JP6836265B2 - Biological condition estimation device, biological condition estimation method, computer program and recording medium - Google Patents
Biological condition estimation device, biological condition estimation method, computer program and recording medium Download PDFInfo
- Publication number
- JP6836265B2 JP6836265B2 JP2016239923A JP2016239923A JP6836265B2 JP 6836265 B2 JP6836265 B2 JP 6836265B2 JP 2016239923 A JP2016239923 A JP 2016239923A JP 2016239923 A JP2016239923 A JP 2016239923A JP 6836265 B2 JP6836265 B2 JP 6836265B2
- Authority
- JP
- Japan
- Prior art keywords
- fatigue
- state
- biological
- masking
- estimation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 89
- 238000004590 computer program Methods 0.000 title claims description 11
- 206010016256 fatigue Diseases 0.000 claims description 156
- 230000006870 function Effects 0.000 claims description 102
- 230000000873 masking effect Effects 0.000 claims description 61
- 230000008859 change Effects 0.000 claims description 41
- 230000001164 bioregulatory effect Effects 0.000 claims description 33
- 208000019914 Mental Fatigue Diseases 0.000 claims description 22
- 210000000467 autonomic pathway Anatomy 0.000 claims description 22
- 230000035807 sensation Effects 0.000 claims description 17
- 230000002567 autonomic effect Effects 0.000 claims description 8
- 230000033228 biological regulation Effects 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 description 58
- 230000013632 homeostatic process Effects 0.000 description 32
- 238000012423 maintenance Methods 0.000 description 31
- 239000004744 fabric Substances 0.000 description 23
- 230000002889 sympathetic effect Effects 0.000 description 22
- 230000000694 effects Effects 0.000 description 20
- 238000001514 detection method Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 15
- 230000001953 sensory effect Effects 0.000 description 15
- 230000008035 nerve activity Effects 0.000 description 14
- 238000012545 processing Methods 0.000 description 14
- 210000005036 nerve Anatomy 0.000 description 12
- 210000000750 endocrine system Anatomy 0.000 description 11
- 230000003284 homeostatic effect Effects 0.000 description 11
- 230000003925 brain function Effects 0.000 description 10
- 210000005037 parasympathetic nerve Anatomy 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 9
- 210000004556 brain Anatomy 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 210000000709 aorta Anatomy 0.000 description 7
- 210000003403 autonomic nervous system Anatomy 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 206010049565 Muscle fatigue Diseases 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 206010041349 Somnolence Diseases 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 210000001002 parasympathetic nervous system Anatomy 0.000 description 4
- 210000002442 prefrontal cortex Anatomy 0.000 description 4
- 230000009711 regulatory function Effects 0.000 description 4
- JEBFVOLFMLUKLF-IFPLVEIFSA-N Astaxanthin Natural products CC(=C/C=C/C(=C/C=C/C1=C(C)C(=O)C(O)CC1(C)C)/C)C=CC=C(/C)C=CC=C(/C)C=CC2=C(C)C(=O)C(O)CC2(C)C JEBFVOLFMLUKLF-IFPLVEIFSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- MQZIGYBFDRPAKN-ZWAPEEGVSA-N astaxanthin Chemical compound C([C@H](O)C(=O)C=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)[C@@H](O)CC1(C)C MQZIGYBFDRPAKN-ZWAPEEGVSA-N 0.000 description 3
- 229940022405 astaxanthin Drugs 0.000 description 3
- 235000013793 astaxanthin Nutrition 0.000 description 3
- 239000001168 astaxanthin Substances 0.000 description 3
- 230000017531 blood circulation Effects 0.000 description 3
- 230000001447 compensatory effect Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 210000002820 sympathetic nervous system Anatomy 0.000 description 3
- 206010041347 Somnambulism Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000008450 motivation Effects 0.000 description 2
- 230000002450 orbitofrontal effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000001568 sexual effect Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 238000000729 Fisher's exact test Methods 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 208000003443 Unconsciousness Diseases 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004424 eye movement Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 210000004326 gyrus cinguli Anatomy 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 230000030214 innervation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 230000036640 muscle relaxation Effects 0.000 description 1
- 230000001734 parasympathetic effect Effects 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000028016 temperature homeostasis Effects 0.000 description 1
- 230000001331 thermoregulatory effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
本発明は、人の背部から得られる生体信号を用いて、生体の状態を推定する技術に関する。 The present invention relates to a technique for estimating the state of a living body by using a biological signal obtained from the back of a person.
本発明者らは、特許文献1〜5等において、人の上体の中で背部の体表面に生じる振動を生体信号測定装置により検出し、人の状態を解析する技術を提案している。人の上体背部から検出される心臓と大動脈の運動から生じる音・振動情報は、心臓と大動脈の運動から生じる圧力振動であり、心室の収縮期及び拡張期の情報と、循環の補助ポンプとなる血管壁の弾力情報及び反射波の情報を含んでいる。すなわち、心臓と大動脈の運動から背部表面に生じる1Hz近傍の背部体表脈波(Aortic Pulse Wave(APW))を含む)や、心拍に伴って背部側に伝わる音(「疑似心音」(本明細書では胸部側から採取される心臓の音である心音に対して、背部側で採取される心臓の音を「疑似心音」とする))の情報を含んでいる。そして、心拍変動に伴う信号波形は交感神経系及び副交感神経系の神経活動情報を含み、大動脈の揺動に伴う信号波形には交感神経活動の情報を含んでいる。 The present inventors have proposed techniques in Patent Documents 1 to 5 and the like for detecting a vibration generated on the body surface of the back in the upper body of a person by a biological signal measuring device and analyzing the state of the person. The sound / vibration information generated from the movement of the heart and aorta detected from the back of the human upper body is the pressure vibration generated from the movement of the heart and aorta, and the information on the systole and diastole of the ventricles and the auxiliary pump for circulation. It contains information on the elasticity of the blood vessel wall and information on the reflected wave. That is, the back body surface pulse wave (including Aartic Pulse Wave (APW)) near 1 Hz generated on the back surface from the movement of the heart and aorta, and the sound transmitted to the back side with the heartbeat (“pseudo heart sound” (this specification). In the book, the heart sound collected from the chest side is referred to as the "pseudo heart sound")), as opposed to the heart sound collected from the chest side. The signal waveform associated with the heart rate variability includes information on the nerve activity of the sympathetic nervous system and the parasympathetic nervous system, and the signal waveform associated with the rocking of the aorta contains information on the sympathetic nerve activity.
特許文献1では、採取した生体信号(音・振動情報)から抽出した1Hz近傍の背部体表脈波(APW)の時系列波形に所定の時間幅を適用してスライド計算を行って周波数傾きの時系列波形を求め、その変化の傾向から、例えば、振幅が増幅傾向にあるか、減衰傾向にあるかなどによって生体状態の推定を行っている。また、生体信号を周波数解析し、予め定めたULF帯域(極低周波帯域)からVLF帯域(超低周波帯域)に属する機能調整信号、疲労受容信号及び活動調整信号に相当する各周波数のパワースペクトルを求め、各パワースペクトルの時系列変化から人の状態を判定することも開示している。疲労受容信号は、通常の活動状態における疲労の進行度合いを示すため、これに併せて、機能調整信号や活動調整信号のパワースペクトルの優勢度合いを比較することにより、人の状態(交感神経優位の状態、副交感神経優位の状態など)を判定することができる。また、これら3つの信号に相当する周波数成分のパワースペクトルの値の合計を100とした際の各周波成分の分布率を時系列に求め、その分布率の時系列変化を利用して人の状態を判定することも開示している。 In Patent Document 1, a predetermined time width is applied to the time-series waveform of the back body surface pulse wave (APW) near 1 Hz extracted from the collected biological signal (sound / vibration information), and a slide calculation is performed to determine the frequency gradient. The time-series waveform is obtained, and the biological state is estimated from the tendency of the change, for example, whether the amplitude tends to be amplified or attenuated. In addition, the biological signal is frequency-analyzed, and the power spectrum of each frequency corresponding to the function adjustment signal, the fatigue acceptance signal, and the activity adjustment signal belonging to the predetermined ULF band (extremely low frequency band) to the VLF band (ultra-low frequency band). It is also disclosed that the state of a person is determined from the time-series changes of each power spectrum. Since the fatigue receptive signal indicates the degree of progression of fatigue in a normal active state, the human state (sympathetic nerve predominance) is obtained by comparing the degree of predominance of the power spectrum of the function adjustment signal and the activity adjustment signal. The state, parasympathetic predominant state, etc.) can be determined. In addition, the distribution rate of each frequency component when the sum of the power spectrum values of the frequency components corresponding to these three signals is set to 100 is obtained in a time series, and the time-series change of the distribution rate is used to determine the state of a person. Is also disclosed to determine.
特許文献2では、生体状態の定量化手法として、生体状態を体調マップ及び感覚マップとして表示する技術を提案している。これは、上記したAPWを周波数分析し、対象となる解析区間について、解析波形を両対数軸表示に表し、その解析波形を低周波帯域、中周波帯域、高周波帯域に分け、区分けした解析波形の傾きと、全体の解析波形の形とから一定の基準に基づいて解析波形の点数化を行い、それを座標軸にプロットしたものである。体調マップは、自律神経系の制御の様子を交感神経と副交感神経のバランスとして見たものであり、感覚マップは、体調マップに心拍変動の変化の様子を重畳させたものである。 Patent Document 2 proposes a technique for displaying a biological state as a physical condition map and a sensory map as a method for quantifying a biological state. In this method, the APW described above is frequency-analyzed, the analysis waveform is displayed on both logarithmic axes for the target analysis section, and the analysis waveform is divided into a low frequency band, a medium frequency band, and a high frequency band, and the analysis waveform is divided. The analysis waveform is scored based on a certain standard based on the inclination and the shape of the entire analysis waveform, and plotted on the coordinate axes. The physical condition map shows the state of control of the autonomic nervous system as the balance between the sympathetic nerve and the parasympathetic nerve, and the sensory map superimposes the state of changes in heart rate variability on the physical condition map.
特許文献3〜5では、恒常性維持機能レベルを判定する手段を開示している。恒常性維持機能レベル判定する手段は、周波数傾き時系列波形の微分波形の正負、周波数傾き時系列波形を積分した積分波形の正負、ゼロクロス法を利用した周波数傾き時系列波形とピーク検出法を利用した周波数傾き時系列波形をそれぞれ絶対値処理して得られた各周波数傾き時系列波形の絶対値等のうち、少なくとも1つ以上を用いて判定する。これらの組み合わせにより、恒常性維持機能のレベルがいずれに該当するかを求める。例えば、周波数傾きと積分値を用いて、所定以上の場合に「恒常性維持機能レベル1」と判定し、あるいは、微分値が所定位置以下であって、かつ、2つの絶対値のうちの「ピーク優位」の場合に「恒常性維持機能レベル4」と判定するように設定できる。これらの組み合わせ、判定の際の閾値等は多数の被験者のデータを統計処理して決定している。また、恒常性維持機能のレベルは、例えば、5〜7段階に分け、恒常性維持機能の優れる場合(集中度合いの高い場合等)から、恒常性維持機能が劣る場合(過緊張状態の場合、脇見運転等による集中力の低下等)を判定する。モニタに表示するに当たっては、5〜7段階のレベルを文字で表示したり、あるいは、中間レベル(普通の状態)以上の場合には、一括して恒常性維持機能が優れる場合と判定し、それよりも下の場合には一括して恒常性維持機能が劣る場合と判定し、それぞれについて、モニタに異なる色彩表示がなされるように設定したりすることも開示されている。 Patent Documents 3 to 5 disclose means for determining the homeostasis function level. The means for determining the level of the constancy maintenance function are the positive / negative of the differential waveform of the frequency gradient time series waveform, the positive / negative of the integrated waveform obtained by integrating the frequency gradient time series waveform, and the frequency gradient time series waveform using the zero cross method and the peak detection method. The determination is made using at least one or more of the absolute values of the frequency gradient time-series waveforms obtained by processing each of the frequency-slope time-series waveforms. By combining these, it is determined which level of homeostasis function corresponds to. For example, using the frequency slope and the integrated value, it is judged as "homeostasis maintenance function level 1" when it is equal to or more than a predetermined value, or the differential value is equal to or less than a predetermined position and "of the two absolute values". In the case of "peak dominance", it can be set to determine "homeostasis maintenance function level 4". The combination of these, the threshold value at the time of determination, etc. are determined by statistically processing the data of a large number of subjects. In addition, the level of homeostasis maintenance function is divided into 5 to 7 stages, for example, from the case where the homeostasis maintenance function is excellent (when the degree of concentration is high, etc.) to the case where the homeostasis maintenance function is inferior (in the case of hypertension). Judgment (decrease in concentration due to inattentive driving, etc.). When displaying on the monitor, the level of 5 to 7 levels is displayed in characters, or if it is above the intermediate level (normal state), it is judged that the homeostasis maintenance function is excellent at once. It is also disclosed that if the value is lower than the above, it is collectively determined that the homeostasis maintenance function is inferior, and the monitor is set to display different colors for each case.
非特許文献1では、指尖容積脈波情報に関し、交感神経の情報を反映するパワー値の周波数傾き時系列波形を求め、それを絶対値処理した積分値を疲労度として時系列にプロットし、これにより疲労曲線を描き、筋疲労を捉える技術が開示されている。非特許文献2では、エアパックセンサを用いて人の背部から取得した生体信号を同様の手法で演算処理して疲労曲線を描き、筋疲労を捉える技術が開示されている。すなわち、交感神経の情報を反映したパワー値の周波数傾き時系列波形(APWの場合にはゼロクロス法による周波数傾き時系列波形)を用いることによって筋疲労の状態を把握することができる。 In Non-Patent Document 1, regarding fingertip plethysmogram information, a frequency gradient time-series waveform of a power value that reflects sympathetic nerve information is obtained, and the integrated value obtained by processing the absolute value is plotted in time-series as the fatigue degree. A technique for drawing a fatigue curve and capturing muscle fatigue is disclosed. Non-Patent Document 2 discloses a technique for capturing muscle fatigue by arithmetically processing a biological signal acquired from the back of a person using an air pack sensor by the same method to draw a fatigue curve. That is, the state of muscle fatigue can be grasped by using the frequency gradient time series waveform of the power value reflecting the information of the sympathetic nerve (in the case of APW, the frequency gradient time series waveform by the zero cross method).
上記した技術は、いずれも、生体調節機能に関してゆらぎに起因する各要素を分析して人の状態を判定するものであるが、生体信号に対する演算処理がそれぞれ異なり、出力される判定結果として、入眠予兆のタイミングを判定したり、疲労の度合いを判定したり、恒常性維持機能レベルの変化を判定したり、それぞれの目的に応じたものとなっている。しかし、これらは、いずれも別々に出力される。特許文献4では、入眠予兆現象、切迫睡眠現象、覚低走行状態、恒常性維持機能レベル、初期疲労状態、気分判定など、生体調節機能のゆらぎに起因する各要素に関する複数の指標の時系列変化を1台の装置で判定し、それらを1つのモニタに出力する技術も開示しているが、いずれにしても、各指標の時系列変化を個別に判定していることに変わりない。 All of the above-mentioned techniques analyze each element caused by fluctuations in the biological regulation function to determine the state of a person, but the arithmetic processing for biological signals is different from each other, and as a result of the output determination, falling asleep The timing of the sign is judged, the degree of fatigue is judged, the change in the homeostatic function level is judged, and the like is according to each purpose. However, they are all output separately. In Patent Document 4, time-series changes of a plurality of indicators related to each element caused by fluctuations in bioregulatory functions, such as a sign of falling asleep, an imminent sleep phenomenon, a low-sensitivity running state, a homeostatic function level, an initial fatigue state, and a mood judgment. Although the technique of determining the above with one device and outputting them to one monitor is also disclosed, in any case, the time-series change of each index is determined individually.
ところで、人は疲労すると疲労感を感じるが、物事に集中して視野が狭くなっている場合など、実際に体に疲労が生じているにも拘わらず、疲労感として自覚しない場合がある。つまり、人が感じる疲労感は、体に生じている疲労とは必ずしも一致しない。疲労が生じる部位は主に自律神経の中枢である視床下部と前帯状回であり、その疲労を自覚する部位は眼窩前頭野であるが、モチベーションや達成感を司る脳の前頭葉の働きにより、眼窩前頭野で発した疲労感がマスキングされてしまうことが知られている。そのため、疲労感を自覚しない間に、疲労が蓄積してしまう場合があり、疲労感がマスキングされた状態を推定できることが望まれる。 By the way, when a person is tired, he / she feels tired, but when he / she concentrates on things and his / her field of vision is narrowed, he / she may not realize that he / she is tired even though he / she is actually tired. In other words, the feeling of fatigue that a person feels does not always match the fatigue that occurs in the body. The sites where fatigue occurs are mainly the hypothalamus and anterior cingulate gyrus, which are the centers of the autonomic nerves, and the site where the fatigue is noticed is the orbitofrontal cortex, but the orbitofrontal cortex, which controls motivation and a sense of accomplishment, works. It is known that the feeling of fatigue generated in the frontal area is masked. Therefore, fatigue may accumulate without being aware of the feeling of fatigue, and it is desirable to be able to estimate a state in which the feeling of fatigue is masked.
本発明は上記に鑑みなされたものであり、疲労感のマスキングが生じる状態を推定可能とすることにより、自覚なき疲労の蓄積を抑制につなげることができる技術を提供することを課題とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a technique capable of suppressing the accumulation of unconscious fatigue by making it possible to estimate a state in which masking of fatigue occurs.
上記課題を解決するため、本発明者が鋭意検討し、次の点に着目して本発明を完成するに至った。すなわち、人の上体背部から検出される心臓と大動脈の運動から生じる音・振動情報、特に、それらのうちの1Hz近傍の背部体表脈波(APW)は、血管の弾性情報や反射波の情報等を含んでいる。このため、背部体表脈波(APW)を解析して後述の周波数傾き時系列波形を求めることにより、生体調節機能要素である生体の総合的なゆらぎの情報を求めることができる。このゆらぎの情報の中で周波数毎の変動の様子を捉えると、周波数毎の分布率が脳波(θ波、α波、β波)のゆらぎの要素が反映された変動の仕方をとるため、その時系列波形を用いて解析することにより、脳波のどの周波数帯域が支配的なゆらぎなのかといったゆらぎの情報を捉えることができる。 In order to solve the above problems, the present inventor has diligently studied and completed the present invention by paying attention to the following points. That is, the sound / vibration information generated from the movement of the heart and aorta detected from the back of the upper body of a person, especially the back body surface pulse wave (APW) near 1 Hz among them, is the elastic information of blood vessels and the reflected wave. Contains information, etc. Therefore, by analyzing the back body surface pulse wave (APW) and obtaining the frequency gradient time-series waveform described later, it is possible to obtain information on the comprehensive fluctuation of the living body, which is a bioregulatory functional element. If we grasp the state of fluctuation for each frequency in this fluctuation information, the distribution rate for each frequency will take a fluctuation method that reflects the fluctuation element of the brain wave (θ wave, α wave, β wave), so at that time By analyzing using the sequence waveform, it is possible to capture information on fluctuations such as which frequency band of the brain wave is the dominant fluctuation.
また、ゼロクロス法による周波数傾き時系列波形が、自律神経系の支配するところにある一方で、脳波のゆらぎを反映しているところは、ゼロクロス法による周波数傾き時系列波形を周波数解析し、その中で、0.0017Hzに代表される機能調整信号、0.0035Hzに代表される疲労受容信号、0.0053Hzに代表される活動調整信号の3点の周波数成分のパワースペクトル比で示されるものであり、いわば周波数解析したパワースペクトルの形を表す3点の周波数成分の分布率は、その急変する部位を自律神経反応というよりも内分泌系の機能の発現を示す部位として捉えられると考えられる。 In addition, while the frequency gradient time series waveform by the zero cross method is dominated by the autonomic nervous system, the frequency gradient time series waveform by the zero cross method is frequency-analyzed in the place that reflects the fluctuation of the brain wave. It is shown by the power spectrum ratio of three frequency components of the function adjustment signal represented by 0.0017 Hz, the fatigue acceptance signal represented by 0.0035 Hz, and the activity adjustment signal represented by 0.0053 Hz. So to speak, the distribution rate of the three frequency components representing the shape of the power spectrum analyzed by frequency is considered to be regarded as the site showing the expression of the function of the endocrine system rather than the autonomic nerve reaction.
また、ゼロクロス法により求めた周波数傾き時系列波形は、絶対値処理することにより交感神経の発現の度合いを示し、ピーク検出法により求めた周波数傾き時系列波形は副交感神経の発現の度合いを示す。よって、これらを用いることで生体調節機能の発現の様子をより詳しく捉えることができる。例えば、ゼロクロス法により求めた周波数傾き時系列波形を絶対値処理し、これを積分することで人の疲労の度合いを示す疲労曲線が求められ、筋疲労の状態を把握できる。 The frequency gradient time-series waveform obtained by the zero-cross method indicates the degree of sympathetic nerve expression by absolute value processing, and the frequency gradient time-series waveform obtained by the peak detection method indicates the degree of parasympathetic nerve expression. Therefore, by using these, it is possible to grasp the state of expression of the bioregulatory function in more detail. For example, the frequency gradient time-series waveform obtained by the zero-cross method is subjected to absolute value processing and integrated to obtain a fatigue curve showing the degree of human fatigue, and the state of muscle fatigue can be grasped.
また、ゼロクロス法を用いた各周波数傾き時系列波形の微分波形の正負、ゼロクロス法又はピーク検出法の各周波数傾き時系列波形の絶対値等のうち、少なくとも1つ以上を用いることにより、恒常性維持機能レベルの変動の様子を捉えることができる。疲労曲線、恒常性維持機能レベルの時系列波形も、周波数傾き時系列波形から派生したものであり、自律神経系、脳機能等のゆらぎの情報を反映した指標となる。これに加え、肉体・精神疲労への関連性の高い指標(体調マップ、感覚マップ)、及び、感覚への関連性の高い指標(恒常性維持機能レベルの注意、警告に相当するレベルの頻度から求められる疲労として意識する感覚あるいは倦怠感等が生じている頻度)も求める。これらは、脳、自律神経系、内分泌系の各機能のゆらぎの様子を複数の観点から捉えているものであり、これらの複数種類のゆらぎの指標を組み合わせれば、疲労感のマスキングの生じる可能性の有無を推定できる可能性があると考えた。 In addition, homeostasis is achieved by using at least one of the positive and negative of the differential waveform of each frequency slope time series waveform using the zero cross method, the absolute value of each frequency slope time series waveform of the zero cross method or the peak detection method, and the like. It is possible to capture the state of fluctuations in the maintenance function level. The fatigue curve and the time-series waveform of the homeostatic function level are also derived from the frequency gradient time-series waveform, and serve as an index reflecting information on fluctuations in the autonomic nervous system, brain function, and the like. In addition to this, indicators that are highly relevant to physical and mental fatigue (physical condition map, sensory map) and indicators that are highly relevant to sensation (attention and warning of homeostatic function level) The frequency of consciousness or malaise as the required fatigue) is also required. These capture the fluctuations of the functions of the brain, autonomic nervous system, and endocrine system from multiple perspectives, and by combining these multiple types of fluctuation indicators, masking of fatigue can occur. We thought that it might be possible to estimate the presence or absence of sex.
すなわち、本発明の生体状態推定装置は、
人の背部に当接される生体信号測定装置から得られる生体信号を用いて、生体状態を推定する生体状態推定装置であって、
前記生体信号を分析して、自律神経機能、肉体・精神疲労又は感覚との関連性の高い指標を含む、生体調節機能に関与する複数の指標を求める生体調節機能要素判定手段と、
前記生体調節機能要素判定手段により求められた複数の指標を組み合わせて、前記生体状態として、疲労感のマスキングが生じている状態であるか否かを推定する疲労感推定手段と
を有することを特徴とする。
That is, the biological state estimation device of the present invention
A biological state estimation device that estimates a biological state using a biological signal obtained from a biological signal measuring device that comes into contact with the back of a person.
A means for determining a bioregulatory function element that analyzes the biological signal to obtain a plurality of indices involved in the bioregulatory function, including an index highly related to autonomic nerve function, physical / mental fatigue, or sensation.
It is characterized by having a fatigue feeling estimating means for estimating whether or not a fatigue feeling masking is occurring as the biological state by combining a plurality of indexes obtained by the bioregulatory functional element determining means. And.
前記疲労感推定手段は、
分析対象の前記生体信号についての前記自律神経機能への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、前記疲労感のマスキングが生じている状態と推定する第1推定手段と、
前記第1推定手段により前記疲労感のマスキングが生じている状態と推定されない分析対象の前記生体信号について、前記肉体・精神疲労への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、疲労感のマスキングが生じていない状態と推定する第2推定手段と、
前記第2推定手段において前記疲労感のマスキングが生じていない状態と推定されない分析対象の前記生体信号について、所定の基準に基づき、少なくとも、前記疲労感のマスキングが生じている状態及び前記疲労感のマスキングが生じていない状態のいずれかに分類する第3推定手段と
を有することが好ましい。
The fatigue estimation means is
The first estimation means for estimating that the masking of fatigue occurs when the time-series change of the index highly related to the autonomic nerve function of the biological signal to be analyzed satisfies a predetermined criterion. When,
With respect to the biological signal to be analyzed that is not presumed to be in a state where masking of the feeling of fatigue is caused by the first estimation means, the time-series change of the index highly related to physical / mental fatigue satisfies a predetermined criterion. In this case, the second estimation means for presuming that the masking of fatigue has not occurred, and
With respect to the biological signal to be analyzed that is not presumed to be in a state where the fatigue feeling is not masked by the second estimation means, at least in a state where the fatigue feeling masking is occurring and in the fatigue feeling, based on a predetermined standard. It is preferable to have a third estimation means for classifying into any of the states in which masking has not occurred.
本発明の生体状態推定方法は、人の背部に当接される生体信号測定装置から得られる生体信号を用いて、生体状態を推定する生体状態推定方法であって、
前記生体信号を分析して、自律神経機能、肉体・精神疲労又は感覚との関連性の高い指標を含む、生体調節機能に関与する複数の指標を求め、
前記複数の指標を組み合わせて、前記生体状態として、疲労感のマスキングが生じている状態であるか否かを推定する
ことを特徴とする。
The biological state estimation method of the present invention is a biological state estimation method for estimating a biological state by using a biological signal obtained from a biological signal measuring device that is in contact with the back of a person.
By analyzing the biological signals, a plurality of indicators involved in the bioregulatory function were obtained, including indicators highly related to autonomic nervous function, physical / mental fatigue, or sensation.
It is characterized in that it is estimated whether or not the fatigue masking is occurring as the biological state by combining the plurality of indexes.
本発明の生体状態推定方法は、分析対象の前記生体信号についての前記自律神経機能への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、前記疲労感のマスキングが生じている状態と推定する第1推定手順を実施し、
前記第1推定手順により前記疲労感のマスキングが生じている状態と推定されない分析対象の前記生体信号について、前記肉体・精神疲労への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、疲労感のマスキングが生じていない状態と推定する第2推定手順を実施し、
前記第2推定手順において前記疲労感のマスキングが生じていない状態と推定されない分析対象の前記生体信号について、所定の基準に基づき、少なくとも、前記疲労感のマスキングが生じている状態及び前記疲労感のマスキングが生じていない状態のいずれかに分類する第3推定手順を実施して、
前記疲労感のマスキングが生じている状態であるか否かを推定する構成とすることが好ましい。
In the biological state estimation method of the present invention, masking of the feeling of fatigue occurs when the time-series change of the index highly related to the autonomic nerve function of the biological signal to be analyzed satisfies a predetermined criterion. Perform the first estimation procedure to estimate the state of being present,
With respect to the biological signal to be analyzed that is not presumed to be in a state where masking of fatigue is generated by the first estimation procedure, the time-series change of the index highly related to physical / mental fatigue satisfies a predetermined criterion. In this case, the second estimation procedure for presuming that the masking of fatigue has not occurred is carried out.
With respect to the biological signal to be analyzed, which is not presumed to be in a state where masking of fatigue is not generated in the second estimation procedure, at least a state in which masking of fatigue is occurring and a state of fatigue, based on a predetermined standard. Perform a third estimation procedure to classify into one of the unmasked states,
It is preferable that the configuration is such that it is estimated whether or not the masking of the feeling of fatigue is occurring.
本発明のコンピュータプログラムは、生体状態推定装置としてのコンピュータに、人の背部に当接される生体信号測定装置から得られる生体信号を分析させ、生体状態を推定する手順を実行させるコンピュータプログラムであって、
前記生体信号を分析して、自律神経機能、肉体・精神疲労又は感覚との関連性の高い指標を含む、生体調節機能に関与する複数の指標を求める手順と、
前記複数の指標を組み合わせて、前記生体状態として、疲労感をマスキングして疲労感のマスキングが生じている状態であるか否かを推定する手順と
を実行させる。
The computer program of the present invention is a computer program that causes a computer as a biological state estimation device to analyze a biological signal obtained from a biological signal measuring device that is in contact with the back of a person and execute a procedure for estimating a biological state. hand,
A procedure for analyzing the biological signals to obtain a plurality of indicators involved in the biological regulation function, including indicators highly related to autonomic nervous function, physical / mental fatigue, or sensation.
By combining the plurality of indexes, the procedure of masking the feeling of fatigue and estimating whether or not the masking of the feeling of fatigue is occurring is executed as the biological state.
本発明のコンピュータプログラムは、前記疲労感のマスキングが生じている状態であるか否かを推定する手順では、
分析対象の前記生体信号についての前記自律神経機能への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、前記疲労感のマスキングが生じている状態と推定する第1推定手順を実行させ、
前記第1推定手順により前記疲労感のマスキングが生じている状態と推定されない分析対象の前記生体信号について、前記肉体・精神疲労への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、疲労感のマスキングが生じていない状態と推定する第2推定手順を実行させ、
前記第2推定手順において前記疲労感のマスキングが生じていない状態と推定されない分析対象の前記生体信号について、所定の基準に基づき、少なくとも、前記疲労感のマスキングが生じている状態及び前記疲労感のマスキングが生じていない状態のいずれかに分類する第3推定手順を実行させる構成とすることが好ましい。
The computer program of the present invention is a procedure for estimating whether or not the fatigue masking is occurring.
The first estimation procedure for estimating that the masking of fatigue occurs when the time-series change of the index highly related to the autonomic nerve function of the biological signal to be analyzed satisfies a predetermined criterion. To execute,
With respect to the biological signal to be analyzed that is not presumed to be in a state where masking of fatigue is generated by the first estimation procedure, the time-series change of the index highly related to physical / mental fatigue satisfies a predetermined criterion. In this case, the second estimation procedure for presuming that the masking of fatigue is not occurring is executed.
With respect to the biological signal to be analyzed, which is not presumed to be in a state where masking of fatigue is not generated in the second estimation procedure, at least a state in which masking of fatigue is occurring and a state of fatigue, based on a predetermined standard. It is preferable that the configuration is such that the third estimation procedure for classifying into any of the states in which masking has not occurred is executed.
また、本発明は、生体状態推定装置としてのコンピュータに、人の背部に当接される生体信号測定装置から得られる生体信号を分析させ、生体状態を推定する手順を実行させる前記のコンピュータプログラムが記録されたコンピュータ読み取り可能な記録媒体を提供する。 Further, according to the present invention, the computer program described above causes a computer as a biological state estimation device to analyze a biological signal obtained from a biological signal measuring device abutting on the back of a person and execute a procedure for estimating a biological state. Provided is a computer-readable recording medium on which a record is recorded.
本発明によれば、自律神経機能、肉体・精神疲労又は感覚との関連性の高いゆらぎに起因する指標を含む、生体調節機能要素の状態の変動を示す複数の指標を組み合わせているため、疲労感のマスキングの生じる可能性を捉えることができる。 According to the present invention, fatigue is caused by combining a plurality of indicators indicating changes in the state of bioregulatory functional elements, including indicators caused by fluctuations highly related to autonomic nervous function, physical / mental fatigue, or sensation. It is possible to grasp the possibility of masking of sensation.
以下、図面に示した本発明の実施形態に基づき、本発明をさらに詳細に説明する。本発明において採取する生体信号は、背部から採取される音・振動情報(以下、「背部音・振動情報」)である。背部音・振動情報には、上記のように、人の上体背部から検出される心臓と大動脈の運動から生じる音・振動情報であり、心室の収縮期及び拡張期の情報と、血液循環の補助ポンプとなる血管壁の弾性情報及び血圧による弾性情報並びに反射波の情報、すなわち、背部体表脈波(APW)や疑似心音情報を含んでいる。また、心拍変動に伴う信号波形は交感神経系及び副交感神経系の神経活動情報(交感神経の代償作用を含んだ副交感神経系の活動情報)を含み、大動脈の揺動に伴う信号波形には交感神経活動の情報や内分泌系の情報を含んでいるため、異なる観点から生体調節機能要素を判定するのに適している。 Hereinafter, the present invention will be described in more detail based on the embodiments of the present invention shown in the drawings. The biological signal collected in the present invention is sound / vibration information (hereinafter, “back sound / vibration information”) collected from the back. As described above, the back sound / vibration information includes sound / vibration information generated from the movement of the heart and aorta detected from the back of the upper body of a person, and information on systole and diastole of the ventricles and blood circulation. It includes elastic information of the blood vessel wall serving as an auxiliary pump, elastic information due to blood pressure, and reflected wave information, that is, back body surface pulse wave (APW) and pseudo heart sound information. In addition, the signal waveform associated with heart rate variability includes nerve activity information of the sympathetic nervous system and the parasympathetic nervous system (activity information of the parasympathetic nervous system including the compensatory action of the sympathetic nerve), and the signal waveform associated with the rocking of the aorta is sympathetic. Since it contains information on nervous activity and information on the endocrine system, it is suitable for determining bioregulatory functional elements from different viewpoints.
生体信号を採取するための生体信号測定装置は、例えば、圧力センサを用いることも可能であるが、好ましくは、(株)デルタツーリング製の居眠り運転警告装置(スリープバスター(登録商標))で使用されている生体信号測定装置1を用いる。図1は生体信号測定装置1の概略構成を示したものである。この生体信号測定装置1は、乗物の運転席に組み込んで使用することができ、手指を拘束することなく生体信号を採取できる。 As the biological signal measuring device for collecting biological signals, for example, a pressure sensor can be used, but it is preferably used in a sleep driving warning device (Sleep Buster (registered trademark)) manufactured by Delta Touring Co., Ltd. The biological signal measuring device 1 used is used. FIG. 1 shows a schematic configuration of the biological signal measuring device 1. This biological signal measuring device 1 can be used by being incorporated in the driver's seat of a vehicle, and can collect biological signals without restraining fingers.
生体信号測定装置1を簡単に説明すると、図1(a),(b)に示したように、上層側から順に、第一層11、第二層12及び第三層13が積層された三層構造からなり、三次元立体編物等からなる第一層11を生体信号の検出対象である人体側に位置させて用いられる。従って、人体の体幹背部からの生体信号、特に、心室、心房、大血管の振動に伴って発生する生体音(体幹直接音ないしは生体音響信号)を含む心臓・血管系の音・振動情報(背部体表脈波(APWを含む))は、生体信号入力系である第一層11にまず伝播される。第二層12は、第一層11から伝播される生体信号、特に心臓・血管系の音・振動を共鳴現象又はうなり現象によって強調させる共鳴層として機能し、ビーズ発泡体等からなる筐体121、固有振動子の機能を果たす三次元立体編物122、膜振動を生じるフィルム123を有して構成される。第二層12内において、マイクロフォンセンサ14が配設され、音・振動情報を検出する。第三層13は、第二層12を介して第一層11の反対側に積層され、外部からの音・振動入力を低減する。 Briefly explaining the biological signal measuring device 1, as shown in FIGS. 1A and 1B, the first layer 11, the second layer 12, and the third layer 13 are laminated in this order from the upper layer side. The first layer 11 having a layered structure and made of a three-dimensional three-dimensional knitted fabric or the like is used by being positioned on the human body side, which is a target for detecting a biological signal. Therefore, the sound / vibration information of the heart / vascular system including the biological signal from the back of the trunk of the human body, particularly the biological sound (direct trunk sound or bioacoustic signal) generated by the vibration of the ventricles, atrium, and large blood vessels. (Back body surface pulse wave (including APW)) is first propagated to the first layer 11 which is a biological signal input system. The second layer 12 functions as a resonance layer that emphasizes biological signals propagated from the first layer 11, particularly sounds and vibrations of the heart and vascular system by a resonance phenomenon or a beat phenomenon, and is a housing 121 made of bead foam or the like. , A three-dimensional three-dimensional knitted fabric 122 that functions as a natural oscillator, and a film 123 that causes membrane vibration. A microphone sensor 14 is arranged in the second layer 12 to detect sound / vibration information. The third layer 13 is laminated on the opposite side of the first layer 11 via the second layer 12, and reduces sound / vibration input from the outside.
次に、本実施形態の生体状態推定装置100の構成について図2に基づいて説明する。生体状態推定装置100は、生体調節機能要素判定手段200及び疲労感推定手段300を有して構成されている。生体状態推定装置100は、コンピュータ(マイクロコンピュータ等も含む)から構成され、コンピュータを、生体調節機能要素判定手段200及び疲労感推定手段300等として機能させる手順を実行させるコンピュータプログラムが記憶部に記憶されている。また、生体状態推定装置100は、生体調節機能要素判定手段200及び疲労感推定手段300等を、コンピュータプログラムにより所定の手順で動作する電子回路である生体調節要素判定回路及び疲労感推定回路等として構成することもできる。なお、以下の説明において、生体調節機能要素判定手段200及び疲労感推定手段300以外で「手段」が付されて表現された構成も、電子回路部品として構成することが可能であることはもちろんである。 Next, the configuration of the biological state estimation device 100 of the present embodiment will be described with reference to FIG. The biological state estimation device 100 includes a bioregulatory functional element determining means 200 and a fatigue feeling estimating means 300. The biological state estimation device 100 is composed of a computer (including a microcomputer and the like), and a computer program for executing a procedure for causing the computer to function as the bioregulatory functional element determination means 200, the fatigue feeling estimation means 300, and the like is stored in the storage unit. Has been done. Further, the biological state estimation device 100 uses the biological adjustment function element determination means 200, the fatigue feeling estimation means 300, and the like as a biological adjustment element determination circuit, a fatigue feeling estimation circuit, and the like, which are electronic circuits that operate in a predetermined procedure by a computer program. It can also be configured. In the following description, it goes without saying that a configuration expressed by adding a "means" other than the bioregulatory functional element determining means 200 and the fatigue feeling estimating means 300 can also be configured as an electronic circuit component. is there.
また、コンピュータプログラムは、記録媒体に記憶させてもよい。この記録媒体を用いれば、例えば上記コンピュータに上記プログラムをインストールすることができる。ここで、上記プログラムを記憶した記録媒体は、非一過性の記録媒体であっても良い。非一過性の記録媒体は特に限定されないが、例えば フレキシブルディスク、ハードディスク、CD−ROM、MO(光磁気ディスク)、DVD−ROM、メモリカードなどの記録媒体が挙げられる。また、通信回線を通じて上記プログラムを上記コンピュータに伝送してインストールすることも可能である。 Further, the computer program may be stored in a recording medium. By using this recording medium, for example, the program can be installed on the computer. Here, the recording medium in which the above program is stored may be a non-transient recording medium. Non-transient recording media are not particularly limited, and examples thereof include recording media such as flexible disks, hard disks, CD-ROMs, MOs (magneto-optical disks), DVD-ROMs, and memory cards. It is also possible to transmit the program to the computer through a communication line and install it.
生体調節機能要素判定手段200は、本実施形態では、上記の生体信号測定装置1により測定された生体信号である背部音・振動情報を分析し、人の基礎的な体調の推定に用いる生体調節機能要素に関する複数種類の指標を、それぞれ予め設定された所定の判定時間毎に算出してその時系列変化を求める。 In the present embodiment, the bioregulatory functional element determining means 200 analyzes back sound / vibration information which is a biological signal measured by the biological signal measuring device 1 described above, and bioregulates used for estimating the basic physical condition of a person. A plurality of types of indexes related to the functional element are calculated for each predetermined determination time set in advance, and the time-series change is obtained.
生体調節機能要素判定手段200において判定される複数種類の生体調節機能要素は限定されるものではないが、少なくとも、脳機能や自律神経機能への関連性の高い指標、肉体・精神疲労への関連性の高い指標、及び、感覚への関連性の高い指標を含むものであることが好ましい。これらは、人の恒常性維持機能に影響を与える脳波のゆらぎの変動の様子、あるいは、体温調節機能に代表される生体調節機能が仕事をする様子を示す指標であり、体調により各調節機能に与える影響が大きいためである。 The plurality of types of bioregulatory functional elements determined by the bioregulatory functional element determining means 200 are not limited, but at least an index highly related to brain function and autonomic nerve function, and related to physical / mental fatigue. It is preferable that the index contains a highly sexual index and an index having a high sensation relevance. These are indicators of fluctuations in brain wave fluctuations that affect a person's homeostatic function, or how bioregulatory functions such as thermoregulatory functions work, and depending on the physical condition, each regulatory function may be affected. This is because it has a large impact.
脳機能や自律神経機能への関連性の高い指標としては、例えば、採取した生体信号を処理して得られる周波数傾きの時系列波形、上記従来技術の項で説明した3つの信号の分布率の時系列波形、疲労曲線、恒常性維持機能レベルの判定の時系列の変動が挙げられる。周波数傾きの時系列波形は、恒常性維持機能の調節作用のベースにあるものはゆらぎを示すものであり、そのゆらぎは二律背反性のある機能のバランスをうまく調整し、人の自律神経機能との関連性を特に高く示している。これは統計的な手法による裏付けがなされていることである。分布率から求められた各周波数帯域の時系列波形は、ゆらぎのリズムに間接的に関与する脳波の種類(θ波、α波、β波)に対応し、人の脳機能及び自律神経機能に加え、内分泌系の調節機能との関連性を高く示している。恒常性は、内分泌系、自律神経系など様々な調節システムによって保たれるため、そのレベルの変動は、脳、自律神経系及び内分泌系のゆらぎによる調節性能とも深く関連している。 As indexes highly related to brain function and autonomic nerve function, for example, a time-series waveform of frequency gradient obtained by processing a collected biological signal, and a distribution rate of three signals described in the above-mentioned prior art section. Time-series waveforms, fatigue curves, and time-series fluctuations in determining the homeostatic function level can be mentioned. The time-series waveform of the frequency gradient shows fluctuations that are the basis of the regulatory action of the homeostatic function, and the fluctuations adjust the balance of the antinomy functions well and match with the human autonomic nervous function. The relevance is particularly high. This is supported by statistical methods. The time-series waveform of each frequency band obtained from the distribution rate corresponds to the types of brain waves (θ wave, α wave, β wave) indirectly involved in the rhythm of fluctuations, and corresponds to human brain function and autonomic nerve function. In addition, it is highly associated with the regulatory function of the endocrine system. Since homeostasis is maintained by various regulatory systems such as the endocrine system and the autonomic nervous system, fluctuations in its level are closely related to the regulatory performance due to fluctuations in the brain, autonomic nervous system and endocrine system.
生体調節機能要素判定手段200は、上記の脳機能、自律神経機能及び内分泌系のゆらぎの変動の仕方を捉える指標を求める演算手段として、周波数傾きの時系列波形を求める周波数傾き時系列波形演算手段210、分布率を求める分布率演算手段220、疲労曲線を求める疲労曲線演算手段230、及び恒常性維持機能レベルを求める恒常性維持機能レベル演算手段240とを有している。 The bioregulatory functional element determining means 200 is a frequency gradient time-series waveform calculation means for obtaining a time-series waveform of a frequency gradient as a calculation means for obtaining an index for capturing a fluctuation of the above-mentioned brain function, autonomic nerve function, and endocrine system fluctuation. It has 210, a distribution rate calculation means 220 for obtaining a distribution rate, a fatigue curve calculation means 230 for obtaining a fatigue curve, and a homeostasis maintenance function level calculation means 240 for obtaining a homeostasis maintenance function level.
周波数傾き時系列波形演算手段210は、生体信号測定装置1のセンサ14から得られる背部音・振動情報をフィルタリング処理した1Hz近傍の背部体表脈波(APW)の時系列波形から周波数の時系列波形を求めた後、周波数の時系列波形をスライド計算して周波数傾き時系列波形を求める(図3(a),(b)参照)。周波数傾き時系列波形演算手段210は、本発明者らによる上記特許文献1等に開示されているように、背部体表脈波(APW)の時系列波形において、正から負に切り替わる点(ゼロクロス点)を用いる手法(ゼロクロス法)と、背部体表脈波(APW)の時系列波形を平滑化微分して極大値(ピーク点)を用いて時系列波形を求める方法(ピーク検出法)の2つの方法がある。 The frequency gradient time-series waveform calculation means 210 is a time-series of frequencies from the time-series waveform of the back body surface pulse wave (APW) near 1 Hz obtained by filtering the back sound / vibration information obtained from the sensor 14 of the biological signal measuring device 1. After obtaining the waveform, the time-series waveform of the frequency is slide-calculated to obtain the frequency gradient time-series waveform (see FIGS. 3A and 3B). The frequency gradient time-series waveform calculation means 210 switches from positive to negative in the time-series waveform of the back body surface pulse wave (APW), as disclosed in Patent Document 1 and the like by the present inventors (zero cross). A method using points (zero cross method) and a method of smoothing and differentiating the time series waveform of the back body surface pulse wave (APW) and obtaining the time series waveform using the maximum value (peak point) (peak detection method). There are two methods.
ゼロクロス法では、ゼロクロス点を求めたならば、それを例えば5秒毎に切り分け、その5秒間に含まれる時系列波形のゼロクロス点間の時間間隔の逆数を個別周波数fとして求め、その5秒間における個別周波数fの平均値を当該5秒間の周波数Fの値として採用する。そして、この5秒毎に得られる周波数Fを時系列にプロットすることにより、周波数の変動の時系列波形を求める。 In the zero-cross method, if the zero-cross point is obtained, it is divided into, for example, every 5 seconds, the reciprocal of the time interval between the zero-cross points of the time-series waveform included in the 5 seconds is obtained as the individual frequency f, and the zero-cross point is obtained in that 5 seconds. The average value of the individual frequencies f is adopted as the value of the frequency F for the 5 seconds. Then, by plotting the frequency F obtained every 5 seconds in a time series, the time-series waveform of the frequency fluctuation is obtained.
ピーク検出法では、背部体表脈波(APW)の上記時系列波形を、例えば、SavitzkyとGolayによる平滑化微分法により極大値を求める。次に、例えば5秒ごとに極大値を切り分け、その5秒間に含まれる時系列波形の極大値間の時間間隔の逆数を個別周波数fとして求め、その5秒間における個別周波数fの平均値を当該5秒間の周波数Fの値として採用する。そして、この5秒毎に得られる周波数Fを時系列にプロットすることにより、周波数の変動の時系列波形を求める。 In the peak detection method, the maximum value of the time-series waveform of the back body surface pulse wave (APW) is obtained by, for example, a smoothing differential method using Savitzky and Golay. Next, for example, the maximum value is divided every 5 seconds, the reciprocal of the time interval between the maximum values of the time series waveform included in the 5 seconds is obtained as the individual frequency f, and the average value of the individual frequencies f in the 5 seconds is the relevant value. It is adopted as the value of frequency F for 5 seconds. Then, by plotting the frequency F obtained every 5 seconds in a time series, the time-series waveform of the frequency fluctuation is obtained.
周波数傾き時系列波形演算手段210は、ゼロクロス法又はピーク検出法により求められた周波数の変動の時系列波形から、所定のオーバーラップ時間(例えば18秒)で所定の時間幅(例えば180秒)の時間窓を設定し、時間窓毎に最小二乗法により周波数の傾きを求め、その傾きの時系列波形を出力する。このスライド計算を順次繰り返し、APWの周波数の傾きの時系列変化を周波数傾き時系列波形として出力する。 The frequency gradient time series waveform calculation means 210 has a predetermined overlap time (for example, 18 seconds) and a predetermined time width (for example, 180 seconds) from the time series waveform of the frequency fluctuation obtained by the zero cross method or the peak detection method. A time window is set, the frequency gradient is obtained for each time window by the minimum square method, and the time series waveform of the gradient is output. This slide calculation is sequentially repeated, and the time-series change of the frequency slope of the APW is output as the frequency slope time-series waveform.
背部体表脈波(APW)は、中枢系である心臓の制御の様子を主として含む生体信号、すなわち、動脈の交感神経支配の様子、並びに、交感神経系と副交感神経系の出現情報を含む生体信号であり、ゼロクロス法により求めた周波数傾き時系列波形(図3(a),(b)において「0x」と表示した波形)は、心臓の制御の状態により関連しており、交感神経の出現状態を反映しているが、ピーク検出法により求めた周波数傾き時系列波形(図3(a),(b)において「Peak」と表示した波形)は、心拍変動により関連している。従って、自律神経機能の状態をより明確に把握するためには、ゼロクロス法を用いて求めた周波数傾き時系列波形を用いることが好ましい。 The dorsal body surface waveform (APW) is a biological signal that mainly includes the state of control of the heart, which is the central system, that is, the state of sympathetic innervation of the artery, and the appearance information of the sympathetic nervous system and the parasympathetic nervous system. It is a signal, and the frequency gradient time-series waveform obtained by the zero-cross method (the waveform displayed as "0x" in FIGS. 3A and 3B) is more related to the state of control of the heart, and the appearance of sympathetic nerves. Although the state is reflected, the frequency gradient time-series waveform obtained by the peak detection method (the waveform displayed as "Peek" in FIGS. 3A and 3B) is more related to the heart rate variability. Therefore, in order to grasp the state of autonomic nerve function more clearly, it is preferable to use the frequency gradient time series waveform obtained by the zero cross method.
交感神経の活動は、血管弾性や血管径に影響を与え、さらに、血管壁からの反射波の影響が、人の背部から検出される音・振動情報に含まれる疑似心音情報(背部から検出されるため、心臓から背部表面までの間の筋肉、皮膚等により20Hz近傍の信号として検出される)の疑似I音(心音I音に相当)と疑似II音(心音II音に相当)の間の波形成分に重畳される。これが、ゼロクロス法におけるゼロクロス点間の幅と、ピーク検出法におけるピーク点間の幅とを異ならせる理由であり、ゼロクロス法では反射波の影響を受けた周期となっている。よって、ゼロクロス法による周波数傾き時系列波形を見ることで交感神経の情報を捉えることができる。
一方、ピーク値は上記のように心拍変動の情報を反映しているが、心拍変動は主に副交感神経によって制御されている。そのため、ピーク値を見ると副交感神経の情報を捉えることができる。
The activity of the sympathetic nerve affects the vascular elasticity and the vascular diameter, and the influence of the reflected wave from the vascular wall is the pseudo heart sound information (detected from the back) included in the sound / vibration information detected from the back of a person. Therefore, between the pseudo I sound (corresponding to the heart sound I sound) and the pseudo II sound (corresponding to the heart sound II sound) of the muscle, skin, etc. between the heart and the back surface as a signal near 20 Hz. It is superimposed on the waveform component. This is the reason why the width between the zero cross points in the zero cross method and the width between the peak points in the peak detection method are different, and in the zero cross method, the period is affected by the reflected wave. Therefore, sympathetic nerve information can be captured by observing the frequency gradient time-series waveform by the zero-cross method.
On the other hand, the peak value reflects the heart rate variability information as described above, but the heart rate variability is mainly controlled by the parasympathetic nerve. Therefore, the parasympathetic nerve information can be captured by looking at the peak value.
周波数傾き時系列波形演算手段210により得られるゼロクロス法による周波数傾き時系列波形は、睡眠前の所定のタイミングで眠気に対する抵抗として生じる交感神経活動の一時的亢進に伴って振幅が拡大し、長周期化する傾向を示した場合に、入眠予兆現象の指標と捉えられることが知られている(特許文献4参照)。また、入眠予兆現象を示す波形が出現した後、波形が収束傾向を示し、その後、より長周期の大きな変動ゆらぎを示すと、その長周期のゆらぎを示し始めたポイントが、入眠直前の切迫睡眠現象を示す指標と捉えられることが知られている。 Frequency gradient time series waveform The frequency gradient time series waveform obtained by the zero cross method obtained by the calculation means 210 expands in amplitude with a temporary increase in sympathetic nerve activity that occurs as resistance to drowsiness at a predetermined timing before sleep, and has a long period. It is known that when it shows a tendency to become sleepy, it can be regarded as an index of a sign of falling asleep (see Patent Document 4). In addition, after the appearance of a waveform showing a sign of falling asleep, the waveform shows a tendency to converge, and then when a large fluctuation with a longer cycle is shown, the point at which the fluctuation of the long cycle begins to be shown is the imminent sleep immediately before falling asleep. It is known that it can be regarded as an index showing a phenomenon.
分布率演算手段220は、まず、周波数傾き時系列波形演算手段210から得られる周波数傾き時系列波形をそれぞれ周波数分析して、心循環系のゆらぎの特性が切り替わる周波数である上記の0.0033Hzよりも低い周波数の機能調整信号、機能調整信号よりも高い周波数の疲労受容信号、及び疲労受容信号よりも高い周波数の活動調整信号に相当するULF帯域からVLF帯域に属する各周波数成分を抜き出す。次に、これらの周波数成分のそれぞれの分布率を時系列に求める。すなわち、3つの周波数成分のパワースペクトルの値の合計を1とした際の各周波数成分の割合を分布率として時系列に求める(図4参照)。 The distribution rate calculation means 220 first frequency-analyzes each of the frequency gradient time-series waveforms obtained from the frequency gradient time-series waveform calculation means 210, and starts from the above 0.0033 Hz, which is the frequency at which the characteristics of the fluctuation of the cardiovascular system are switched. Each frequency component belonging to the VLF band is extracted from the ULF band corresponding to the function adjustment signal having a low frequency, the fatigue reception signal having a frequency higher than the function adjustment signal, and the activity adjustment signal having a frequency higher than the fatigue reception signal. Next, the distribution ratio of each of these frequency components is obtained in time series. That is, the ratio of each frequency component when the sum of the power spectrum values of the three frequency components is set to 1 is obtained in time series as the distribution rate (see FIG. 4).
本実施形態では、図4に示したように、機能調整信号として0.0017Hzの周波数成分を用い、疲労受容信号として0.0035Hzの周波数成分を用い、活動調整信号として0.0053Hzの周波数成分を用いている。心疾患の一つである心房細動において、心・循環系のゆらぎの特性が切り替わる周波数は、0.0033Hzと言われており、0.0033Hz近傍のゆらぎの変化を捉えることで、自律神経の活動、恒常性維持に関する情報が得られる。また、0.0033Hz近傍以下と0.0053Hz近傍の周波数帯は、主に体温調節に関連するもので、0.01〜0.04Hzの周波数帯は自律神経の制御に関連するものと言われている。そして、本発明者らが実際に、生体信号に内在するこれら低周波のゆらぎを算出する周波数傾き時系列波形を求め、それを周波数解析したところ、0.0033Hzよりも低周波の0.0017Hz、0.0033Hz近傍の0.0035Hzを中心とする周波数帯のゆらぎと、さらにこれらこの2つ以外に、0.0053Hzを中心とする周波数帯のゆらぎがあることが確認できた。但し、各信号の周波数成分は個人差等により調整することも可能であり、機能調整信号は0.0033Hz未満の範囲で好ましくは0.001〜0.0027Hzの範囲で、疲労受容信号は0.002〜0.0052Hzの範囲で、活動調整信号は0.004〜0.007Hzの範囲で調整して用いることができる。 In the present embodiment, as shown in FIG. 4, a frequency component of 0.0017 Hz is used as the function adjustment signal, a frequency component of 0.0035 Hz is used as the fatigue acceptance signal, and a frequency component of 0.0053 Hz is used as the activity adjustment signal. I am using it. In atrial fibrillation, which is one of the heart diseases, the frequency at which the characteristics of fluctuations in the heart and circulatory system are switched is said to be 0.0033 Hz, and by capturing changes in fluctuations near 0.0033 Hz, the autonomic nerves Information on activities and homeostasis can be obtained. Further, it is said that the frequency bands below 0.0033 Hz and around 0.0053 Hz are mainly related to thermoregulation, and the frequency bands 0.01 to 0.04 Hz are related to the control of autonomic nerves. There is. Then, the present inventors actually obtained a frequency gradient time-series waveform for calculating these low-frequency fluctuations inherent in the biological signal, and when the frequency analysis was performed, the frequency was 0.0017 Hz, which is lower than 0.0033 Hz. It was confirmed that there are fluctuations in the frequency band centered on 0.0035 Hz in the vicinity of 0.0033 Hz, and in addition to these two, there are fluctuations in the frequency band centered on 0.0053 Hz. However, the frequency component of each signal can be adjusted according to individual differences, etc., the function adjustment signal is in the range of less than 0.0033 Hz, preferably in the range of 0.001 to 0.0027 Hz, and the fatigue acceptance signal is 0. The activity adjustment signal can be adjusted and used in the range of 002 to 0.0052 Hz and the range of 0.004 to 0.007 Hz.
分布率演算手段220により求められる分布率の時系列変化は、特許文献2に示されているように、例えば、0.0017Hzの分布率が急低下し、かつ0.0053Hzの分布率が急上昇する変化を示す時点を切迫睡眠現象の出現時点と捉えることができる。 As for the time-series change of the distribution rate obtained by the distribution rate calculation means 220, for example, the distribution rate of 0.0017 Hz drops sharply and the distribution rate of 0.0053 Hz rises sharply, as shown in Patent Document 2. The time point of change can be regarded as the time point of the imminent sleep phenomenon.
疲労曲線演算手段230は、本発明者らの特開2009−22610号公報に開示されている手段であり、ゼロクロス法による求めた周波数傾き時系列波形を絶対値処理して積分値を算出し、この積分値を疲労度として所定の判定時間毎に求めて、時間に対応してプロットし、図5に示したような疲労曲線を求める手段である。筋活動は、筋肉の収縮又は弛緩であり、交感神経の情報を反映しているゼロクロス法による周波数傾き時系列波形の積分情報である疲労曲線は筋活動との相関性が高い(非特許文献1参照)。よって、疲労曲線では、その傾きが所定以上変動するポイントが特異点を示しており、各特異点は、増大する疲労に対応して、筋活動が生じたことを示すポイントや血流量が増大したポイントを示している。 The fatigue curve calculation means 230 is a means disclosed in Japanese Patent Application Laid-Open No. 2009-22610 of the present inventors, and calculates an integrated value by performing absolute value processing on a frequency gradient time-series waveform obtained by the zero-cross method. This is a means for obtaining the integrated value as the degree of fatigue for each predetermined determination time, plotting it corresponding to the time, and obtaining the fatigue curve as shown in FIG. Muscle activity is muscle contraction or relaxation, and the fatigue curve, which is the integral information of the frequency gradient time series waveform by the zero cross method that reflects the information of the sympathetic nerve, has a high correlation with muscle activity (Non-Patent Document 1). reference). Therefore, in the fatigue curve, points where the slope fluctuates by a predetermined value or more indicate singular points, and each singular point indicates that muscle activity has occurred and blood flow has increased in response to the increased fatigue. It shows the point.
恒常性維持機能レベル判定手段240は、特許文献3に開示の技術に基づくものであり、周波数傾き時系列波形演算手段210により得られるゼロクロス法を用いた各周波数傾き時系列波形の微分波形の正負、周波数傾き時系列波形を積分した積分波形の正負、ゼロクロス法を利用した周波数傾き時系列波形とピーク検出法を利用した周波数傾き時系列波形をそれぞれ絶対値処理して得られた各周波数傾き時系列波形の絶対値等のうち、少なくとも1つ以上を用いて判定する。これらの組み合わせにより、恒常性維持機能のレベルがいずれに該当するかを求める。例えば、周波数傾きと積分値を用いて、所定以上の場合に「恒常性維持機能レベル1」と判定し、あるいは、微分値が所定位置以下であって、かつ、2つの絶対値のうちの「ピーク優位」の場合に「恒常性維持機能レベル4」と判定するように設定できる。そして、例えば、上記の条件を様々に組み合わせ、人の状態との相関をとり、レベル1〜3と判定される場合を、普通から良好な状態、レベル4〜6と判定される場合を、注意の必要な状態と判定する。また、入眠予兆や切迫睡眠の兆候が生じているなどと判定された場合には、直ちに警告を要するレベルとして、それぞれの状態によりレベル7〜11といった指標を付与する。株式会社デルタツーリング製、商品名「スリープバスター」では、恒常性維持機能レベル判定手段240による判定結果が、例えば、図6に示したように表示されるように設定されている。 The constancy maintenance function level determining means 240 is based on the technique disclosed in Patent Document 3, and the positive and negative of the differential waveform of each frequency slope time series waveform using the zero cross method obtained by the frequency slope time series waveform calculation means 210. , Positive / negative of the integrated waveform obtained by integrating the frequency slope time series waveform, frequency slope time series waveform using the zero cross method and frequency slope time series waveform using the peak detection method are processed by absolute values, respectively. Judgment is made using at least one or more of the absolute values of the series waveforms. By combining these, it is determined which level of homeostasis function corresponds to. For example, using the frequency slope and the integrated value, it is judged as "homeostasis maintenance function level 1" when it is equal to or more than a predetermined value, or the differential value is equal to or less than a predetermined position and "of the two absolute values". In the case of "peak dominance", it can be set to determine "homeostasis maintenance function level 4". Then, for example, by combining the above conditions in various ways and correlating with the human condition, attention should be paid to the case where it is determined to be level 1 to 3 and the case where it is determined to be from normal to good condition and level 4 to 6. Judged as a necessary state. In addition, when it is determined that a sign of falling asleep or a sign of imminent sleep is occurring, an index such as level 7 to 11 is given as a level requiring immediate warning, depending on each state. In the product name "Sleep Buster" manufactured by Delta Touring Co., Ltd., the determination result by the homeostasis maintenance function level determination means 240 is set to be displayed as shown in FIG. 6, for example.
肉体・精神疲労への関連性の高い指標としては、特許文献2に開示された指標である体調マップ及び感覚マップを用いることができる。これらは、ゆらぎの変動の仕方をグラフ化したもので、人の肉体・精神疲労との関連性を高く示している。 As an index highly related to physical / mental fatigue, a physical condition map and a sensory map, which are indexes disclosed in Patent Document 2, can be used. These are graphs of how fluctuations fluctuate, and are highly related to human physical and mental fatigue.
そのため、本実施形態の生体調節機能要素判定手段200は、さらに体調マップ演算手段250及び感覚マップ演算手段260を有している。生体信号測定装置1から取得した背部音・振動情報から得られる背部体表脈波(APW)を周波数分析し、対象となる解析区間について、解析波形を両対数軸表示に表し、その解析波形を低周波帯域、中周波帯域、高周波帯域に分け、区分けした解析波形の傾きと、全体の解析波形の形とから一定の基準に基づいて解析波形の点数化を行い、それを座標軸にプロットしたものである。体調マップは、自律神経系の制御の様子を交感神経と副交感神経のバランスとして見たものであり、感覚マップは、体調マップに心拍変動の変化の様子を重畳させたものである。 Therefore, the bioregulatory functional element determination means 200 of the present embodiment further includes a physical condition map calculation means 250 and a sensory map calculation means 260. The back body surface pulse wave (APW) obtained from the back sound / vibration information acquired from the biological signal measuring device 1 is frequency-analyzed, and the analysis waveform is displayed on both logarithmic axes for the target analysis section, and the analysis waveform is displayed. The analysis waveform is scored based on a certain standard based on the inclination of the divided analysis waveform and the shape of the entire analysis waveform divided into the low frequency band, medium frequency band, and high frequency band, and plotted on the coordinate axes. Is. The physical condition map shows the state of control of the autonomic nervous system as the balance between the sympathetic nerve and the parasympathetic nerve, and the sensory map superimposes the state of changes in heart rate variability on the physical condition map.
具体的には、体調マップ演算手段250は、背部体表脈波を周波数解析した解析波形について、所定周期領域毎に回帰直線をまず求める。次に、周期領域毎に求められる各回帰直線を、その傾きに基づいて領域得点を付与すると共に、隣接する周波数領域における回帰直線間のパワースペクトル密度の値の較差及び回帰直線間の傾きの違いに基づき、各回帰直線全体における分岐現象を示す折れ点数を求め、その折れ点数に基づいた形状得点を付与し、領域得点及び形状得点の少なくとも一方を用いて、各解析波形についての判定基準点を求める。領域得点としては、各領域における各回帰直線の傾きを略水平状態、上向き及び下向きの3つに分け、例えば略水平状態の得点を基準として、上向きの場合と下向きの場合とで得点を増減させて得点を付与する。形状得点としては、折れ点数が少ないほど高得点を付与する。 Specifically, the physical condition map calculation means 250 first obtains a regression line for each predetermined periodic region for the analysis waveform obtained by frequency-analyzing the back body surface pulse wave. Next, each regression line obtained for each periodic region is given a region score based on its slope, and the difference in power spectral density values between the regression lines in the adjacent frequency region and the difference in the slope between the regression lines. Based on, the number of break points indicating the branching phenomenon in each regression line is obtained, the shape score based on the number of break points is given, and at least one of the region score and the shape score is used to determine the judgment reference point for each analysis waveform. Ask. As the area score, the slope of each regression line in each area is divided into three, substantially horizontal, upward and downward. For example, the score is increased or decreased depending on whether the score is upward or downward based on the score in the substantially horizontal state. And give points. As for the shape score, the smaller the number of breaks, the higher the score.
判定基準点を求める際には、ゼロクロス法により求めた周波数傾き時系列波形を用いて第1の判定基準点を求め、ピーク検出法により求めた周波数傾き時系列波形を用いて第2の判定基準点を求める。そして、第1の判定基準点に基づく指標を一方の軸に、第2の判定基準点に基づく指標を他方の軸にとって、座標点をプロットし、図7(a)に例示したような体調マップが作成される。体調マップでは、座標点同士を結んだ座標時系列変化線が、1/fの傾きに近似した変化傾向であると判定された場合には快適と判定され、上下方向に変化していると判定された場合には不快と判定される。図7(a)は、座標原点に合わせずに複数の座標点を結んでいるが、時間的に異なる2点の変化傾向を見る場合、1点目を座標原点に合わせて、2点目が第4象限にプロットされると、この生体調節機能要素に関しては「良好」ということになり、判断がより容易になる。 When obtaining the judgment reference point, the first judgment reference point is obtained using the frequency gradient time series waveform obtained by the zero cross method, and the second judgment reference point is obtained using the frequency slope time series waveform obtained by the peak detection method. Find the point. Then, the coordinate points are plotted with the index based on the first judgment reference point on one axis and the index based on the second judgment reference point on the other axis, and the physical condition map as illustrated in FIG. 7A is plotted. Is created. In the physical condition map, if it is determined that the coordinate time-series change line connecting the coordinate points has a change tendency close to the slope of 1 / f, it is determined to be comfortable, and it is determined that the coordinate points are changing in the vertical direction. If it is done, it is judged to be unpleasant. In FIG. 7A, a plurality of coordinate points are connected without being aligned with the coordinate origin, but when looking at the change tendency of two points that differ in time, the first point is aligned with the coordinate origin and the second point is When plotted in the fourth quadrant, this bioregulatory functional element is "good", which makes it easier to judge.
感覚マップ演算手段260は、心拍変動に関連するピーク検出法を用いた周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に周波数の平均値を求める移動計算を行い、時間窓毎に得られる周波数の平均値の時系列変化を周波数変動時系列波形として求め、さらに、ゼロクロス法を用いた周波数の時系列波形から求められる機能点に対応する指標を一方の軸にとると共に、ピーク検出法により求められる上記の周波数変動時系列波形の所定の時間幅における変化量に対応する指標を他方の軸にとり、機能点と変化量とから求められる座標の時系列変化を求めていく手段である。図7(b)がこのようにして求めた感覚マップの一例である。図7(b)では、座標原点に合わせずに複数の座標点を結んだものであるが、時間的に異なる2点の変化傾向を見る場合、1点目を座標原点に合わせて、2点目をプロットすると、両者間の離隔距離及び離隔方向が判断しやすくなる。 The sensory map calculation means 260 performs a movement calculation for obtaining an average value of frequencies for each predetermined time window set at a predetermined overlap time in a time series waveform of frequencies using a peak detection method related to heart rate variability. The time-series change of the average value of the frequencies obtained for each time window is obtained as a frequency fluctuation time-series waveform, and the index corresponding to the functional point obtained from the time-series waveform of the frequency using the zero-cross method is taken on one axis. At the same time, the index corresponding to the amount of change in the above-mentioned frequency fluctuation time-series waveform obtained by the peak detection method in a predetermined time width is taken as the other axis, and the time-series change of the coordinates obtained from the functional point and the amount of change is obtained. It's a way to go. FIG. 7B is an example of the sensory map obtained in this way. In FIG. 7B, a plurality of coordinate points are connected without being aligned with the coordinate origin. However, when looking at the change tendency of two points that differ in time, the first point is aligned with the coordinate origin and two points are connected. Plotting the eyes makes it easier to determine the distance and direction of separation between the two.
なお、機能点は、比較対象の前後2つの時間範囲における解析波形の判定基準点間において、次式:
機能点=後時間範囲の判定基準点+(後時間範囲の判定基準点−前時間範囲の判定基準点)×n、(但し、nは補正係数)
により求められる。
The function points are expressed by the following equation between the judgment reference points of the analysis waveform in the two time ranges before and after the comparison target.
Function point = Judgment reference point in the back time range + (Judgment reference point in the back time range-Judgment reference point in the front time range) x n, (where n is the correction coefficient)
Demanded by.
感覚への関連性の高い指標としては、上記の恒常性維持機能レベル判定手段240により求められる恒常性維持機能レベルの時系列変化のうち、例えば、周波数傾きと積分値を用いて、普通から良好といえるレベルの指標(上記の例では、レベル1〜3)、注意を要するレベルの指標(上記の例では、レベル4〜6)を用いてそれらの頻出頻度を用いて判定できる。恒常性維持機能レベルは、上記のように自律神経機能の状態と高く関連しているが、体調、基礎的な体力、あるいは動機付けにより、疲労に対して交感神経代償作用が発現した際、疲労感を感じるときと感じないときがある。従って、疲労に対する交感代償作用と基礎的な体調は、それを疲労として感じる感覚との関連性が高い。なお、ここでいう感覚とは、倦怠感あるいは覚低状態を伴う喪失感に似た感覚のことである。 As an index highly related to the senses, among the time-series changes of the homeostasis maintenance function level obtained by the above-mentioned homeostasis maintenance function level determination means 240, for example, using the frequency slope and the integrated value, it is normal to good. It can be judged by using the index of the level that can be said to be (levels 1 to 3 in the above example) and the index of the level requiring attention (levels 4 to 6 in the above example) and the frequency of occurrence thereof. The level of homeostatic function is highly associated with the state of autonomic nervous function as described above, but when physical condition, basic physical strength, or motivation causes sympathetic nerve compensatory action against fatigue, fatigue Sometimes I feel it and sometimes I don't. Therefore, the sympathetic compensatory effect on fatigue and the basic physical condition are highly related to the sensation of feeling fatigue. The sensation referred to here is a sensation similar to a feeling of loss accompanied by fatigue or a state of low sensation.
疲労感推定手段300は、上記の生体調節機能要素判定手段200において求められる各生体調節機能要素のゆらぎ性能に関する各時系列変化から、所定の基準に照らして分析対象の人の基礎的な体調(基礎的体調)を推定する手段である。生体調節機能要素判定手段200においては、上記のように、生体調節機能要素のゆらぎ性能に関する時系列変化が複数種類得られるように設定されているが、この複数種類得られる各時系列変化は、所定の判定時間毎に得られる。例えば、周波数傾き時系列波形演算手段210は、生体信号測定装置1からのデータを取得した後、最初の演算結果が出力されるまで数分かかるが、その後は、例えば、18秒ごとに得られ、それにより時系列変化が求められる。分布率演算手段220により得られる分布率、疲労曲線演算手段230により得られる疲労度、及び恒常性維持機能レベル演算手段240により得られる恒常性維持機能レベルも最初の演算結果が出力されるまで数分かかり、その後、例えば18秒毎に得られ、それぞれ時系列変化が求められる。体調マップ演算手段250及び感覚マップ演算手段260によりそれぞれ得られる演算結果は、最初は20〜30分かかるが、2点目はその約十数分後、3点目以降は数分毎に得られる。これに対し、基礎的体調推定手段300は、各生体調節機能要素におけるこれらの各判定時間よりも長い時間(基礎的体調推定時間)について、基礎的体調を推定する。 The fatigue estimation means 300 is based on the time-series changes related to the fluctuation performance of each bioregulatory functional element required by the bioregulatory functional element determining means 200, and is based on the basic physical condition of the person to be analyzed according to a predetermined standard. It is a means to estimate (basic physical condition). As described above, the bioregulatory functional element determining means 200 is set so that a plurality of types of time-series changes relating to the fluctuation performance of the bioregulatory functional elements can be obtained. Obtained every predetermined determination time. For example, the frequency gradient time-series waveform calculation means 210 takes several minutes to output the first calculation result after acquiring the data from the biological signal measuring device 1, but after that, it is obtained, for example, every 18 seconds. , Therefore, time series change is required. The distribution rate obtained by the distribution rate calculation means 220, the fatigue degree obtained by the fatigue curve calculation means 230, and the homeostasis maintenance function level obtained by the homeostasis maintenance function level are also a number until the first calculation result is output. It takes minutes and is then obtained, for example, every 18 seconds, each of which is required to change over time. The calculation results obtained by the physical condition map calculation means 250 and the sensory map calculation means 260 each take 20 to 30 minutes at first, but the second point is obtained about ten and several minutes later, and the third and subsequent points are obtained every few minutes. .. On the other hand, the basic physical condition estimation means 300 estimates the basic physical condition for a time longer than each of these determination times (basic physical condition estimation time) in each bioregulatory functional element.
疲労感推定手段300は、各生体調節機能要素の判定結果を組み合わせて、疲労感のマスキングが生じている状態であるか否かを推定する。疲労感推定手段300は、第1推定手段310、第2推定手段320及び第3推定手段330を有している。図8は、疲労感推定手段300による推定手順を示したフローチャートである。この図に示したように、第1推定手段310は、分析対象の生体信号についての自律神経機能への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、疲労感のマスキングが生じている状態(カテゴリ1)と推定する(S110)。第2推定手段320は、第1推定手段310により疲労感のマスキングが生じている状態(カテゴリ1)と推定されない分析対象の生体信号について、肉体・精神疲労への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、疲労感のマスキングが生じていない状態(カテゴリ3)であると推定する(S120)。第3推定手段330は、第2推定手段320において疲労感のマスキングが生じていない状態(カテゴリ3)と推定されない分析対象の生体信号について、所定の基準に基づき、少なくとも、疲労感のマスキングが生じている状態(カテゴリ1)及び疲労感のマスキングが生じていない状態(カテゴリ3)のいずれかに分類する(S130)。 The fatigue feeling estimation means 300 combines the determination results of each bioregulatory functional element to estimate whether or not the fatigue feeling is masked. The fatigue estimation means 300 includes a first estimation means 310, a second estimation means 320, and a third estimation means 330. FIG. 8 is a flowchart showing an estimation procedure by the fatigue feeling estimation means 300. As shown in this figure, the first estimation means 310 masks the feeling of fatigue when the time-series change of the index highly related to the autonomic nerve function of the biological signal to be analyzed meets a predetermined criterion. Is presumed to occur (category 1) (S110). The second estimation means 320 is a time series of indicators having a high relevance to physical and mental fatigue for the biological signals to be analyzed that are not presumed to be in a state where the fatigue feeling is masked by the first estimation means 310 (category 1). When the change satisfies a predetermined criterion, it is presumed that the masking of fatigue is not generated (category 3) (S120). The third estimation means 330 causes at least masking of fatigue on the biological signal to be analyzed that is not presumed to be in a state where masking of fatigue has not occurred (category 3) in the second estimation means 320, based on a predetermined standard. It is classified into either a state of being tired (category 1) or a state of not masking fatigue (category 3) (S130).
すなわち、分析対象の生体信号を、少なくとも3種類の生体調節機能要素を用いて判別し、物事に対して視野が狭く疲労の自覚が困難な疲労感のマスキングがなされている状態(カテゴリ1)、安静状態で自らの疲労感のマスキングが生じていない状態(カテゴリ3)を推定する。また、好ましくは、両者の中間的なレベルのぼんやりとした状態(カテゴリ2)についても推定する。 That is, a state in which the biological signal to be analyzed is discriminated using at least three types of bioregulatory functional elements, and masking of a feeling of fatigue is performed, in which the field of view is narrow and it is difficult to be aware of fatigue (category 1). Estimate a state in which masking of one's own fatigue is not occurring in a resting state (category 3). It is also preferable to estimate a vague state (category 2) at an intermediate level between the two.
より具体的には、第1推定手段310では、脳機能・自律神経機能あるいは内分泌系の調節機能のゆらぎに基づいた恒常性維持機能に関する指標である上記の周波数傾き時系列波形、分布率、疲労曲線(疲労度)を用いる。恒常性維持機能レベルは、入眠予兆、切迫睡眠、覚低走行状態など、疲労の蓄積の結果生じる兆候を判別しやすい指標である。また、脳機能によって調節されている恒常性維持機能のゆらぎは、その周波数帯域の差により、内分泌系など、支配される調節システムを異にするが、上記の中でも分布率は、これらの調節システムの急変時、減衰時、増大時がよく反映される指標である。そこで、これらを用いると、運転等の作業を行う上で注意や警告を要する状況を捉えることができ、分布率の急変時等の頻度が所定以上になる場合を、物事に対して視野が狭くなっている疲労の自覚が困難な疲労感のマスキングが生じている状態(カテゴリ1)と推定する。 More specifically, in the first estimation means 310, the frequency gradient time series waveform, distribution rate, and fatigue, which are indexes related to the homeostatic function based on the fluctuation of the brain function / autonomic nerve function or the regulation function of the endocrine system, are used. Use a curve (fatigue). The homeostatic function level is an index that makes it easy to discriminate signs that result from the accumulation of fatigue, such as signs of falling asleep, imminent sleep, and low-sensitivity running. In addition, the fluctuation of the homeostatic function regulated by the brain function differs from the regulated system controlled by the endocrine system due to the difference in the frequency band. Among the above, the distribution rate is the regulation system of these. It is an index that well reflects the time of sudden change, decay, and increase of. Therefore, by using these, it is possible to capture situations that require caution or warning when performing work such as driving, and when the frequency of sudden changes in the distribution rate exceeds a certain level, the field of view is narrowed for things. It is presumed that masking of fatigue is occurring (category 1), which makes it difficult to be aware of fatigue.
肉体・精神疲労への関連性の高い指標である体調マップ・感覚マップは、快調、快適に感じている場合の指標を顕著に判別しやすい。そこで、第2推定手段320は、この指標を用いて、快調、快適を示す条件の場合に、安静状態で自らの疲労感のマスキングが生じていない状態(カテゴリ3)として抽出する。脳機能、自律神経機能及び内分泌系の調節機能への関連性の高い指標と、肉体・精神疲労への関連性の高い指標とのいずれを優先して用いるかについては、肉体・精神疲労の変調も自律神経との関わりが基本的に存在するため、本実施形態のように、脳機能や自律神経機能等への関連性の高い指標を用いた推定を第1推定手段310で実施し、次に、肉体・精神疲労への関連性の高い指標を用いた推定を第2推定手段320で実施することが好ましい。 The physical condition map / sensory map, which is an index highly related to physical / mental fatigue, makes it easy to remarkably distinguish the index when feeling comfortable and comfortable. Therefore, the second estimation means 320 uses this index to extract the condition in which the feeling of fatigue is not masked in the resting state (category 3) under the condition of showing good condition and comfort. Regarding whether to preferentially use an index that is highly related to brain function, autonomic nervous function, and endocrine system regulatory function, or an index that is highly related to physical / mental fatigue, the modulation of physical / mental fatigue Since there is basically a relationship with the autonomic nerve, the first estimation means 310 is used to perform estimation using an index highly related to brain function, autonomic nerve function, etc., as in the present embodiment. In addition, it is preferable that the second estimation means 320 is used for estimation using an index highly related to physical and mental fatigue.
脳機能、自律神経機能及び内分泌系のホルモン分泌調節機能への関連性の高い指標は、本実施形態では上記のように、周波数傾き時系列波形、分布率、疲労曲線(疲労度)、及び恒常性維持機能レベルの4つある。このうち、一つにおいて、入眠予兆等の兆候を所定以上検出した場合に、「カテゴリ1」と推定するように設定することも可能であるが、複数の指標において所定の兆候を検出した場合に、「カテゴリ1」と推定することは信頼度を高めるため好ましい。 In this embodiment, the indexes highly related to the brain function, the autonomic nerve function, and the hormone secretion regulatory function of the endocrine system are the frequency gradient time-series waveform, the distribution rate, the fatigue curve (fatigue degree), and the homeostasis, as described above. There are four levels of sexual maintenance function. Of these, it is possible to set the presumption to be "Category 1" when a sign such as a sign of falling asleep is detected in one of them, but when a predetermined sign is detected in a plurality of indicators. , "Category 1" is preferable because it enhances reliability.
従って、例えば、第1推定手段310では、周波数傾き時系列波形演算手段210から求められる周波数傾き時系列波形、分布率演算手段220から求められる分布率の時系列波形、疲労曲線演算手段230から求められる疲労曲線(疲労度の時系列波形)、及び恒常性維持機能レベル演算手段240から求められる恒常性維持機能レベルのうち、3つ以上の指標が所定の基準を満たす場合(図8のS110で「Yes」と判定された場合)に「カテゴリ1」と推定するように設定できる(図8のS111)。 Therefore, for example, in the first estimation means 310, the frequency gradient time series waveform obtained from the frequency gradient time series waveform calculation means 210, the time series waveform of the distribution rate obtained from the distribution rate calculation means 220, and the fatigue curve calculation means 230 are obtained. When three or more indexes satisfy a predetermined criterion among the fatigue curve (time-series waveform of the degree of fatigue) and the constancy maintenance function level obtained from the constancy maintenance function level calculation means 240 (in S110 of FIG. 8). When it is determined to be "Yes"), it can be set to estimate "Category 1" (S111 in FIG. 8).
本実施形態において「カテゴリ1」と推定する所定の基準は、次のように設定している。
(a)周波数傾き時系列波形演算手段210から求められる指標
ゼロクロス法を用いた周波数傾き時系列波形において、振幅変化を比較し、複数回(通常、2〜4回の範囲で設定)連続で1つ前の振幅の9〜6割未満に変化する収束箇所が生じた場合(交感神経活動が低下し、眠気に抵抗できない状態に陥ったことを推定する指標)
(b)分布率演算手段220から求められる指標
ゼロクロス法を用いた周波数傾き時系列波形の分布率の時系列変化において、所定時間の範囲(通常、60〜120秒間の範囲で設定)で、0.0017Hzの分布率が急減(通常、減少率15%以上で設定)し、その間に0.0053Hzの分布率が急増(通常、増加率15%以上で設定)した場合(入眠予兆現象の出現を推定する指標)
(c)疲労曲線演算手段230から求められる指標
所定時間(通常、3〜10分の範囲で設定)の間における、ピーク検出法を用いた疲労曲線(ピーク検出法を用いた周波数傾き時系列波形の絶対値の積算の時系列波形)の傾きが、ゼロクロス法を用いた疲労曲線(ゼロクロス法を用いた周波数傾き時系列波形の絶対値の積算の時系列波形)の傾きよりも大きく変化する箇所が1箇所以上存在し、かつ、所定時間経過時に、ピーク検出法を用いた疲労曲線が所定の値以上に至った場合(副交感神経活動が極端に優位な状態であることを推定する指標)
(d)恒常性維持機能レベル演算手段240から求められる指標
18秒毎に得られる恒常性維持機能レベルのうち、普通レベルよりは低いレベル、上記の例ではレベル4〜6という注意判定が数回から十数回以上出現する場合(副交感神経活動が優位な状態と推定されるときに出現する指標)、あるいは、警告を要するレベル、上記の例ではレベル7〜11の警告判定が数回以上出現する場合(交感神経活動の急激な亢進や極端な低下などが推定されるときに出現する指標)
The predetermined criteria for presuming "Category 1" in the present embodiment are set as follows.
(A) Index obtained from the frequency gradient time-series waveform calculation means 210 In the frequency gradient time-series waveform using the zero-cross method, the amplitude changes are compared and 1 in succession (usually set in the range of 2 to 4 times). When a convergence point that changes to less than 90 to 60% of the previous amplitude occurs (an index that estimates that sympathetic nerve activity has decreased and the patient has fallen into a state where he / she cannot resist drowsiness).
(B) Index obtained from the distribution rate calculation means 220 In the time series change of the distribution rate of the frequency gradient time series waveform using the zero cross method, 0 is set in the predetermined time range (usually set in the range of 60 to 120 seconds). When the distribution rate of 0017 Hz suddenly decreases (usually set at a decrease rate of 15% or more) and the distribution rate of 0.0053 Hz suddenly increases (usually set at an increase rate of 15% or more) (the appearance of a sleep onset sign phenomenon) Estimating index)
(C) Index obtained from the fatigue curve calculation means 230 Fatigue curve using the peak detection method (usually set in the range of 3 to 10 minutes) (frequency slope time series waveform using the peak detection method) The slope of the fatigue curve (time-series waveform of the integration of the absolute value of the absolute value) changes more than the slope of the fatigue curve (time-series waveform of the integration of the absolute value of the time-series waveform using the zero-cross method). When there is one or more locations and the fatigue curve using the peak detection method reaches a predetermined value or more after a lapse of a predetermined time (an index for estimating that parasympathetic nerve activity is in an extremely dominant state).
(D) Index obtained from the homeostasis maintenance function level calculation means 240 Among the homeostasis maintenance function levels obtained every 18 seconds, a level lower than the normal level, in the above example, a caution judgment of levels 4 to 6 is made several times. When it appears more than a dozen times (an index that appears when parasympathetic nerve activity is presumed to be dominant), or a level that requires a warning, in the above example, level 7 to 11 warning judgments appear several times or more. (Indicator that appears when a rapid increase or extreme decrease in sympathetic nerve activity is estimated)
第2推定手段320は、上記の(a)〜(d)の指標のうち3つ以上において「カテゴリ1」と推定されなかったデータ(図8のS110で「No」と判定されたデータ)に関し、体調マップ演算手段250及び感覚マップ演算手段260の指標を用いて所定の基準を満たすか否かを判定し(図8のS120)、所定の基準を満たす場合に「カテゴリ3」に相当すると推定する(図8のS121)。 The second estimation means 320 relates to data that was not estimated to be “Category 1” in three or more of the above indicators (a) to (d) (data determined to be “No” in S110 of FIG. 8). , The index of the physical condition map calculation means 250 and the sensory map calculation means 260 is used to determine whether or not the predetermined criteria are satisfied (S120 in FIG. 8), and if the predetermined criteria are met, it is estimated to correspond to "Category 3". (S121 in FIG. 8).
(e)「カテゴリ3」と判定される場合の指標
本実施形態では、体調マップ演算手段250から求められる時系列変化が、一つ手前の演算結果が出力されるポイント(上記のように、1点目、2点目は所定の時間経過後に出力されるが、3点目以降は数分毎に出力される)を座標原点に合わせた際に、次のポイントが第4象限にプロットされ、かつ、感覚マップ演算手段260から求められる時系列変化が、同じく一つ手前のポイントを座標原点に合わせた際に、X軸方向に所定以上離隔してプロットされる場合に、「カテゴリ3」と推定するように設定している(図8のS120で「Yes」の場合、S121)。
(E) Index when it is determined to be "Category 3" In the present embodiment, the time-series change obtained from the physical condition map calculation means 250 is the point at which the calculation result immediately before is output (as described above, 1). The next point is plotted in the 4th quadrant when the points (the second point is output after a predetermined time, but the third and subsequent points are output every few minutes) are aligned with the coordinate origin. In addition, when the time-series change obtained from the sensory map calculation means 260 is plotted with a predetermined distance or more in the X-axis direction when the point immediately before is aligned with the coordinate origin, it is referred to as "category 3". It is set to estimate (S121 in the case of "Yes" in S120 of FIG. 8).
なお、「カテゴリ1」と推定される(a)〜(d)の判定基準及び「カテゴリ3」と推定される(e)の判定基準は、多数の事例の統計的分析に基づくものであるが、これに限定されるものではない。例えば、個人毎にデータを蓄積して、個人毎に統計的に条件を設定するようにしてもよい。 The criteria of (a) to (d) presumed to be "category 1" and the criteria of (e) presumed to be "category 3" are based on statistical analysis of a large number of cases. , Not limited to this. For example, data may be accumulated for each individual and statistical conditions may be set for each individual.
第3推定手段330は、推定対象のデータが、第1推定手段310において「カテゴリ1」、第2推定手段において「カテゴリ3」のいずれもの基準も満たさない場合(図8のS110で「No」と判定され、かつ、S120で「No」と判定された場合)に実行される(図8のS130)。第3推定手段330は、恒常性維持機能レベル判定手段240により求められる恒常性維持機能レベルの時系列変化のうち、交感神経活動が優位で普通から良好といえるレベルの指標(上記の例では、レベル1〜3)と、副交感神経活動が優位で注意を要するレベルの指標(上記の例では、レベル4〜6)の境界付近のレベルの出現頻度を比較する。但し、レベルの1段階の違いでは、状態の違いは小さいため、2段階以上違うレベルで比較することが好ましい。本実施形態では、普通から良好といえるレベルの指標のうちの真ん中のレベル2の指標と、注意し始める必要のあるレベル4の指標の出現頻度の割合を比較している。基本的には、交感神経活動が優位で良好状態を示すレベル2の出現頻度が高く、副交感神経活動が優位で注意状態を示すレベル4の出現頻度が低い場合には「カテゴリ3」と推定でき、出現頻度が逆の関係の場合には「カテゴリ1」と推定できるが、第3推定手段330の分析対象となるデータは、第1推定手段310及び第2推定手段320において明確に「カテゴリ1」、「カテゴリ3」と推定されなかったものであるため、いずれにも分類しにくいデータも想定される。そこで、本発明では、多数の事例を分析し、ベイズ推定の手法により、「カテゴリ1」及び「カテゴリ3」並びにそれらの中間状態である「カテゴリ2」に分類する基準を設定している(図8のS131)。 In the third estimation means 330, when the data to be estimated does not satisfy any of the criteria of "category 1" in the first estimation means 310 and "category 3" in the second estimation means ("No" in S110 of FIG. 8). Is determined, and is determined to be "No" in S120) (S130 in FIG. 8). The third estimation means 330 is an index of a level in which sympathetic nerve activity is dominant and can be said to be normal to good among the time-series changes in the homeostasis maintenance function level obtained by the homeostasis maintenance function level determination means 240 (in the above example, The frequency of occurrence of levels near the boundary between levels 1 to 3) and indicators of levels where parasympathetic nerve activity is predominant and requires attention (levels 4 to 6 in the above example) is compared. However, since the difference in state is small when there is a difference in one level, it is preferable to compare at two or more levels. In this embodiment, the ratio of the appearance frequency of the level 2 index in the middle of the normal to good level indicators and the level 4 index that needs attention should be compared. Basically, if the frequency of appearance of level 2 in which sympathetic nerve activity is dominant and shows a good state is high, and the frequency of appearance of level 4 in which parasympathetic nerve activity is dominant and shows a state of attention is low, it can be estimated as "category 3". , When the frequency of appearance is opposite, it can be estimated as "Category 1", but the data to be analyzed by the third estimation means 330 is clearly "Category 1" in the first estimation means 310 and the second estimation means 320. , And because it was not presumed to be "Category 3", data that is difficult to classify into any of them is assumed. Therefore, in the present invention, a large number of cases are analyzed, and a criterion for classifying them into "Category 1" and "Category 3" and their intermediate state "Category 2" is set by a Bayesian estimation method (Fig.). 8 S131).
本実施形態によれば、例えば、人の状態を解析する場合、複数の生体調節機能要素を組み合わせて、疲労感推定手段300により解析している。複数の要素の判定基準を用いるため、物事に対して視野が狭くなっている疲労の自覚が困難な疲労感のマスキングが生じる状態(カテゴリ1)、安静状態で自らの疲労感のマスキングが生じていない状態(カテゴリ3)、並びに、両者の中間的なレベルのぼんやりとした状態(カテゴリ2)を、適正に推定することができる。 According to the present embodiment, for example, when analyzing a human condition, a plurality of bioregulatory functional elements are combined and analyzed by the fatigue estimation means 300. Since the criteria for multiple factors are used, the field of vision is narrowed for things. It is difficult to be aware of fatigue. Masking of fatigue occurs (category 1), and masking of one's own fatigue occurs in a resting state. It is possible to properly estimate the absence state (category 3) and the vague state (category 2) at an intermediate level between the two.
また、本実施形態の疲労感推定手段300は、分析対象の生体信号データについて、第1推定手段310によってまず「カテゴリ1」の状態を抽出し、第1推定手段310によって抽出されなかったデータのみについて、第2推定手段320において「カテゴリ3」の状態を抽出し、さらに、第1推定手段310及び第2推定手段320のいずれにおいても抽出されなかったデータのみについて、第3推定手段330の判定対象となる。すなわち、第1推定手段310及び第2推定手段320が、明確に「カテゴリ1」、「カテゴリ3」に相当するものだけをまず抽出し、その後、残りの分析対象データのみを第3の推定手段330で処理している。判定要素として、複数の生体調節機能要素を用いるため、このように、各推定手段310〜330において抽出データを絞り、段階的に判定することにより、各データの処理をするコンピュータの演算処理装置と、生体信号測定装置から受け取ったデータを記憶する記憶部との間におけるデータのやり取り、演算をシンプルにすることができ、演算処理装置の処理を効率化することができる。各推定手段310〜330で、それぞれの基準に基づいて一度に分析する場合、分析結果の異同に応じてさらなる処理が必要となり、演算処理が複雑になって演算速度も遅くなることが懸念される。 Further, the fatigue estimation means 300 of the present embodiment first extracts the state of "Category 1" by the first estimation means 310 for the biological signal data to be analyzed, and only the data not extracted by the first estimation means 310. In the second estimation means 320, the state of "category 3" is extracted, and only the data not extracted by either the first estimation means 310 or the second estimation means 320 is determined by the third estimation means 330. Be the target. That is, the first estimation means 310 and the second estimation means 320 first extract only those clearly corresponding to "category 1" and "category 3", and then only the remaining analysis target data are extracted by the third estimation means. It is processed at 330. Since a plurality of bioregulatory functional elements are used as the determination elements, the arithmetic processing unit of the computer that processes each data by narrowing down the extracted data in each of the estimation means 310 to 330 and making a stepwise determination in this way. , Data exchange and calculation with the storage unit that stores the data received from the biological signal measuring device can be simplified, and the processing of the calculation processing device can be made more efficient. When each estimation means 310 to 330 analyzes at once based on the respective criteria, further processing is required according to the difference in the analysis results, and there is a concern that the calculation processing becomes complicated and the calculation speed becomes slow. ..
(実験例1)
A:脳波計測実験
(1)実験方法
達成感などの感情を形成する前頭前野の働きを確認するため、前頭極脳波を測定する。計測部位は国際10−20法に基づいたFp1、Fp2、A1、A2及び眼球運動とする。これを、被験者が過去に見た映画の中で再視聴を望む映画の映画鑑賞を行っている状態と、ストレスのない状態での安静着座の2つの条件で計測した。いずれも実験室内で自動車用シートに着座させ、60分間計測した。計測項目は、脳波以外に心電図、背部体表脈波(APW:生体信号測定装置1のセンサ14から得られる背部音・振動情報をフィルタリング処理した1Hz近傍の波形)、指尖容積脈波である。被験者は、24歳、25歳、30歳の健常な日本人男性3名である。
(Experimental Example 1)
A: EEG measurement experiment (1) Experimental method The frontal pole brain wave is measured to confirm the function of the prefrontal cortex that forms emotions such as a sense of accomplishment. The measurement sites are Fp1, Fp2, A1, A2 and eye movements based on the International 10-20 Law. This was measured under two conditions: a state in which the subject was watching a movie that he / she wanted to watch again among the movies he had watched in the past, and a state in which he / she was sitting at rest in a stress-free state. All of them were seated on an automobile seat in the laboratory and measured for 60 minutes. In addition to the electroencephalogram, the measurement items are an electrocardiogram, a back body surface pulse wave (APW: a waveform near 1 Hz obtained by filtering back sound / vibration information obtained from the sensor 14 of the biological signal measuring device 1), and a fingertip volume pulse wave. .. The subjects were three healthy Japanese men aged 24, 25, and 30 years.
(2)実験結果
心電図のRR間隔の時系列データ及びAPWの周波数傾き時系列波形を周波数解析し、対数パワースペクトル密度と対数周波数との関係を示すゆらぎ波形を求め、このゆらぎ波形について近似線を引き、その傾き角度を求めた。結果を図9(a),(b)に示す。この図から、心電図のRR間隔のゆらぎとAPWの周波数傾き時系列波形のゆらぎの傾向が一致していることがわかる。すなわち、安静時では、心電図、APW共に傾きが−1に近く、映画鑑賞時では、傾きが−1よりきつくなっている。
従って、この前提より、APWを用いての測定は人の状態を推定するのに有効であることがわかる。なお、周波数解析に用いた周波数帯域は、0.01〜0.03Hzの範囲とした。交感神経活動、副交感神経活動の出現度合いは0.01〜0.04Hzの周波数帯域に現れると言われているが、ノイズの混入をできるだけ避け、ばらつきを排除するため、0.03Hzまでのデータを用いることが好ましい。
(2) Experimental results Frequency analysis of the time series data of the RR interval of the electrocardiogram and the frequency gradient time series waveform of APW was performed to obtain a fluctuation waveform showing the relationship between the logarithmic power spectral density and the logarithmic frequency. It was pulled and its tilt angle was calculated. The results are shown in FIGS. 9 (a) and 9 (b). From this figure, it can be seen that the fluctuation of the RR interval of the electrocardiogram and the tendency of the fluctuation of the frequency gradient time series waveform of APW match. That is, at rest, the inclination of both the electrocardiogram and APW is close to -1, and at the time of watching a movie, the inclination is steeper than -1.
Therefore, from this premise, it can be seen that the measurement using APW is effective in estimating the human condition. The frequency band used for the frequency analysis was in the range of 0.01 to 0.03 Hz. It is said that the degree of appearance of sympathetic nerve activity and parasympathetic nerve activity appears in the frequency band of 0.01 to 0.04 Hz, but in order to avoid noise contamination as much as possible and eliminate variations, data up to 0.03 Hz is used. It is preferable to use it.
次に、生体状態推定装置100により、生体状態の推定を行う。各被験者のAPWの分析対象区間の波形について、上記のカテゴリ1、カテゴリ2、及びカテゴリ3の推定を行った。また、各カテゴリの推定が行われた分析対象区間のタイミングにおける脳波のβ波の含有率を測定した。脳波解析は、まばたきや体動などのアーチファクトを除去するため、Fp1若しくはFp2の振幅が一定値以上の区間は分析対象から除外した。Fp1、Fp2の14〜30Hzの周波数帯域を前頭前野β波として分析対象区間毎に求め、Fp1及びFp2の前頭前野β波の含有率の平均値を算出し、平均値より高い分析対象区間の数、平均値以下の分析対象区間の数をカテゴリ別に求めた。次表にその結果を示すが、フィッシャーの正確確率検定で、p=0.017であり、相関性が認められた。 Next, the biological state is estimated by the biological state estimation device 100. The waveforms of the APW analysis target sections of each subject were estimated in the above categories 1, category 2, and category 3. In addition, the β-wave content of EEG at the timing of the analysis target section where each category was estimated was measured. In the electroencephalogram analysis, in order to remove artifacts such as blinking and body movement, sections in which the amplitude of Fp1 or Fp2 exceeds a certain value are excluded from the analysis target. The frequency bands of 14 to 30 Hz of Fp1 and Fp2 were obtained for each analysis target section as frontal frontal β waves, the average value of the content rate of the frontal frontal β waves of Fp1 and Fp2 was calculated, and the number of analysis target sections higher than the average value. , The number of analysis target sections below the average value was calculated for each category. The results are shown in the following table. Fisher's exact test showed p = 0.017, and a correlation was found.
表1より、β波含有率が高くなっていると、前頭前野が活性化しており、このこととカテゴリ1との相関性が高いことがわかる。 From Table 1, it can be seen that when the β wave content is high, the prefrontal cortex is activated, and this is highly correlated with category 1.
B:実車走行実験
(1)実験方法
血流改善や筋肉疲労改善などの生理活性作用を示すことが知られているアスタキサンチンを担持させた布帛(AX担持布帛)、アスタキサンチンを担持させていない布帛(AX担持無し布帛)を予め準備する。実車走行実験は、AX担持布帛を被験者の両肩に貼付した場合、AX担持無し布帛を被験者の両肩に貼付した場合、何も貼付しない場合の3種類に関して行う。但し、被験者には、AX担持布帛及びAX担持無し布帛を区別することなく、いずれもアスタキサンチンを担持させた布帛であると伝えて実験を行った。被験者はトラックドライバーであり、35歳、43歳、45歳の日本人男性である。計測項目は、背部体表脈波(APW:生体信号測定装置1のセンサ14から得られる背部音・振動情報をフィルタリング処理した1Hz近傍の波形)である。
B: Actual vehicle running experiment (1) Experimental method Astaxanthin-supported fabric (AX-supported fabric) and non-astaxanthin-supported fabric (AX-supported fabric), which are known to exhibit physiologically active effects such as blood flow improvement and muscle fatigue improvement. AX-supported fabric) is prepared in advance. The actual vehicle running experiment is carried out for three types: when the AX-supported fabric is attached to both shoulders of the subject, when the AX-supported fabric is attached to both shoulders of the subject, and when nothing is attached. However, the experiment was conducted by telling the subject that both the AX-supported fabric and the AX-supported fabric were astaxanthin-supported fabrics without distinguishing between them. The subject is a truck driver, a 35-year-old, 43-year-old, and 45-year-old Japanese male. The measurement item is a back body surface pulse wave (APW: a waveform in the vicinity of 1 Hz obtained by filtering back sound / vibration information obtained from the sensor 14 of the biological signal measuring device 1).
(2)実験結果
APWの周波数傾き時系列波形を周波数解析し、対数パワースペクトル密度と対数周波数との関係を示すゆらぎ波形を求め、このゆらぎ波形について近似線を引き、その傾き角度を求めた。なお、周波数解析する際に用いたAPWの周波数傾き時系列波形の周波数帯域は、上記と同様に0.01〜0.03Hzの範囲であった。その結果が図10である。図10に示したように、AX担持布帛を貼付した場合の傾きの平均値は−1.61であり、AX担持無し布帛を貼付した場合の傾きの平均値は−0.97であり、何も貼付しなかった場合の傾きの平均値は−1.00であった。AX担持布帛を貼付した場合は、アスタキサンチンの効果により、上記の映画鑑賞の際と同様に、集中力が高まって視野が狭まる傾向にあると言える。一方、AX担持無し布帛を貼付した場合と何も貼付しなかった場合は、被験者が職業ドライバーであることから、大きなストレスを感じることなく、リラックスして走行したものと考えられる。従って、アスタキサンチンは、疲労感をマスキングする作用を高める効果があると考えられる。
(2) Experimental results The frequency gradient time series waveform of APW was frequency-analyzed to obtain a fluctuation waveform showing the relationship between the logarithmic power spectral density and the logarithmic frequency, and an approximate line was drawn for this fluctuation waveform to obtain the tilt angle. The frequency band of the frequency gradient time-series waveform of APW used in the frequency analysis was in the range of 0.01 to 0.03 Hz as described above. The result is shown in FIG. As shown in FIG. 10, the average value of the inclination when the AX-supported fabric is attached is -1.61, and the average value of the inclination when the AX-supported fabric is attached is -0.97. The average value of the inclination when no was attached was -1.00. When the AX-supported fabric is attached, it can be said that the effect of astaxanthin tends to increase the concentration and narrow the field of view, as in the case of watching a movie described above. On the other hand, when the cloth without AX support was attached and when nothing was attached, it is considered that the subject was a professional driver and thus ran relaxedly without feeling great stress. Therefore, astaxanthin is considered to have an effect of enhancing the action of masking fatigue.
図11は、AX担持布帛を貼付した場合、AX担持無し布帛を貼付した場合、及び何も貼付しなかった場合の本発明の生体状態推定装置100によるカテゴリ1の判定回数を示したものである。 FIG. 11 shows the number of times of determination of category 1 by the biological state estimation device 100 of the present invention when the AX-supported fabric is attached, the AX-supported fabric is attached, and nothing is attached. ..
いずれも運転時間が長くなるにつれてカテゴリ1の判定回数が増加しているが、判定回数の少ない順に、AX担持布帛を貼付した場合、AX担持無し布帛を貼付した場合、及び何も貼付しなかった場合となっている。つまり、カテゴリ1の判定回数の変化は、実際に疲労していく過程の蓄積度合いを示しているが、表1に示したように、カテゴリ1の判定が前頭前野β波の含有率との相関が高いことから、時間経過に伴う増加の程度が少ないほど、前頭前野の働きにより、疲労感を感じさせないようにマスキングする程度が高まっている考えられる。そのため、AX担持布帛を貼付した場合のマスキングの程度が最も高くなっている。AX担持無し布帛を貼付した場合が何も貼付しなかった場合よりもマスキングの程度が高いと判定されたのは、予めアスタキサンチンを担持させた布帛であると伝えたことによるプラセボ効果の作用と考えられる。従って、本発明の生体状態推定装置100による疲労感推定手段300により、疲労感のマスキングが生じる可能性の有無を推定可能であることがわかる。 In each case, the number of judgments of category 1 increased as the operation time became longer, but in ascending order of the number of judgments, the AX-supported fabric was attached, the AX-supported fabric was attached, and nothing was attached. It has become a case. That is, the change in the number of judgments in category 1 indicates the degree of accumulation in the process of actually fatigue, but as shown in Table 1, the judgment in category 1 correlates with the content rate of prefrontal cortex β waves. Therefore, it is considered that the smaller the degree of increase with the passage of time, the higher the degree of masking due to the action of the prefrontal cortex so as not to make a feeling of fatigue. Therefore, the degree of masking when the AX-supported fabric is attached is the highest. It is considered that the reason why the degree of masking was judged to be higher when the AX-supported cloth was attached than when nothing was attached was due to the effect of the placebo effect due to the fact that the cloth was previously supported with astaxanthin. Be done. Therefore, it can be seen that the fatigue feeling estimation means 300 by the biological state estimation device 100 of the present invention can estimate the possibility of masking the fatigue feeling.
(実験例2)
上記実施形態の生体信号測定装置1((株)デルタツーリング製の居眠り運転警告装置(スリープバスター(登録商標))をトラックの座席に装着して複数人の職業ドライバーについて生体信号を測定した。このうち、事故を起こした40歳代の男性運転手の車両から生体信号測定装置1のデータを約2年間分、計539運行分抽出した。データは事故発生2か月前から、発生21か月後までで構成される。当該運転手は夜間勤務で、運行ルートは毎運行ほぼ同一であった。抽出データより、上記実施形態の生体状態推定装置100を用い、疲労感推定手段300によって、上記の3つのカテゴリ(疲労感のマスキング作用により疲労を自覚しにくい状態(カテゴリ1)、疲労感のマスキング作用が生じておらず疲労を自覚できる状態(カテゴリ3)、及びそれらの中間状態(カテゴリ2))の推定結果を5分ごとに算出した。
(Experimental Example 2)
The biological signal measuring device 1 of the above embodiment (sleep driving warning device (Sleep Buster (registered trademark)) manufactured by Delta Touring Co., Ltd.) was attached to a truck seat, and biological signals were measured for a plurality of professional drivers. Of these, the data of the biological signal measuring device 1 was extracted from the vehicle of a male driver in his 40s who caused the accident for about 2 years, for a total of 539 operations. The data is from 2 months before the accident to 21 months. The driver was working at night, and the operation route was almost the same for each operation. From the extracted data, the biological condition estimation device 100 of the above embodiment was used, and the fatigue feeling estimation means 300 was used. Three categories (a state in which it is difficult to notice fatigue due to the masking action of fatigue (category 1), a state in which the masking action of fatigue is not occurring and fatigue can be noticed (category 3), and an intermediate state between them (category 2). )) Estimated results were calculated every 5 minutes.
図12は、事故発生日(図中、「0日」、発生時刻「6時」)の45日前から発生後8日目までの推定結果をマトリクス化したものである。事故発生前の通常状態では、適度な判定の変化をしており、体調変化にゆらぎがあることが分かった。一方で事故発生日の週は、疲労を自覚しにくい状態(カテゴリ1)が多くなり、また、判定の変化が少なく、ゆらぎが低下していることが分かった。なお、事故発生翌週は再びゆらぎのある変化となっていた。そのため、事故発生日は疲労や眠気などの体調の変化に身体が対応できていないことを示した。そのため、上記パターンの場合には事故発生の原因となるような体調であった可能性が示唆された。 FIG. 12 is a matrix of estimation results from 45 days before the accident occurrence date (“0 day” in the figure, occurrence time “6 o'clock”) to the 8th day after the accident occurrence. In the normal state before the accident, the judgment changed moderately, and it was found that the change in physical condition fluctuated. On the other hand, it was found that in the week of the accident occurrence day, there were many states (category 1) in which it was difficult to notice fatigue, and there were few changes in the judgment, and fluctuations were reduced. The week after the accident occurred, the changes were fluctuating again. Therefore, it was shown that the body was not able to respond to changes in physical condition such as fatigue and drowsiness on the day of the accident. Therefore, in the case of the above pattern, it was suggested that the physical condition may have caused an accident.
図13は、一運行ごとの走行時間(車を運転していた時間)と各判定数を分布図に示したもので、事故2か月前と事故直前2週間のデータをそれぞれまとめたものである。事故2か月前は一運行中の走行時間にばらつきのない状態で推移し、その中で一運行ごとの判定数の変化にゆらぎがあったのに対し、事故直前2週間は走行時間のばらつきが多いものの、各判定数は正の相関に近い傾向になっていた。つまり、事故直前の運転手は判定数の急増が示すように、変化に対応しきれない状態に陥っていた。また、図14からも事故直前にかけて一運行中の走行時間のばらつきが増加傾向にあったことが分かる。図12で事故発生時はゆらぎが低下傾向になっていたことから、事故直前は走行時間のばらつきから体調に何らかの不良が生じていた可能性が示唆された。 FIG. 13 shows the running time (time spent driving a car) and the number of judgments for each operation in a distribution map, and summarizes the data two months before the accident and the two weeks immediately before the accident. is there. Two months before the accident, the running time during one operation remained unchanged, and while there were fluctuations in the number of judgments for each operation, the running time varied during the two weeks immediately before the accident. Although there were many cases, the number of judgments tended to be close to a positive correlation. In other words, the driver immediately before the accident was in a state where he could not cope with the change, as shown by the rapid increase in the number of judgments. In addition, it can be seen from FIG. 14 that the variation in the traveling time during one operation tended to increase immediately before the accident. In FIG. 12, since the fluctuation tended to decrease when the accident occurred, it was suggested that there was a possibility that some kind of physical condition had occurred due to the variation in the running time immediately before the accident.
参考までに、当該運転手に週1回面談でアドバイスを行った結果について説明する。株式会社デルタツーリング製、商品名「スリープバスター」では、恒常性維持機能レベル判定手段240による判定結果は、例えば、図6に示したように表示されるように設定されているため、面談の際には、この恒常性維持機能レベル判定手段240により判定された結果を用いた。図15は、判定結果を月単位で集計し、曜日ごとの警告判定の頻出回数の平均値を算出したものである。図中、左図の棒グラフは警告の頻出回数の平均値、折れ線グラフは運行日数、右図は各運行の実数値を示す。事故翌月は休日明けの日曜日、または月曜日の警告の頻出回数が多く、週の中盤から後半にかけて同等もしくは少なくなる傾向であった。これらのことから、夜勤主体の勤務形態では、休日の過ごし方が重要であると考えられる。休日明けの夜勤が、身体が休日モードから仕事モードへ切り替わりにくくなっていることで、休日明けの警告の頻出回数が多くなっていたと思われる。そのため、休日の過ごし方に注意するようアドバイスを行った。その結果、13ヶ月後、21ヶ月後は休み明けが他の曜日より少なくなる傾向に変化した。本面談により、休み明けの勤務に向けて調子が整えられたのではないかと考えられる。これにより、週1回の面談により事故防止の低減効果が得られ、結果として2年間以上無事故を継続できているものと考えられる。 For reference, the results of giving advice to the driver in an interview once a week will be explained. In the product name "Sleep Buster" manufactured by Delta Touring Co., Ltd., the judgment result by the homeostasis maintenance function level judgment means 240 is set to be displayed as shown in FIG. 6, for example, and therefore at the time of an interview. The result determined by the homeostasis maintenance function level determining means 240 was used. In FIG. 15, the determination results are aggregated on a monthly basis, and the average value of the number of frequent occurrences of warning determination for each day of the week is calculated. In the figure, the bar graph on the left shows the average number of frequent warnings, the line graph shows the number of operating days, and the right figure shows the actual value of each operation. In the month following the accident, the number of warnings on Sunday or Monday after the holiday was high, and tended to be the same or less from the middle to the latter half of the week. From these facts, it is considered that the way of spending holidays is important in the work style mainly for night shifts. It seems that the number of warnings after the holidays increased because it became difficult for the body to switch from the holiday mode to the work mode during the night shift after the holidays. Therefore, I advised him to pay attention to how he spends his holidays. As a result, after 13 months and 21 months, the number of days off tended to be less than on other days. It is probable that this interview made him feel better for work after the holidays. As a result, it is considered that the effect of reducing accident prevention was obtained by the interview once a week, and as a result, the accident-free situation could be continued for two years or more.
背部体表脈波から算出した体調推定法を職業運転手に適用し、事故直前およびその後2年間の面談による体調の変化の傾向を観察し、その効果を検証した。その結果、走行時間のばらつきによる影響や、休日明け夜間勤務など、休暇と仕事の切り替わりが体調に影響を与える要因と推測され、面談による注意、改善を行うことは、事故低減に有用であると言える。 The physical condition estimation method calculated from the back body surface pulse wave was applied to a professional driver, and the tendency of the physical condition change by the interview immediately before the accident and for the following two years was observed, and the effect was verified. As a result, it is presumed that the influence of variation in running time and the change of vacation and work, such as night shift after holidays, affect the physical condition, and it is useful to pay attention and improve by interviewing to reduce accidents. I can say.
1 生体信号測定装置
11 コアパッド
12 スペーサパッド
14 センサ
100 生体状態推定装置
200 生体調節機能要素判定手段
210 周波数傾き時系列波形演算手段
220 分布率演算手段
230 疲労曲線演算手段
240 恒常性維持機能レベル演算手段
250 体調マップ演算手段
260 感覚マップ演算手段
300 疲労感推定手段
310 第1推定手段
320 第2推定手段
330 第3推定手段
1 Biometric signal measuring device 11 Core pad 12 Spacer pad 14 Sensor 100 Biological condition estimation device 200 Bioregulatory function element determination means 210 Frequency tilt time series waveform calculation means 220 Distribution rate calculation means 230 Fatigue curve calculation means 240 Homeostasis maintenance function level calculation means 250 Physical condition map calculation means 260 Sensory map calculation means 300 Fatigue estimation means 310 First estimation means 320 Second estimation means 330 Third estimation means
Claims (4)
前記生体信号を分析して、自律神経機能、肉体・精神疲労又は感覚との関連性の高い指標を含む、生体調節機能に関与する複数の指標を求める生体調節機能要素判定手段と、
前記生体調節機能要素判定手段により求められた複数の指標を組み合わせて、前記生体状態として、疲労感のマスキングが生じている状態であるか否かを推定する疲労感推定手段と
を有し、
前記疲労感推定手段は、
分析対象の前記生体信号についての前記自律神経機能への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、前記疲労感のマスキングが生じている状態と推定する第1推定手段と、
前記第1推定手段により前記疲労感のマスキングが生じている状態と推定されない分析対象の前記生体信号について、前記肉体・精神疲労への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、疲労感のマスキングが生じていない状態と推定する第2推定手段と、
前記第2推定手段において前記疲労感のマスキングが生じていない状態と推定されない分析対象の前記生体信号について、前記感覚との関連性の高い指標が所定の基準を満たすか否かに基づき、少なくとも、前記疲労感のマスキングが生じている状態及び前記疲労感のマスキングが生じていない状態のいずれかに分類する第3推定手段と
を有することを特徴とする生体状態推定装置。 A biological state estimation device that estimates a biological state using a biological signal obtained from a biological signal measuring device that comes into contact with the back of a person.
A means for determining a bioregulatory function element that analyzes the biological signal to obtain a plurality of indices involved in the bioregulatory function, including an index highly related to autonomic nerve function, physical / mental fatigue, or sensation.
A fatigue feeling estimating means for estimating whether or not fatigue masking is occurring as the biological state by combining a plurality of indexes obtained by the bioregulatory functional element determining means.
Have,
The fatigue estimation means is
The first estimation means for estimating that the masking of fatigue occurs when the time-series change of the index highly related to the autonomic nerve function of the biological signal to be analyzed satisfies a predetermined criterion. When,
With respect to the biological signal to be analyzed that is not presumed to be in a state where masking of the feeling of fatigue is caused by the first estimation means, the time-series change of the index highly related to physical / mental fatigue satisfies a predetermined criterion. In this case, the second estimation means for presuming that the masking of fatigue has not occurred, and
With respect to the biological signal to be analyzed that is not presumed to be in a state where the fatigue feeling is not masked by the second estimation means, at least, based on whether or not an index highly related to the sensation satisfies a predetermined criterion, at least. A biological state estimation device comprising a third estimation means for classifying into either a state in which masking of fatigue is generated and a state in which masking of fatigue is not occurring.
前記生体信号を分析して、自律神経機能、肉体・精神疲労又は感覚との関連性の高い指標を含む、生体調節機能に関与する複数の指標を求め、
前記複数の指標を組み合わせて、前記生体状態として、疲労感のマスキングが生じている状態であるか否かを推定する
手順を有し、
前記疲労感のマスキングが生じている状態であるか否かを、
分析対象の前記生体信号についての前記自律神経機能への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、前記疲労感のマスキングが生じている状態と推定する第1推定手順を実施し、
前記第1推定手順により前記疲労感のマスキングが生じている状態と推定されない分析対象の前記生体信号について、前記肉体・精神疲労への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、疲労感のマスキングが生じていない状態と推定する第2推定手順を実施し、
前記第2推定手順において前記疲労感のマスキングが生じていない状態と推定されない分析対象の前記生体信号について、前記感覚との関連性の高い指標が所定の基準を満たすか否かに基づき、少なくとも、前記疲労感のマスキングが生じている状態及び前記疲労感のマスキングが生じていない状態のいずれかに分類する第3推定手順を実施して、
推定することを特徴とする生体状態推定方法。 It is a biological state estimation method that estimates a biological state using a biological signal obtained from a biological signal measuring device that comes into contact with the back of a person.
By analyzing the biological signals, a plurality of indicators involved in the bioregulatory function were obtained, including indicators highly related to autonomic nervous function, physical / mental fatigue, or sensation.
By combining the plurality of indexes, it is estimated whether or not the fatigue masking is occurring as the biological state.
Have a procedure
Whether or not the fatigue masking is occurring
The first estimation procedure for estimating that the masking of fatigue occurs when the time-series change of the index highly related to the autonomic nerve function of the biological signal to be analyzed satisfies a predetermined criterion. And carry out
With respect to the biological signal to be analyzed that is not presumed to be in a state where masking of fatigue is generated by the first estimation procedure, the time-series change of the index highly related to physical / mental fatigue satisfies a predetermined criterion. In this case, the second estimation procedure for presuming that the masking of fatigue has not occurred is carried out.
At least, based on whether or not an index highly related to the sensation satisfies a predetermined criterion for the biological signal to be analyzed that is not presumed to be in a state where the masking of the feeling of fatigue has not occurred in the second estimation procedure. A third estimation procedure for classifying into either a state in which the fatigue feeling is masked or a state in which the fatigue feeling masking is not occurring is carried out.
Biological state estimation method and estimating.
前記生体信号を分析して、自律神経機能、肉体・精神疲労又は感覚との関連性の高い指標を含む、生体調節機能に関与する複数の指標を求める手順と、
前記複数の指標を組み合わせて、前記生体状態として、疲労感をマスキングして疲労感のマスキングが生じている状態であるか否かを推定する手順と
を実行させ、
前記疲労感のマスキングが生じている状態であるか否かを推定する手順では、
分析対象の前記生体信号についての前記自律神経機能への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、前記疲労感のマスキングが生じている状態と推定する第1推定手順を実行させ、
前記第1推定手順により前記疲労感のマスキングが生じている状態と推定されない分析対象の前記生体信号について、前記肉体・精神疲労への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、疲労感のマスキングが生じていない状態と推定する第2推定手順を実行させ、
前記第2推定手順において前記疲労感のマスキングが生じていない状態と推定されない分析対象の前記生体信号について、前記感覚との関連性の高い指標が所定の基準を満たすか否かに基づき、少なくとも、前記疲労感のマスキングが生じている状態及び前記疲労感のマスキングが生じていない状態のいずれかに分類する第3推定手順を実行させるコンピュータプログラム。 It is a computer program that causes a computer as a biological state estimation device to analyze a biological signal obtained from a biological signal measuring device that is in contact with the back of a person and execute a procedure for estimating a biological state.
A procedure for analyzing the biological signals to obtain a plurality of indicators involved in the biological regulation function, including indicators highly related to autonomic nervous function, physical / mental fatigue, or sensation.
By combining the plurality of indexes and performing the procedure of masking the feeling of fatigue and estimating whether or not the masking of the feeling of fatigue is occurring as the biological state, the procedure is executed .
In the procedure for estimating whether or not the fatigue feeling is masked,
The first estimation procedure for estimating that the masking of fatigue occurs when the time-series change of the index highly related to the autonomic nerve function of the biological signal to be analyzed satisfies a predetermined criterion. To execute,
With respect to the biological signal to be analyzed that is not presumed to be in a state where masking of fatigue is generated by the first estimation procedure, the time-series change of the index highly related to physical / mental fatigue satisfies a predetermined criterion. In this case, the second estimation procedure for presuming that the masking of fatigue is not occurring is executed.
At least, based on whether or not an index highly related to the sensation satisfies a predetermined criterion for the biological signal to be analyzed that is not presumed to be in a state where the masking of the feeling of fatigue has not occurred in the second estimation procedure. A computer program that executes a third estimation procedure for classifying into either a state in which the fatigue feeling is masked or a state in which the fatigue feeling masking is not occurring.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016239923A JP6836265B2 (en) | 2016-12-09 | 2016-12-09 | Biological condition estimation device, biological condition estimation method, computer program and recording medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016239923A JP6836265B2 (en) | 2016-12-09 | 2016-12-09 | Biological condition estimation device, biological condition estimation method, computer program and recording medium |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2018093997A JP2018093997A (en) | 2018-06-21 |
| JP6836265B2 true JP6836265B2 (en) | 2021-02-24 |
Family
ID=62634003
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2016239923A Active JP6836265B2 (en) | 2016-12-09 | 2016-12-09 | Biological condition estimation device, biological condition estimation method, computer program and recording medium |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP6836265B2 (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102312548B1 (en) * | 2019-08-07 | 2021-10-18 | 주식회사 아이센스 | Noise processing method of biometric measured data |
| JP7465889B2 (en) * | 2019-11-21 | 2024-04-11 | 株式会社Fuji | Diagnostic Systems |
| JP7473177B2 (en) * | 2020-06-19 | 2024-04-23 | 国立大学法人広島大学 | Blood vessel stiffness estimation method, blood vessel stiffness estimation device, and program |
| JP7559612B2 (en) * | 2021-02-26 | 2024-10-02 | 株式会社Jvcケンウッド | Driving assistance device and driving assistance method |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3512493B2 (en) * | 1994-11-16 | 2004-03-29 | パイオニア株式会社 | Driving mental state detection device |
| JP2005095408A (en) * | 2003-09-25 | 2005-04-14 | Matsushita Electric Ind Co Ltd | Biological state determination device and support system |
| JP5892678B2 (en) * | 2011-05-14 | 2016-03-23 | 株式会社デルタツーリング | Biological state estimation device and computer program |
| JP6118097B2 (en) * | 2012-12-14 | 2017-04-19 | 株式会社デルタツーリング | Biological state determination device during operation and computer program |
| JP6209396B2 (en) * | 2013-04-17 | 2017-10-04 | 株式会社デルタツーリング | Driving support device and computer program |
-
2016
- 2016-12-09 JP JP2016239923A patent/JP6836265B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| JP2018093997A (en) | 2018-06-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6118097B2 (en) | Biological state determination device during operation and computer program | |
| JP6757532B2 (en) | Sleep stage determination device, sleep stage determination method, sleep stage determination program | |
| JP5007975B2 (en) | Dozing detection device | |
| JP6836265B2 (en) | Biological condition estimation device, biological condition estimation method, computer program and recording medium | |
| JP5086834B2 (en) | Fatigue analysis apparatus and computer program | |
| JP5892678B2 (en) | Biological state estimation device and computer program | |
| WO2008069337A1 (en) | Device for judging degree of awakening and method for judging degree of awakening | |
| WO2005039415A1 (en) | Fatigue degree measuring device, fatigue detection device, and computer program | |
| JP4636861B2 (en) | Comfort evaluation device | |
| EP3387994B1 (en) | Biological state estimation device, biological state estimation method, computer program, and recording medium | |
| US11932255B2 (en) | Method of processing the psychophysical state of a driver to improve the driving experience of a road vehicle and related vehicular system | |
| EP3387988A1 (en) | Biological state estimation device, biological state estimation method, computer program, and recording medium | |
| JP6666705B2 (en) | Biological condition estimation device, biological condition estimation method, and computer program | |
| JP4754447B2 (en) | Biological analysis apparatus and program | |
| Schneider et al. | Electrodermal responses to driving maneuvers in a motion sickness inducing real-world driving scenario | |
| KR101530494B1 (en) | Device and method for discriminant model to determine sex addict using standardized sexual arousal and functional magnetic resonance imaging | |
| WO2014132722A1 (en) | Living-body state estimation device, computer program, and recording medium | |
| WO2017057022A1 (en) | Biological state estimation device, biological state estimation method, and computer program | |
| JP4636860B2 (en) | Evaluation system for human body support structure | |
| JP2980295B2 (en) | Stress evaluation method | |
| JP7708185B2 (en) | Information processing device, control method, and program | |
| Razak et al. | Driver-centered pervasive application for heart rate measurement | |
| US20250339070A1 (en) | Device and method for acute stress assessment | |
| KR101530495B1 (en) | Device and method for determining sex addict using standardized sexual arousal and functional magnetic resonance imaging | |
| Van Der Zwaag et al. | Reading the human in the driver seat |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191206 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201030 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201106 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201221 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210114 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210122 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6836265 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |