JP7034264B2 - 自己位置推定方法 - Google Patents
自己位置推定方法 Download PDFInfo
- Publication number
- JP7034264B2 JP7034264B2 JP2020513975A JP2020513975A JP7034264B2 JP 7034264 B2 JP7034264 B2 JP 7034264B2 JP 2020513975 A JP2020513975 A JP 2020513975A JP 2020513975 A JP2020513975 A JP 2020513975A JP 7034264 B2 JP7034264 B2 JP 7034264B2
- Authority
- JP
- Japan
- Prior art keywords
- self
- algorithm
- moving body
- estimated
- position estimation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
- G06T7/74—Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
- G01C15/002—Active optical surveying means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/04—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means
- G01C21/08—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means involving use of the magnetic field of the earth
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
- G05D1/0251—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0259—Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0272—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/20—Control system inputs
- G05D1/24—Arrangements for determining position or orientation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/20—Control system inputs
- G05D1/24—Arrangements for determining position or orientation
- G05D1/243—Means capturing signals occurring naturally from the environment, e.g. ambient optical, acoustic, gravitational or magnetic signals
- G05D1/2435—Extracting 3D information
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/20—Control system inputs
- G05D1/24—Arrangements for determining position or orientation
- G05D1/247—Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/60—Intended control result
- G05D1/644—Optimisation of travel parameters, e.g. of energy consumption, journey time or distance
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
- G06N3/0442—Recurrent networks, e.g. Hopfield networks characterised by memory or gating, e.g. long short-term memory [LSTM] or gated recurrent units [GRU]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0499—Feedforward networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C22/00—Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Theoretical Computer Science (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Electromagnetism (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Multimedia (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Description
前記複数のアルゴリズムのそれぞれ毎に、各アルゴリズムの推定処理により得られる一つ以上の状態量であって、各アルゴリズムにより推定された前記自己位置の確からしさに関連する状態量を学習済のニューラルネットワークに入力し、当該入力された状態量から該ニューラルネットワークにより前記複数のアルゴリズムのそれぞれ毎の重み係数を決定する第2ステップと、
前記複数のアルゴリズムのそれぞれにより推定された前記自己位置を、前記決定された重み係数により合成して得られる位置を、前記移動体の自己位置として特定する第3ステップとを備えることを基本構成とする。
Claims (3)
- 複数のセンサの検出情報から、該複数のセンサのうちの一つ以上のセンサの検出情報を各々用いる複数のアルゴリズムのそれぞれにより、移動体の自己位置を推定する第1ステップと、
前記複数のアルゴリズムのそれぞれ毎に、各アルゴリズムの推定処理により得られる一つ以上の状態量であって、各アルゴリズムにより推定された前記自己位置の確からしさに関連する状態量を学習済のニューラルネットワークに入力し、当該入力された状態量から該ニューラルネットワークにより前記複数のアルゴリズムのそれぞれ毎の重み係数を決定する第2ステップと、
前記複数のアルゴリズムのそれぞれにより推定された前記自己位置を、前記決定された重み係数により合成して得られる位置を、前記移動体の自己位置として特定する第3ステップとを備えており、
前記複数のセンサは、前記移動体の外界を撮像するカメラを含み、
前記複数のアルゴリズムのうちの一つのアルゴリズムである第Aアルゴリズムは、前記移動体の自己位置の推定のために、前記カメラの撮像画像から特徴点を検出し、当該検出された特徴点と、該撮像画像よりも過去の撮像画像から検出された特徴点とのマッチングを行う処理を逐次実行するように構成されたアルゴリズムであり、
前記第Aアルゴリズムに係る前記状態量は、前記撮像画像から検出された特徴点の総数のうち、前記マッチングによる対応付けがなされた特徴点の個数の割合を示す状態量と、該第Aアルゴリズムにより得られた前記移動体の並進速度及び角速度の推定値とを含むことを特徴とする移動体の自己位置推定方法。 - 請求項1記載の移動体の自己位置推定方法において、
前記複数のセンサは、前記移動体の外界物までの距離を測定する測距センサを含み、
前記複数のアルゴリズムのうちの一つのアルゴリズムである第Bアルゴリズムは、前記測距センサによる測距データと、粒子フィルタとを用いて前記移動体の自己位置を推定するアルゴリズムであり、
前記第Bアルゴリズムに係る前記状態量は、該第Bアルゴリズムが前記移動体の自己位置を推定する過程で生成する共分散を含むことを特徴とする移動体の自己位置推定方法。 - 請求項1記載の移動体の自己位置推定方法において、
前記複数のセンサは、前記移動体に作用する磁気を検出する磁気センサを含み、
前記複数のアルゴリズムのうちの一つのアルゴリズムである第Cアルゴリズムは、前記磁気センサによる磁気の検出データと、粒子フィルタとを用いて前記移動体の自己位置を推定するアルゴリズムであり、
前記第Cアルゴリズムに係る前記状態量は、該第Cアルゴリズムが前記移動体の自己位置を推定する過程で生成する共分散を含むことを特徴とする移動体の自己位置推定方法。
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2018081742 | 2018-04-20 | ||
| JP2018081742 | 2018-04-20 | ||
| PCT/JP2019/002705 WO2019202806A1 (ja) | 2018-04-20 | 2019-01-28 | 自己位置推定方法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPWO2019202806A1 JPWO2019202806A1 (ja) | 2021-02-12 |
| JP7034264B2 true JP7034264B2 (ja) | 2022-03-11 |
Family
ID=68240372
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020513975A Active JP7034264B2 (ja) | 2018-04-20 | 2019-01-28 | 自己位置推定方法 |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US11874666B2 (ja) |
| JP (1) | JP7034264B2 (ja) |
| CN (1) | CN111989631A (ja) |
| WO (1) | WO2019202806A1 (ja) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7162584B2 (ja) * | 2019-12-19 | 2022-10-28 | 東芝情報システム株式会社 | 自律走行型自動搬送車両の制御装置及び搬送システム |
| JP7365958B2 (ja) * | 2020-04-17 | 2023-10-20 | Kddi株式会社 | 測位システム、方法及びプログラム |
| CN111735446B (zh) * | 2020-07-09 | 2020-11-13 | 上海思岚科技有限公司 | 一种激光、视觉定位融合的方法及设备 |
| JP2022042630A (ja) * | 2020-09-03 | 2022-03-15 | 本田技研工業株式会社 | 自己位置推定方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007322138A (ja) | 2006-05-30 | 2007-12-13 | Toyota Motor Corp | 移動装置及び移動装置の自己位置推定方法 |
| WO2013002067A1 (ja) | 2011-06-29 | 2013-01-03 | 株式会社日立産機システム | 移動ロボット、及び移動体に搭載される自己位置姿勢推定システム |
| US20160082597A1 (en) | 2013-05-22 | 2016-03-24 | Neurala, Inc. | Methods and apparatus for early sensory integration and robust acquisition of real world knowledge |
| US20170364090A1 (en) | 2014-12-17 | 2017-12-21 | Husqvarna Ab | Multi-sensor, autonomous robotic vehicle with mapping capability |
Family Cites Families (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6678640B2 (en) * | 1998-06-10 | 2004-01-13 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for parameter estimation, parameter estimation control and learning control |
| CN1166922C (zh) * | 2002-07-18 | 2004-09-15 | 上海交通大学 | 多传感器多目标信息融合方法 |
| US7451059B2 (en) * | 2003-03-02 | 2008-11-11 | Tomer Malchi | True azimuth and north finding method and system |
| KR100506097B1 (ko) * | 2004-02-04 | 2005-08-03 | 삼성전자주식회사 | 자기장 지도 생성 방법 및 장치와 이를 활용한 이동체의포즈 확인 방법 및 장치 |
| EP2298149B1 (en) * | 2005-02-18 | 2012-10-03 | iRobot Corporation | Autonomous surface cleaning robot for wet and dry cleaning |
| KR100834761B1 (ko) | 2005-11-23 | 2008-06-05 | 삼성전자주식회사 | 이동 로봇의 자기 위치 인식 방법 및 장치 |
| US7646336B2 (en) * | 2006-03-24 | 2010-01-12 | Containertrac, Inc. | Automated asset positioning for location and inventory tracking using multiple positioning techniques |
| US8417383B2 (en) * | 2006-05-31 | 2013-04-09 | Irobot Corporation | Detecting robot stasis |
| EP1970005B1 (en) * | 2007-03-15 | 2012-10-03 | Xsens Holding B.V. | A system and a method for motion tracking using a calibration unit |
| US8195358B2 (en) * | 2008-09-11 | 2012-06-05 | Deere & Company | Multi-vehicle high integrity perception |
| US8140286B2 (en) * | 2009-08-14 | 2012-03-20 | Continental Automotive Systems, Inc. | Position sensing system and method |
| US10624612B2 (en) * | 2014-06-05 | 2020-04-21 | Chikayoshi Sumi | Beamforming method, measurement and imaging instruments, and communication instruments |
| JP2016024598A (ja) * | 2014-07-18 | 2016-02-08 | パナソニックIpマネジメント株式会社 | 自律移動装置の制御方法 |
| BR112017017121A2 (pt) * | 2015-02-10 | 2018-04-03 | Mobileye Vision Technologies Ltd. | mapa esparso para navegação de veículos autônomos |
| CN104897158B (zh) * | 2015-06-26 | 2017-07-14 | 中国科学院上海高等研究院 | 一种步行者室内双层定位方法及系统 |
| CN105045263B (zh) * | 2015-07-06 | 2016-05-18 | 杭州南江机器人股份有限公司 | 一种基于Kinect深度相机的机器人自定位方法 |
| CN105607106B (zh) * | 2015-12-18 | 2018-08-21 | 重庆邮电大学 | 一种低成本高精度bd/mems融合姿态测量方法 |
| US10901431B1 (en) * | 2017-01-19 | 2021-01-26 | AI Incorporated | System and method for guiding heading of a mobile robotic device |
| JP6187623B1 (ja) * | 2016-03-14 | 2017-08-30 | カシオ計算機株式会社 | 自律移動装置、自律移動方法及びプログラム |
| JP6773471B2 (ja) | 2016-07-26 | 2020-10-21 | 株式会社豊田中央研究所 | 自律移動体と環境地図更新装置 |
| IL288191B2 (en) * | 2016-12-23 | 2023-10-01 | Mobileye Vision Technologies Ltd | Navigational system with imposed liability constraints |
| CN107167140B (zh) * | 2017-05-26 | 2019-11-08 | 江苏大学 | 一种无人机视觉定位累积误差抑制方法 |
| CN108230240B (zh) * | 2017-12-31 | 2020-07-31 | 厦门大学 | 一种基于深度学习获取图像城市范围内位置及姿态的方法 |
| US11501105B2 (en) * | 2018-03-02 | 2022-11-15 | Zoox, Inc. | Automatic creation and updating of maps |
-
2019
- 2019-01-28 WO PCT/JP2019/002705 patent/WO2019202806A1/ja not_active Ceased
- 2019-01-28 US US16/975,259 patent/US11874666B2/en active Active
- 2019-01-28 CN CN201980026245.2A patent/CN111989631A/zh active Pending
- 2019-01-28 JP JP2020513975A patent/JP7034264B2/ja active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007322138A (ja) | 2006-05-30 | 2007-12-13 | Toyota Motor Corp | 移動装置及び移動装置の自己位置推定方法 |
| WO2013002067A1 (ja) | 2011-06-29 | 2013-01-03 | 株式会社日立産機システム | 移動ロボット、及び移動体に搭載される自己位置姿勢推定システム |
| US20160082597A1 (en) | 2013-05-22 | 2016-03-24 | Neurala, Inc. | Methods and apparatus for early sensory integration and robust acquisition of real world knowledge |
| US20170364090A1 (en) | 2014-12-17 | 2017-12-21 | Husqvarna Ab | Multi-sensor, autonomous robotic vehicle with mapping capability |
Non-Patent Citations (1)
| Title |
|---|
| 田井克典,河野恭之,Visual SLAMを用いた脚部装着カメラ端末の位置・姿勢推定による歩行運動認識システム,情報処理学会インタラクション2017論文集,日本,情報処理学会,2017年03月02日,P.348-350,https://www.interaction-ipsj.org/proceedings/2017/data/pdf/1-409-70.pdf |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2019202806A1 (ja) | 2019-10-24 |
| CN111989631A (zh) | 2020-11-24 |
| US11874666B2 (en) | 2024-01-16 |
| JPWO2019202806A1 (ja) | 2021-02-12 |
| US20200401152A1 (en) | 2020-12-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11662742B2 (en) | Self-position estimation method | |
| CN106780608B (zh) | 位姿信息估计方法、装置和可移动设备 | |
| KR102440358B1 (ko) | 관성 기반 항법 장치 및 상대사전적분에 따른 관성 기반 항법 방법 | |
| KR102016551B1 (ko) | 위치 추정 장치 및 방법 | |
| JP7034264B2 (ja) | 自己位置推定方法 | |
| KR101831028B1 (ko) | 실내 환경에서 이동 로봇의 리로케이션 방법 및 장치 | |
| US9377310B2 (en) | Mapping and positioning system | |
| Assa et al. | A Kalman filter-based framework for enhanced sensor fusion | |
| JP5861235B2 (ja) | 物体の向きをより正確に推定する方法および前記方法を実装した姿勢制御システム | |
| CN111052183A (zh) | 利用事件相机的视觉惯性里程计 | |
| CN106643715A (zh) | 一种基于bp神经网络改善的室内惯性导航方法 | |
| CN105606096A (zh) | 一种载体运动状态信息辅助的姿态和航向计算方法和系统 | |
| Hachemi et al. | Fault diagnosis and reconfiguration for mobile robot localization based on multi-sensors data fusion | |
| Choi et al. | Enhanced SLAM for a mobile robot using extended Kalman filter and neural networks | |
| WO2016089263A1 (en) | Method and system for estimating relative angle between headings | |
| Ishikura et al. | Shape estimation of flexible cable | |
| CN114964217B (zh) | 一种状态信息估计方法及装置 | |
| Shaya et al. | A self-localization system with global error reduction and online map-building capabilities | |
| TWI812053B (zh) | 定位方法、電子設備及電腦可讀儲存媒體 | |
| KR20150079098A (ko) | 강인한 시각 주행거리 측정을 위한 시공간적 3차원 벡터 필터링 기법 | |
| US12164305B2 (en) | Self-position estimation method | |
| JP2022045269A (ja) | 移動体の姿勢推定方法 | |
| Kim et al. | A robotic pan and tilt 3-d target tracking system by data fusion of vision, encoder, accelerometer, and gyroscope measurements | |
| HEMANTH | Visual-Inertial Mapping, Localization and Planning for Autonomous Mobile Robots | |
| WO2023162017A1 (ja) | 位置姿勢推定装置、位置姿勢推定システム、およびセンサ設置方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200819 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210907 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211028 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220222 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220301 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7034264 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |