[go: up one dir, main page]

JP7439004B2 - 行動認識装置、学習装置、および行動認識方法 - Google Patents

行動認識装置、学習装置、および行動認識方法 Download PDF

Info

Publication number
JP7439004B2
JP7439004B2 JP2021037260A JP2021037260A JP7439004B2 JP 7439004 B2 JP7439004 B2 JP 7439004B2 JP 2021037260 A JP2021037260 A JP 2021037260A JP 2021037260 A JP2021037260 A JP 2021037260A JP 7439004 B2 JP7439004 B2 JP 7439004B2
Authority
JP
Japan
Prior art keywords
behavior
learning
shape
target
recognition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021037260A
Other languages
English (en)
Other versions
JP2022043974A (ja
Inventor
敦 根尾
由希子 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to EP21183349.6A priority Critical patent/EP3965007A1/en
Priority to US17/369,123 priority patent/US12159487B2/en
Publication of JP2022043974A publication Critical patent/JP2022043974A/ja
Application granted granted Critical
Publication of JP7439004B2 publication Critical patent/JP7439004B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Description

本発明は、行動認識装置、学習装置、および行動認識方法に関する。
本技術分野の背景技術として、特許文献1は、人の動作において、表面筋電位等の生体信号に頼らずにそれが意図したものであるか否かを識別する意図推定装置を開示する。この意図推定装置は、人の動作している位置、および角度の計測方法を用いて動作情報を取得し人の動作を人が実現可能な範囲に制限し、その動作中における人の関節角度と動作している部位の先端位置の位置情報を抽出し多変量解析手法を用い、さらに人の動作が意図するものであるか否かを識別する閾値を用いて、人の動作がその人が意図するものであるか否かを識別することで、表面筋電位等の生体信号に頼らずに、動作が意図したものであるか否かを識別する。
特開2012-101284号公報
人の動作における意図を推定するために上記特許文献1に記載された技術では、行動を意図するものか否かの2値化判断するため、複数種類の複雑な動作の意図を分類することはできず、動作の意図推定の精度を著しく低下させる可能性が生じる。
本発明は、認識対象の複数種類の行動を高精度に認識することを目的とする。
本願において開示される発明の一側面となる行動認識装置は、プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスと、を有する行動認識装置であって、多変量解析で統計的な成分を生成する成分分析により学習対象の形状から得られる成分群と、前記学習対象の行動と、を用いて、成分群ごとに学習された行動分類モデル群にアクセス可能であり、前記プロセッサは、解析対象データから認識対象の形状を検出する検出処理と、前記成分分析により、前記検出処理によって検出された前記認識対象の形状に基づいて、1以上の成分と、前記成分の各々の寄与率と、を生成する成分分析処理と、前記各々の寄与率から得られる累積寄与率に基づいて、前記1以上の各々の次元を示す序数を決定する決定処理と、前記決定処理によって決定された次元を示す序数の成分を1以上含む特定の成分群と同じ成分群で学習された特定の行動分類モデルを、前記行動分類モデル群から選択する選択処理と、前記選択処理によって選択された特定の行動分類モデルに前記特定の成分群を入力することにより、前記認識対象の行動を示す認識結果を出力する行動認識処理と、を実行することを特徴とする。
本願において開示される発明の他の側面となる行動認識装置は、プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスと、を有する行動認識装置であって、多変量解析で統計的な成分を生成する次元削減により学習対象の形状から得られる第1変数からの昇順の成分群と、前記学習対象の行動と、を用いて、成分群ごとに学習された行動分類モデル群にアクセス可能であり、前記プロセッサは、解析対象データから認識対象の形状を検出する検出処理と、前記次元削減により、前記検出処理によって検出された前記認識対象の形状に基づいて、1以上の成分と、前記成分の各々の寄与率と、を生成する次元削減処理と、前記各々の寄与率に基づいて、前記1以上の成分のうち第1変数からの昇順の成分の次元を示す序数を決定する決定処理と、前記第1変数から前記決定処理によって決定された次元を示す序数の成分までの特定の成分群と同じ成分群で学習された特定の行動分類モデルを、前記行動分類モデル群から選択する選択処理と、前記選択処理によって選択された特定の行動分類モデルに前記特定の成分群を入力することにより、前記認識対象の行動を示す認識結果を出力する行動認識処理と、を実行することを特徴とする。
本願において開示される発明の一側面となる学習装置は、プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスと、を有する学習装置であって、前記プロセッサは、学習対象の形状および行動を含む教師データを取得する取得処理と、多変量解析で統計的な成分を生成する成分分析により、前記取得処理によって取得された前記学習対象の形状に基づいて、1以上の成分を生成する成分分析処理と、許容計算量に基づいて、前記1以上の各々の次元を示す序数を制御する制御処理と、前記制御処理によって制御された次元を示す序数の成分を1以上含む成分群と、前記学習対象の行動と、に基づいて、前記学習対象の行動を学習して、前記学習対象の行動を分類する行動分類モデルを生成する行動学習処理と、を実行することを特徴とする。
本願において開示される発明の他の側面となる学習装置は、プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスと、を有する学習装置であって、前記プロセッサは、学習対象の形状および行動を含む教師データを取得する取得処理と、多変量解析で統計的な成分を生成する次元削減により、前記取得処理によって取得された前記学習対象の形状に基づいて、1以上の成分を生成する次元削減処理と、許容計算量に基づいて、前記1以上の成分のうち第1変数からの昇順の成分の次元を示す序数を制御する制御処理と、前記第1変数から前記制御処理によって制御された次元を示す序数の成分までの成分群と、前記学習対象の行動と、に基づいて、前記学習対象の行動を学習して、前記学習対象の行動を分類する行動分類モデルを生成する行動学習処理と、を実行することを特徴とする。
本発明の代表的な実施の形態によれば、認識対象の複数種類の行動を高精度に認識することができる。前述した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。
図1は、実施例1にかかる行動認識システムのシステム構成例を示す説明図である。 図2は、コンピュータのハードウェア構成例を示すブロック図である。 図3は、学習データの一例を示す説明図である。 図4は、実施例1にかかる行動認識システムの機能的構成例を示すブロック図である。 図5は、骨格情報処理部の詳細な機能的構成例を示すブロック図である。 図6は、関節角度算出部が実行する関節角度の詳細な算出方法を示す説明図である。 図7は、移動量算出部が実行するフレーム間の移動量の詳細な算出方法の例を示す説明図である。 図8は、正規化部が実行する骨格情報の正規化の詳細な手法を示す説明図である。 図9は、教師信号DBが保持する教師信号の詳細な例を示す説明図である。 図10は、教師信号を入力データとして主成分分析部が生成した主成分を、主成分空間上にプロットした例を示す説明図である。 図11は、行動学習部が行動を学習し、行動認識部が行動を分類するための詳細な手法を示す説明図である。 図12は、次元数決定部が次元数決定の際に用いる累積寄与率の推移を示すグラフである。 図13は、実施例1にかかるサーバ(学習装置)による学習処理の詳細な処理手順例を示すフローチャートである。 図14は、実施例1にかかる骨格情報処理の詳細な処理手順例を示すフローチャートである。 図15は、実施例1にかかるクライアント(行動認識装置)による行動認識処理手順例を示すフローチャートである。 図16は、実施例2にかかる行動認識システムの機能的構成例を示すブロック図である。 図17は、実施例2にかかるサーバ(学習装置)による学習処理の詳細な処理手順例を示すフローチャートである。 図18は、実施例2にかかるクライアント(行動認識装置)による行動認識処理手順例を示すフローチャートである。 図19は、実施例4にかかる骨格情報処理部の機能的構成例を示すブロック図である。 図20は、実施例4にかかる骨格情報処理部の詳細な処理手順例を示すフローチャートである。 図21は、実施例5にかかる行動認識システムの機能的構成例を示すブロック図である。 図22は、実施例6にかかる行動認識システムの機能的構成例を示すブロック図である。 図23は、行動学習部および行動認識部が行動を分類するための基礎となる手法である決定木を示す説明図である。 図24は、決定木による分類の詳細な展開方法を示す説明図である。 図25は、アンサンブル学習と、行動学習部と行動認識部が行動を分類するために用いる手法を示す説明図である。 図26は、実施例7にかかる行動認識システムの機能的構成例を示すブロック図である。 図27は、実施例7にかかるサーバ(学習装置)による学習処理の詳細な処理手順例を示すフローチャートである。
以下、本発明に係る実施の形態を図面に基づいて説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。
本明細書等における「第1」、「第2」、「第3」などの表記は、構成要素を識別するために付するものであり、必ずしも、数、順序、もしくはその内容を限定するものではない。また、構成要素の識別のための番号は文脈毎に用いられ、一つの文脈で用いた番号が、他の文脈で必ずしも同一の構成を示すとは限らない。また、ある番号で識別された構成要素が、他の番号で識別された構成要素の機能を兼ねることを妨げるものではない。
図面等において示す各構成の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面等に開示された位置、大きさ、形状、範囲などに限定されない。
<行動認識システム>
図1は、実施例1にかかる行動認識システムのシステム構成例を示す説明図である。行動認識システム100は、サーバ101と、1台以上のクライアント102と、を有する。サーバとクライアントとは、インターネット、LAN(Local Area Network)、WAN(Wide Area Network)などのネットワーク105を介して通信可能に接続される。サーバ101は、クライアント102を管理するコンピュータである。クライアント102は、センサ103に接続され、センサ103からのデータを取得するコンピュータである。
センサ103は、解析環境から解析対象データを検出する。センサ103は、たとえば、静止画または動画を撮像するカメラである。また、センサ103は、音声や匂いを検出してもよい。教師信号DB104は、学習データ(人の骨格情報および関節角度)と行動情報(たとえば、「立つ」、「倒れる」といった人の姿勢や動作)との組み合わせを教師信号として保持するデータベースである。教師信号DB104は、サーバ101に記憶されていてもよく、サーバ101またはクライアント102とネットワーク105を介して通信可能なコンピュータに接続されていてもよい。
行動認識システム100は、教師信号DB104を用いた学習機能と、学習機能により得られた行動分類モデルを用いた行動認識機能と、を有する。行動分類モデルとは、人や動物などの認識対象の行動を分類するための学習モデルである。学習機能および行動認識機能は、行動認識システム100に実装されていれば、サーバ101およびクライアント102のいずれに実装されていてもよい。たとえば、サーバ101が学習機能を実装し、クライアント102が行動認識機能を実装してもよい。また、サーバ101が学習機能および行動認識機能を実装し、クライアント102は、センサ103からのデータをサーバ101に送信したり、サーバ101からの行動認識機能による行動認識結果を受け付けたりしてもよい。
また、クライアント102が学習機能および行動認識機能を実装し、サーバ101は、クライアント102からの行動分類モデルや行動認識結果を管理してもよい。なお、学習機能を実装するコンピュータを学習装置と称し、学習機能および行動認識機能のうち少なくとも行動認識機能を実装するコンピュータを行動認識装置と称す。また、図1では、クライアントサーバ型の行動認識システム100を例に挙げたが、スタンドアロン型の行動認識装置でもよい。実施例1では、説明の便宜上、サーバ101が学習機能を実装し(学習装置)、クライアント102が行動認識機能を実装した(行動認識装置)行動認識システム100を例に挙げて説明する。
<コンピュータのハードウェア構成例>
図2は、コンピュータ(サーバ101、クライアント102)のハードウェア構成例を示すブロック図である。コンピュータ200は、プロセッサ201と、記憶デバイス202と、入力デバイス203と、出力デバイス204と、通信インターフェース(通信IF)205と、を有する。プロセッサ201、記憶デバイス202、入力デバイス203、出力デバイス204、および通信IF205は、バス206により接続される。プロセッサ201は、コンピュータ200を制御する。記憶デバイス202は、プロセッサ201の作業エリアとなる。また、記憶デバイス202は、各種プログラムやデータを記憶する非一時的なまたは一時的な記録媒体である。記憶デバイス202としては、たとえば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリがある。入力デバイス203は、データを入力する。入力デバイス203としては、たとえば、キーボード、マウス、タッチパネル、テンキー、スキャナがある。出力デバイス204は、データを出力する。出力デバイス204としては、たとえば、ディスプレイ、プリンタ、スピーカがある。通信IF205は、ネットワーク105と接続し、データを送受信する。
<学習データ>
図3は、学習データの一例を示す説明図である。学習データ380は、対象者ごとに骨格情報320と、関節角度370と、により構成される。骨格情報320は、センサ103から取得した解析対象データを基に検出される。関節角度370は、骨格情報320を基に算出される。対象者一人分の学習データ380は、たとえば、その対象者が被写体となる複数の時系列なフレームの各々から得られる骨格情報320および関節角度370の組み合わせにより構成される。
骨格情報320は、複数(本例では18個)の骨格点300~317の各々について、名前321と、X軸におけるx座標値322と、X軸に直交するy軸におけるy座標値323と、を有する。関節角度370も、複数(本例では18個)の骨格点300~317の各々について、名前371を有する。なお、名前371において、∠a-b-c(a,b,cは骨格点の名前321)は、線分abと線分bcとのなす骨格点bの関節角度370である。なお、骨格情報320は、たとえば、指の関節を含んでもよい。また、関節角度370も、これら以外の関節角度370を含んでもよい。
なお、図3では、骨格点300~317の座標値を2次元の位置情報(x座標値およびy座標値の組み合わせ)としたが、3次元の位置情報としてもよい。具体的には、たとえば、X軸およびy軸に直交するz軸(たとえば、奥行き方向)におけるz座標値が追加されてもよい。
<行動認識システム100の機能的構成例>
図4は、実施例1にかかる行動認識システム100の機能的構成例を示すブロック図である。サーバ101は、教師信号取得部401と、欠損情報制御部402と、骨格情報処理部403と、主成分分析部404と、次元数制御部405と、行動学習部406と、を有する。クライアント102は、骨格検出部451と、欠損情報判断部452と、骨格情報処理部453と、主成分分析部454と、次元数決定部455と、行動分類モデル選択部456と、行動認識部457と、を有する。
これらは、具体的には、たとえば、図2に示した記憶デバイス202に記憶されたプログラムをプロセッサ201に実行させることにより実現される。まず、サーバ101側の機能的構成例について説明する。
教師信号取得部401は、教師信号DB104から取得した教師信号について学習に用いる教師信号を単数、または複数取得して、選択した教師信号を欠損情報制御部402に出力する。
欠損情報制御部402は、教師信号取得部401から取得した教師信号の内、骨格情報320に対して任意の骨格点を欠損させる。欠損させる骨格点は単数でも複数でも0でもよい。欠損情報制御部402は、欠損後(欠損させる骨格点が0個の場合も含む)の骨格情報320を教師信号内の骨格情報320として更新する。またノイズ耐性を強くするため、情報を欠損させる際に骨格情報320に対して骨格点位置をずらすようなノイズを加えて、骨格情報320を更新してもよい。
そして、欠損情報制御部402は、欠損させた骨格点の名前321および位置情報(x座標値322、y座標値323)である欠損情報を含む教師信号を、骨格情報処理部120に出力する。また、欠損情報制御部402は、欠損情報を骨格情報処理部403と主成分分析部404と次元数制御部405を介して行動学習部406に出力する。
骨格情報処理部403は、更新後の骨格情報320を処理する。具体的には、たとえば、骨格情報処理部403は、取得した更新後の教師信号の内、骨格情報320から関節角度370とフレーム間の移動量とを算出する。また、骨格情報処理部403は、骨格情報320に対して絶対的な位置情報を除外し、骨格情報320の大きさが一定となる正規化を実行する。そして、骨格情報処理部403は、関節角度370と、フレーム間の移動量と、正規化した骨格情報320と、を主成分分析部404に出力する。
図5は、骨格情報処理部403,453の詳細な機能的構成例を示すブロック図である。骨格情報処理部403,453は、関節角度算出部501と、移動量算出部502と、正規化部503と、を有する。
関節角度算出部501は、取得した教師信号の内、骨格情報320から関節角度370を算出し、移動量算出部502と正規化部503を介して主成分分析部404に出力する。
移動量算出部502は、取得した教師信号の内、骨格情報320からフレーム間の移動量を算出し、正規化部503を介して主成分分析部404に出力する。
正規化部503は、取得した教師信号の内、骨格情報320に対して絶対的な位置情報を除外し、骨格情報320の大きさが一定となる正規化を実行して主成分分析部404に出力する。
図4に戻り、主成分分析部404は、骨格情報処理部403から取得した教師信号の内、正規化した骨格情報320と、関節角度370と、フレーム間の移動量と、を入力データとして、主成分分析を実行して単数または複数の主成分を生成し、次元数制御部405に出力する。なお、骨格情報320、関節角度370、およびフレーム間の移動量のうち、少なくとも骨格情報320が入力データであればよい。
主成分分析では下記式(1)に示す通り、入力データxに係数wijを各々乗算し、加算することで主成分yを生成する。主成分分析の一般式を下記式(2)に示す。係数wijは、下記式(3)に示す通り、yの分散をV(y)として定義した場合、分散V(y)が最大となるように定める。
ただし、係数wijに制約を持たせない場合、分散V(y)の絶対量は無限に大きく取ることができ、係数wijは一意に決定することができないため、下記式(4)の制約を付すことが望ましい。また、情報の重複を無くすため、新たに生成する主成分yとこれまでに生成した主成分yの共分散は0となる下記式(5)の制約を付すことが望ましい。
Figure 0007439004000001
ただし、制約として付す上記式(4)と上記式(5)は、これに限らず別の制約条件を付したり、または制約を外したりして係数wijを算出しても問題ない。こうして生成した新たな主成分yの分散V(yj)について下記式(6)に示す通りλとして別途定義した場合、下記式(7)に示す通り入力データxの分散V(x)の合計とλの合計は等しい。
Figure 0007439004000002
ここでpは入力データxの数とする。新たに生成した主成分yの分散V(y)は高い方が元の情報をより多く反映しており、分散値が高い主成分から順に第1、第2、…、第m主成分という。新たに生成した変数yの分散と元のデータの分散の比を寄与率といい、下記式(8)で示される。また、第1主成分の寄与率から分散値の降順(主成分の序数mの昇順)に寄与率を加算した結果を累積寄与率といい、下記式(9)で示される。
Figure 0007439004000003
寄与率と累積寄与率は、新たに生成した主成分yや生成した複数の主成分が元のデータの情報量をどの程度表しているかといった尺度となり、主成分と共に生成される。なお、多変量解析で統計的な成分を生成する成分分析の一例として、主成分分析を適用したが、主成分分析の替わりに、同じく成分分析の一例である独立成分分析を実行してもよい。
独立成分分析の場合、主成分は独立成分となる。この独立成分が入力データxiにどのくらい影響を与えているのかを示す指標として、寄与率を用いてもよい。独立成分分析では、独立成分ごとの独立成分分析における混合係数行列の2乗和が、各独立成分の強度となる。
独立成分の強度は独立成分の入力データxにおける分散を示す。すなわち、独立成分分析によって得られた独立成分はいずれも分散が1に統一されるため、混合係数の2乗和をとれば入力データxの分散になる。そして、独立成分の強度を、全独立成分の強度の総和で割った値を、その独立変数の寄与率とすればよい。
次元数制御部405は、1以上の成分の各々の次元を示す序数kを制御する。具体的には、たとえば、次元数制御部405は、取得した主成分の内、行動学習部406で学習に用いる主成分を分散値の高い順に何次元まで使用するかを決定し、第1主成分から、決定した次元k(kは1以上の整数)を序数とする第k主成分までの主成分を、分散値の高い順に行動学習部406に出力する。
行動学習部406は、次元数制御部405から取得した主成分と、教師信号DB104から取得した教師信号内の行動情報とを、関連付けて学習する。具体的には、たとえば、行動学習部406は、次元数制御部405から取得した第1主成分から第k主成分までの主成分群を入力データとし、教師信号DB104から取得した教師信号内の行動情報を出力データとして、機械学習により、行動分類モデルを生成する。行動学習部406は、学習の結果生成した行動分類モデルを、欠損情報制御部402から取得した欠損情報と関連付けて、行動分類モデル選択部456に出力する。
つぎに、クライアント102側の機能的構成例について説明する。骨格検出部451は、センサ103から取得した解析対象データに映る人の骨格情報320を検出し、欠損情報判断部452に出力する。骨格情報320の検出には機械学習により生成した人の骨格情報320を推定可能なNN(neural network)を用いてもよいし、検出したい人の骨格点にマーカーを付与して、画像に映るマーカー位置から骨格情報320を検出してもよく、骨格情報320を検出する方法は限定されない。
欠損情報判断部452は、骨格検出部451で検出した骨格情報320の内、オクルージョンなどにより取得できない骨格点があるか否かを判断し、取得できなかった骨格点があれば、その位置情報を欠損情報とし、骨格検出部451で検出した骨格情報320を骨格情報処理部453に出力する。また、欠損情報判断部452は、欠損情報を骨格情報処理部453と主成分分析部454と次元数決定部455を介して行動分類モデル選択部456に出力する。
骨格情報処理部453は、骨格情報処理部403と同様の機能を有する。骨格情報処理部453は、骨格検出部451で検出した骨格情報320に対して骨格情報処理部403と同様の処理を実行して、関節角度370と、フレーム間の移動量と、正規化した骨格情報320と、を主成分分析部454に出力する。
主成分分析部454は、主成分分析部404と同様の機能を有する。主成分分析部454は、骨格情報処理部453からの出力データに対して主成分分析部404と同様の処理を実行して、単数または複数の主成分を生成する。また、主成分分析部454は、主成分と共に生成した寄与率と累積寄与率とを次元数決定部455に出力する。
次元数決定部455は、各々の寄与率から得られる累積寄与率に基づいて、1以上の成分の各々の次元を示す序数kを決定する。具体的には、たとえば、次元数決定部455は、取得した寄与率および累積寄与率から、取得した主成分の内、分散の高い順に何次元までの主成分を行動分類モデル選択部456に出力するかを示す次元数kを決定する。次元数kとは、主成分の次元を示す序数kである。たとえば、第1主成分であれば、次元数(序数)k=1であり、第2主成分であれば、次元数(序数)k=2である。次元数決定部455は、分散の高い順に第1主成分から第k主成分までの主成分群を行動分類モデル選択部456に出力する。
行動分類モデル選択部456は、欠損情報制御部402が生成する欠損情報に関連付けられた行動分類モデルの内、欠損情報判断部452から取得した欠損情報と同じ欠損情報が関連付けられ、かつ、次元数決定部455が決定した第k次元までの主成分群(第1主成分~第k主成分)で行動学習を行った行動分類モデルを選択する。行動分類モデル選択部456は、第1主成分から第k主成分までの主成分群と共に選択した行動分類モデルを行動認識部457に出力する。
特に2次元画像においては、定義したすべての骨格点をオクルージョンなどにより取得できない可能性があり、取得できなかった一部の骨格点が欠損した骨格情報320が骨格検出部451で生成される可能性がある。この一部の骨格点が欠損した骨格情報320について行動認識を行う場合、クライアント102は、骨格検出部451で検出された欠損した骨格情報320の欠損情報に関連付けられた行動学習モデルを用いて行動認識を行う。これにより、一部の骨格点が欠損した骨格情報320についても高精度な行動認識が実現される。
なお、行動学習部406から取得した欠損情報制御部402が生成する欠損情報に関連付けられた行動分類モデルの内、欠損情報判断部452から取得した欠損情報と同じ欠損情報が関連付けられ、且つ次元数決定部455が決定した主成分の次元を示す序数kと同一の主成分(第1主成分~第k主成分)で行動学習を行った行動分類モデルが生成されていない場合も想定される。
この場合、行動分類モデル選択部456は、この条件に最も近い行動分類モデル(たとえば、欠損した骨格点の位置情報と所定距離以内の欠損情報が関連付けられた行動分類モデル、第1主成分~第(k-1)主成分で行動学習を行った行動分類モデルなど)を選択してもよい。
行動認識部457は、選択した行動分類モデルと第1主成分から第k主成分までの主成分群とに基づいて、センサ103から取得した解析対象データに映る人の行動を認識する。具体的には、たとえば、行動認識部457は、解析対象データから得らえた主成分群(第1主成分~第k主成分)を、選択した行動分類モデルに入力することにより、解析対象データに映る人の行動を示す予測値を認識結果として出力する。
<関節角度算出の例>
図6は、関節角度算出部501が実行する関節角度370の詳細な算出方法を示す説明図である。関節角度算出部501は、連結する3点の骨格点600~602において関節角度θを算出する。骨格点600~602の骨格情報620について、原点630を基準とする位置ベクトルO、A、Bのように各々定義する。関節角度算出部501は、骨格点600を原点とする相対ベクトルを下記式(10),(11)に示す通り算出し、算出したベクトルから下記式(12)が成立し、下記式(13)に示す通り逆余弦を算出することで関節角度θを算出する。
Figure 0007439004000004
<フレーム間の移動量算出の例>
図7は、移動量算出部502が実行するフレーム間の移動量の詳細な算出方法の例を示す説明図である。移動量算出部502は、フレーム間の移動量の算出において、同一被写体についての第Nフレーム目の骨格情報701と第N-Mフレーム目の骨格情報702とを用いる。N、Mは1以上の整数であり、N>Mである。Mの値は任意に設定可能である。下記式(14)~(16)に示す通り、移動量算出部502は、各フレーム間で示される同一人物の同一骨格点300~317の距離を各々算出する。18個の骨格点300~317のフレーム間の移動量が、当該人物についてのフレーム間の移動量となる。
Figure 0007439004000005
ただ、移動量算出部502が実行するフレーム間の移動量はこれに限定されるものではなく、下記式(17)に示す通り、移動量算出部502は、各フレーム間で示される同一人物の同一骨格点300~317の距離を各々算出し、全18個の骨格点300~317のフレーム間の移動量を合算した値を、当該人物についてのフレーム間の移動量としてもよい。
Figure 0007439004000006
また、移動量算出部502は、第nフレームの骨格情報701と第n-mフレームの骨格情報702の内、重心となる重心骨格情報711と重心骨格情報712を用いてもよい。具体的には、たとえば、移動量算出部502は、下記式(18)~(19)に示す通り、人物ごとに重心を算出し、下記式(20)に示す通り、算出した重心に対して、当該人物についてのフレーム間の移動量を算出してもよい。
Figure 0007439004000007
<正規化の例>
図8は、正規化部503が実行する骨格情報320の正規化の詳細な手法を示す説明図である。まず、正規化部503は、(a)すべてまたは一部の骨格情報320から重心を算出し、(b)重心を原点とする相対座標に変換する。その後、正規化部503は、(c)18個の骨格点300~317を囲う最小の長方形の対角線の長さLで、(d)骨格情報320の各骨格点の位置情報を割る。(d)で得られた骨格情報320を教師信号とした場合、割り算後の骨格点300~317の位置情報も組み込まれることとなる。
たとえば、正規化部503が実行されないと「180cmの人が地点Aで座る」といった行動について骨格検出および行動分類のための学習が実行されると、「地点A以外では座らない」、「180cm以外の人は座らない」といった判定が下される可能性がある。こうした限定を除外し、行動分類に汎用性を持たせるため、画像内の絶対的な位置情報と、骨格の大きさに関する情報について除去するため、正規化部503が骨格情報320の正規化を実行する。
<教師信号DB104が保持する教師信号>
図9は、教師信号DB104が保持する教師信号の詳細な例を示す説明図である。解析対象データとなる(a)画像900に映る人において、(b)骨格情報320Aと、関節角度370(不図示)と、骨格情報320Aに関連付けられる(c)行動情報901(「立つ」)と、の組み合わせが、教師信号となる。同様に、解析対象データとなる(a)画像910に映る人において、(b)骨格情報320Bと、関節角度370(不図示)と、骨格情報320Bに関連付けられる(c)行動情報911(「倒れる」)と、の組み合わせが、教師信号となる。
<次元数制御部405による次元数制御と行動学習部406による行動学習>
図10は、教師信号を入力データとして主成分分析部404が生成した主成分を、主成分空間上にプロットした例を示す説明図である。凡例は教師信号に含まれる行動情報1000~1004を示す。
図10において、(a)はX軸に第1主成分を、Y軸に第2主成分をとり、第2主成分までの情報を2次元平面上にプロットした例を示す。(b)はX軸に第1主成分を、Y軸に第2主成分をとり、Z軸に第3主成分をとり、第3主成分までの情報を3次元空間上にプロットした例を示す。
(a)において、立つ1000と、座る1001と、倒れる1004は、第2主成分までの2次元平面上でも分離可能な様子が伺えるが、歩く1002と、しゃがむ1003は第2主成分までの2次元平面上では分離困難な様子が伺える。ここで、(b)において、第3主成分までを含めた3次元空間上で、歩く1002としゃがむ1003をプロットした場合、分離の可能性が拡大する場合がある。
このため、主成分分析部404が生成した主成分を多く用いれば高精度な行動分類の可能性がある。ただし、主成分の次元を示す序数kを多くすると計算量は増加するため、精度と計算量からどこまでの主成分を考慮し、どのくらいの次元の空間で行動を表すかを判断する必要がある。
したがって、次元数制御部405は、行動学習部406で学習に用いる主成分の最大序数を変化させ、第1主成分~最大序数の主成分までの主成分群を行動学習部406に出力する。具体的には、たとえば、上述した行動分類の要求精度(たとえば、最低限必要な主成分の次元を示す序数)または/および許容計算量をあらかじめ設定しておき、次元数制御部405が、行動学習部406で学習に用いる主成分の最大序数を変化させ、要求精度または/および許容計算量を最大限充足する序数を決定する。
たとえば、要求精度が次元を示す序数「3」(第3主成分)という条件の場合、次元数制御部405は、最大序数を「3」に決定し、第1主成分~第3主成分までの主成分群を行動学習部406に出力する。
また、許容計算量が条件に設定されている場合、次元数制御部405は、第1主成分から昇順に計算量を順次取得し、最大序数を、許容計算量をはじめて超えたときの序数(たとえば、「5」)より1つ少ない序数(たとえば、「4」)に決定し、第1主成分から最大序数k=4の第4主成分までの主成分群を行動学習部406に出力する。
また、要求精度が次元を示す序数「3」(第3主成分)以上という条件で、かつ、許容計算量が条件に設定されている場合、第3主成分までの累積計算量が許容計算量以下であれば、次元数制御部405は、最大序数を「3」から「4」に変化させる。そして、第4主成分までの累積計算量が許容計算量を超えれば、次元数制御部405は、最大序数kを「3」に決定し、第1主成分~第3主成分までの主成分群を行動学習部406に出力する。
一方、第3主成分までの累積計算量が許容計算量を超えれば、次元数制御部405は、最大序数を「3」から「2」に変化させる。そして、第2主成分までの累積計算量が許容計算量以下であれば、次元数制御部405は、最大序数kを「2」に決定し、第1主成分~第2主成分までの主成分群を行動学習部406に出力する。
なお、行動学習部406に出力する主成分群は、第1主成分から昇順に限定する必要はない。たとえば、次元数制御部405は、予め定めた主成分群を特定の数だけ取り出してもよい。また、次元数制御部405は、特定の主成分群を除外した上で行動学習部406に出力する主成分群を決定してもよい。このように、行動学習部406に出力する主成分群は第1主成分から昇順の主成分群に限定されない。
また、この場合においても、許容計算量が条件に設定されている場合、次元数制御部405は、上述した第1主成分からの昇順に限定していない主成分群について、序数の昇順に計算量を順次取得し、許容計算量をはじめて超えたときの序数より1つ前の序数までの主成分群を行動学習部406に出力する。たとえば、主成分群が第2主成分、第3主成分、第5主成分からなる場合、第2主成分では許容計算量を超えず、第2主成分および第3主成分でも許容計算量を超えず、第2主成分、第3主成分、および第5主成分ではじめて許容計算量を超えた場合、次元数制御部405は、第2主成分から第5主成分の1つ前の第3主成分までを、行動学習部406に出力する主成分群に決定してもよい。
行動学習部406は、予め複数の条件での行動学習を行い、行動分類モデルを生成し、行動分類モデル選択部456に出力する。こうして生成した複数の行動分類モデルから状況に合わせて行動分類モデルを選択することで、汎用的で高精度な行動認識を実現する。
図11は、行動学習部406が行動を学習し、行動認識部457が行動を分類するための詳細な手法を示す説明図である。主成分空間上での各行動について、行動学習部406は、(a)境界線1101や(b)境界平面1102を用いて、各行動を領域毎に分類する。行動を学習し分類する際の手法は、k平均法や、サポートベクトルマシン、決定木や、ランダムフォレストなどいずれを採用してもよく、行動学習方法は限定されない。
行動学習部406が学習して生成した行動分類モデルを用いて、行動認識部457は行動を認識する。具体的には、たとえば、クライアント102は、新たに入力された骨格情報320について主成分分析を適用し、新たに生成された主成分を行動分類モデルが設定する境界線1101や境界平面1102に従って、どの領域に属するかを判定し、判定された領域に従って行動を認識する。
図12は、次元数決定部455が次元数決定の際に用いる累積寄与率の推移を示すグラフである。累積寄与率は、新たに生成した複数の主成分が元のデータの情報量をどの程度表しているかといったことを示す尺度となる。このため、主成分の数を増やして、行動分類の際の次元数を増やしても、累積寄与率に大きな変化が見られない場合は、大きな精度向上は見込めない。
そこで、次元数決定部455は、予め定めた累積寄与率の閾値を超えるのに必要な数だけ主成分を使用することとし、次元数を決定する。たとえば、予め定めた累積寄与率の閾値を「0.8」とする場合、第2主成分まであれば条件を満たすため、ここでの次元数kは「2」として、第1主成分と第2主成分とを行動分類モデル選択部456に出力する。
なお、行動分類モデル選択部456に出力する主成分群は、第1主成分から昇順に限定する必要はない。たとえば、次元数決定部455は、予め定めた累積寄与率の閾値を超えずかつ累積寄与率が最大となる主成分の序数kの組み合わせを決定してもよい。また、次元数決定部455は、このような主成分の序数kの組み合わせを、行動分類モデルに適用さされる主成分群から選択してもよい。このように、行動分類モデル選択部456に出力する主成分群は第1主成分から昇順の主成分群に限定されない。
<学習処理>
図13は、実施例1にかかるサーバ101(学習装置)による学習処理の詳細な処理手順例を示すフローチャートである。サーバ101は、教師信号取得部401により、教師信号DB104から取得した教師信号について学習に用いる教師信号を単数、または複数取得する(ステップS1300)。
サーバ101は、欠損情報制御部402により、取得した教師信号内の骨格情報320に対して情報を欠損させ、欠損させた骨格情報320を教師信号内の骨格情報320として更新し、欠損させた骨格点の名前321および位置情報(x座標値322,y座標値323)を欠損情報とする(ステップS1301)。欠損情報制御部が実行された教師信号を、更新教師信号と称す。
サーバ101は、骨格情報処理部403により、更新教師信号ごとに骨格情報処理を実行する(ステップS1302)。具体的には、たとえば、サーバ101は、関節角度算出部501、移動量算出部502、および正規化部503による処理を実行する。
図14は、実施例1にかかる骨格情報処理の詳細な処理手順例を示すフローチャートである。サーバ101は、関節角度算出部501により、更新教師信号ごとに、更新教師信号内の骨格情報320から関節角度370を算出する(ステップS1401)。つぎに、サーバ101は、移動量算出部502により、更新教師信号ごとに、更新教師信号内の骨格情報320からフレーム間の移動量を算出する(ステップS1401)。
そして、サーバ101は、正規化部により、更新教師信号ごとに、骨格情報320に対して絶対的な位置情報を除外し、骨格情報320の大きさが一定となる正規化を実行する(ステップS1303)。これにより、更新教師信号について、関節角度370と、フレーム間の移動量と、正規化した骨格情報320と、が得られる。そして、図13のステップS1303に移行する。
図13に戻り、サーバ101は、主成分分析部404により、正規化した骨格情報320と、関節角度370と、フレーム間の移動量と、を入力データとして、主成分分析を実行して、単数または複数の主成分を生成する(ステップS1303)。
つぎに、サーバ101は、次元数制御部405により、生成した主成分の内、学習に用いる主成分を分散値の高い順に何次元使用するか決定し、決定したk次元までの主成分(第1主成分~第k主成分)を分散値の高い順に選択する(ステップS1304)。
そして、サーバ101は、行動学習部により、選択した主成分と、更新教師信号内の行動情報と、に基づいて学習を行い、学習の結果、行動分類モデルを生成し、欠損情報と関連付ける(ステップS1305)。
主成分分析(ステップS1303)では、主成分分析を実行する前の情報と同じ次元数kの主成分を生成することが可能である。このため、ステップS1306では、サーバ101は、次元数制御部405により、ステップS1304で決定した学習に用いる主成分の次元数kについて、これまでに決定していない主成分の次元がある場合は(ステップS1306:No)、ステップS1304に戻り、これまでに決定していない主成分の次元を決定する(ステップS1304)。
一方、決定可能な学習に用いるすべての主成分の次元をこれまでに決定している場合は(ステップS1306:Yes)、ステップS1307に進む。ただ、ステップS1306の処理の判断は、決定可能な学習に用いるすべての主成分の次元の決定の是非で次の処理を判断のみに限定されない。たとえば、繰返し回数を予め定めておき、予め定めた繰返し回数だけステップS1304を繰返していれば、ステップS1307の処理に進むなどの処理としてもよい。
ステップS1307では、ステップS1301で欠損させた骨格情報320について、まだ欠損させていない骨格情報320があれば(ステップS1307:No)、ステップS1301の処理に戻り、サーバ101は、これまでに欠損させていない骨格について欠損させる(ステップS1301)。
一方、すべての骨格情報320について欠損させた場合(ステップS1307:Yes)、ステップS1308の処理に進む。ただステップS1307の処理の判断はこれに限らず、サーバ101は、予め定めた繰返し回数に従ってステップS1301に戻るか、ステップS1308に進むかを判断してもよい。また、欠損させる骨格を予め定めておき、サーバ101は、予め定めた骨格をすべて欠損させたか否かでステップS1301に戻るか、ステップS1308に進むか判断してもよい。
ステップS1308では、ステップS1300で選択した教師信号について、まだ選択していない教師信号があれば(ステップS1308:No)、サーバ101は、これまでに選択していない教師信号を選択する(ステップS1300)。一方、すべての教師信号について選択した場合は(ステップS1308:Yes)、サーバ101は、行動学習の処理を終了する。ただステップS1308の処理の判断はこれに限らず、サーバ101は、予め定めた繰返し回数に従ってステップS1300に戻るか、行動学習の処理を終了するかを判断してもよい。
<行動認識処理>
図15は、実施例1にかかるクライアント102(行動認識装置)による行動認識処理手順例を示すフローチャートである。クライアント102は、骨格検出部451により、センサ103から取得した解析対象データに映る人の骨格情報320を検出する(ステップS1500)。つぎに、クライアント102は、欠損情報判断部452により、検出した骨格情報320の内、オクルージョンなどにより検出できなかった骨格点の位置情報を欠損情報であると判断する(ステップS1501)
つぎに、クライアント102は、骨格情報処理部453により、ステップS1500で検出した骨格情報320について、ステップS1302の処理と同様に、骨格情報処理を実行する(ステップS1502)。具体的には、たとえば、サーバ101は、図14に示したように、関節角度算出部501、移動量算出部502、および正規化部503による処理を実行する。
つぎに、クライアント102は、主成分分析部454により、ステップS1502で正規化した骨格情報320と関節角度370とフレーム間の移動量とを入力データとして、主成分分析を実行して、単数または複数の主成分を生成し、主成分と共に寄与率と累積寄与率も算出する(ステップS1503)。
つぎに、クライアント102は、次元数決定部455により、算出した寄与率および累積寄与率から、生成した主成分の内、分散の高い順にいくつの主成分を使用するかを決定する(ステップS1504)。
つぎに、クライアント102は、行動分類モデル選択部456により、行動学習により生成した行動分類モデルの内、ステップS1501で検出した欠損情報と同じ欠損情報が関連付けられ、且つステップS1504で決定した主成分の次元数と同じ次元数の主成分で行動学習を行った行動分類モデルを選択する(ステップS1505)。
つぎに、クライアント102は、行動認識部457により、ステップS1505で選択した行動分類モデルと主成分とに基づいて、センサ103から取得した解析対象データに映る人の行動を認識する(ステップS1506)。クライアント102は、認識結果をサーバ101に送信してもよく、また、認識結果を用いて、クライアント102に接続されている機器を制御してもよい。
たとえば、センサ103が配備されている解析環境が工場である場合、行動認識システム100は、認識結果を用いて、工場内での作業員の作業監視や、製品の欠陥検査などに適用可能である。解析環境が電車である場合、行動認識システム100は、認識結果を用いて、電車内での乗客の監視や車内設備の監視、火災などの災害検知などに適用可能である。
このように、実施例1によれば、認識対象の複数種類の行動を高精度に認識することができる。特に、オクルージョンになどにより骨格点300~317が一部欠損した場合においても、欠損した骨格点に応じた複数種類の行動を高精度に認識することができる。
実施例2を、実施例1との相違点を中心に説明する。なお、実施例1と共通する点については、同一符号を付し、その説明を省略する。
図16は、実施例2にかかる行動認識システム100の機能的構成例を示すブロック図である。実施例2では、欠損情報制御部402が削除され、欠損情報判断部452が欠損情報補間部1652に変更される。これにより、人の動作している位置の計測について、オクルージョンなどにより一部骨格が計測できずに欠損情報が含まれる場合に、欠損情報補間部1652は、計測可能であった骨格情報320から欠損情報を補間する。
具体的には、たとえば、欠損情報補間部1652は、骨格検出部451から取得した骨格情報320の内、オクルージョンなどにより取得できなかった骨格点の位置情報を欠損情報とし、欠損情報を補間して骨格情報処理部453に出力する。欠損情報補間部1652は、たとえば、取得できた骨格情報320の内、連結される骨格点または欠損情報に近い位置にある骨格点から、欠損情報を補間してもよい。
また、欠損情報補間部1652は、欠損情報に対して予め定めた位置情報を代入してもよい。また、欠損情報補間部1652は、これまでに取得した別のフレームの骨格情報320について欠損情報を含むと判断された骨格情報320の欠損情報を用いて補間してもよい。このように、欠損情報の補間手法は限定されない。
<学習処理>
図17は、実施例2にかかるサーバ101(学習装置)による学習処理の詳細な処理手順例を示すフローチャートである。実施例2では、欠損情報制御(ステップS1301)が実行されず、ステップS1300で選択された教師信号について骨格情報処理(ステップS1302)が実行される。すなわち、実施例2では、骨格点の欠損の有無にかかわらず、骨格情報320を区別することなく、行動学習部406が1つの行動分類モデルを生成する。
<行動認識処理>
図18は、実施例2にかかるクライアント102(行動認識装置)による行動認識処理手順例を示すフローチャートである。実施例2では、欠損情報判断(ステップS1501)が欠損情報補間(ステップS1801)に変更される。クライアント102は、骨格検出(ステップS1500)で検出した骨格情報320の内、オクルージョンなどにより取得できなかった骨格点の位置情報を欠損情報で補間し、補間後の骨格情報320に更新する(ステップS1801)。骨格情報処理(ステップS1502)では、補間後の骨格情報320を含む教師信号が用いられる。
このように、実施例2によれば、オクルージョンなどにより欠損のある骨格情報320を補間することにより、欠損情報ごとに行動分類モデルを生成する必要がない。これにより、学習機能の処理負荷の低減と、行動認識機能の高速化と、を図ることができる。
実施例3は、実施例1と実施例2とを組み合わせた実施例である。具体的には、たとえば、実施例3の行動認識システム100では、ユーザ操作により、実施例1にかかる学習処理および行動認識処理を実行する第1モードと、実施例2にかかる学習処理および行動認識処理を実行する第2モードと、に切替可能である。
このように、実施例3によれば、欠損情報を考慮したければ第1モードを選択することにより、高精度な行動認識結果を得ることができ、欠損を補間したければ第2モードを選択することにより、効率的に行動認識結果を得ることができる。
実施例4を、実施例1~実施例3との相違点を中心に説明する。なお、実施例1~実施例3と共通する点については、同一符号を付し、その説明を省略する。
図19は、実施例4にかかる骨格情報処理部の機能的構成例を示すブロック図である。実施例4では、骨格情報処理部403,453は、相互情報正規化部1904を有する。相互情報正規化部1904は、主成分分析部404に出力する骨格情報320、関節角度370、およびフレーム間の移動量について、値域を一定の範囲内に正規化する。
骨格情報320およびフレーム間の移動量の値域は、解析対象データの解像度に依存する。一方、関節角度370の値域は、0から2π、または0度から360度の範囲となる。主成分分析の実行対象となるデータについて、値域に大きな違いがある場合、元のデータの主成分に対する影響にデータ種毎の偏りが生じる場合がある。
この偏りを無くすため、相互情報正規化部1904は、主成分にかけるデータの値域を一定の範囲内にする正規化を実行する。たとえば、相互情報正規化部1904は、骨格情報320を下記式(21)~(22)に従い、フレーム間移動量を下記式(23)に従って、元のデータの値域を0から2πに統一する。
Figure 0007439004000008
ただし、相互情報正規化部1904が実行する正規化の手法はこれに限らず、相互情報正規化部1904は、たとえば、主成分分析の実行対象となるデータの解像度の大きさに従って、関節角度370の値域を一定に正規化してもよい。
図20は、実施例4にかかる骨格情報処理部の詳細な処理手順例を示すフローチャートである。実施例4では、骨格情報処理(ステップS1302,S1502)において、クライアント102は、正規化(ステップS1403)のあと、相互情報正規化(ステップS2004)を実行する。相互情報正規化(ステップS2004)では、正規化部で正規化された骨格情報320と、関節角度370と、フレーム間の移動量と、について、取りえる値域を一定に正規化する。
このように、実施例4によれば、主成分分析を実行する元のデータ(骨格情報320、関節角度370、フレーム間の移動量)の取り得る値域を一定に統一することで、広い値域を持つ特定のデータによる主成分への影響の偏りを無くし、複数種類の行動を高精度に判別することができる。
実施例5を、実施例1~実施例4との相違点を中心に説明する。なお、実施例1~実施例4と共通する点については、同一符号を付し、その説明を省略する。
図21は、実施例5にかかる行動認識システム100の機能的構成例を示すブロック図である。実施例5では、主成分分析部404と主成分分析部445が、次元削減部2100と次元削減部2101に変更される。次元削減は、元の情報量を可能な限り維持した上で元の変数の数または元の次元の数を削減する処理であり、実施例1~実施例4の主成分分析や独立成分分析といった成分分析を包含する概念である。
次元削減部2100は、骨格情報処理部403から取得した教師信号の内、正規化した骨格情報320と、関節角度370と、フレーム間の移動量と、を入力データとして、次元削減を実行して単数または複数の変数を生成し、次元数制御部405に出力する。
次元削減部2100が行う次元削減の手法としては、SNE(Stochastic Neighbor Embedding)、t-SNE(t-Distributed Stochastic Neighbor Embedding)、UMAP(Uniform Manifold Approximation and Projection)、Isomap、LLE(Locally Linear Embedding)、ラプラシアン固有マップ(Laplacian Eignmap)、LargeVis、および拡散マップのような手法がある。次元削減部2100は、t-SNEやUMAPに主成分分析や独立成分分析を組み合わせて次元削減してもよい。以下、各次元削減の手法と、各手法を組み合わせて行う次元削減の手法を説明する。
SNEの処理を、下記式(24)~(28)を用いて説明する。
Figure 0007439004000009
とxの2つのx座標値322(入力データ)の類似度をxが与えられたときに近傍としてxを選択する条件付確率pj|iとする。条件付確率pj|iを上記式(24)に示す。この時、xはxを中心とした正規分布に基づいて選択されると仮定する。次に、次元削減後のyとyの2つのy座標値323(主成分)の類似度も、次元削減前のxとxの類似度と同様に、上記式(25)に示す条件付き確率qj|iとする。但し、次元削減後の座標値の分散は、式を簡略化するため1/√2で固定される。
次元削減前後での距離関係を維持するように次元削減のyを生成すれば、情報量も可能な限り維持した上で、次元削減することが可能である。情報量の低減を抑制した上で次元削減を行うため、次元削減部2100は、pj|i=qj|iとなるように処理を行う。次元削減には2つの確率分布がどの程度似ているかを表す尺度であるKLダイバージェンスが用いられる。
KLダイバージェンスを損失関数として次元削減前後の確率分布を適応した式を上記式(26)に示す。次元削減部2100は、損失関数である上記式(26)を確率的勾配降下法により最小化する。この勾配は損失関数をyで微分した上記式(27)を用いて、yを変動させる。この変動の際の更新式は上記式(28)で示される。
以上、yを変動させながら上記式(28)を更新させ、上記式(27)が最小となるyを得ることで次元削減を行ない、新たな変数を得る。ただし、SNEの場合、主成分分析と異なり処理の特性上縮約後の次元数(変数)は2または,3種類になる。このため、SNEによる次元削減を実施の際は、予め定めた次元数(変数)を次元数制御部405に出力し、次元数制御部405は前記予め定めた次元数に従って、使用する変数の数を決定すればよい。
ただSNEでは損失関数の最小化が難しく、また次元削減の際に等距離性を保とうとして、x座標値322およびy座標値323で特定される骨格点が密になってしまう問題がある。この問題の解決手法としてt-SNEがある。
t-SNEの処理を下記式(29)~(33)を用いて説明する。
Figure 0007439004000010
損失関数最小化を簡単にするため、損失関数を対称化する。損失関数の対称化処理では、上記式(29)に示す通り、xとxの距離を同時確率分布pijで表す。pj|iは上記式(24)同様で上記式(30)で示せる。また次元削減後のyとyの距離を上記式(31)に示す同時確率分布qijで表す。
次元削減後の点の距離はスチューデントのt分布を仮定している。スチューデントのt分布は、正規分布に比較して、平均値からずれた値の存在確率が高いことが特徴であり、この特徴が次元削減後のデータ間の距離について長い距離の分布も許容することが可能となる。
t-SNEでは、次元削減部2100は、上記式(29)~(31)で求めたpijとqijを用いて、上記式(32)に示す損失関数を最小化することで次元削減を行う。次元削減部2100は、損失関数の最小化にはSNEと同様に上記式(33)に示す確率的勾配降下法を用いる。
以上、上記式(33)が最小となるyを得ることで、次元削減部2100は、次元削減を行ない、新たな変数を得る。t-SNEもSNE同様に処理の特性上縮約後の次元数(変数)は2または3種類になる。このため、t-SNEによる次元削減を実施の際は、予め定めた次元数(変数)を次元数制御部405に出力し、次元数制御部405は前記予め定めた次元数に従って、使用する変数の数を決定すればよい。
t-SNEは、次元削減前の高次元の局所的な構造を保った上で、大局的な構造も可能な限り捉えることから精度よく次元削減可能であるが、次元削減前の次元数に応じて計算時間が増加するといった問題がある。この次元削減の計算時間の問題を解決する手法としてUMAPがある。UMAPの処理を下記式(34)~(36)を用いて説明する。
Figure 0007439004000011
とり得る値の全体Aの中で、高次元の集合X(上記式(34))がある。Aの中から任意のデータを取り出した際に、それが集合Xに含まれる度合いを0から1の範囲で出力するメンバーシップ関数をμとする。上記式(1)に示す入力Xに対して、上記式(2)に示すYを用意する。YはXに比較して低い次元の空間に存在するm(<p)個の点の集合であり、次元削減後のデータの集合である。そしてYのメンバーシップ関数をνとして、次元削減部2100は、上記式(36)が最小となるようなYを定めることで次元削減を行ない、新たな変数を得る。
UMAPによる次元削減を実施の際には、次元削減部2100は、SNEやt-SNE同様に予め定めた次元数(変数)を次元数制御部405に出力してもよいし、または、次元削減後のメンバーシップ関数νが予め定めた値域以上となるような次元数(変数)を必要な次元数として次元制御部405に出力してもよい。この際、次元数制御部405は、次元削減部2100が出力する次元数(変数)に従って、使用する次元数(変数の数)を決定すればよい。
Isomapの処理を説明する。次元削減部2100は、任意のデータにおいて、近傍にあるデータの最短距離を算出し、算出した距離を多次元尺度構成法(MDS)により測地線距離行列で表すことで次元削減を行ない、新たな変数を得る。Isomapによる次元削減の実施の際には、次元削減部2100は、予め定めた次元数(変数)を次元数制御部405に出力し、前記予め定めた次元数に従って、使用する変数の数を決定すればよい。
LLEについて下記式(35)~(41)を用いて説明する。
Figure 0007439004000012
の近傍にある点を線形結合で近似的に上記式(35)で表す。ここで、上記式(36)の制約下で上記式(37)を最小化することで次元削減前のxの近似値が定まる。次に、次元削減後のyについて、次元削減後にも可能な限りxの線形の隣接関係を保つため、次元削減部2100は、上記式(38)を最小化する。この解は上記式(39)の固有ベクトルを固有値の2番目に小さいものvから(d+1)番目のvまで抽出することで上記式(40)の通り得られ、次元削減部2100は、上記式(41)の通り、次元削減後のyを取得する。
LLEによる次元削減を実施の際には、次元削減部2100は、予め定めた次元数(変数)を次元数制御部405に出力し、次元数制御部405は前記予め定めた次元数に従って、使用する変数の数を決定すればよい。
ラプラシアン固有マップの処理を下記式(42)~(47)を用いて説明する。
Figure 0007439004000013
次元削減前のデータが生成する近傍グラフの各辺xを上記式(42)または上記式(43)に割り当てる。割り当てた重みに対して上記式(44)のグラフラプラシアンを導入し、グラフラプラシアンの固有ベクトル(上記式(45))を固有値の2番目に小さいvから(d+1)番目のvまで抽出することで上記式(46)の通り得られ、次元削減部2100は、上記式(47)の通り次元削減後の値yを取得する。
ラプラシアン固有マップによる次元削減を実施の際には、次元削減部2100は、予め定めた次元数(変数)を次元数制御部405に出力し、次元数制御部405は前記予め定めた次元数に従って、使用する変数の数を決定すればよい。
LargeVisの処理について説明する。LargeVisはt-SNEの計算時間を改善した手法である。t-SNEではデータ点同士の距離を求めるため、データ数に応じて計算時間が増大していた。LargeVisでは、次元削減部2100は、近傍のデータからK-NNグラフを用いてデータを領域ごとに分け、領域ごとに分けられたデータモデル毎にt-SNEと同様の手法で次元削減を行う。
LargeVisによる次元削減を実施の際には、次元数制御部405は、予め定めた次元数(変数)を次元数制御部405に出力し、前記予め定めた次元数に従って、使用する変数の数を決定すればよい。
拡散マップについて下記式(48)~(53)を用いて説明する。
Figure 0007439004000014
次元削減前のxと近傍にあるxから構成される近傍グラフの各辺xに重みWijを割当て、これを正規化して上記式(48)に示すN×Nの推移確率行列Pを作る。p(x)はPで表現されるグラフ上のランダムウォークによってxを出発してtステップ後にxに到達する確率を表すとする。推移行列の性質からp(x)はt→∞で定常分布φ(x)に収束する。この時、点xの拡散距離を上記式(49)で定義する。推移確率行列Pの固有値を上記式(50)、固有ベクトルを上記式(51)とする。この時、上記式(52)が成り立つ。λの絶対値は1以下であるから、次元削減部2100は、Nより小さい適当な次元d(t)までの固有ベクトルをとって、上記式(53)の通り次元削減を行ない、新たな変数を得る。
拡散マップによる次元削減を実施の際には、予め定めた次元数(変数)を次元数制御部405に出力し、次元数制御部405は前記予め定めた次元数に従って、使用する変数の数を決定すればよい。
次元削減部2100は、これまでに説明した主成分分析、独立成分分析、t-SNE、UMAP、Isomap、LLE、ラプラシアン固有マップ、LargeVis、拡散マップなどを組み合わせて実施してもよい。たとえば、次元削減部2100は、36次元、または36変数ある高次元なデータに対して、10次元までの次元削減を主成分分析を用いて行い、その後2次元までの次元削減をUMAPを用いるなど、次元削減に用いる手法の組合せは限定されない。このように次元削減の際に各種手法を組み合わせることで性能や計算時間に複合的な効果が期待できる。
また、これら次元削減の手法は、実施例5に記載の範囲で限定されるものではなく、たとえば、単に高次元の情報を可算、減算、乗算または除算したり、予め定めた係数に従って畳み込んだりしてもよく、実施例5記載の手法のように高次元のデータまたは多変数を、より低い次元のデータや、少ない数の変数を生成する手法であれば、次元削減の手法は限定されない。
次元削減部2101は、次元削減部2100と同様の機能を有する。次元削減部2101は、骨格情報処理部453からの出力データに対して次元削減部2100と同様の処理を実行して、次元削減前に比較して、少ない単数または複数の新たな変数を生成する。また、主成分分析部454は、主成分と共に生成した寄与率と累積寄与率とを次元数決定部455に出力する。
次元削減部2101は、次元削減部2100と同様の機能を有する。次元削減部2101は、骨格情報処理部453からの出力データに対して次元削減部2100と同様の処理を実行して、単数または複数の新たな変数を生成する。また、次元削減部2101は、次元削減部2100同様の手法で、新たな変数と共に次元数決定部455で必要な次元数(変数)の情報を次元数決定部455に出力する。
次元数決定部455は、取得した次元数(変数)をもとに、取得した変数をいくつまで行動分類モデル選択部456に出力するかを示す次元数kを決定し、決定した数だけ新たに生成した変数を行動分類モデル選択部456に出力する。
このように、実施例5によれば、次元削減の手法を変えることで、骨格情報処理部403から取得するデータに合わせて、効果的に、または計算時間を短縮して次元削減可能となり、複雑な行動を高精度に判別することができる。
実施例6を、実施例1~実施例5との相違点を中心に説明する。なお、実施例1~実施例5と共通する点については、同一符号を付し、その説明を省略する。
図22は、実施例6にかかる行動認識システム100の機能的構成例を示すブロック図である。実施例6では、行動学習部406と行動認識部457が、行動学習部2200と行動認識部2201に変更される。行動学習部2200および行動認識部2201が行動を分類するための詳細な手法を図23~図25を用いて説明する。
図23は、行動学習部2200および行動認識部2201が行動を分類するための基礎となる手法である決定木を示す説明図である。決定木を用いた行動分類手法を説明する。決定木では、次元削減後に新たに生成された変数空間での各行動について、予め行動の種類を与えられた変数2300から変数2303を用いて、(a)境界線2310が生成される。
(a)境界線2310を生成する手法を説明する。決定木は、入力された変数群2321の不純度が最小になるように段階的に行動を分類しいく。1段階目では第2変数軸上で、行動を変数群2322と変数群2323とに分類し、2段階目では第1変数軸上で、変数群2322および変数群2323を変数群2324~2327に分類する。こうして不純度が最小となるよう分類していく過程で得られる判別式を用いて(a)境界線2310が生成される。尚、各段階でどの軸で行動を分類するかは限定されず、また各軸での行動分類について1回などの規定された回数で分類するなどの限定もされない。
図24は、決定木による分類の詳細な展開方法を示す説明図である。決定木には、レベル(深さ)ごとに決定木を成長させるレベルワイズ2400と、リーフ(分岐後のデータ群)ごとに決定木を成長させるリーフワイズ2401と、がある。決定木のような分類器を重ねて学習することをアンサンブル学習という。
図25は、アンサンブル学習と、行動学習部2200と行動認識部2201が行動を分類するために用いる手法を示す説明図である。アンサンブル学習には、決定木のような分類木を並列に用いるバギング2401と、前の結果を引き継ぎ学習結果を更新していくブースティング2402と、がある。実施例1のランダムフォレストは、決定木についてバギング2401を採用した手法で、実施例6の行動学習部2200および行動認識部2201は、ブースティング2402を使用した分類手法である。
行動学習部2200が行動を学習し、行動認識部2201が行動を分類するにあたっては、各決定木をレベルワイズにより成長させ、複数の決定木を重ねるブースティングにより入力された変数を分類してもよいし、各決定木をリーフワイズにより成長させ、複数の決定木を重ねるブースティングにより入力された変数を分類してもよい。
尚、各決定木をレベルワイズにより成長させ、複数の決定木を重ねるブースティングを行動分類手法として採用する際にはソフトウェアライブラリxgboostを用いて実装してもよい。また一方で、各決定木をリーフワイズにより成長させ、複数の決定木を重ねるブースティングを行動分類手法として採用する際にはソフトウェアライブラリLightGBMを用いて実装してもよい。ただし、実装手法はこれらに限定されない。
このように、実施例6によれば、行動分類手法にブースティングを用いて、複数の決定木を重ねることにより、複雑な行動を高精度に判別することができる。
実施例7を、実施例1~実施例6との相違点を中心に説明する。なお、実施例1~実施例6と共通する点については、同一符号を付し、その説明を省略する。
図26は、実施例7にかかる行動認識システム100の機能的構成例を示すブロック図である。実施例7では、次元削減部2100と次元数制御部405と行動学習部406と次元数決定部455が、次元削減部2600と次元数制御部2601と行動学習部2602と次元削減部2603に変更される。
次元削減部2600は、予め定めた次元数に従って、実施例1~実施例6のいずれかの手法で次元削減を行い、次元削減後に生成した新たな変数を次元数制御部2601に出力する。次元数制御部2601は取得した次元数に従って、次元削減後の変数を行動学習部2602に出力する。
行動学習部2602は、取得した次元削減後の変数と共に、与えられた行動の種類から機械学習により、行動分類のための境界線を生成し、行動分類モデルを生成する。この際、生成した行動分類モデルに対して、どのくらいの精度で行動を予測できるかという行動分類精度を算出する。
行動学習部2602は、行動分類モデル生成に用いた変数を用いて行動分類精度を算出してもよい。行動学習部2602は、次元制御部2600から取得した変数の内、一部を行動分類モデル生成には用いず、行動分類生成に用いなかった変数を用いて行動分類精度を算出してもよい。ただし、行動分類精度算出の方法は、これらに限定されない。算出した行動分類精度が予め定めた精度より高ければ、行動学習部2602は、生成した行動分類モデルを行動分類モデル選択部456に出力する。またこの際、行動学習部2602は、取得した次元数と行動分類精度が合格であったことを次元制御部2601に出力する。
一方で、行動学習部2602は、算出した行動分類精度が予め定めた精度より低ければ、行動分類精度が不合格であったことを次元制御部2601に出力する。ただし、設定可能な次元数(変数)すべてで行動分類モデルを生成した上で、そのすべてで行動分類精度が不合格であった場合には、行動学習部2602は、これまでに生成した行動分類モデルの中で最も行動分類精度が高かった行動分類モデルを行動分類モデル選択部456に出力し、出力した際に用いた次元数(変数)を全学習完了情報と共に次元数制御部2601に出力する。
次元制御部2601は、行動学習部2602から取得した合否情報と全学習完了情報に従って、合格または全学習完了情報を取得した場合には、取得した次元数情報を次元削減部2603に出力し、不合格であった場合には次元削減に用いる次元数を変更して再度次元削減を実施するよう次元削減命令を次元削減部2600に出力する。
次元削減部2600は、取得した次元削減命令に従って、これまでに設定していない次元数を設定して再度次元削減を実施し、生成した変数を次元数制御部2601に出力する。
次元削減部2603は、次元数制御部2601から取得した次元数(変数)に従って、骨格情報処理部452から取得したデータに、実施例1~実施例6の次元削減手法を用いて次元削減を行い、生成した変数を行動分類モデル選択部456に出力する。尚、合否を判断する行動分類精度を定めず、次元削減部2603は、設定可能な次元数全てで学習を行い、行動分類精度を算出した上で、算出した行動分類精度に従って、行動分類モデルと次元数を決定してもよい。
行動学習部2602が算出する行動分類精度は実施例1に記載の寄与率に見立ててもよい。例えば、取得した次元削減後の変数とそれを用いて算出した行動分類精度とを関連付けておき、算出された行動分類精度が、算出に用いた次元削減後の変数の元の情報に対する寄与率とする。次元制御部2601は、こうして見立てた寄与率に応じて、次元削減後の変数についてどれを用いて制御を行うか決定する。
<学習処理>
図27は、実施例7にかかるサーバ101(学習装置)による学習処理の詳細な処理手順例を示すフローチャートである。サーバ101は、次元数制御部2601により、次元数を決定する。この際、初めて次元削減を実施する場合には予め定めた次元数を決定し、2回目以降の次元削減の場合は、これまでに決定してない次元数を決定する(ステップS2700)。
つぎに、サーバ101は決定した次元数に従って、次元削減部2601で次元削減を行い、新たな変数を生成する(S2701)。ステップS2702では、サーバ101は行動学習部2602から取得した行動分類精度に対して、合否判断を行い、合格であればステップS1307に進み、不合格であればステップS2700に戻る。
このように、実施例7によれば、目標の行動分類精度に合わせて次元数を変更し、次元削減を繰り返すことで、複雑な行動を高精度に判別することができる。
また、上述した実施例1~実施例7の行動認識装置および学習装置は、下記(1)~(14)のように構成することもできる。
(1)プログラムを実行するプロセッサ201と、前記プログラムを記憶する記憶デバイス202と、を有する行動認識装置(クライアント102)は、多変量解析で統計的な成分を生成する成分分析(主成分分析または独立成分分析)により学習対象の形状(骨格情報320)から得られる成分群と、前記学習対象の行動と、を用いて、成分群ごとに学習された行動分類モデル群にアクセス可能であり、前記プロセッサ201は、センサ103から得られた解析対象データから認識対象の形状(骨格情報320)を検出する検出処理と、前記成分分析により、前記検出処理によって検出された前記認識対象の形状に基づいて、1以上の成分と、前記成分の各々の寄与率と、を生成する成分分析処理と、前記各々の寄与率から得られる累積寄与率に基づいて、前記1以上の各々の次元を示す序数kを決定する決定処理と、前記決定処理によって決定された次元を示す序数kの成分を1以上含む特定の成分群と同じ成分群で学習された特定の行動分類モデルを、前記行動分類モデル群から選択する選択処理と、前記選択処理によって選択された特定の行動分類モデルに前記特定の成分群を入力することにより、前記認識対象の行動を示す認識結果を出力する行動認識処理と、を実行する。
これにより、学習対象の形状に応じた行動分類モデルが用意されているため、認識対象の複数種類の行動を高精度に認識することができる。
(2)上記(1)の行動認識装置において、前記行動分類モデル群の各々の行動分類モデルは、前記学習対象の形状および前記形状を構成する複数の頂点の角度(関節角度370)から得られる成分群と、前記学習対象の行動と、を用いて、成分群ごとに学習されており、前記プロセッサ201は、前記認識対象の形状に基づいて、前記認識対象の形状を構成する複数の頂点の角度(関節角度370)を算出する算出処理を実行し、前記成分分析処理では、前記プロセッサ201は、前記認識対象の形状と、前記算出処理によって算出された前記認識対象の頂点の角度と、に基づいて、前記1以上の成分と、前記寄与率と、を生成する。
これにより、頂点の角度に起因する形状の変化に応じて、認識対象の複数種類の行動を高精度に認識することができる。
(3)上記(1)の行動認識装置において、前記行動分類モデル群の各々の行動分類モデルは、前記学習対象の形状および前記学習対象の移動量から得られる成分群と、前記学習対象の行動と、を用いて、成分群ごとに学習されており、前記プロセッサ201は、前記認識対象の異なる時点の複数の形状に基づいて、前記認識対象の移動量を算出する算出処理を実行し、前記成分分析処理では、前記プロセッサ201は、前記認識対象の形状と、前記算出処理によって算出された前記認識対象の移動量と、に基づいて、前記1以上の成分と、前記寄与率と、を生成する。
これにより、移動に起因する形状の経時的な変化に応じて、認識対象の複数種類の行動を高精度に認識することができる。
(4)上記(1)の行動認識装置において、前記プロセッサ201は、前記認識対象の形状の大きさを正規化する第1正規化処理を実行し、前記成分分析処理では、前記プロセッサ201は、前記第1正規化処理による第1正規化後の前記認識対象の形状に基づいて、前記1以上の成分と、前記寄与率と、を生成する。
これにより、行動分類の汎用性の向上により、誤認識の抑制を図ることができる。
(5)上記(2)の行動認識装置において、前記プロセッサ201は、前記認識対象の形状および頂点の角度が取りうる値域を正規化する第2正規化処理を実行し、前記成分分析処理では、前記プロセッサ201は、前記第2正規化処理による第2正規化後の前記認識対象の形状および頂点の角度(関節角度370)に基づいて、前記1以上の成分と、前記寄与率と、を生成する。
これにより、形状と角度という異なるデータ種における値域の偏りを抑制することができ、行動認識の高精度化を図ることができる。
(6)上記(1)の行動認識装置において、前記決定処理では、前記プロセッサ201は、前記累積寄与率がしきい値を超えるのに必要な前記成分の次元を示す序数kを決定する。
累積寄与率は、新たに生成した複数の成分が元のデータの情報量をどの程度表しているかといったことを示す尺度となるため、累積寄与率を参照することにより、次元数増加の抑制を図ることができる。
(7)上記(1)の行動認識装置において、前記行動分類モデル群の各々の行動分類モデルは、学習対象の一部欠損した形状から得られる成分群と、前記学習対象の行動と、を用いて、前記一部欠損した形状および成分群の組み合わせごとに学習されており、前記プロセッサ201は、前記認識対象の一部欠損した形状を判断する判断処理と、前記成分分析処理では、前記プロセッサ201は、前記判断処理によって判断された前記認識対象の一部欠損した形状に基づいて、前記1以上の成分と、前記1以上の成分の各々の寄与率と、を生成し、前記選択処理では、前記プロセッサ201は、前記認識対象の一部欠損した形状と同一欠損形状および前記特定の成分群と同じ成分群の組み合わせで学習された特定の行動分類モデルを、前記行動分類モデル群から選択する。
認識対象の形状が一部欠損していても、当該一部欠損に対応した行動分類モデルを用いて、高精度な行動認識をおこなうことができる。
(8)上記(1)の行動認識装置において、前記プロセッサ201は、前記認識対象の形状に一部欠損があれば補間する補間処理を実行し、前記成分分析処理では、前記プロセッサ201は、前記補間処理による補間後の認識対象の形状に基づいて、前記1以上の成分と、前記寄与率と、を生成する。
これにより、形状に欠損がない学習対象によって生成された行動分類モデルに適切な入力を与えることができ、行動認識精度の低下を抑制することができる。
(9)プログラムを実行するプロセッサ201と、前記プログラムを記憶する記憶デバイス202と、を有する行動認識装置(クライアント102)は、多変量解析で統計的な成分を生成する次元削減(主成分分析または独立成分分析またはSNE(Stochastic Neighbor Embedding)またはt-SNE(t-Distributed Stochastic Neighbor Embedding)またはUMAP(Uniform Manifold Approximation and Projection)またはIsomapまたはLLE(Locally Linear Embedding)またはラプラシアン固有マップ(Laplacian Eignmap)またはLargeVisまたは拡散マップ)により学習対象の形状(骨格情報320)から得られる第1変数からの昇順の成分群と、前記学習対象の行動と、を用いて、成分群ごとに学習された行動分類モデル群にアクセス可能であり、前記プロセッサ201は、センサ103から得られた解析対象データから認識対象の形状(骨格情報320)を検出する検出処理と、前記次元削減により、前記検出処理によって検出された前記認識対象の形状に基づいて、1以上の成分と、前記成分の各々の寄与率と、を生成する次元削減処理と、前記各々の寄与率から得られる累積寄与率に基づいて、前記1以上の成分のうち第1変数からの昇順の成分の次元を示す序数kを決定する決定処理と、前記第1変数から前記決定処理によって決定された次元を示す序数kの成分までの特定の成分群と同じ成分群で学習された特定の行動分類モデルを、前記行動分類モデル群から選択する選択処理と、前記選択処理によって選択された特定の行動分類モデルに前記特定の成分群を入力することにより、前記認識対象の行動を示す認識結果を出力する行動認識処理と、を実行する。
これにより、学習対象の形状に応じた行動分類モデルが用意されているため、認識対象の複数種類の行動を高精度に認識することができる。
(10)上記(9)の行動認識装置において、前記行動分類モデル群の各々の行動分類モデルは、前記学習対象の形状および前記形状を構成する複数の頂点の角度(関節角度370)から得られる第1変数からの昇順の成分群と、前記学習対象の行動と、を用いて、成分群ごとに学習されており、前記プロセッサ201は、前記認識対象の形状に基づいて、前記認識対象の形状を構成する複数の頂点の角度(関節角度370)を算出する算出処理を実行し、前記次元削減処理では、前記プロセッサ201は、前記認識対象の形状と、前記算出処理によって算出された前記認識対象の頂点の角度と、に基づいて、前記1以上の成分と、前記寄与率と、を生成する。
これにより、頂点の角度に起因する形状の変化に応じて、認識対象の複数種類の行動を高精度に認識することができる。
(11)上記(9)の行動認識装置において、前記行動分類モデル群の各々の行動分類モデルは、前記学習対象の形状および前記学習対象の移動量から得られる第1変数からの昇順の成分群と、前記学習対象の行動と、を用いて、成分群ごとに学習されており、前記プロセッサ201は、前記認識対象の異なる時点の複数の形状に基づいて、前記認識対象の移動量を算出する算出処理を実行し、前記次元削減処理では、前記プロセッサ201は、前記認識対象の形状と、前記算出処理によって算出された前記認識対象の移動量と、に基づいて、前記1以上の成分と、前記寄与率と、を生成する。
これにより、移動に起因する形状の経時的な変化に応じて、認識対象の複数種類の行動を高精度に認識することができる。
(12)上記(9)の行動認識装置において、前記プロセッサ201は、前記認識対象の形状の大きさを正規化する第1正規化処理を実行し、前記次元削減処理では、前記プロセッサ201は、前記第1正規化処理による第1正規化後の前記認識対象の形状に基づいて、前記1以上の成分と、前記寄与率と、を生成する。
これにより、行動分類の汎用性の向上により、誤認識の抑制を図ることができる。
(13)上記(10)の行動認識装置において、前記プロセッサ201は、前記認識対象の形状および頂点の角度が取りうる値域を正規化する第2正規化処理を実行し、前記次元削減処理では、前記プロセッサ201は、前記第2正規化処理による第2正規化後の前記認識対象の形状および頂点の角度(関節角度370)に基づいて、前記1以上の成分と、前記寄与率と、を生成する。
これにより、形状と角度という異なるデータ種における値域の偏りを抑制することができ、行動認識の高精度化を図ることができる。
(14)上記(9)の行動認識装置において、前記決定処理では、前記プロセッサ201は、前記第1変数からの累積寄与率がしきい値を超えるのに必要な前記第1変数からの昇順の成分の次元を示す序数kを決定する。
累積寄与率は、新たに生成した複数の成分が元のデータの情報量をどの程度表しているかといったことを示す尺度となるため、累積寄与率を参照することにより、次元数増加の抑制を図ることができる。
(15)上記(9)の行動認識装置において、前記行動分類モデル群の各々の行動分類モデルは、学習対象の一部欠損した形状から得られる第1変数からの昇順の成分群と、前記学習対象の行動と、を用いて、前記一部欠損した形状および成分群の組み合わせごとに学習されており、前記プロセッサ201は、前記認識対象の一部欠損した形状を判断する判断処理と、前記次元削減処理では、前記プロセッサ201は、前記判断処理によって判断された前記認識対象の一部欠損した形状に基づいて、前記1以上の成分と、前記1以上の成分の各々の寄与率と、を生成し、前記選択処理では、前記プロセッサ201は、前記認識対象の一部欠損した形状と同一欠損形状および前記特定の成分群と同じ成分群の組み合わせで学習された特定の行動分類モデルを、前記行動分類モデル群から選択する。
認識対象の形状が一部欠損していても、当該一部欠損に対応した行動分類モデルを用いて、高精度な行動認識をおこなうことができる。
(16)上記(9)の行動認識装置において、前記プロセッサ201は、前記認識対象の形状に一部欠損があれば補間する補間処理を実行し、前記次元削減処理では、前記プロセッサ201は、前記補間処理による補間後の認識対象の形状に基づいて、前記1以上の成分と、前記寄与率と、を生成する。
これにより、形状に欠損がない学習対象によって生成された行動分類モデルに適切な入力を与えることができ、行動認識精度の低下を抑制することができる。
(17)プログラムを実行するプロセッサ201と、前記プログラムを記憶する記憶デバイス202と、を有する学習装置において、前記プロセッサ201は、学習対象の形状および行動を含む教師データを取得する取得処理と、多変量解析で統計的な成分を生成する成分分析(主成分分析または独立成分分析)により、前記取得処理によって取得された前記学習対象の形状に基づいて、1以上の成分を生成する成分分析処理と、許容計算量に基づいて、前記1以上の成分の各々の次元を示す序数を制御する制御処理と、前記制御処理によって制御された次元を示す序数の成分を1以上含む成分群と、前記学習対象の行動と、に基づいて、前記学習対象の行動を学習して、前記学習対象の行動を分類する行動分類モデルを生成する行動学習処理と、を実行する。
これにより、学習対象の形状に応じた行動分類モデルを複数種類用意することができるため、認識対象の複数種類の行動を高精度に認識することができる。
(18)上記(17)の学習装置において、前記プロセッサ201は、前記学習対象の形状に基づいて、前記学習対象の形状を構成する複数の頂点の角度(関節角度370)を算出する算出処理を実行し、前記成分分析処理では、前記プロセッサ201は、前記学習対象の形状と、前記算出処理によって算出された前記学習対象の頂点の角度と、に基づいて、前記1以上の成分を生成する。
これにより、頂点の角度に起因する形状の変化に応じて、行動分類モデルを複数種類用意することができるため、認識対象の頂点の角度に起因する形状の変化に応じた複数種類の行動を、高精度に認識することができる。
(19)上記(17)の学習装置において、前記プロセッサ201は、前記学習対象の異なる時点の複数の形状に基づいて、前記学習対象の移動量を算出する算出処理を実行し、前記成分分析処理では、前記プロセッサ201は、前記学習対象の形状と、前記算出処理によって算出された前記学習対象の移動量と、に基づいて、前記1以上の成分を生成する。
これにより、移動に起因する形状の経時的な変化に応じて、行動分類モデルを複数種類用意することができるため、移動に起因する形状の経時的な変化に応じた複数種類の行動を、高精度に認識することができる。
(20)上記(17)の学習装置において、前記プロセッサ201は、前記学習対象の形状の大きさを正規化する第1正規化処理を実行し、前記成分分析処理では、前記プロセッサ201は、前記第1正規化処理による第1正規化後の前記学習対象の形状に基づいて、前記1以上の成分を生成する。
これにより、行動分類学習の汎用性の向上により、誤学習の抑制を図ることができる。
(21)上記(18)の学習装置において、前記プロセッサ201は、前記学習対象の形状および頂点の角度が取りうる値域を正規化する第2正規化処理を実行し、前記成分分析処理では、前記プロセッサ201は、前記第2正規化処理による第2正規化後の前記学習対象の形状および頂点の角度に基づいて、前記1以上の成分を生成する。
これにより、形状と角度という異なるデータ種における値域の偏りを抑制することができ、行動分類学習の高精度化を図ることができる。
(22)上記(17)の学習装置において、前記プロセッサ201は、前記学習対象の形状を一部欠損させる欠損制御処理を実行し、前記成分分析処理では、前記プロセッサ201は、前記欠損制御処理によって得られた前記学習対象の一部欠損した形状に基づいて、前記1以上の成分を生成し、前記行動学習処理では、前記プロセッサ201は、前記成分群と、前記学習対象の行動と、に基づいて、前記学習対象の行動を学習して、前記行動分類モデルを生成し、前記一部欠損させた形状に関する欠損情報と関連付ける。
意図的に一部欠損した形状を生成することにより、行動分類モデルの種類数の増加を図ることができる。これにより、認識対象の様々な形状に対応した高精度な行動認識が可能になる。
(23)プログラムを実行するプロセッサ201と、前記プログラムを記憶する記憶デバイス202と、を有する学習装置において、前記プロセッサ201は、学習対象の形状および行動を含む教師データを取得する取得処理と、多変量解析で統計的な成分を生成する次元削減(主成分分析または独立成分分析またはSNE(Stochastic Neighbor Embedding)またはt-SNE(t-Distributed Stochastic Neighbor Embedding)またはUMAP(Uniform Manifold Approximation and Projection)またはIsomapまたはLLE(Locally Linear Embedding)またはラプラシアン固有マップ(Laplacian Eignmap)またはLargeVisまたは拡散マップ)により、前記取得処理によって取得された前記学習対象の形状に基づいて、1以上の成分を生成する次元削減処理と、許容計算量に基づいて、前記1以上の成分のうち第1変数からの昇順の成分の次元を示す序数を制御する制御処理と、前記第1変数から前記制御処理によって制御された次元を示す序数の成分までの成分群と、前記学習対象の行動と、に基づいて、前記学習対象の行動を学習して、前記学習対象の行動を分類する行動分類モデルを生成する行動学習処理と、を実行する。
これにより、学習対象の形状に応じた行動分類モデルを複数種類用意することができるため、認識対象の複数種類の行動を高精度に認識することができる。
(24)上記(23)の学習装置において、前記プロセッサ201は、前記学習対象の形状に基づいて、前記学習対象の形状を構成する複数の頂点の角度(関節角度370)を算出する算出処理を実行し、前記次元削減処理では、前記プロセッサ201は、前記学習対象の形状と、前記算出処理によって算出された前記学習対象の頂点の角度と、に基づいて、前記1以上の成分を生成する。
これにより、頂点の角度に起因する形状の変化に応じて、行動分類モデルを複数種類用意することができるため、認識対象の頂点の角度に起因する形状の変化に応じた複数種類の行動を、高精度に認識することができる。
(25)上記(23)の学習装置において、前記プロセッサ201は、前記学習対象の異なる時点の複数の形状に基づいて、前記学習対象の移動量を算出する算出処理を実行し、前記次元削減処理では、前記プロセッサ201は、前記学習対象の形状と、前記算出処理によって算出された前記学習対象の移動量と、に基づいて、前記1以上の成分を生成する。
これにより、移動に起因する形状の経時的な変化に応じて、行動分類モデルを複数種類用意することができるため、移動に起因する形状の経時的な変化に応じた複数種類の行動を、高精度に認識することができる。
(26)上記(23)の学習装置において、前記プロセッサ201は、前記学習対象の形状の大きさを正規化する第1正規化処理を実行し、前記次元削減処理では、前記プロセッサ201は、前記第1正規化処理による第1正規化後の前記学習対象の形状に基づいて、前記1以上の成分を生成する。
これにより、行動分類学習の汎用性の向上により、誤学習の抑制を図ることができる。
(27)上記(24)の学習装置において、前記プロセッサ201は、前記学習対象の形状および頂点の角度が取りうる値域を正規化する第2正規化処理を実行し、前記次元削減処理では、前記プロセッサ201は、前記第2正規化処理による第2正規化後の前記学習対象の形状および頂点の角度に基づいて、前記1以上の成分を生成する。
これにより、形状と角度という異なるデータ種における値域の偏りを抑制することができ、行動分類学習の高精度化を図ることができる。
(28)上記(23)の学習装置において、前記プロセッサ201は、前記学習対象の形状を一部欠損させる欠損制御処理を実行し、前記次元削減処理では、前記プロセッサ201は、前記欠損制御処理によって得られた前記学習対象の一部欠損した形状に基づいて、前記1以上の成分を生成し、前記行動学習処理では、前記プロセッサ201は、前記第1変数から前記次元を示す序数の成分までの成分群と、前記学習対象の行動と、に基づいて、前記学習対象の行動を学習して、前記行動分類モデルを生成し、前記一部欠損させた形状に関する欠損情報と関連付ける。
意図的に一部欠損した形状を生成することにより、行動分類モデルの種類数の増加を図ることができる。これにより、認識対象の様々な形状に対応した高精度な行動認識が可能になる。
なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。たとえば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加、削除、または置換をしてもよい。
また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、たとえば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサ201がそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。
各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、IC(Integrated Circuit)カード、SDカード、DVD(Digital Versatile Disc)の記録媒体に格納することができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要なすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
100 行動認識システム
101 サーバ
102 クライアント
103 センサ
104 教師信号DB
201 プロセッサ
202 記憶デバイス
320 骨格情報
401 教師信号取得部
402 欠損情報制御部
403,453 骨格情報処理部
404,454 主成分分析部
405,2601 次元数制御部
406,2200,2602 行動学習部
451 骨格検出部
452 欠損情報判断部
455 次元数決定部
456 行動分類モデル選択部
457,2201 行動認識部
501 関節角度算出部
502 移動量算出部
503 正規化部
1652 欠損情報補間部
1904 相互情報正規化部
2100,2101,2600,2603 次元削減部

Claims (20)

  1. プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスと、を有する行動認識装置であって、
    多変量解析で統計的な成分を生成する成分分析により学習対象の形状から得られる成分群と、前記学習対象の行動と、を用いて、成分群ごとに学習された行動分類モデル群にアクセス可能であり、
    前記プロセッサは、
    解析対象データから認識対象の形状を検出する検出処理と、
    前記成分分析により、前記検出処理によって検出された前記認識対象の形状に基づいて、1以上の成分と、前記成分の各々の寄与率と、を生成する成分分析処理と、
    前記各々の寄与率から得られる累積寄与率に基づいて、前記1以上の成分の各々の次元を示す序数を決定する決定処理と、
    前記決定処理によって決定された次元を示す序数の成分を1以上含む特定の成分群と同じ成分群で学習された特定の行動分類モデルを、前記行動分類モデル群から選択する選択処理と、
    前記選択処理によって選択された特定の行動分類モデルに前記特定の成分群を入力することにより、前記認識対象の行動を示す認識結果を出力する行動認識処理と、
    を実行することを特徴とする行動認識装置。
  2. 請求項1に記載の行動認識装置であって、
    前記行動分類モデル群の各々の行動分類モデルは、学習対象の一部欠損した形状から得られる成分群と、前記学習対象の行動と、を用いて、前記一部欠損した形状および成分群の組み合わせごとに学習されており、
    前記プロセッサは、
    前記認識対象の一部欠損した形状を判断する判断処理と、
    前記成分分析処理では、前記プロセッサは、前記判断処理によって判断された前記認識対象の一部欠損した形状に基づいて、前記1以上の成分と、前記1以上の成分の各々の寄与率と、を生成し、
    前記選択処理では、前記プロセッサは、前記認識対象の一部欠損した形状と同一欠損形状および前記特定の成分群と同じ成分群の組み合わせで学習された特定の行動分類モデルを、前記行動分類モデル群から選択する、
    ことを特徴とする行動認識装置。
  3. 請求項1に記載の行動認識装置であって、
    前記プロセッサは、
    前記認識対象の形状に一部欠損があれば補間する補間処理を実行し、
    前記成分分析処理では、前記プロセッサは、前記補間処理による補間後の認識対象の形状に基づいて、前記1以上の成分と、前記寄与率と、を生成する、
    ことを特徴とする行動認識装置。
  4. プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスと、を有する行動認識装置であって、
    多変量解析で統計的な成分を生成する次元削減により学習対象の形状から得られる第1変数からの昇順の成分群と、前記学習対象の行動と、を用いて、成分群ごとに学習された行動分類モデル群にアクセス可能であり、
    前記プロセッサは、
    解析対象データから認識対象の形状を検出する検出処理と、
    前記次元削減により、前記検出処理によって検出された前記認識対象の形状に基づいて、1以上の成分と、前記成分の各々の寄与率と、を生成する次元削減処理と、
    前記各々の寄与率に基づいて、前記1以上の成分のうち第1変数からの昇順の成分の次元を示す序数を決定する決定処理と、
    前記第1変数から前記決定処理によって決定された次元を示す序数の成分までの特定の成分群と同じ成分群で学習された特定の行動分類モデルを、前記行動分類モデル群から選択する選択処理と、
    前記選択処理によって選択された特定の行動分類モデルに前記特定の成分群を入力することにより、前記認識対象の行動を示す認識結果を出力する行動認識処理と、
    を実行することを特徴とする行動認識装置。
  5. 請求項4に記載の行動認識装置であって、
    前記行動分類モデル群の各々の行動分類モデルは、前記学習対象の形状および前記形状を構成する複数の頂点の角度から得られる第1変数からの昇順の成分群と、前記学習対象の行動と、を用いて、成分群ごとに学習されており、
    前記プロセッサは、
    前記認識対象の形状に基づいて、前記認識対象の形状を構成する複数の頂点の角度を算出する算出処理を実行し、
    前記次元削減処理では、前記プロセッサは、前記認識対象の形状と、前記算出処理によって算出された前記認識対象の頂点の角度と、に基づいて、前記1以上の成分と、前記寄与率と、を生成する、
    ことを特徴とする行動認識装置。
  6. 請求項4に記載の行動認識装置であって、
    前記行動分類モデル群の各々の行動分類モデルは、前記学習対象の形状および前記学習対象の移動量から得られる第1変数からの昇順の成分群と、前記学習対象の行動と、を用いて、成分群ごとに学習されており、
    前記プロセッサは、
    前記認識対象の異なる時点の複数の形状に基づいて、前記認識対象の移動量を算出する算出処理を実行し、
    前記次元削減処理では、前記プロセッサは、前記認識対象の形状と、前記算出処理によって算出された前記認識対象の移動量と、に基づいて、前記1以上の成分と、前記寄与率と、を生成する、
    ことを特徴とする行動認識装置。
  7. 請求項4に記載の行動認識装置であって、
    前記プロセッサは、
    前記認識対象の形状の大きさを正規化する第1正規化処理を実行し、
    前記次元削減処理では、前記プロセッサは、前記第1正規化処理による第1正規化後の前記認識対象の形状に基づいて、前記1以上の成分と、前記寄与率と、を生成する、
    ことを特徴とする行動認識装置。
  8. 請求項5に記載の行動認識装置であって、
    前記プロセッサは、
    前記認識対象の形状および頂点の角度が取りうる値域を正規化する第2正規化処理を実行し、
    前記次元削減処理では、前記プロセッサは、前記第2正規化処理による第2正規化後の前記認識対象の形状および頂点の角度に基づいて、前記1以上の成分と、前記寄与率と、を生成する、
    ことを特徴とする行動認識装置。
  9. 請求項4に記載の行動認識装置であって、
    前記決定処理では、前記プロセッサは、前記寄与率がしきい値を超えるのに必要な前記第1変数からの昇順の成分の次元を示す序数を決定する、
    ことを特徴とする行動認識装置。
  10. 請求項4に記載の行動認識装置であって、
    前記行動分類モデル群の各々の行動分類モデルは、学習対象の一部欠損した形状から得られる第1変数からの昇順の成分群と、前記学習対象の行動と、を用いて、前記一部欠損した形状および成分群の組み合わせごとに学習されており、
    前記プロセッサは、
    前記認識対象の一部欠損した形状を判断する判断処理と、
    前記次元削減処理では、前記プロセッサは、前記判断処理によって判断された前記認識対象の一部欠損した形状に基づいて、前記1以上の成分と、前記1以上の成分の各々の寄与率と、を生成し、
    前記選択処理では、前記プロセッサは、前記認識対象の一部欠損した形状と同一欠損形状および前記特定の成分群と同じ成分群の組み合わせで学習された特定の行動分類モデルを、前記行動分類モデル群から選択する、
    ことを特徴とする行動認識装置。
  11. 請求項4に記載の行動認識装置であって、
    前記プロセッサは、
    前記認識対象の形状に一部欠損があれば補間する補間処理を実行し、
    前記次元削減処理では、前記プロセッサは、前記補間処理による補間後の認識対象の形状に基づいて、前記1以上の成分と、前記寄与率と、を生成する、
    ことを特徴とする行動認識装置。
  12. プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスと、を有する学習装置であって、
    前記プロセッサは、
    学習対象の形状および行動を含む教師データを取得する取得処理と、
    多変量解析で統計的な成分を生成する成分分析により、前記取得処理によって取得された前記学習対象の形状に基づいて、1以上の成分を生成する成分分析処理と、
    許容計算量に基づいて、前記1以上の成分の各々の次元を示す序数を制御する制御処理と、
    前記制御処理によって制御された次元を示す序数の成分を1以上含む成分群と、前記学習対象の行動と、に基づいて、前記学習対象の行動を学習して、前記学習対象の行動を分類する行動分類モデルを生成する行動学習処理と、
    を実行することを特徴とする学習装置。
  13. 請求項12に記載の学習装置であって、
    前記プロセッサは、
    前記学習対象の形状を一部欠損させる欠損制御処理を実行し、
    前記成分分析処理では、前記プロセッサは、前記欠損制御処理によって得られた前記学習対象の一部欠損した形状に基づいて、前記1以上の成分を生成し、
    前記行動学習処理では、前記プロセッサは、
    前記成分群と、前記学習対象の行動と、に基づいて、前記学習対象の行動を学習して、前記行動分類モデルを生成し、前記一部欠損させた形状に関する欠損情報と関連付ける、
    ことを特徴とする学習装置。
  14. プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスと、を有する学習装置であって、
    前記プロセッサは、
    学習対象の形状および行動を含む教師データを取得する取得処理と、
    多変量解析で統計的な成分を生成する次元削減により、前記取得処理によって取得された前記学習対象の形状に基づいて、1以上の成分を生成する次元削減処理と、
    許容計算量に基づいて、前記1以上の成分のうち第1変数からの昇順の成分の次元を示す序数を制御する制御処理と、
    前記第1変数から前記制御処理によって制御された次元を示す序数の成分までの成分群と、前記学習対象の行動と、に基づいて、前記学習対象の行動を学習して、前記学習対象の行動を分類する行動分類モデルを生成する行動学習処理と、
    を実行することを特徴とする学習装置。
  15. 請求項14に記載の学習装置であって、
    前記プロセッサは、
    前記学習対象の形状に基づいて、前記学習対象の形状を構成する複数の頂点の角度を算出する算出処理を実行し、
    前記次元削減処理では、前記プロセッサは、前記学習対象の形状と、前記算出処理によって算出された前記学習対象の頂点の角度と、に基づいて、前記1以上の成分を生成する、
    ことを特徴とする学習装置。
  16. 請求項14に記載の学習装置であって、
    前記プロセッサは、
    前記学習対象の異なる時点の複数の形状に基づいて、前記学習対象の移動量を算出する算出処理を実行し、
    前記次元削減処理では、前記プロセッサは、前記学習対象の形状と、前記算出処理によって算出された前記学習対象の移動量と、に基づいて、前記1以上の成分を生成する、
    ことを特徴とする学習装置。
  17. 請求項14に記載の学習装置であって、
    前記プロセッサは、
    前記学習対象の形状の大きさを正規化する第1正規化処理を実行し、
    前記次元削減処理では、前記プロセッサは、前記第1正規化処理による第1正規化後の前記学習対象の形状に基づいて、前記1以上の成分を生成する、
    ことを特徴とする学習装置。
  18. 請求項15に記載の学習装置であって、
    前記プロセッサは、
    前記学習対象の形状および頂点の角度が取りうる値域を正規化する第2正規化処理を実行し、
    前記次元削減処理では、前記プロセッサは、前記第2正規化処理による第2正規化後の前記学習対象の形状および頂点の角度に基づいて、前記1以上の成分を生成する、
    ことを特徴とする学習装置。
  19. 請求項14に記載の学習装置であって、
    前記プロセッサは、
    前記学習対象の形状を一部欠損させる欠損制御処理を実行し、
    前記次元削減処理では、前記プロセッサは、前記欠損制御処理によって得られた前記学習対象の一部欠損した形状に基づいて、前記1以上の成分を生成し、
    前記行動学習処理では、前記プロセッサは、
    前記第1変数から前記次元を示す序数の成分までの成分群と、前記学習対象の行動と、に基づいて、前記学習対象の行動を学習して、前記行動分類モデルを生成し、前記一部欠損させた形状に関する欠損情報と関連付ける、
    ことを特徴とする学習装置。
  20. プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスと、を有する行動認識装置が実行する行動認識方法であって、
    多変量解析で統計的な成分を生成する成分分析により学習対象の形状から得られる成分群と、前記学習対象の行動と、を用いて、成分群ごとに学習された行動分類モデル群にアクセス可能であり、
    前記行動認識方法は、
    前記プロセッサが、
    解析対象データから認識対象の形状を検出する検出処理と、
    前記成分分析により、前記検出処理によって検出された前記認識対象の形状に基づいて、1以上の成分と、前記成分の各々の寄与率と、を生成する成分分析処理と、
    前記各々の寄与率から得られる累積寄与率に基づいて、前記1以上の成分の各々の次元を示す序数を決定する決定処理と、
    前記決定処理によって決定された次元を示す序数の成分を1以上含む特定の成分群と同じ成分群で学習された特定の行動分類モデルを、前記行動分類モデル群から選択する選択処理と、
    前記選択処理によって選択された特定の行動分類モデルに前記特定の成分群を入力することにより、前記認識対象の行動を示す認識結果を出力する行動認識処理と、
    を実行することを特徴とする行動認識方法。
JP2021037260A 2020-09-04 2021-03-09 行動認識装置、学習装置、および行動認識方法 Active JP7439004B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21183349.6A EP3965007A1 (en) 2020-09-04 2021-07-02 Action recognition apparatus, learning apparatus, and action recognition method
US17/369,123 US12159487B2 (en) 2020-09-04 2021-07-07 Action recognition apparatus, learning apparatus, and action recognition method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020148759 2020-09-04
JP2020148759 2020-09-04

Publications (2)

Publication Number Publication Date
JP2022043974A JP2022043974A (ja) 2022-03-16
JP7439004B2 true JP7439004B2 (ja) 2024-02-27

Family

ID=80668771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021037260A Active JP7439004B2 (ja) 2020-09-04 2021-03-09 行動認識装置、学習装置、および行動認識方法

Country Status (1)

Country Link
JP (1) JP7439004B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7713426B2 (ja) * 2022-06-14 2025-07-25 株式会社日立製作所 行動認識装置、学習装置、および行動認識方法
JP7156655B1 (ja) * 2022-06-29 2022-10-19 アースアイズ株式会社 監視システム、監視方法、及び、監視システム用の画像認識装置の学習方法
KR102501576B1 (ko) * 2022-11-22 2023-02-21 주식회사 아무랩스 뉴럴 네트워크를 이용하여 도표에 대한 정보를 사용자 단말에게 전송하는 방법 및 장치
CN117876972B (zh) * 2024-03-12 2024-05-07 厦门锋联信息技术有限公司 基于物联感知的车间安全监管方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010893A1 (ja) 2005-07-19 2007-01-25 Nec Corporation 関節物体位置姿勢推定装置及びその方法ならびにプログラム
KR101563297B1 (ko) 2014-04-23 2015-10-26 한양대학교 산학협력단 영상에서 행동을 인식하는 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010893A1 (ja) 2005-07-19 2007-01-25 Nec Corporation 関節物体位置姿勢推定装置及びその方法ならびにプログラム
KR101563297B1 (ko) 2014-04-23 2015-10-26 한양대학교 산학협력단 영상에서 행동을 인식하는 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAO HONGXIAN, et al.,3D HUMAN ACTION RECOGNITION BASED ON THE SPATIAL-TEMPORAL MOVING SKELETON DESCRIPTOR,2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME),米国,IEEE,2017年07月10日,p937-942,DOI: 10.1109/ICME.2017.8019498

Also Published As

Publication number Publication date
JP2022043974A (ja) 2022-03-16

Similar Documents

Publication Publication Date Title
JP7439004B2 (ja) 行動認識装置、学習装置、および行動認識方法
Batool et al. Telemonitoring of daily activity using Accelerometer and Gyroscope in smart home environments
US12159487B2 (en) Action recognition apparatus, learning apparatus, and action recognition method
JP6522060B2 (ja) オブジェクト認識装置、分類ツリー学習装置及びその動作方法
JP6025845B2 (ja) オブジェクト姿勢検索装置及び方法
Han et al. Vision-based detection of unsafe actions of a construction worker: Case study of ladder climbing
Gall et al. Optimization and filtering for human motion capture: A multi-layer framework
Deutscher et al. Articulated body motion capture by annealed particle filtering
JP4215781B2 (ja) 異常動作検出装置および異常動作検出方法
JP7409499B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JPWO2011086889A1 (ja) 特徴点選択システム、特徴点選択方法および特徴点選択プログラム
CN113609999B (zh) 基于姿态识别的人体模型建立方法
Orts-Escolano et al. 3D surface reconstruction of noisy point clouds using growing neural gas: 3D object/scene reconstruction
JP2021135619A (ja) 状況識別装置、状況学習装置及びプログラム
CN107480627A (zh) 行为识别方法、装置、存储介质和处理器
Sharifi et al. Marker-based human pose tracking using adaptive annealed particle swarm optimization with search space partitioning
JP7713426B2 (ja) 行動認識装置、学習装置、および行動認識方法
Hernández et al. Adding uncertainty to an object detection system for mobile robots
JP7358269B2 (ja) 物体検出装置、物体検出システム、および、物体検出方法
JP7367775B2 (ja) 特徴学習システム、特徴学習方法およびプログラム
WO2018207292A1 (ja) 対象物認識方法、装置、システム、プログラム
Pham et al. Evaluation of similarity measuring method of human body movement based on 3d chain code
CN119676824B (zh) 基于csi的自适应定位方法、电子设备和存储介质
Sharet et al. Analyzing data changes using mean shift clustering
WO2019235370A1 (ja) 学習装置、予測装置、方法、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240214

R150 Certificate of patent or registration of utility model

Ref document number: 7439004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150