。
(態様20)
前記1つ又は複数のセンサが、赤外線センサ及び圧電振動センサを含み、
前記動作が:
前記受信した信号データから得られた生データに基づいて経路を選択すること;及び
該選択された経路に基づいて決定された値のセットを得ること、をさらに含み;
前記第1の予測値及び受信信号データに基づいてグルコース検査結果を決定することが
、該決定された値に基づいて該グルコース検査結果を決定することを含む、態様19記載の
時計。
Thus, certain implementations have been described. Other implementations are within the scope of the following claims. For example, the actions recited in the claims can be performed in a different order and still achieve desirable results.
The present application provides the following aspects of the invention.
(Aspect 1)
1. A system comprising one or more computing devices and one or more storage devices, the one or more storage devices providing operations that, when executed by the one or more computing devices, cause the one or more computing devices to:
receiving input corresponding to a request to initiate a non-invasive diagnostic test to detect a medical condition of the user;
identifying one or more sensors for conducting the non-invasive diagnostic test;
activating the identified one or more sensors based on the non-invasive diagnostic test;
receiving signal data via the one or more sensors;
obtaining a predictive value of the non-invasive diagnostic test based in part on a user profile;
determining a test result based on the predicted value and the received signal data; and outputting the test result via a display or speaker.
(Aspect 2)
2. The system of embodiment 1, wherein the non-invasive diagnostic test includes one or more of a glucose test, a cholesterol test, a hemoglobin test, an oxygen saturation level test, and an electrocardiogram monitoring test.
(Aspect 3)
The act of:
selecting a path based on raw data derived from the received signal data; and obtaining a set of determined values based on the selected path.
2. The system of embodiment 1, wherein determining a test result based on the predicted value and received signal data comprises determining the test result based on the determined value.
(Aspect 4)
The act of:
Obtaining user clinical data and user demographic data from one or more databases;
2. The system of embodiment 1, further comprising: determining a range of a clinical dataset based on the obtained user clinical data and the user demographic data; and mapping the range of the clinical dataset to a predictive value of the noninvasive diagnostic test.
(Aspect 5)
The act of:
determining a second non-invasive diagnostic test to be performed based on (i) a user pattern relating the second non-invasive diagnostic test to the non-invasive diagnostic test, and (ii) a medical history of the user;
activating a second set of one or more sensors based on the second non-invasive diagnostic test;
receiving second signal data via a second set of the one or more sensors;
2. The system of embodiment 1, further comprising: obtaining a second predictive value for the second non-invasive diagnostic test based in part on the user profile; and determining a second test result based on the second predictive value and the received second signal data.
(Aspect 6)
6. The system of embodiment 5, wherein obtaining the predictive value of the non-invasive diagnostic test comprises determining the predictive value of the non-invasive diagnostic test using the second test results.
(Aspect 7)
6. The system of embodiment 5, wherein the second non-invasive diagnostic test is a cholesterol test run simultaneously with the non-invasive diagnostic test which is a glucose test.
(Aspect 8)
6. The system of embodiment 5, wherein the non-invasive diagnostic test and the second non-invasive diagnostic test are performed by a watch comprising the one or more computing devices.
(Aspect 9)
2. The system of embodiment 1, wherein the one or more sensors include one or more of a wireless cardiac electrode, a piezoelectric vibration sensor, an infrared sensor, a temperature sensor, an accelerometer, and a microelectromechanical system (MEMS) sensor.
(Aspect 10)
receiving input corresponding to a request to initiate a non-invasive diagnostic test to detect a medical condition of the user;
identifying, by one or more computing devices, one or more sensors for conducting the non-invasive diagnostic test;
activating the identified one or more sensors based on the non-invasive diagnostic test;
receiving signal data via the one or more sensors;
obtaining, by the one or more computing devices, a predictive value of the non-invasive diagnostic test based in part on a user profile;
determining, by the one or more computing devices, a test result based on the predictive value and the received signal data; and
A computer-implemented method including outputting, by one or more computing devices, the test results via a display or speaker.
(Aspect 11)
11. The computer-implemented method of embodiment 10, wherein the non-invasive diagnostic test includes one or more of a glucose test, a cholesterol test, a hemoglobin test, an oxygen saturation level test, and an electrocardiogram monitoring test.
(Aspect 12)
The act of:
selecting a path based on raw data derived from the received signal data; and obtaining a set of determined values based on the selected path.
11. The computer-implemented method of embodiment 10, wherein determining a test result based on the predicted value and received signal data comprises determining the test result based on the determined value.
(Aspect 13)
The act of:
obtaining user clinical data and user demographic data from one or more databases;
11. The computer-implemented method of embodiment 10, further comprising: determining a range of a clinical dataset based on the obtained user's clinical data and the user's demographic data; and mapping the range of the clinical dataset to a predictive value of the non-invasive diagnostic test.
(Aspect 14)
The act of:
determining a second non-invasive diagnostic test to be performed based on (i) a user pattern relating the second non-invasive diagnostic test to the non-invasive diagnostic test, and (ii) a medical history of the user;
activating a second set of one or more sensors based on the second non-invasive diagnostic test;
receiving second signal data via a second set of the one or more sensors;
11. The computer-implemented method of embodiment 10, further comprising: obtaining a second predictive value of a second non-invasive diagnostic test based in part on the user profile; and determining an outcome of the second test based on the second predictive value and the received second signal data.
(Aspect 15)
20. The computer-implemented method of embodiment 14, wherein obtaining the predictive value of the non-invasive diagnostic test comprises determining the predictive value of the non-invasive diagnostic test using the second test results.
(Aspect 16)
15. The computer-implemented method of embodiment 14, wherein the second non-invasive diagnostic test is a cholesterol test conducted simultaneously with the non-invasive diagnostic test being a glucose test.
(Aspect 17)
15. The computer-implemented method of embodiment 14, wherein the non-invasive diagnostic test and the second non-invasive diagnostic test are performed by a watch comprising the one or more computing devices.
(Aspect 18)
[0023] Aspect 10. The one or more sensors include one or more of a wireless cardiac electrode, a piezoelectric vibration sensor, an infrared sensor, a temperature sensor, an accelerometer, and a microelectromechanical system (MEMS) sensor.
The computer-implemented method described herein.
(Aspect 19)
A watch comprising one or more computer devices and one or more storage devices,
One or more storage devices may be configured to execute the one or more computer devices.
2. The method of claim 1, further comprising:
selecting glucose and cholesterol tests based on a user profile;
identifying one or more sensors for performing the glucose test and the cholesterol test;
activating the identified sensor or sensors;
receiving signal data via the one or more sensors;
obtaining a first predicted value of the glucose test based in part on the user profile;
determining a glucose test result and a cholesterol test result based on the first predicted value and the received signal data; and outputting the glucose test result and the cholesterol test result via a display or speaker of the watch.
(Aspect 20)
the one or more sensors include an infrared sensor and a piezoelectric vibration sensor;
The act of:
selecting a path based on raw data derived from the received signal data; and obtaining a set of determined values based on the selected path;
20. The watch of embodiment 19, wherein determining a glucose test result based on the first predicted value and the received signal data includes determining the glucose test result based on the determined value.
Claims (20)
該動作が、
ユーザの病状を検出するための非侵襲的診断検査の開始要求に対応する入力を受け取ること;
該非侵襲的診断検査を行うための1つ又は複数のセンサを特定すること;
該非侵襲的診断検査に基づいて、該特定された1つ又は複数のセンサを作動させること;
該1つ又は複数のセンサを介して信号データを受信すること;
少なくともユーザの臨床データ及びユーザのデモグラフィックデータを含むユーザプロフィールに基づいて該非侵襲的診断検査の予測値を得ること;
該予測値及び該受信した信号データに基づいて検査結果を決定すること;並びに
該検査結果をディスプレイ又はスピーカーを介して出力すること、
を含み、
該1つ又は複数のコンピュータ装置は、該受信した信号データに基づいて該ユーザの該非侵襲的診断検査に関する情報を該ユーザに提供するためのウェアラブル診断装置を含み、かつ
該1つ又は複数のセンサは、該ユーザの心臓電位波形を検出するように構成された1対の取り外し可能な第1及び第2心電極を含み、該第1心電極は該ウェアラブル診断装置の外側ベルト層に配設され、該第2心電極は、該ユーザの皮膚に直接接触するように、該ウェアラブル診断装置の背面カバーに配設される、前記システム。 1. A system comprising one or more computing devices and one or more storage devices storing instructions that cause the one or more computing devices to perform the following operations :
The operation is
receiving input corresponding to a request to initiate a non-invasive diagnostic test to detect a medical condition of the user;
identifying one or more sensors for conducting the non-invasive diagnostic test;
activating the identified one or more sensors based on the non-invasive diagnostic test;
receiving signal data via the one or more sensors;
obtaining a predictive value of the non-invasive diagnostic test based on a user profile including at least a user's clinical data and a user's demographic data ;
determining a test result based on the predicted value and the received signal data; and outputting the test result via a display or speaker.
Including ,
the one or more computer devices include a wearable diagnostic device for providing the user with information regarding the non-invasive diagnostic test of the user based on the received signal data ; and the one or more sensors include a pair of removable first and second cardiac electrodes configured to detect the user's cardiac potential waveform , the first cardiac electrode being disposed on an outer belt layer of the wearable diagnostic device and the second cardiac electrode being disposed on a back cover of the wearable diagnostic device so as to directly contact the user's skin.
前記受信した信号データから得た生データに基づいて経路を選択すること;及び
該選択された経路に基づいて決定された値のセットを得ることをさらに含み、
前記予測値及び前記受信した信号データに基づいて検査結果を決定することが、該決定された値に基づいて該検査結果を決定することを含む、請求項1記載のシステム。 The act of:
selecting a path based on raw data derived from the received signal data; and obtaining a set of determined values based on the selected path.
The system of claim 1 , wherein determining a test result based on the predicted value and the received signal data comprises determining the test result based on the determined value.
1つ又は複数のデータベースから前記ユーザの臨床データ及び前記ユーザのデモグラフィックデータを得ること;
該得た前記ユーザの臨床データ及び前記ユーザのデモグラフィックデータに基づいて臨床データセットの範囲を決定すること;並びに
該臨床データセットの範囲を前記非侵襲的診断検査の予測値にマッピングすることをさらに含む、請求項1記載のシステム。 The act of:
obtaining clinical data of the user and demographic data of the user from one or more databases;
2. The system of claim 1, further comprising: determining a range of a clinical dataset based on the obtained clinical data of the user and the obtained demographic data of the user; and mapping the range of the clinical dataset to a predictive value of the noninvasive diagnostic test.
行われるべき第2の非侵襲的診断検査を、(i)該第2の非侵襲的診断検査を前記非侵襲的診断検査に関連付けるユーザパターン、及び(ii)該ユーザの病歴、に基づいて決定すること;
該第2の非侵襲的診断検査に基づいて1つ又は複数のセンサの第2のセットを作動させること;
該1つ又は複数のセンサの第2のセットを介して第2の信号データを受信すること;
前記ユーザプロフィールに基づいて、該第2の非侵襲的診断検査の第2の予測値を得ること;並びに
該第2の予測値及び該受信した第2の信号データに基づいて第2の検査結果を決定することをさらに含む、請求項1記載のシステム。 The act of:
determining a second non-invasive diagnostic test to be performed based on (i) a user pattern relating the second non-invasive diagnostic test to the non-invasive diagnostic test, and (ii) a medical history of the user;
activating a second set of one or more sensors based on the second non-invasive diagnostic test;
receiving second signal data via a second set of the one or more sensors;
10. The system of claim 1, further comprising: obtaining a second predicted value for the second noninvasive diagnostic test based on the user profile; and determining a second test result based on the second predicted value and the received second signal data.
該非侵襲的診断検査を行うための該1つ又は複数のセンサを、1つ又は複数のコンピュータ装置によって特定すること;
該非侵襲的診断検査に基づいて、該特定された1つ又は複数のセンサを、該1つ又は複数のコンピュータ装置によって作動させること;
該1つ又は複数のセンサを介して信号データを受信すること;
該1つ又は複数のコンピュータ装置によって、少なくともユーザの臨床データ及びユーザのデモグラフィックデータを含むユーザプロフィールに基づいて該非侵襲的診断検査の予測値を得ること;
該1つ又は複数のコンピュータ装置によって、該予測値及び該受信した信号データに基づいて検査結果を決定すること;並びに
該1つ又は複数のコンピュータ装置によって、該検査結果をディスプレイ又はスピーカーを介して出力することを含む、コンピュータ実施方法であって、
該1つ又は複数のコンピュータ装置は、該受信した信号データに基づいて該ユーザの該非侵襲的診断検査に関する情報を該ユーザに提供するためのウェアラブル診断装置を含み、かつ
該1つ又は複数のセンサは、該ユーザの心臓電位波形を検出するように構成された1対の取り外し可能な第1及び第2心電極を含み、該第1心電極は該ウェアラブル診断装置の外側ベルト層に配設され、該第2心電極は、該ユーザの皮膚に直接接触するように、該ウェアラブル診断装置の背面カバーに配設される、前記コンピュータ実施方法。 receiving, by one or more sensors, an input corresponding to a request to initiate a non-invasive diagnostic test to detect a medical condition of a user;
identifying, by one or more computing devices, the one or more sensors for conducting the non-invasive diagnostic test;
activating, by the one or more computing devices, the identified one or more sensors based on the non-invasive diagnostic test;
receiving signal data via the one or more sensors;
obtaining, by the one or more computing devices, a predictive value of the non-invasive diagnostic test based on a user profile including at least the user's clinical data and the user's demographic data ;
determining, by the one or more computing devices, a test result based on the predicted value and the received signal data; and outputting, by the one or more computing devices, the test result via a display or speaker,
the one or more computer devices include a wearable diagnostic device for providing the user with information regarding the non-invasive diagnostic test of the user based on the received signal data ; and the one or more sensors include a pair of removable first and second cardiac electrodes configured to detect the user's cardiac potential waveform , the first cardiac electrode being disposed on an outer belt layer of the wearable diagnostic device and the second cardiac electrode being disposed on a back cover of the wearable diagnostic device so as to directly contact the user's skin.
前記受信した信号データから得た生データに基づいて経路を選択すること;並びに
該選択された経路に基づいて決定された値のセットを得ることをさらに含み、
前記予測値及び該受信した信号データに基づいて検査結果を決定することが、該決定された値に基づいて該検査結果を決定することを含む、請求項10記載のコンピュータ実施方法。 The computer-implemented method further comprising:
selecting a path based on raw data derived from the received signal data; and obtaining a set of determined values based on the selected path.
11. The computer-implemented method of claim 10, wherein determining a test result based on the predicted value and the received signal data comprises determining the test result based on the determined value.
前記ユーザの臨床データ及び前記ユーザのデモグラフィックデータを1つ又は複数のデータベースから得ること;
該得られた前記ユーザの臨床データ及び前記ユーザのデモグラフィックデータに基づいて臨床データセットの範囲を決定すること;並びに
該臨床データセットの範囲を前記非侵襲的診断検査の予測値にマッピングすることをさらに含む、請求項10記載のコンピュータ実施方法。 The computer-implemented method comprising:
obtaining said user clinical data and said user demographic data from one or more databases;
11. The computer-implemented method of claim 10, further comprising: determining a range of a clinical dataset based on the obtained clinical data of the user and the demographic data of the user; and mapping the range of the clinical dataset to a predictive value of the non-invasive diagnostic test.
行われるべき第2の非侵襲的診断検査を、(i)該第2の非侵襲的診断検査を前記非侵襲的診断検査に関連付けるユーザパターン、及び(ii)該ユーザの病歴に基づいて決定すること;
該第2の非侵襲的診断検査に基づいて1つ又は複数のセンサの第2のセットを作動させること;
該1つ又は複数のセンサの第2のセットを介して第2の信号データを受信すること;
前記ユーザプロフィールに基づいて、該第2の非侵襲的診断検査の第2の予測値を得ること;並びに
該第2の予測値及び該受信した第2の信号データに基づいて第2の検査結果を決定することをさらに含む、請求項10記載のコンピュータ実施方法。 The computer-implemented method further comprising:
determining a second non-invasive diagnostic test to be performed based on (i) a user pattern relating the second non-invasive diagnostic test to the non-invasive diagnostic test, and (ii) a medical history of the user;
activating a second set of one or more sensors based on the second non-invasive diagnostic test;
receiving second signal data via a second set of the one or more sensors;
11. The computer-implemented method of claim 10, further comprising: obtaining a second predicted value for the second non-invasive diagnostic test based on the user profile; and determining a second test result based on the second predicted value and the received second signal data.
該動作が、
該ウェアラブル診断時計のユーザの少なくとも臨床データ及びデモグラフィックデータを含むユーザプロフィールに基づいてグルコース検査及びコレステロール検査を選択すること;
該グルコース検査及び該コレステロール検査を行うための1つ又は複数のセンサを特定すること;
該特定された1つ又は複数のセンサを作動させること;
該1つ又は複数のセンサを介して信号データを受信すること;
該ユーザプロフィールに基づいて該グルコース検査の第1の予測値を得ること;
該第1の予測値及び該受信した信号データに基づいてグルコース検査結果及びコレステロール検査結果を決定すること;並びに
該グルコース検査結果及び該コレステロール検査結果を、該ウェアラブル診断時計のディスプレイ又はスピーカーを介して出力すること、
を含み、
該1つ又は複数のセンサは、該ユーザの心臓電位波形を検出するように構成された1対の取り外し可能な第1及び第2心電極を含み、該第1心電極は該ウェアラブル診断時計の外側ベルト層に配設され、該第2心電極は、該ユーザの皮膚に直接接触するように、該ウェアラブル診断時計の背面カバーに配設される、前記装置。 1. An apparatus comprising: a wearable diagnostic watch; and one or more storage devices storing instructions for causing the wearable diagnostic watch to perform the following operations:
The operation is
selecting a glucose test and a cholesterol test based on a user profile including at least clinical and demographic data of a user of the wearable diagnostic watch ;
identifying one or more sensors for performing the glucose test and the cholesterol test;
activating the identified sensor or sensors;
receiving signal data via the one or more sensors;
obtaining a first predicted value of the glucose test based on the user profile;
determining a glucose test result and a cholesterol test result based on the first predicted value and the received signal data; and outputting the glucose test result and the cholesterol test result via a display or a speaker of the wearable diagnostic watch.
Including ,
The device, wherein the one or more sensors include a pair of removable first and second cardiac electrodes configured to detect the user's cardiac potential waveform , the first cardiac electrode being disposed on an outer belt layer of the wearable diagnostic watch and the second cardiac electrode being disposed on a back cover of the wearable diagnostic watch so as to be in direct contact with the user's skin.
前記動作が:
前記受信した信号データから得られた生データに基づいて経路を選択すること;及び
該選択された経路に基づいて決定された値のセットを得ること、をさらに含み;
前記第1の予測値及び前記受信した信号データに基づいてグルコース検査結果を決定することが、該決定された値に基づいて該グルコース検査結果を決定することを含む、請求項19記載の装置。 the one or more sensors include an infrared sensor and a piezoelectric vibration sensor;
The act of:
selecting a path based on raw data derived from the received signal data; and obtaining a set of determined values based on the selected path;
20. The apparatus of claim 19, wherein determining a glucose test result based on the first predicted value and the received signal data comprises determining the glucose test result based on the determined value.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023023240A JP7591595B2 (en) | 2017-12-28 | 2023-02-17 | Wearable Diagnostic Devices |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2020556218A JP7232261B2 (en) | 2017-12-28 | 2017-12-28 | Wearable diagnostic device |
| PCT/US2017/068692 WO2019132915A1 (en) | 2017-12-28 | 2017-12-28 | Wearable diagnostic device |
| JP2023023240A JP7591595B2 (en) | 2017-12-28 | 2023-02-17 | Wearable Diagnostic Devices |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020556218A Division JP7232261B2 (en) | 2017-12-28 | 2017-12-28 | Wearable diagnostic device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2023075115A JP2023075115A (en) | 2023-05-30 |
| JP7591595B2 true JP7591595B2 (en) | 2024-11-28 |
Family
ID=61022443
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020556218A Active JP7232261B2 (en) | 2017-12-28 | 2017-12-28 | Wearable diagnostic device |
| JP2023023240A Active JP7591595B2 (en) | 2017-12-28 | 2023-02-17 | Wearable Diagnostic Devices |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020556218A Active JP7232261B2 (en) | 2017-12-28 | 2017-12-28 | Wearable diagnostic device |
Country Status (7)
| Country | Link |
|---|---|
| JP (2) | JP7232261B2 (en) |
| KR (1) | KR102563533B1 (en) |
| CN (1) | CN111787856B (en) |
| AU (1) | AU2017444934B2 (en) |
| DE (1) | DE112017008334T5 (en) |
| GB (1) | GB2584221B (en) |
| WO (1) | WO2019132915A1 (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12089930B2 (en) | 2018-03-05 | 2024-09-17 | Marquette University | Method and apparatus for non-invasive hemoglobin level prediction |
| US12318341B2 (en) * | 2018-09-11 | 2025-06-03 | Encora, Inc. | Apparatus and method for reduction of neurological movement disorder symptoms using wearable device |
| US12178580B2 (en) | 2019-12-23 | 2024-12-31 | Alimetry Limited | Electrode patch and connection system |
| KR102489418B1 (en) * | 2021-03-22 | 2023-01-19 | 유에프유헬스 주식회사 | Healthcare Data Providing System and Method Using Wearable Device |
| CN115363574A (en) * | 2022-09-07 | 2022-11-22 | 瑞爱生医股份有限公司 | Optical detection system for triglyceride |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014087768A1 (en) | 2012-12-04 | 2014-06-12 | Necシステムテクノロジー株式会社 | Blood-sugar level prediction device, measurement device, blood-sugar level prediction method, and computer-readable storage medium |
| JP2016214641A (en) | 2015-05-22 | 2016-12-22 | セイコーエプソン株式会社 | Biological information measuring device |
| JP2017224281A (en) | 2016-04-21 | 2017-12-21 | ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. | Health tracking device |
Family Cites Families (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE60040483D1 (en) * | 1999-12-28 | 2008-11-20 | Pindi Products Inc | METHOD AND DEVICE FOR NON-INVASIVE ANALYSIS OF BLOOD GLUCOSE |
| JP2001344352A (en) * | 2000-05-31 | 2001-12-14 | Toshiba Corp | Life support apparatus, life support method, and advertisement information providing method |
| JP2002143097A (en) * | 2000-11-10 | 2002-05-21 | Kuniaki Otsuka | System and method for predicting and notifying disease sideration |
| JP4208186B2 (en) * | 2003-08-28 | 2009-01-14 | パナソニック株式会社 | Mobile phone with built-in biosensor |
| WO2005070400A1 (en) * | 2004-01-15 | 2005-08-04 | Mount Sinai School Of Medicine | Methods and compositions for imaging |
| WO2006072011A2 (en) * | 2004-12-30 | 2006-07-06 | Proventys, Inc. | Methods, systems, and computer program products for developing and using predictive models for predicting a plurality of medical outcomes, for evaluating intervention strategies, and for simultaneously validating biomarker causality |
| RU2455925C2 (en) * | 2006-02-27 | 2012-07-20 | БАЙЕР ХЕЛТКЭА ЭлЭлСи | Determination of investigated substance with correction to temperature for systems of biosensors |
| US8500636B2 (en) * | 2006-05-12 | 2013-08-06 | Bao Tran | Health monitoring appliance |
| JP4928849B2 (en) * | 2006-06-27 | 2012-05-09 | 東芝メディカルシステムズ株式会社 | Non-invasive measuring device |
| JP5090013B2 (en) * | 2007-02-23 | 2012-12-05 | 株式会社日立製作所 | Information management system and server |
| JP2009027638A (en) * | 2007-07-23 | 2009-02-05 | Sharp Corp | Biological information analysis system, user terminal device, analysis device, billing device, analysis instruction transmission method, control program, and computer-readable recording medium |
| US8928671B2 (en) * | 2010-11-24 | 2015-01-06 | Fujitsu Limited | Recording and analyzing data on a 3D avatar |
| US20170164878A1 (en) * | 2012-06-14 | 2017-06-15 | Medibotics Llc | Wearable Technology for Non-Invasive Glucose Monitoring |
| US9168419B2 (en) * | 2012-06-22 | 2015-10-27 | Fitbit, Inc. | Use of gyroscopes in personal fitness tracking devices |
| US20140236025A1 (en) * | 2013-02-15 | 2014-08-21 | Michael L. Sheldon | Personal Health Monitoring System |
| JP6105719B2 (en) * | 2013-05-02 | 2017-03-29 | アトナープ株式会社 | Monitor and system for monitoring living body |
| TWM486395U (en) * | 2014-04-22 | 2014-09-21 | Sheng-Rong Huang | Intelligent versatile noninvasive cardiovascular monitoring and diagnostic device |
| US9848825B2 (en) * | 2014-09-29 | 2017-12-26 | Microsoft Technology Licensing, Llc | Wearable sensing band |
| JP2016073483A (en) * | 2014-10-07 | 2016-05-12 | セイコーエプソン株式会社 | Bio-information acquisition device |
| KR102323211B1 (en) * | 2014-11-04 | 2021-11-08 | 삼성전자주식회사 | Mobile health care device and operating method thereof |
| JP2018504162A (en) * | 2014-12-02 | 2018-02-15 | ファイアフライ ヘルス ピーティーワイ リミテッドFirefly Health Pty Ltd | Apparatus and method |
| US20160235370A1 (en) * | 2015-02-11 | 2016-08-18 | Avi Lazar | Systems and method for dlco and hemoglobin measurements |
| US20170055891A1 (en) * | 2015-09-02 | 2017-03-02 | Leila Chaychi | Method, device and system for non-invasive measurement of blood glucose content |
| CN106923807A (en) * | 2015-12-31 | 2017-07-07 | 北京大学深圳研究生院 | Based on the method and system that temperature is corrected to blood pressure measurement |
| CN106153661B (en) * | 2016-06-17 | 2017-11-03 | 东南大学 | A kind of method for the noninvasive magnetic resonance detection of blood pressure and blood lipoid |
-
2017
- 2017-12-28 DE DE112017008334.6T patent/DE112017008334T5/en active Pending
- 2017-12-28 AU AU2017444934A patent/AU2017444934B2/en active Active
- 2017-12-28 JP JP2020556218A patent/JP7232261B2/en active Active
- 2017-12-28 WO PCT/US2017/068692 patent/WO2019132915A1/en not_active Ceased
- 2017-12-28 KR KR1020207021498A patent/KR102563533B1/en active Active
- 2017-12-28 CN CN201780098322.6A patent/CN111787856B/en active Active
- 2017-12-28 GB GB2011660.4A patent/GB2584221B/en active Active
-
2023
- 2023-02-17 JP JP2023023240A patent/JP7591595B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014087768A1 (en) | 2012-12-04 | 2014-06-12 | Necシステムテクノロジー株式会社 | Blood-sugar level prediction device, measurement device, blood-sugar level prediction method, and computer-readable storage medium |
| JP2016214641A (en) | 2015-05-22 | 2016-12-22 | セイコーエプソン株式会社 | Biological information measuring device |
| JP2017224281A (en) | 2016-04-21 | 2017-12-21 | ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. | Health tracking device |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20200113201A (en) | 2020-10-06 |
| GB2584221B (en) | 2022-06-15 |
| JP2021516833A (en) | 2021-07-08 |
| AU2017444934A1 (en) | 2020-08-13 |
| GB2584221A (en) | 2020-11-25 |
| DE112017008334T5 (en) | 2020-09-03 |
| JP7232261B2 (en) | 2023-03-02 |
| KR102563533B1 (en) | 2023-08-07 |
| CN111787856A (en) | 2020-10-16 |
| CN111787856B (en) | 2025-08-12 |
| WO2019132915A1 (en) | 2019-07-04 |
| GB202011660D0 (en) | 2020-09-09 |
| JP2023075115A (en) | 2023-05-30 |
| AU2017444934B2 (en) | 2024-02-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11076805B2 (en) | Wearable diagnostic device | |
| JP7591595B2 (en) | Wearable Diagnostic Devices | |
| US12471786B2 (en) | Methods and systems for arrhythmia tracking and scoring | |
| US20230157617A1 (en) | Wearable Heartbeat and Breathing Waveform Continuous Monitoring System | |
| CN110461224B (en) | Wearable pulse waveform measurement system and method | |
| Al-Aubidy et al. | Real-time patient health monitoring and alarming using wireless-sensor-network | |
| JP2022541647A (en) | Observation device and method | |
| Mena et al. | Mobile personal health care system for noninvasive, pervasive, and continuous blood pressure monitoring: Development and usability study | |
| Sadiq et al. | Wrist-worn devices for remote monitoring of cardiovascular disease: A survey | |
| HK40081207A (en) | Wearable diagnostic device | |
| HK40042063A (en) | Wearable diagnostic device | |
| GB2603316A (en) | Wearable diagnostic device | |
| US20250020748A1 (en) | Non-invasive radio-frequency analyte sensors, systems and methods | |
| Karthikeyan et al. | Smart Health Checkup Portable Device for Monitoring Patients | |
| Rathod | Monitoring SpO2, BPM, and Temperature on Smartband with Data Sending Using IoT Android Display | |
| Mahardika et al. | Monitoring SpO2, BPM, and Temperature on Smartband with Data Sending Using IoT Android Display | |
| Dankovich IV et al. | Cogwatch: An Open-Source Platform to Monitor Physiological Indicators for Cognitive Loading and Stress |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230317 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230317 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240410 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240423 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20240717 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241004 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20241022 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20241118 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7591595 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |