[go: up one dir, main page]

JP6566545B2 - Demand forecasting device, demand forecasting method, and demand forecasting program - Google Patents

Demand forecasting device, demand forecasting method, and demand forecasting program Download PDF

Info

Publication number
JP6566545B2
JP6566545B2 JP2015022267A JP2015022267A JP6566545B2 JP 6566545 B2 JP6566545 B2 JP 6566545B2 JP 2015022267 A JP2015022267 A JP 2015022267A JP 2015022267 A JP2015022267 A JP 2015022267A JP 6566545 B2 JP6566545 B2 JP 6566545B2
Authority
JP
Japan
Prior art keywords
demand
coefficient
product
prediction
target period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015022267A
Other languages
Japanese (ja)
Other versions
JP2016146037A (en
Inventor
直哉 河村
直哉 河村
北川 朋亮
朋亮 北川
学 笠野
学 笠野
山田 昭彦
昭彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2015022267A priority Critical patent/JP6566545B2/en
Publication of JP2016146037A publication Critical patent/JP2016146037A/en
Application granted granted Critical
Publication of JP6566545B2 publication Critical patent/JP6566545B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、需要予測装置、需要予測方法および需要予測プログラムに関する。   The present invention relates to a demand prediction apparatus, a demand prediction method, and a demand prediction program.

需要を予測する技術が知られている。例えば、特許文献1には、予定納期までの期間の長さおよび受注の期待度に応じた係数を製品の払い出しの予定数に乗じることで、製品の需要を予測する技術が開示されている。   Technologies for predicting demand are known. For example, Patent Document 1 discloses a technique for predicting product demand by multiplying a planned number of product payouts by a coefficient corresponding to the length of a period until a scheduled delivery date and the expected degree of orders.

特開2013−156693号公報JP 2013-156893 A

特許文献1に開示された技術により、精度よく需要を予測することができる。他方、特許文献1に開示された技術では、製品の納期の前倒しおよび後倒しが考慮されていないため、納期を月別に評価したときに、精度が高くない月が生じる可能性がある。
本発明の目的は、1カ月ごとなど、単位時間ごとに区切られた期間における需要を精度よく予測する需要予測装置、需要予測方法および需要予測プログラムを提供することにある。
With the technique disclosed in Patent Document 1, demand can be predicted with high accuracy. On the other hand, since the technology disclosed in Patent Document 1 does not consider the advance and postponement of the delivery date of the product, when the delivery date is evaluated monthly, there is a possibility that a month with high accuracy may occur.
An object of the present invention is to provide a demand forecasting device, a demand forecasting method, and a demand forecasting program that accurately forecast demand in a period divided every unit time such as every month.

本発明の第1の態様によれば、需要予測装置は、単位時間ごとに区切られた期間である予測対象期間における製品の需要を予測する需要予測装置であって、引き合いのあった製品の予定納期と払い出す予定数と引き合いの期待度とが関連付けられた需要情報を記憶する需要情報記憶部と、予定納期が一の予測対象期間に属する製品の予定数に前記期待度に応じた第1の係数を乗じた値と、予定納期が前記一の予測対象期間の直前および直後の少なくとも一方の予測対象期間に属する製品の予定数に前記期待度に応じた第2の係数を乗じた値とを積算することによって前記製品の需要を予測する需要予測部とを備える。 According to the first aspect of the present invention, the demand prediction device is a demand prediction device that predicts the demand of a product in a prediction target period that is a period divided every unit time, and the product forecast that has been inquired A demand information storage unit that stores demand information in which a delivery date, a scheduled number to be paid out, and an expected degree of inquiry are associated with each other, and a first number corresponding to the expected level according to the expected number of products belonging to a forecast target period. And a value obtained by multiplying the planned number of products belonging to at least one prediction target period immediately before and immediately after the one prediction target period by a second coefficient corresponding to the expectation And a demand prediction unit that predicts the demand for the product by integrating the above.

本発明の第2の態様によれば、第1の態様に係る需要予測装置は、前記第1の係数および前記第2の係数が、予測対象期間ごとに特定され、前記需要予測部が、前記一の予測対象期間に係る前記第1の係数と、前記一の予測対象期間の直前および直後の少なくとも一方の予測対象期間に係る前記第2の係数を用いて前記製品の需要を予測する。 According to the second aspect of the present invention, in the demand prediction device according to the first aspect , the first coefficient and the second coefficient are specified for each prediction target period, and the demand prediction unit The demand of the product is predicted using the first coefficient relating to one prediction target period and the second coefficient relating to at least one prediction target period immediately before and immediately after the one prediction target period.

本発明の第3の態様によれば、第1または第2の態様に係る需要予測装置は、前記第1の係数および前記第2の係数が、製品の型式ごとまたは顧客ごとに特定され、前記需要予測部が、前記製品の型式または顧客に係る前記第1の係数および前記第2の係数を用いて前記製品の需要を予測する。 According to the third aspect of the present invention, in the demand prediction device according to the first or second aspect , the first coefficient and the second coefficient are specified for each product type or each customer, The demand prediction unit predicts the demand for the product using the first coefficient and the second coefficient related to the product type or customer.

本発明の第4の態様によれば、需要予測方法は、単位時間ごとに区切られた期間である予測対象期間における製品の需要を予測する需要予測方法であって、引き合いのあった製品の予定納期と払い出す予定数と引き合いの期待度とが関連付けられた需要情報を記憶する需要情報記憶部を備える需要予測装置が、予定納期が一の予測対象期間に属する製品の予定数に前記期待度に応じた第1の係数を乗じる第1のステップと、前記需要予測装置が、予定納期が前記一の予測対象期間の直前および直後の少なくとも一方の予測対象期間に属する製品の予定数に前記期待度に応じた第2の係数を乗じる第2のステップと、前記需要予測装置が、前記第1のステップで算出した数と前記第2のステップで算出した数とを積算することによって前記製品の需要を予測する第3のステップとを有する。 According to the fourth aspect of the present invention, the demand forecasting method is a demand forecasting method for forecasting the demand for a product in a forecast target period, which is a period divided every unit time. A demand forecasting device comprising a demand information storage unit that stores demand information in which a delivery date, a planned number of payouts, and an expected degree of inquiry are associated with each other, the expected degree of the expected number of products belonging to a forecast target period with a scheduled delivery date. A first step of multiplying a first coefficient according to the demand prediction device, wherein the demand forecasting device is configured to calculate the expected number of products belonging to at least one forecast target period immediately before and immediately after the one forecast target period. A second step of multiplying a second coefficient according to the degree, and the demand prediction device integrates the number calculated in the first step and the number calculated in the second step. And a third step of predicting demand.

本発明の第5の態様によれば、需要予測プログラムは、コンピュータを、引き合いのあった製品の予定納期と払い出す予定数と引き合いの期待度とが関連付けられた需要情報を記憶する記憶部、予定納期が一の予測対象期間に属する製品の予定数に前記期待度に応じた第1の係数を乗じた値と、予定納期が前記一の予測対象期間の直前および直後の少なくとも一方の予測対象期間に属する製品の予定数に前記期待度に応じた第2の係数を乗じた値とを積算することによって前記製品の需要を予測する需要予測部として機能させる。 According to the fifth aspect of the present invention, the demand prediction program stores a computer that stores demand information in which a scheduled delivery date of a product for which an inquiry has been made, a scheduled number to be paid out, and an expected degree of the inquiry are associated with each other, A value obtained by multiplying the planned number of products belonging to one forecast target period by a first coefficient corresponding to the expectation and at least one forecast target immediately before and immediately after the one forecast target period. The product is made to function as a demand prediction unit that predicts the demand of the product by adding the value obtained by multiplying the expected number of products belonging to the period by the second coefficient corresponding to the expectation.

上記態様のうち少なくとも1つの態様によれば、需要予測装置は、一の予測対象期間の直前および直後の少なくとも一方の予測対象期間に属する製品の予定数に基づいて、一の予測対象期間の製品の需要を予測する。これにより、需要予測装置は、単位時間ごとに区切られた期間における需要を精度よく予測することができる。   According to at least one aspect among the above aspects, the demand prediction device is configured to provide a product in one prediction target period based on a planned number of products belonging to at least one prediction target period immediately before and immediately after the one prediction target period. Forecast demand. Thereby, the demand prediction apparatus can predict the demand in the period divided for every unit time with high accuracy.

第1の実施形態に係る需要予測装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the demand prediction apparatus which concerns on 1st Embodiment. 需要情報の例を示す図である。It is a figure which shows the example of demand information. 実績情報の例を示す図である。It is a figure which shows the example of track record information. 第1の実施形態に係る需要予測方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the demand prediction method which concerns on 1st Embodiment. 第2の実施形態に係る需要予測方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the demand prediction method which concerns on 2nd Embodiment. 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the computer which concerns on at least 1 embodiment.

《第1の実施形態》
以下、図面を参照しながら実施形態について詳しく説明する。
図1は、第1の実施形態に係る需要予測装置の構成を示す概略ブロック図である。
本実施形態に係る需要予測装置100は、引き合いのあった製品の月ごとの総払出数を予測する装置である。つまり、本実施形態は、単位時間1カ月ごとに区切られた期間である「月」を予測対象期間とする。需要予測装置100は、需要情報記憶部101、需要予測部102、表示制御部103、実績情報記憶部104、係数特定部105および係数記憶部106を備える。
<< First Embodiment >>
Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 1 is a schematic block diagram illustrating a configuration of a demand prediction apparatus according to the first embodiment.
The demand prediction apparatus 100 according to the present embodiment is an apparatus that predicts the total number of payouts per month for products for which inquiries have been made. That is, in this embodiment, “month”, which is a period divided every unit time per month, is set as the prediction target period. The demand prediction apparatus 100 includes a demand information storage unit 101, a demand prediction unit 102, a display control unit 103, a performance information storage unit 104, a coefficient specifying unit 105, and a coefficient storage unit 106.

需要情報記憶部101は、引き合いのあった製品の払出し予定日と予定数とを関連付けた需要情報を記憶する。
需要予測部102は、需要情報記憶部101が記憶する需要情報に基づいて、予測対象の月に予定通り払い出される製品の数であるオンスケジュール払出数と、予測対象の翌月に払い出される予定の製品が予測対象の月に払い出される製品の数である前倒し払出数と、予測対象の前月に払い出される予定の製品が予測対象の月に払い出される製品の数である後倒し払出数とを算出する。需要予測部102は、オンスケジュール払出数と前倒し払出数と後倒し払出数との総和を求めることで、予測対象の月の製品の需要を予測する。
表示制御部103は、需要予測部102が予測した各月の製品の需要予測結果をディスプレイ等の表示装置に表示させる。
The demand information storage unit 101 stores demand information associating a planned payout date and a planned number of products with inquiries.
Based on the demand information stored in the demand information storage unit 101, the demand prediction unit 102 determines the number of on-schedule payouts that are the number of products paid out as scheduled in the forecast target month and the products scheduled to be paid out in the next month of the forecast target. Are calculated as the number of products to be paid out in the month to be predicted, and the number of products to be paid out in the month to be predicted as the number of products to be paid out in the month to be predicted. The demand prediction unit 102 predicts the demand of the product for the prediction target month by calculating the sum of the on-schedule payout number, the advance payout number, and the postpaid payout number.
The display control unit 103 displays the demand prediction result of the product for each month predicted by the demand prediction unit 102 on a display device such as a display.

実績情報記憶部104は、過去の月ごとの製品の予定数と製品の実際の払い出し数を示す実績情報を記憶する。製品の予定数とは、製品の引き合い時に、当該月に納期が設定された製品の数を示す。製品の実際の払い出し数とは、当該月に実際に納品された製品の数を示す。
係数特定部105は、実績情報記憶部104が記憶する実績情報に基づいて、需要の予測に用いる係数を特定する。具体的には、係数特定部105は、予測対象の月の予定数に乗じることで需要数を算出するための需要係数と、予測対象の翌月の予定数に乗じることで前倒し払出数を算出するための前倒し係数と、予測対象の前月の予定数に乗じることで後倒し払出数を算出するための後倒し係数とを算出する。なお、オンスケジュール払出数は、予測対象の月の予定数に需要係数を乗じた値から、前倒し払出数および後倒し払出数を減算することで算出される。係数特定部105は、月ごとの係数を特定する。
係数記憶部106は、係数特定部105が特定した係数を記憶する。
The track record information storage unit 104 stores track record information indicating the planned number of products for each past month and the actual number of products paid out. The planned number of products indicates the number of products for which a delivery date is set in the month at the time of product inquiry. The actual number of paid-out products indicates the number of products actually delivered in that month.
The coefficient specifying unit 105 specifies a coefficient used for demand prediction based on the record information stored in the record information storage unit 104. Specifically, the coefficient specifying unit 105 calculates the demand coefficient for calculating the number of demands by multiplying the scheduled number of months to be predicted and the number of advance payments by multiplying the scheduled number of the next month to be predicted. And a postponement coefficient for calculating the number of postponements by multiplying the predicted number of the previous month to be predicted. Note that the number of on-schedule payouts is calculated by subtracting the advance payout number and the late payout number from a value obtained by multiplying the planned number of forecast target months by the demand coefficient. The coefficient specifying unit 105 specifies a coefficient for each month.
The coefficient storage unit 106 stores the coefficient specified by the coefficient specifying unit 105.

ここで、需要情報記憶部101が記憶する需要情報について説明する。
図2は、需要情報の例を示す図である。
本実施形態に係る実績情報は、製品番号、引き合い日、予定納期、および予定数を格納する情報である。製品番号は、製品を特定するための整理番号である。製品番号により、製品の種類および型式が特定される。引き合い日は、製品の引き合いがあった日付を示す。予定納期は、製品の引き合い時に設定された納期を示す。予定数は、製品の引き合い時に設定された納品すべき製品の数を示す。
このように、需要情報は、製品の引き合いに係る情報である。
Here, the demand information stored in the demand information storage unit 101 will be described.
FIG. 2 is a diagram illustrating an example of demand information.
The performance information according to the present embodiment is information for storing a product number, an inquiry date, a scheduled delivery date, and a planned number. The product number is a reference number for identifying the product. The product type and model are specified by the product number. The inquiry date indicates the date when the product was inquired. The scheduled delivery date indicates the delivery date set at the time of product inquiry. The planned number indicates the number of products to be delivered set at the time of product inquiry.
Thus, the demand information is information relating to product inquiries.

図3は、実績情報の例を示す図である。
本実施形態に係る実績情報は、製品番号、引き合い日、予定納期、予定数、払出日、および払出数を格納する情報である。払出日は、製品が実際に納品された日付を示す。払出数は、実際に納品された製品の数を示す。
このように、実績情報は、製品の引き合いと払い出しとの関係を示す情報である。
FIG. 3 is a diagram illustrating an example of performance information.
The performance information according to the present embodiment is information for storing a product number, an inquiry date, a scheduled delivery date, a planned number, a payout date, and a payout number. The payout date indicates the date when the product is actually delivered. The number of payouts indicates the number of products actually delivered.
Thus, the performance information is information indicating the relationship between product inquiries and payouts.

本実施形態に係る需要予測装置100の動作について説明する。需要予測装置100は、需要の予測を開始する前に、需要の予測に用いる係数を特定する。
図4は、第1の実施形態に係る需要予測方法の手順を示すフローチャートである。
需要予測装置100の係数特定部105は、実績情報記憶部104から実績情報を読み出す(ステップS1)。係数特定部105は、実績情報を読み出すと、同じ製品番号を有する製品の実績情報について、以下のステップS3〜S5の処理を実行する(ステップS2)。
まず係数特定部105は、ステップS2で選択された製品番号の実績情報に基づいて、需要の予測対象となる各月(例えば、1月から12月までの各月)について、予定納期がm月に属する製品の予定数の総数yと、払出日がm月に属する製品の払出数の総数Yとを算出する(ステップS3)。次に、係数特定部105は、以下に示す式(1)によって表される予測誤差eが最小になる係数α〜α、β〜βt+1、γ〜γの組み合わせを特定する(ステップS4)。ただし、αはm月の需要係数を示し、βはm月の前倒し係数を示し、γはm月の後倒し係数を示す。
Operation | movement of the demand prediction apparatus 100 which concerns on this embodiment is demonstrated. The demand prediction apparatus 100 specifies a coefficient used for demand prediction before starting demand prediction.
FIG. 4 is a flowchart illustrating a procedure of the demand prediction method according to the first embodiment.
The coefficient specifying unit 105 of the demand prediction apparatus 100 reads the performance information from the performance information storage unit 104 (step S1). When the coefficient specifying unit 105 reads the result information, the coefficient specifying unit 105 performs the following steps S3 to S5 on the result information of the products having the same product number (step S2).
First, the coefficient specifying unit 105 determines that the scheduled delivery date is m months for each month (for example, each month from January to December) that is a target of demand prediction based on the performance information of the product number selected in step S2. the total number y m scheduled number of products belonging to the payout date to calculate the total number Y m of payout of products in month m (step S3). Next, the coefficient specifying unit 105, coefficient prediction error e expressed by the formula (1) shown below is minimum α 1 ~α t, β 1 ~β t + 1, identifies a combination of gamma 0 to? T (Step S4). Here, α m represents the demand coefficient for m month, β m represents the forward coefficient for m month, and γ m represents the backward coefficient for m month.

Figure 0006566545
Figure 0006566545

つまり、係数特定部105は、m月の予定数の総数yに需要係数αを乗算したものから、m月の予定数の総数yに前倒し係数βを乗算したものおよびm月の予定数の総数yに後倒し係数γを乗算したものを減算し、翌月の予定数の総数ym+1に前倒し係数βm+1を乗算したものおよび前月の予定数の総数ym−1に後倒し係数γm−1を乗算したものを加算することで、予測需要数を算出する。そして、各月について得られた予測需要数と実際の払出数Yの差の二乗和を、予測誤差eとして算出する。係数特定部105は、予測誤差が最小になる係数の組み合わせを、例えば、一般化簡約勾配法(GRG:Generalized Reduced Gradient)を用いて特定することができる。なお、前倒し係数および後倒し係数は、需要係数より小さい正数である。係数特定部105は、特定した各月の需要係数、前倒し係数および後倒し係数を係数記憶部106に記録する(ステップS5)。 That is, the coefficient specifying unit 105, a multiplied by the demand factor alpha m to the total number y m of predetermined number of m months, those that have been multiplied by the accelerated coefficient beta m to the total number y m of predetermined number of m month and the month m subtracts the multiplied by the post-kill coefficient gamma m the total number y m of predetermined number, the following month predetermined number of the total number y m + 1 to accelerated coefficient beta m + after 1 to the total number y m-1 as the multiplication and the previous month predetermined number of The predicted demand number is calculated by adding the product obtained by multiplying the decrement coefficient γ m−1 . Then, the square sum of the difference between the actual payout Y m and the predicted demand count obtained for each month is calculated as a prediction error e. The coefficient specifying unit 105 can specify a combination of coefficients that minimizes the prediction error using, for example, a generalized reduced gradient method (GRG). The forward coefficient and the forward coefficient are positive numbers smaller than the demand coefficient. The coefficient identifying unit 105 records the identified demand coefficient, forward coefficient, and backward coefficient for each month in the coefficient storage unit 106 (step S5).

係数記憶部106に各整理番号の製品の各月の需要係数、前倒し係数および後倒し係数が記録されると、需要予測部102は、需要情報記憶部101から需要情報を読み出す(ステップS6)。次に、需要予測部102は、同じ製品番号を有する製品の需要情報について、以下のステップS8〜S9の処理を実行する(ステップS7)。
まず需要予測部102は、ステップS7で選択された製品番号の需要情報に基づいて、需要の予測対象となる各月について、製品の予定数の総数xを算出する(ステップS8)。次に、需要予測部102は、係数記憶部106が記憶する係数を用いて、以下に示す式(2)によって各月の製品の予測需要数Xを算出する(ステップS9)。
When the demand coefficient, the forward coefficient, and the forward coefficient for each month of the product with each reference number are recorded in the coefficient storage unit 106, the demand prediction unit 102 reads the demand information from the demand information storage unit 101 (step S6). Next, the demand prediction part 102 performs the process of the following steps S8-S9 about the demand information of the product which has the same product number (step S7).
Forecast unit 102 first, based on the demand information of the selected product number in step S7, for each month to be predicted demand to calculate the total number x m of the number of outstanding product (step S8). Next, demand prediction unit 102 uses the coefficients stored in the coefficient storage unit 106, by Equation (2) below to calculate the predicted demand count X m product of each month (step S9).

Figure 0006566545
Figure 0006566545

つまり、需要予測部102は、予定納期がm月に属する製品の予定数xに、需要係数αから前倒し係数βおよび後倒し係数γを減じて得られる係数(第1の係数)を乗じることで、m月のオンスケジュール払出数を算出する。また、需要予測部102は、予定納期がm月の直後の月に属する製品の予定数xm+1に前倒し係数βm+1(第2の係数)を乗じることで、m+1月の前倒し払出数を算出する。また、需要予測部102は、予定納期がm月の直前の月に属する製品の予定数xm−1に後倒し係数γm−1(第2の係数)を乗じることで、m−1月の後倒し払出数を算出する。そして、需要予測部102は、m月のオンスケジュール払出数と、m+1月の前倒し払出数と、m−1月の後倒し払出数とを積算することによって、m月の製品の需要を予測する。
需要予測部102が各製品の各月の需要を予測すると、表示制御部103は、需要予測部102が算出した各製品の各月の予測需要数を、ディスプレイに表示させる(ステップS10)。
That is, the demand prediction unit 102 is a coefficient (first coefficient) obtained by subtracting the forward coefficient β m and the forward coefficient γ m from the demand coefficient α m to the planned number x m of products whose scheduled delivery date belongs to m month. To calculate the number of on-schedule payouts in m months. In addition, the demand prediction unit 102 calculates the number of advance payments in m + 1 month by multiplying the expected number x m + 1 of products belonging to the month immediately after m month by the advance coefficient β m + 1 (second coefficient). . In addition, the demand prediction unit 102 multiplies the planned number x m−1 of products belonging to the month immediately before the m month by a postponed coefficient γ m−1 (second coefficient), so that m−1 month. Calculate the number of payouts. Then, the demand prediction unit 102 predicts the demand for the product in m month by integrating the on-schedule payout number in m month, the advance payout number in m + 1 month, and the post-payout number in m-1 month. .
When the demand prediction unit 102 predicts the monthly demand for each product, the display control unit 103 displays the predicted number of demands for each product month calculated by the demand prediction unit 102 on the display (step S10).

このように、本実施形態によれば、需要予測装置100は、ある月の直前および直後の月に属する製品の予定数に基づいて、ある月の製品の需要を予測する。これにより、需要予測装置100は、納期の前倒しおよび後倒しが生じる場合にも、各月における製品の需要を精度よく予測することができる。   Thus, according to this embodiment, the demand prediction apparatus 100 predicts the demand for a product in a certain month based on the planned number of products belonging to the month immediately before and after the certain month. Thereby, the demand prediction apparatus 100 can accurately predict the demand for products in each month even when the delivery date is advanced or delayed.

《第2の実施形態》
第2の実施形態に係る需要予測装置100は、納期の前倒しおよび後倒しに加え、引き合いの期待度も鑑みて製品の月ごとの総払出数を予測する。
本実施形態に係る需要予測装置100は、実績情報記憶部104、係数記憶部106および需要情報記憶部101が記憶する情報が第1の実施形態と異なる。また本実施形態に係る需要予測装置100は、係数特定部105および需要予測部102の計算が第1の実施形態と異なる。
<< Second Embodiment >>
The demand forecasting apparatus 100 according to the second embodiment predicts the total number of products to be paid out per month in consideration of the expectation of inquiries in addition to the advance and postponement of the delivery date.
The demand prediction apparatus 100 according to the present embodiment differs from the first embodiment in the information stored in the record information storage unit 104, the coefficient storage unit 106, and the demand information storage unit 101. Moreover, the demand prediction apparatus 100 according to the present embodiment is different from the first embodiment in the calculation of the coefficient specifying unit 105 and the demand prediction unit 102.

需要情報記憶部101が記憶する需要情報は、製品番号、引き合い日、予定納期、および予定数に加え、引き合いの期待度を格納する。期待度は、受注の可能性の高さを示す値である。本実施形態に係る期待度は、受注の可能性が低い順に、例えば1からrまでのr段階の値で表すことができる。期待度は、顧客との交渉をもった担当者の判断に基づいて決定される。
実績情報記憶部104が記憶する実績情報も、製品番号、引き合い日、予定納期、予定数、払出日、および払出数に加え、さらに引き合いの期待度を格納する。
係数記憶部106は、各製品番号の製品の、各月および各期待度について、係数を記憶する。
The demand information stored in the demand information storage unit 101 stores an expected degree of inquiry in addition to a product number, an inquiry date, a scheduled delivery date, and a planned number. The degree of expectation is a value indicating a high possibility of receiving an order. The degree of expectation according to the present embodiment can be represented by, for example, r-level values from 1 to r in the order from the low possibility of receiving an order. The degree of expectation is determined based on the judgment of the person in charge who negotiates with the customer.
The record information stored in the record information storage unit 104 also stores an expected degree of inquiry in addition to the product number, the inquiry date, the scheduled delivery date, the planned number, the payout date, and the payout number.
The coefficient storage unit 106 stores coefficients for each month and each degree of expectation of the product with each product number.

図5は、第2の実施形態に係る需要予測方法の手順を示すフローチャートである。
需要予測装置100の係数特定部105は、実績情報記憶部104から実績情報を読み出す(ステップS101)。係数特定部105は、実績情報を読み出すと、同じ製品番号を有する製品の実績情報について、以下のステップS103〜S105の処理を実行する(ステップS102)。
まず係数特定部105は、ステップS102で選択された製品番号の実績情報に基づいて、需要の予測対象となる各月mについて、期待度nごとに、予定納期がm月に属する製品の予定数の総数ym,nと、払出日がm月に属する製品の払出数の総数Ym,nとを算出する(ステップS103)。次に、係数特定部105は、以下に示す式(3)によって表される予測誤差eが最小になる係数α1,1〜αt,r、β1,1〜βt+1,r、γ0,1〜γt,rの組み合わせを特定する(ステップS104)。ただし、αm,nはm月における期待度nの引き合いに係る需要係数を示し、βm,nはm月における期待度nの引き合いに係る前倒し係数を示し、γm,nはm月における期待度nの引き合いに係る後倒し係数を示す。
FIG. 5 is a flowchart illustrating a procedure of the demand prediction method according to the second embodiment.
The coefficient specifying unit 105 of the demand prediction device 100 reads the record information from the record information storage unit 104 (step S101). When the coefficient specifying unit 105 reads the result information, the coefficient specifying unit 105 performs the following steps S103 to S105 on the result information of the products having the same product number (step S102).
First, the coefficient specifying unit 105, based on the actual information of the product number selected in step S102, for each month m targeted for demand, for each expected degree n, the expected number of products whose scheduled delivery date belongs to m month. the total number y m, n of the payout date calculates the total number Y m, n of the payout of products in month m (step S103). Next, the coefficient specifying unit 105 generates coefficients α 1,1 to α t, r , β 1,1 to β t + 1, r , γ 0 that minimize the prediction error e represented by the following equation (3). , 1 to γ t, r are identified (step S104). However, α m, n indicates the demand coefficient related to the inquiry of the expectation degree n in m month, β m, n indicates the forward coefficient related to the inquiry of the expectation degree n in m month, and γ m, n indicates the demand coefficient in the m month. The postponement coefficient related to the expectation n is shown.

Figure 0006566545
Figure 0006566545

係数特定部105は、特定した各月かつ各期待度の需要係数、前倒し係数および後倒し係数を係数記憶部106に記録する(ステップS105)。   The coefficient specifying unit 105 records the demand coefficient, the forward coefficient, and the forward coefficient for each specified month and each expected degree in the coefficient storage unit 106 (step S105).

係数記憶部106に各整理番号の製品の各月かつ各期待度の需要係数、前倒し係数および後倒し係数が記録されると、需要予測部102は、需要情報記憶部101から需要情報を読み出す(ステップS106)。次に、需要予測部102は、同じ製品番号を有する製品の需要情報について、以下のステップS108〜S109の処理を実行する(ステップS107)。
まず需要予測部102は、ステップS107で選択された製品番号の需要情報に基づいて、需要の予測対象となる各月について、期待度ごとの製品の予定数の総数xm,nを算出する(ステップS108)。次に、需要予測部102は、係数記憶部106が記憶する係数を用いて、以下に示す式(4)によって各月の製品の予測需要数Xを算出する(ステップS109)。
When the demand coefficient, the forward coefficient, and the forward coefficient for each month and each expected degree of the product of each reference number are recorded in the coefficient storage unit 106, the demand prediction unit 102 reads the demand information from the demand information storage unit 101 ( Step S106). Next, the demand prediction part 102 performs the process of the following steps S108-S109 about the demand information of the product which has the same product number (step S107).
First, the demand prediction unit 102 calculates the total number x m, n of the planned number of products for each expectation level for each month that is the target of demand prediction based on the demand information of the product number selected in step S107 ( Step S108). Next, demand prediction unit 102 uses the coefficients stored in the coefficient storage unit 106, by Equation (4) below to calculate the predicted demand count X m product of each month (step S109).

Figure 0006566545
Figure 0006566545

需要予測部102が各製品の各月の需要を予測すると、表示制御部103は、需要予測部102が算出した各製品の各月の予測需要数を、ディスプレイに表示させる(ステップS110)。   When the demand prediction unit 102 predicts the monthly demand of each product, the display control unit 103 causes the display to display the predicted demand number of each product for each month calculated by the demand prediction unit 102 (step S110).

このように、本実施形態によれば、需要予測装置100は、ある月の直前および直後の月に属する製品の予定数と、引き合いの期待度とに基づいて、ある月の製品の需要を予測する。これにより、需要予測装置100は、各月における製品の需要を精度よく予測することができる。   As described above, according to the present embodiment, the demand prediction device 100 predicts the demand for a product in a certain month based on the planned number of products belonging to the month immediately before and after the certain month and the expected degree of inquiry. To do. Thereby, the demand prediction apparatus 100 can accurately predict the demand for products in each month.

以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
例えば、上述した実施形態に係る需要予測装置100は、オンスケジュール払出数と前倒し払出数と後倒し払出数とを積算することで、各月の需要を予測するが、これに限られない。他の実施形態に係る需要予測装置100は、例えば、オンスケジュール払出数と前倒し払出数または後倒し払出数を積算することで、各月の需要を予測しても良い。需要予測装置100は、オンスケジュール払出数と前倒し払出数とに基づいて需要を予測することで、製品の不足を防ぐことができる。また需要予測装置100は、オンスケジュール払出数と後倒し払出数とに基づいて需要を予測することで、過剰在庫の発生を防ぐことができる。
As described above, the embodiment has been described in detail with reference to the drawings. However, the specific configuration is not limited to that described above, and various design changes and the like can be made.
For example, the demand prediction apparatus 100 according to the above-described embodiment predicts the demand for each month by integrating the on-schedule payout number, the advance payout number, and the late payout number, but is not limited thereto. The demand prediction apparatus 100 according to another embodiment may predict the demand for each month by, for example, integrating the on-schedule payout number and the advance payout number or the late payout number. The demand prediction device 100 can prevent a shortage of products by predicting demand based on the on-schedule payout number and the advance payout number. Moreover, the demand prediction apparatus 100 can prevent the occurrence of excessive inventory by predicting demand based on the on-schedule payout number and the postponed payout number.

また、上述した実施形態に係る需要予測装置100は、需要予測対象となる各月に関連付けた係数を計算するが、これに限られない。例えば、他の実施形態に係る需要予測装置100は、各月で共通の需要係数、前倒し係数および後倒し係数を用いて需要を予測しても良い。具体的には、他の実施形態に係る需要予測装置100は、実績情報に基づいて需要係数、前倒し係数および後倒し係数をそれぞれ1つだけ算出しても良い。なお、上述した実施形態に係る需要予測装置100のように、各月に関連付けた係数を計算し、当該係数を用いて需要を予測することで、例えば決算期や繁忙期など、前倒しおよび後倒しが生じやすい時期についても、精度よく需要を予測することができる。   Moreover, although the demand prediction apparatus 100 which concerns on embodiment mentioned above calculates the coefficient linked | related with each month used as a demand prediction object, it is not restricted to this. For example, the demand prediction apparatus 100 according to another embodiment may predict a demand using a common demand coefficient, a forward coefficient, and a forward coefficient for each month. Specifically, the demand prediction apparatus 100 according to another embodiment may calculate only one demand coefficient, forward coefficient, and backward coefficient based on the performance information. In addition, like the demand prediction apparatus 100 according to the above-described embodiment, the coefficient associated with each month is calculated, and the demand is predicted using the coefficient. Demand can be predicted with high accuracy even during periods when the risk is likely to occur.

また、上述した実施形態に係る需要予測装置100は、製品番号ごと、すなわち製品の型式ごとに係数および予測需要数を計算するが、これに限られない。例えば、他の実施形態に係る需要予測装置100は、顧客ごとに係数および予測需要数を計算しても良い。   Moreover, although the demand prediction apparatus 100 which concerns on embodiment mentioned above calculates a coefficient and the number of prediction demands for every product number, ie, every product type, it is not restricted to this. For example, the demand prediction apparatus 100 according to another embodiment may calculate a coefficient and the number of predicted demands for each customer.

また、上述した実施形態に係る需要予測装置100は、予測対象の月の前後1カ月の需要情報に基づいて前倒し払出数および後倒し払出数を算出するが、これに限られない。例えば、他の実施形態に係る需要予測装置100は、予測対象の月の前後2カ月の需要情報に基づいて前倒し払出数および後倒し払出数を算出しても良い。この場合、係数特定部105は、前倒し係数として前月に係る前倒し係数と前々月に係る前倒し係数を算出する必要がある。また、この場合、係数特定部105は、後倒し係数として翌月に係る後倒し係数と翌々月に係る後倒し係数を算出する必要がある。   Moreover, although the demand prediction apparatus 100 which concerns on embodiment mentioned above calculates the number of forward payments and the number of backward payments based on the demand information of one month before and behind the month of prediction, it is not restricted to this. For example, the demand prediction apparatus 100 according to another embodiment may calculate the number of advance payments and the number of advance payments based on demand information for two months before and after the month to be predicted. In this case, the coefficient specifying unit 105 needs to calculate a forward coefficient related to the previous month and a forward coefficient related to the month before last as the forward coefficient. Further, in this case, the coefficient specifying unit 105 needs to calculate the postponement coefficient for the next month and the postponement coefficient for the following two months as the postponement coefficient.

また、上述した実施形態は、単位時間1カ月ごとに区切られた期間である「月」を予測対象期間とするが、これに限られない。例えば、他の実施形態に係る需要予測装置100は、単位時間1週間ごとに区切られた期間である「週」、単位時間1年ごとに区切られた期間である「年」または「年度」など、他の単位時間ごとに区切られた予測対象期間について需要を予測しても良い。   Moreover, although embodiment mentioned above makes "month" which is the period divided | segmented every unit time 1 month as a prediction object period, it is not restricted to this. For example, the demand prediction apparatus 100 according to another embodiment includes a “week” that is a period divided every week for a unit time, a “year” or a “year” that is a period divided every year for a unit time, and the like. The demand may be predicted for the prediction target period divided every other unit time.

また、上述した実施形態に係る需要予測装置100は、実績情報記憶部104および係数特定部105を備え、自装置で特定した需要係数、前倒し係数および後倒し係数に基づいて需要を予測するが、これに限られない。例えば、他の実施形態に係る需要予測装置100は、需要係数、前倒し係数および後倒し係数を特定せず、他の装置が特定した需要係数、前倒し係数および後倒し係数に基づいて需要を予測しても良い。   Moreover, although the demand prediction apparatus 100 which concerns on embodiment mentioned above is provided with the track record information storage part 104 and the coefficient specific | specification part 105, it predicts a demand based on the demand coefficient specified with the own apparatus, the advance coefficient, and the postponement coefficient, It is not limited to this. For example, the demand prediction apparatus 100 according to another embodiment does not specify a demand coefficient, a forward coefficient, and a forward coefficient, and predicts a demand based on the demand coefficient, the forward coefficient, and the forward coefficient specified by the other apparatus. May be.

また、上述した実施形態に係る需要予測装置100は、需要の予測の度に需要係数、前倒し係数および後倒し係数を特定するが、これに限られない。例えば、他の実施形態に係る需要予測装置100は、過去の需要の予測の際に特定された需要係数、前倒し係数および後倒し係数に基づいて需要を予測しても良い。   Moreover, although the demand prediction apparatus 100 which concerns on embodiment mentioned above specifies a demand coefficient, a forward coefficient, and a backward coefficient every time a demand is predicted, it is not restricted to this. For example, the demand prediction apparatus 100 according to another embodiment may predict the demand based on the demand coefficient, the forward coefficient, and the backward coefficient specified in the past demand prediction.

図6は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、インタフェース904を備える。
上述の需要予測装置100は、コンピュータ900に実装される。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、需要予測プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該需要予測プログラムに従って上記処理を実行する。また、各記憶部に対応する記憶領域は、補助記憶装置903に確保される。
FIG. 6 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
The computer 900 includes a CPU 901, a main storage device 902, an auxiliary storage device 903, and an interface 904.
The above-described demand prediction apparatus 100 is mounted on a computer 900. The operation of each processing unit described above is stored in the auxiliary storage device 903 in the form of a program. The CPU 901 reads out the demand prediction program from the auxiliary storage device 903, expands it in the main storage device 902, and executes the above processing according to the demand prediction program. A storage area corresponding to each storage unit is secured in the auxiliary storage device 903.

なお、少なくとも1つの実施形態において、補助記憶装置903は、一時的でない有形の媒体の一例である。一時的でない有形の媒体の他の例としては、インタフェース904を介して接続される磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等が挙げられる。また、需要予測プログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該需要予測プログラムを主記憶装置に展開し、上記処理を実行しても良い。   In at least one embodiment, the auxiliary storage device 903 is an example of a tangible medium that is not temporary. Other examples of the tangible medium that is not temporary include a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, and a semiconductor memory connected via the interface 904. When the demand prediction program is distributed to the computer 900 via a communication line, the computer 900 that has received the distribution may develop the demand prediction program in the main storage device and execute the above processing.

また、当該需要予測プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、当該需要予測プログラムは、前述した機能を補助記憶装置903に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であっても良い。   In addition, the demand prediction program may be for realizing a part of the functions described above. Further, the demand prediction program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the auxiliary storage device 903.

100 需要予測装置
101 需要情報記憶部
102 需要予測部
103 表示制御部
104 実績情報記憶部
105 係数特定部
106 係数記憶部
DESCRIPTION OF SYMBOLS 100 Demand prediction apparatus 101 Demand information storage part 102 Demand prediction part 103 Display control part 104 Performance information storage part 105 Coefficient specific | specification part 106 Coefficient storage part

Claims (5)

単位時間ごとに区切られた期間である予測対象期間における製品の需要を予測する需要予測装置であって、
引き合いのあった製品の予定納期と払い出す予定数と引き合いの期待度とが関連付けられた需要情報を記憶する需要情報記憶部と、
予定納期が一の予測対象期間に属する製品の予定数に前記期待度に応じた第1の係数を乗じた値と、予定納期が前記一の予測対象期間の直前および直後の少なくとも一方の予測対象期間に属する製品の予定数に前記期待度に応じた第2の係数を乗じた値とを積算することによって前記製品の需要を予測する需要予測部と
を備える需要予測装置。
A demand forecasting device for forecasting demand for products in a forecast target period, which is a period divided by unit time,
A demand information storage unit for storing demand information in which a scheduled delivery date of a product that has been inquired, a planned number to be paid out, and an expected degree of inquiries are associated;
A value obtained by multiplying the planned number of products belonging to one forecast target period by a first coefficient corresponding to the expectation and at least one forecast target immediately before and immediately after the one forecast target period. A demand forecasting device comprising: a demand forecasting unit for forecasting demand for the product by adding a value obtained by multiplying a planned number of products belonging to a period by a second coefficient corresponding to the degree of expectation.
前記第1の係数および前記第2の係数が、予測対象期間ごとに特定され、
前記需要予測部が、前記一の予測対象期間に係る前記第1の係数と、前記一の予測対象期間の直前および直後の少なくとも一方の予測対象期間に係る前記第2の係数を用いて前記製品の需要を予測する
請求項1に記載の需要予測装置。
The first coefficient and the second coefficient are specified for each prediction target period,
The demand prediction unit uses the first coefficient related to the one prediction target period and the second coefficient related to at least one prediction target period immediately before and immediately after the one prediction target period. Forecast demand
The demand prediction apparatus according to claim 1 .
前記第1の係数および前記第2の係数が、製品の型式ごとまたは顧客ごとに特定され、 前記需要予測部が、前記製品の型式または顧客に係る前記第1の係数および前記第2の係数を用いて前記製品の需要を予測する
請求項1または請求項2に記載の需要予測装置。
The first coefficient and the second coefficient are specified for each product type or each customer, and the demand forecasting unit calculates the first coefficient and the second coefficient related to the product type or customer. demand prediction apparatus according to claim 1 or claim 2 for predicting the demand of the product used.
単位時間ごとに区切られた期間である予測対象期間における製品の需要を予測する需要予測方法であって、
引き合いのあった製品の予定納期と払い出す予定数と引き合いの期待度とが関連付けられた需要情報を記憶する需要情報記憶部を備える需要予測装置が、予定納期が一の予測対象期間に属する製品の予定数に前記期待度に応じた第1の係数を乗じる第1のステップと、
前記需要予測装置が、予定納期が前記一の予測対象期間の直前および直後の少なくとも一方の予測対象期間に属する製品の予定数に前記期待度に応じた第2の係数を乗じる第2のステップと、
前記需要予測装置が、前記第1のステップで算出した数と前記第2のステップで算出した数とを積算することによって前記製品の需要を予測する第3のステップと
を有する需要予測方法。
A demand forecasting method for forecasting product demand in a forecast target period, which is a period divided by unit time,
A demand forecasting device having a demand information storage unit that stores demand information in which a planned delivery date, a planned number of products to be paid out, and an expected degree of inquiries are associated with each other, is a product that belongs to a forecast target period with a single scheduled delivery date. A first step of multiplying the expected number of the first factor according to the expectation;
A second step in which the demand forecasting device multiplies the planned number of products belonging to at least one forecast target period immediately before and immediately after the one forecast target period by a second coefficient corresponding to the expectation degree. ,
A demand prediction method comprising: a third step in which the demand prediction device predicts demand for the product by integrating the number calculated in the first step and the number calculated in the second step.
コンピュータを、
引き合いのあった製品の予定納期と払い出す予定数と引き合いの期待度とが関連付けられた需要情報を記憶する記憶部、
予定納期が一の予測対象期間に属する製品の予定数に前記期待度に応じた第1の係数を乗じた値と、予定納期が前記一の予測対象期間の直前および直後の少なくとも一方の予測対象期間に属する製品の予定数に前記期待度に応じた第2の係数を乗じた値とを積算することによって前記製品の需要を予測する需要予測部
として機能させるための需要予測プログラム。
Computer
A storage unit that stores demand information in which a scheduled delivery date of a product that has been inquired, a planned number to be paid out, and an expected degree of inquiries are associated,
A value obtained by multiplying the planned number of products belonging to one forecast target period by a first coefficient corresponding to the expectation and at least one forecast target immediately before and immediately after the one forecast target period. The demand prediction program for functioning as a demand prediction part which estimates the demand of the said product by integrating | accumulating the value which multiplied the 2nd coefficient according to the said expectation degree with the expected number of the products which belong to a period.
JP2015022267A 2015-02-06 2015-02-06 Demand forecasting device, demand forecasting method, and demand forecasting program Active JP6566545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015022267A JP6566545B2 (en) 2015-02-06 2015-02-06 Demand forecasting device, demand forecasting method, and demand forecasting program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015022267A JP6566545B2 (en) 2015-02-06 2015-02-06 Demand forecasting device, demand forecasting method, and demand forecasting program

Publications (2)

Publication Number Publication Date
JP2016146037A JP2016146037A (en) 2016-08-12
JP6566545B2 true JP6566545B2 (en) 2019-08-28

Family

ID=56685607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015022267A Active JP6566545B2 (en) 2015-02-06 2015-02-06 Demand forecasting device, demand forecasting method, and demand forecasting program

Country Status (1)

Country Link
JP (1) JP6566545B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406447B2 (en) * 2020-04-30 2023-12-27 ロジスティード株式会社 Computer system and item demand forecasting method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09305680A (en) * 1996-05-16 1997-11-28 Kawasaki Steel Corp How to formulate sales plan
JP2000123096A (en) * 1998-10-20 2000-04-28 Hitachi Ltd Calculation method of scheduled shipment volume
JP2001184117A (en) * 1999-12-27 2001-07-06 Toyota Motor Corp Component ordering device, component ordering method, and recording medium
JP4345519B2 (en) * 2004-02-27 2009-10-14 トヨタ自動車株式会社 Shipment amount averaging method and shipment amount averaging program
JP5889002B2 (en) * 2012-01-26 2016-03-22 三菱重工業株式会社 Demand forecasting device, demand forecasting method, and demand forecasting program

Also Published As

Publication number Publication date
JP2016146037A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
JP7147561B2 (en) Order quantity determination system, order quantity determination method and order quantity determination program
JP3698433B2 (en) Safety stock quantity calculation device, safety stock quantity calculation program and order point calculation device
US8650062B2 (en) Automated replenishment using an economic profit quantity
US20100169165A1 (en) Method for updating regression coefficients in a causal product demand forecasting system
JP6493812B2 (en) Inventory management method, inventory management apparatus, and program
WO2016150796A1 (en) Inquiry-based adaptive prediction
JP6823547B2 (en) Business management system
Bagherpour et al. Designing a control mechanism using earned value analysis: an application to production environment
KR20190135591A (en) Components demand forecasting system and method for thereof
JP6566545B2 (en) Demand forecasting device, demand forecasting method, and demand forecasting program
JP6067630B2 (en) Profit / loss prediction apparatus and profit / loss prediction program
WO2019163498A1 (en) Production management device, production management method, and program
US20240020545A1 (en) Selecting forecasting algorithms using motifs
CN113822543B (en) Method and device for determining number of resources, electronic equipment and storage medium
JP4348980B2 (en) Production control / control method
KR102061853B1 (en) Demand forecasting method, computer program implementing the same and demand forecasting system configured to perform the same
JP2001282981A (en) Management reform planning method and management reform planning system
JP2010118083A (en) Bond property calculating system and spread change rate calculating system
JP6622678B2 (en) Information processing apparatus, information processing method, and program
JP5734218B2 (en) Information output device, information output method, and program
JP2017027632A (en) Demand prediction device, demand prediction system, control method, and program
JPH11353368A (en) Profit management system, profit management method, and storage medium
JPH0756987A (en) Product ordering system
US8583539B2 (en) Enablement of exposure management to handle priced exposure
JP5968513B1 (en) Stable inventory quantity forecasting system, stable inventory quantity forecasting method and program

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150209

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R150 Certificate of patent or registration of utility model

Ref document number: 6566545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350