[go: up one dir, main page]

JP6243811B2 - Method and apparatus for measuring physical property values by steady method - Google Patents

Method and apparatus for measuring physical property values by steady method Download PDF

Info

Publication number
JP6243811B2
JP6243811B2 JP2014148809A JP2014148809A JP6243811B2 JP 6243811 B2 JP6243811 B2 JP 6243811B2 JP 2014148809 A JP2014148809 A JP 2014148809A JP 2014148809 A JP2014148809 A JP 2014148809A JP 6243811 B2 JP6243811 B2 JP 6243811B2
Authority
JP
Japan
Prior art keywords
measurement sample
physical property
heat transfer
measuring
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014148809A
Other languages
Japanese (ja)
Other versions
JP2016024083A (en
Inventor
細野 和也
和也 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Ultra High Temperature Materials Research Institute JUTEM
Original Assignee
Japan Ultra High Temperature Materials Research Institute JUTEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Ultra High Temperature Materials Research Institute JUTEM filed Critical Japan Ultra High Temperature Materials Research Institute JUTEM
Priority to JP2014148809A priority Critical patent/JP6243811B2/en
Publication of JP2016024083A publication Critical patent/JP2016024083A/en
Application granted granted Critical
Publication of JP6243811B2 publication Critical patent/JP6243811B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、定常法による物性値の測定方法及びその測定装置に関する。ここで、物性値の測定対象となる試料としては、例えば、多孔質材や断熱材(セラミックス材)等がある。   The present invention relates to a method for measuring a physical property value by a steady method and a measuring apparatus therefor. Here, examples of the sample whose physical property value is to be measured include a porous material and a heat insulating material (ceramic material).

定常法は、試料(以下、測定試料ともいう)内に温度変化が無い定常状態を実現し、(1)式(フーリエの式)により、試料の熱伝導率k(物性値)を求める方法である(例えば、特許文献1参照)。
ここで、熱流速qが測定できる場合には、図12(A)に示す定常絶対法により、(1)式に従って試料の熱伝導率kを求めることができる。
しかし、この試料内を移動する熱流速qの測定は難しいことから、図12(B)に示す定常比較法、即ち熱伝導率が既知の標準試料を用いた測定方法が、よく利用されている。この方法は、平板状の測定試料と標準試料とを密着させ、測定試料と標準試料を移動する熱流速qが同一となるようにして、(2)式と(3)式に従い、試料の熱伝導率kを求める方法である。
The steady method is a method in which a steady state in which there is no temperature change in a sample (hereinafter also referred to as a measurement sample) is realized, and the thermal conductivity k (physical property value) of the sample is obtained by equation (1) (Fourier equation). Yes (see, for example, Patent Document 1).
Here, when the heat flow rate q can be measured, the thermal conductivity k of the sample can be obtained according to the equation (1) by the stationary absolute method shown in FIG.
However, since it is difficult to measure the heat flow velocity q moving in the sample, the steady comparison method shown in FIG. 12B, that is, a measurement method using a standard sample with a known thermal conductivity is often used. . In this method, a flat measurement sample and a standard sample are brought into close contact so that the heat flow rate q for moving the measurement sample and the standard sample is the same, and the heat of the sample is determined according to equations (2) and (3). This is a method for obtaining the conductivity k.

Figure 0006243811
Figure 0006243811

なお、使用する変数は、測定試料の熱伝導率(拡散伝熱による熱伝導率)k=ρCα、標準試料の熱伝導率k、測定試料の厚さL、標準試料の厚さL−L、照射前の試料温度T(0)(Tともいう)、図12(A)での測定試料の裏面温度T(L)、図12(B)での測定試料の裏面温度T(L)、図12(B)での標準試料の裏面温度T(L)、単位面積単位時間当たりの入熱量(熱流束)q、である Note that the variable used is the thermal conductivity of the sample (thermal conductivity by the diffusion heat transfer) k = ρCα, the thermal conductivity k s of a standard sample, the measurement sample thickness L 1, the standard sample thickness L 2 -L 1 , sample temperature T (0) before irradiation (also referred to as T 0 ), back surface temperature T (L 1 ) of the measurement sample in FIG. 12A, back surface temperature of the measurement sample in FIG. T (L 1 ), back surface temperature T (L 2 ) of the standard sample in FIG. 12 (B), and heat input amount (heat flux) q per unit area unit time.

定常法は、熱伝導率を測定する方法として広く用いられている。特に、多孔質材料のような不均質材料や、熱伝導率が小さい断熱材への適用が多い。これは、熱伝導率の測定に多く利用されているレーザフラッシュ法は、試料が均質材料で、しかも、試料厚さを1〜3mm程度の薄いものとする必要があるため、多孔質材料等の不均質材料の測定には適さないからである。   The steady method is widely used as a method for measuring thermal conductivity. In particular, it is often applied to a heterogeneous material such as a porous material or a heat insulating material having a low thermal conductivity. This is because the laser flash method, which is widely used for measuring the thermal conductivity, requires that the sample be a homogeneous material and that the sample thickness be as thin as 1 to 3 mm. This is because it is not suitable for measuring heterogeneous materials.

特開2005−195550号公報JP 2005-195550 A

しかしながら、前記従来の定常法には、未だ解決すべき以下のような問題があった。
定常法で多くの測定が行われる多孔質材や断熱材は、試料内に空隙があり、フーリエ式で取り扱う拡散伝熱現象だけでなく、放射伝熱現象による熱流束が共存する。また、断熱材として多く用いられるセラミックス材は、赤外線を透過する性質があるため、拡散伝熱現象と放射伝熱現象による熱伝導となる。
従来は、この放射伝熱現象の取り扱いが困難であったため、拡散伝熱現象と放射伝熱現象による熱伝導を、すべて拡散伝熱現象に基づく熱伝導と仮定して、上記したフーリエの式に従い、試料の見かけの熱伝導率を求めていたのが現状である。
従って、放射伝熱現象が無視できない条件では、正確な熱伝導現象を把握しているとは言い難く、測定される熱伝導率の取り扱いが問題となっている。
However, the conventional steady-state method still has the following problems to be solved.
Porous materials and heat insulating materials for which many measurements are performed by the steady-state method have voids in the sample, and not only the diffusion heat transfer phenomenon handled by the Fourier equation but also the heat flux due to the radiant heat transfer phenomenon coexists. In addition, a ceramic material often used as a heat insulating material has a property of transmitting infrared rays, and therefore conducts heat due to a diffusion heat transfer phenomenon and a radiation heat transfer phenomenon.
Conventionally, it has been difficult to handle this radiant heat transfer phenomenon. Therefore, the heat conduction due to the diffusion heat transfer phenomenon and the radiant heat transfer phenomenon are all assumed to be heat conduction based on the diffusion heat transfer phenomenon, and according to the above Fourier formula. At present, the apparent thermal conductivity of the sample has been obtained.
Therefore, under conditions where the radiant heat transfer phenomenon cannot be ignored, it is difficult to say that the accurate heat conduction phenomenon is grasped, and the handling of the measured heat conductivity is a problem.

本発明はかかる事情に鑑みてなされたもので、従来取り扱いが困難であった放射伝熱現象と拡散伝熱現象が共存状態にある測定試料における定常法による物性値の測定方法及びその測定装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a method for measuring a physical property value by a steady method in a measurement sample in which a radiant heat transfer phenomenon and a diffusion heat transfer phenomenon, which have been difficult to handle in the past, and a measurement apparatus thereof are provided. The purpose is to provide.

前記目的に沿う第1の発明に係る定常法による物性値の測定方法は、板状の測定試料を温度Tに設定した後、該測定試料の表面側を一定強度の熱流束で加熱し、該測定試料の物性値を求める定常法による物性値の測定方法において、
前記測定試料の表裏面で測定した温度と該測定試料の厚さdlを用いて見かけの熱伝導率k´を求め、前記測定試料の厚さdlと該測定試料の熱拡散率αに依存する前記見かけの熱伝導率k´を示す式を用いて、該測定試料の熱拡散率αを物性値として求める物性値算出工程を有する。
In the method for measuring physical property values by the steady method according to the first invention in accordance with the above object, after setting the plate-like measurement sample to the temperature T 0 , the surface side of the measurement sample is heated with a heat flux having a constant intensity, In the measurement method of the physical property value by the steady method for obtaining the physical property value of the measurement sample,
The apparent thermal conductivity k ′ is obtained using the temperature measured on the front and back surfaces of the measurement sample and the thickness dl of the measurement sample, and depends on the thickness dl of the measurement sample and the thermal diffusivity α of the measurement sample. A physical property value calculating step for obtaining the thermal diffusivity α of the measurement sample as a physical property value by using an equation indicating the apparent thermal conductivity k ′.

第1の発明に係る定常法による物性値の測定方法において、前記物性値算出工程の前に、前記測定試料の吸収係数μと厚さdlとの積である光学厚さμdlを求め、該光学厚さμdlに基づいて、前記測定試料の表面から裏面への熱伝導が、拡散伝熱と放射伝熱のいずれに起因するかを判定する判定工程を行うことが好ましい。   In the physical property value measurement method according to the stationary method according to the first invention, an optical thickness μdl, which is a product of an absorption coefficient μ and a thickness dl, of the measurement sample is obtained before the physical property value calculation step, It is preferable to perform a determination step of determining whether heat conduction from the front surface to the back surface of the measurement sample is caused by diffusion heat transfer or radiation heat transfer based on the thickness μdl.

第1の発明に係る定常法による物性値の測定方法において、前記測定試料の表裏面にそれぞれ、熱伝導率が既知である、熱移動が拡散伝熱により生じる材料を密着配置、又は、不透光膜を形成し、前記測定試料の表面側の加熱を、加熱光で連続照射することにより行うことができる。   In the method for measuring physical property values by the steady method according to the first invention, a material whose thermal conductivity is known and whose heat transfer is caused by diffusion heat transfer is closely arranged or impervious to the front and back surfaces of the measurement sample. An optical film can be formed, and heating on the surface side of the measurement sample can be performed by continuous irradiation with heating light.

第1の発明に係る定常法による物性値の測定方法において、前記測定試料の表面に発熱体aを密着配置し、該測定試料の裏面に、熱伝導率が既知である、熱移動が拡散伝熱により生じる材料を密着配置、又は、不透光膜を形成して、前記発熱体aを加熱制御することができる。   In the method for measuring physical property values by the steady method according to the first aspect of the invention, the heating element a is closely disposed on the surface of the measurement sample, and the thermal conductivity is known on the back surface of the measurement sample. It is possible to control the heating of the heating element a by closely arranging a material generated by heat or forming an opaque film.

第1の発明に係る定常法による物性値の測定方法において、前記測定試料の表面に発熱体aを密着配置し、更に、前記発熱体aとは隙間を有して発熱体bを配置して、前記発熱体aと前記発熱体bを同一温度に加熱制御することができる。
ここで、前記発熱体aを、熱伝導率が既知である、熱移動が拡散伝熱により生じる材料、又は、不透光膜を介して、前記測定試料の表面に配置し、前記測定試料の裏面に、熱伝導率が既知である、熱移動が拡散伝熱により生じる材料を密着配置、又は、不透光膜を形成することができる。
In the method of measuring physical property values by the steady method according to the first invention, the heating element a is closely arranged on the surface of the measurement sample, and the heating element b is arranged with a gap from the heating element a. The heating element a and the heating element b can be controlled to be heated to the same temperature.
Here, the heating element a is arranged on the surface of the measurement sample via a material whose thermal conductivity is known, heat transfer is caused by diffusion heat transfer, or an opaque film, On the back surface, a material having a known thermal conductivity and heat transfer caused by diffusion heat transfer can be closely arranged or an opaque film can be formed.

なお、前記発熱体bは、前記発熱体aを覆っているのがよい。   Note that the heating element b preferably covers the heating element a.

前記目的に沿う第2の発明に係る定常法による物性値の測定装置は、第1の発明に係る定常法による物性値の測定方法に用いる測定装置であって、前記測定試料を内部に配置可能な加熱炉と、該加熱炉の端部に設けられ、前記測定試料の表面側に加熱光を連続照射するための透明ガラスとを有する。   The apparatus for measuring physical property values by the steady method according to the second invention in accordance with the above object is a measuring apparatus used for the method for measuring physical property values by the steady method according to the first invention, and the measurement sample can be disposed inside. And a transparent glass provided at the end of the heating furnace for continuously irradiating heating light on the surface side of the measurement sample.

本発明に係る定常法による物性値の測定方法及びその測定装置は、物性値算出工程を有するので、物性値の算出に際し、測定試料の厚さを考慮できる。これにより、従来取り扱いが困難であった放射伝熱現象と拡散伝熱現象が共存状態の測定試料であっても、この測定試料の物性値を定常法によって精度よく求めることができる。   Since the physical property value measurement method and the measurement apparatus according to the present invention have a physical property value calculation step, the thickness of the measurement sample can be taken into account when calculating the physical property value. As a result, even if the measurement sample is a coexisting state of the radiant heat transfer phenomenon and the diffusion heat transfer phenomenon, which have been difficult to handle in the past, the physical property value of the measurement sample can be obtained with high accuracy by a steady method.

特に、測定試料の熱伝導が放射伝熱に起因するとの判定を、測定試料の吸収係数μと厚さdlとの積である光学厚さμdlを用いた判定工程により行うので、熱伝導が、拡散伝熱と放射伝熱のいずれに起因するか分らない測定試料に対しても、物性値を求めることができる。   In particular, since the determination that the heat conduction of the measurement sample is caused by radiant heat transfer is performed by the determination process using the optical thickness μdl, which is the product of the absorption coefficient μ and the thickness dl of the measurement sample, the heat conduction is A physical property value can be obtained for a measurement sample that does not know whether it is caused by diffusion heat transfer or radiation heat transfer.

本発明の一実施の形態に係る定常法による物性値の測定方法の前提条件となる測定試料の伝熱モデルの説明図である。It is explanatory drawing of the heat transfer model of the measurement sample used as the precondition of the measuring method of the physical-property value by the stationary method which concerns on one embodiment of this invention. 拡散伝熱的熱伝導と放射伝熱的熱伝導の境界を示すグラフである。It is a graph which shows the boundary of diffusion heat transfer heat conduction and radiation heat transfer heat conduction. 本発明の一実施の形態に係る定常法による物性値の測定方法を用いて測定試料の物性値を測定する際の手順を示す解析フロー図である。It is an analysis flowchart which shows the procedure at the time of measuring the physical-property value of a measurement sample using the measuring method of the physical-property value by the stationary method which concerns on one embodiment of this invention. 拡散伝熱のみによる熱伝導率kに対して見かけの熱伝導率k´が5%大きい場合の測定試料の厚さの吸収係数の依存性を示すグラフである。Is a graph showing the dependency of the absorption coefficient of the thickness of the measurement sample when the thermal conductivity k 2 the apparent relative thermal conductivity k 2 by only diffusion heat transfer '5% greater. 見かけの熱伝導率k´と第2層の熱拡散率αとの関係の一例を示すグラフである。The thermal conductivity of the apparent k 2 'and is a graph showing an example of the relationship between the thermal diffusivity alpha 2 of the second layer. 同じ物性値を有する材料の見かけの熱伝導率の厚さ依存性を示すグラフである。It is a graph which shows the thickness dependence of the apparent thermal conductivity of the material which has the same physical-property value. 変形例に係る定常法による物性値の測定方法を用いて測定試料の物性値を測定する際の手順を示す解析フロー図である。It is an analysis flowchart which shows the procedure at the time of measuring the physical-property value of a measurement sample using the measuring method of the physical-property value by the stationary method which concerns on a modification. (A)は第1層あるいは第3層の材料として熱伝導率が既知の材料を用いる場合の3層材の定常熱流束加熱方法の説明図、(B)は第3層の材料として熱伝導率が既知の材料を用いる場合の2層材の定常熱流束加熱方法の説明図である。(A) is an explanatory view of a steady heat flux heating method of a three-layer material when a material having a known thermal conductivity is used as the material of the first layer or the third layer, and (B) is a heat conduction as a material of the third layer. It is explanatory drawing of the steady heat flux heating method of a two-layer material in the case of using a material with a known rate. (A)、(B)はそれぞれ第1層と第3層の材料として熱伝導率が既知でない材料を用いる場合の3層材の定常熱流束加熱方法の説明図、他の定常熱流束加熱方法の説明図である。(A), (B) is an explanatory view of a steady heat flux heating method for a three-layer material when a material whose thermal conductivity is not known is used as the material for the first layer and the third layer, respectively, and another steady heat flux heating method It is explanatory drawing of. 単層材の定常熱流束加熱方法の説明図である。It is explanatory drawing of the steady heat flux heating method of a single layer material. (A)は光照射法を適用する物性値の測定装置の説明図、(B)は抵抗体加熱法を適用する物性値の測定装置の説明図である。(A) is explanatory drawing of the measuring device of the physical-property value which applies a light irradiation method, (B) is explanatory drawing of the measuring device of the physical-property value which applies a resistor heating method. (A)は定常絶対法による熱伝導率の測定方法の説明図、(B)は定常比較法による熱伝導率の測定方法の説明図である。(A) is explanatory drawing of the measuring method of thermal conductivity by a stationary absolute method, (B) is explanatory drawing of the measuring method of thermal conductivity by a steady comparison method.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の一実施の形態に係る定常法による物性値の測定方法を行う前の前提条件について、図1を参照しながら説明する。
測定対象となる測定試料10は、例えば、多孔質材のような不均質材や、熱伝導率が小さい断熱材(セラミックス材)等であり、拡散伝熱現象だけでなく、放射伝熱現象も共存する板状の試料である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, the preconditions before performing the physical property value measurement method by the steady method according to the embodiment of the present invention will be described with reference to FIG.
The measurement sample 10 to be measured is, for example, a heterogeneous material such as a porous material or a heat insulating material (ceramic material) having a low thermal conductivity, and not only a diffusion heat transfer phenomenon but also a radiant heat transfer phenomenon. It is a plate-like sample that coexists.

次に、上記した測定試料10の表裏面に、熱移動が拡散伝熱のみの材料からなる板材11、12をそれぞれ密着配置して(測定試料10を板材11と板材12で挟み込んだ状態にして)、3層材13を形成する。この板材11、12には、例えば、黒鉛や金属等を用いることができる。
また、上記したような板材を用いることなく、測定試料10の表裏面を不透光化処理して不透光膜を形成することもできる。この場合、測定試料10を単層材として、測定対象にできる。
Next, the plate materials 11 and 12 made of a material only having diffusion heat transfer are adhered to the front and back surfaces of the measurement sample 10 described above (the measurement sample 10 is sandwiched between the plate material 11 and the plate material 12). ) A three-layer material 13 is formed. For the plate members 11 and 12, for example, graphite or metal can be used.
Further, the opaque material can be formed by making the front and back surfaces of the measurement sample 10 opaque, without using the plate material as described above. In this case, the measurement sample 10 can be a measurement object as a single layer material.

熱伝導率の測定に際しては、上記した3層材13全体を、温度(定常温度)Tに設定した後、第1層である板材11(以下、単に第1層ともいう)の表面を定常熱流束(一定強度の熱流束)で加熱して、温度を測定するものとする(即ち、定常法)。
ここで、3層材13全体を温度Tとする方法としては、例えば、温度Tに制御した加熱炉内に3層材13をセットする方法がある。
また、第1層の表面に定常熱流束を与える方法としては、例えば、1)加熱光を用いて第1層の表面を連続照射する方法、2)第1層を導電性材料として定電流を流す方法、等がある。
In measuring the thermal conductivity, the entire three-layer material 13 described above is set to a temperature (steady temperature) T 0 , and then the surface of the plate material 11 (hereinafter also simply referred to as the first layer) as the first layer is stationary. It is assumed that the temperature is measured by heating with a heat flux (a heat flux with a constant intensity) (that is, a steady method).
Here, as a method of setting the entire three-layer material 13 to the temperature T 0 , for example, there is a method of setting the three-layer material 13 in a heating furnace controlled to the temperature T 0 .
In addition, as a method of giving a steady heat flux to the surface of the first layer, for example, 1) a method of continuously irradiating the surface of the first layer using heating light, and 2) a constant current using the first layer as a conductive material There is a method of flowing.

温度の測定は、例えば、熱電対等の温度測定手段を用いて、各層境界の温度を測定する。
ここで、定常温度Tからの温度変化をTとする。また、第1層の表面座標をx=0とし、第3層(板材12)の裏面座標をx=Lとし、第1層と第2層(測定試料10)との界面座標をx=Lとし、第2層と第3層との界面座標をx=Lとする。
For temperature measurement, for example, the temperature of each layer boundary is measured using temperature measuring means such as a thermocouple.
Here, the temperature variation from the steady temperature T 0 and T. The surface coordinates of the first layer and x = 0, the third layer of the back surface coordinates (plate 12) and x = L 3, the interface coordinates between the first and second layers (measurement sample 10) x = Let L 1 and the interface coordinates between the second layer and the third layer be x = L 2 .

上記した第3層の裏面からは、λ(L)のエネルギー放射が外部に向けてあるものとする。また、界面x=Lにおいて、第1層から第2層内にλ(L)のエネルギー放射があり、界面x=Lにおいて、第3層から第2層内にλ(L)のエネルギーが放射される。
ここで、第3層の裏面からの外部への放射エネルギーと、第2層と第3層の界面から第2層への放射エネルギーを区別するため、第3層の裏面(x=L)から外部への放射エネルギーにuを付ける。また、3層材13の裏面よりエネルギー放射があり、第3層(板材12)の第2層(測定試料10)側への放射と裏面側への放射が等しい場合には、uは1とする。
It is assumed that energy emission of λ 3 T 3 (L 3 ) is directed outward from the back surface of the third layer. Further, at the interface x = L 1 , there is λ 1 T 1 (L 1 ) energy radiation from the first layer to the second layer, and at the interface x = L 2 , λ 3 from the third layer to the second layer. T 3 (L 2 ) energy is emitted.
Here, in order to distinguish the radiation energy from the back surface of the third layer to the outside and the radiation energy from the interface between the second layer and the third layer to the second layer, the back surface of the third layer (x = L 3 ). U 1 is added to the radiant energy from the outside to the outside. In addition, when there is energy radiation from the back surface of the three-layer material 13 and the radiation to the second layer (measurement sample 10) side of the third layer (plate material 12) is equal to the radiation to the back surface side, u 1 is 1. And

使用する変数は、密度ρ、比熱C、熱拡散率α、熱伝導率(拡散伝熱による熱伝導率)k=ρα、標準試料の熱伝導率k、厚さdl、第1層の放射率ε、第3層の放射率ε、第2層の屈折率n、第2層の吸収係数μ、照射前の試料温度(加熱前温度)T、単位面積単位時間当たりの入熱量(熱流束)q、である(以上、i=1,2,3、第1〜第3層を示す)。ここで、放射率、屈折率、及び、吸収係数は、一般に波長依存性があるが、それぞれ適切な平均化処理をしたものを用いる。
従って、以下の関係が成り立つ。
dl=L
dl+dl=L
dl+dl+dl=L
The variables used are density ρ i , specific heat C i , thermal diffusivity α i , thermal conductivity (thermal conductivity by diffusion heat transfer) k i = ρ i C i α i , thermal conductivity k s of standard sample, Thickness dl i , first layer emissivity ε 1 , third layer emissivity ε 3 , second layer refractive index n, second layer absorption coefficient μ, sample temperature before irradiation (temperature before heating) T 0 , the amount of heat input per unit area unit time (heat flux) q (i = 1,2,3, showing the first to third layers). Here, the emissivity, the refractive index, and the absorption coefficient are generally wavelength-dependent, but those that have been appropriately averaged are used.
Therefore, the following relationship holds.
dl 1 = L 1
dl 1 + dl 2 = L 2
dl 1 + dl 2 + dl 3 = L 3

また、第1層の第2層側裏面と第3層の第2層側表面からの放射に関する定数λ、λは、以下のように示される。
λ=4εσT ・・・(4)
λ=4εσT ・・・(5)
そして、第2層内部からの放射に関する定数λは、以下のように示される。
λ=eσT ・・・(6)
上記したλ、λ、及び、λの計算には、加熱前温度Tを用いているが、測定する温度を用いてもよい。
ここで、(6)式中のeは定数であり、この値の一例としてe=8πがある。なお、この値は、試料内の放射や吸収のモデルのたて方により多少異なるものと考えられ、例えば、e=32/3等もありうるが、実用上は、実態に合わせた数値とする。また、σはステファンボルツマン定数である。
Further, constants λ 1 and λ 3 relating to radiation from the second layer side rear surface of the first layer and the second layer side surface of the third layer are expressed as follows.
λ 1 = 4ε 1 σT 0 3 (4)
λ 3 = 4ε 3 σT 0 3 (5)
The constant λ 2 related to the radiation from the inside of the second layer is expressed as follows.
λ 2 = e 1 n 2 σT 0 3 (6)
In the calculation of λ 1 , λ 3 , and λ 2 described above, the pre-heating temperature T 0 is used, but the temperature to be measured may be used.
Here, e 1 in the equation (6) is a constant, and an example of this value is e 1 = 8π. This value is considered to be somewhat different depending on the radiation and absorption model in the sample. For example, e 1 = 32/3 may be used. To do. Further, σ is a Stefan Boltzmann constant.

次に、第2層となる測定試料10の熱伝導率式について説明する。
定常法による測定試料10の見かけの熱伝導率k´(k´とも表す)を、(7)式により定義する。また、拡散伝熱現象と放射伝熱現象が共存する状態においては、(8)式により、測定試料10の見かけの熱伝導率k´が与えられる。
Next, the thermal conductivity formula of the measurement sample 10 serving as the second layer will be described.
The apparent thermal conductivity k 2 ′ (also expressed as k ′) of the measurement sample 10 by the steady method is defined by the equation (7). In the state where the diffusion heat transfer phenomenon and the radiation heat transfer phenomenon coexist, the apparent thermal conductivity k 2 ′ of the measurement sample 10 is given by the equation (8).

Figure 0006243811
Figure 0006243811

ここで、β10、μdl、p、β(p)、β(p)を、以下の(9)式〜(13)式にそれぞれ示す。なお、λ、λ、λは、前記した(4)式〜(6)式で示される。 Here, β 10 , μ c dl 2 , p c , β 1 (p), and β 3 (p) are shown in the following formulas (9) to (13), respectively. Note that λ 1 , λ 3 , and λ 2 are expressed by the above-described equations (4) to (6).

Figure 0006243811
Figure 0006243811

上記した(8)式に用いるμは、放射伝熱的熱伝導と拡散伝熱的熱伝導の境界となる吸収係数である。
従って、吸収係数μがこの値μより小さい場合は、放射伝熱的熱伝導が主体となり、一方、吸収係数μがこの値μより大きい場合は、拡散伝熱的熱伝導が主体となる。この両熱伝導の境界を定義する吸収係数μは、図2に示す(10)式の光学厚さ式で与えられる。なお、図2において、(10)式の線より左側が放射伝熱的熱伝導であり、右側が拡散伝熱的熱伝導である。また、測定試料10の光学厚さは、測定試料10の吸収係数μと厚さL(=dl)の積で表される。
この(10)式において、eは定数である。また、この境界の吸収係数μを用いて、(8)式に用いるラプラス変数pを、(11)式に示す。
Μ c used in the above equation (8) is an absorption coefficient that becomes a boundary between radiant heat transfer heat conduction and diffusion heat transfer heat conduction.
Therefore, when the absorption coefficient μ is smaller than this value μ c , the radiant heat transfer is mainly conducted, whereas when the absorption coefficient μ is larger than this value μ c , the diffusion heat transfer is mainly conducted. . The absorption coefficient μ c that defines the boundary between the two heat conductions is given by the optical thickness formula (10) shown in FIG. In FIG. 2, the left side from the line of the equation (10) is radiant heat transfer heat conduction, and the right side is diffusion heat transfer heat conduction. The optical thickness of the measurement sample 10 is represented by the product of the absorption coefficient μ and the thickness L (= dl 2 ) of the measurement sample 10.
In this equation (10), e 2 is a constant. Further, by using the absorption coefficient mu c of this boundary, the Laplace variable p c used in equation (8), shown in (11).

第2層である測定試料10内部の単位体積、かつ、単位時間当たりに放射されるエネルギーqを、(14)式に記載する。ここで、(14)式中のλは、前記した(6)式で与えられる。 Unit volume of internal measurement sample 10 is a second layer, and the energy q v emitted per unit time, according to (14) below. Here, λ 2 in the equation (14) is given by the above equation (6).

Figure 0006243811
Figure 0006243811

上記した境界を与える光学厚さ式を示す(10)式中の定数eは、一次元放射が成立する場合には、(15)式で与えられる。
なお、第1層と第2層の界面における第2層内への放射が、3次元的に放射されるランバート面特性のような場合には、定数eは(15)式とは異なる定数となると考えられるが、それは個々の面の特性に合わせて設定するものとする。このランバート面とは、界面垂直方向からの角度をθとすると、面からの放射強度はIcos(θ)となるような面である。また、Iは、垂直方向の放射強度である。
これは、第2層と第3層の界面についても同様である。
Constant e 2 of the optical represents the thickness (10) wherein providing the boundary described above, when the one-dimensional radiation is satisfied is given by (15).
When the radiation into the second layer at the interface between the first layer and the second layer has a Lambertian surface characteristic that is three-dimensionally radiated, the constant e 2 is a constant different from the equation (15). However, it should be set according to the characteristics of each surface. This Lambertian surface is a surface where the radiation intensity from the surface becomes I 0 cos (θ), where θ is the angle from the interface vertical direction. I 0 is the vertical radiation intensity.
The same applies to the interface between the second layer and the third layer.

Figure 0006243811
Figure 0006243811

また、定常法で測定される単層材(例えば、前記したように、測定試料の表裏面を不透光化処理して不透光膜を形成した場合)の見かけの熱伝導率k´は、(16)式で表される。 In addition, the apparent thermal conductivity k 2 ′ of a single-layer material measured by a steady method (for example, as described above, when an opaque film is formed by performing an opaque process on the front and back surfaces of a measurement sample) Is expressed by equation (16).

Figure 0006243811
Figure 0006243811

ここで、dlは単層材の厚さである。
また、前記した(8)式中と上記した(16)式中のk(ダッシュ「´」がない)は、測定試料10の拡散伝熱による熱伝導率であり、k=ραで定義する。
そして、上記した(16)式は、前記した(8)式において、第1層と第3層の厚さを「0」として導いた式であり、サフィックス(下付き添字)は3層材のものをそのまま用いている(例えば、熱伝導率はkをそのまま用いている)。
Here, dl 2 is the thickness of the single layer material.
Further, the above-mentioned (8) and the above formula (16) k in formula 2 (no dashes "'") is the thermal conductivity due to diffusion heat transfer of the measurement sample 10, k 2 = ρ 2 C defined by 2 α 2.
The above-described equation (16) is an equation in which the thicknesses of the first layer and the third layer are derived as “0” in the above-described equation (8), and the suffix (subscript) is a three-layer material. is used as an object (e.g., thermal conductivity is used as it the k 2).

続いて、本発明の一実施の形態に係る定常法による物性値の測定方法について、図3を参照しながら説明する。なお、以下の処理は、コンピュータ(演算処理手段)に入力されたデータを用い、コンピュータのプログラムに基づいて順次行われる。
解析対象は、次に示す第2層となる測定試料10の熱物性値である。
なお、これ以外の物性値と各層の厚さは、既知とする。具体的には、図3に示すように、一方の板材11(第1層)の既知データは、密度ρ、比熱C、熱拡散率α、厚さdl、であり、測定試料10(第2層)の既知データは、密度ρ、比熱C、吸収係数μ、屈折率n、厚さdl(dlとも表す)、であり、他方の板材12(第3層)の既知データは、密度ρ、比熱C、熱拡散率α、厚さdl、である。
Next, a method for measuring physical property values by a steady method according to an embodiment of the present invention will be described with reference to FIG. The following processing is sequentially performed based on a computer program using data input to a computer (arithmetic processing means).
The analysis target is a thermophysical value of the measurement sample 10 to be the second layer shown below.
The other physical property values and the thickness of each layer are known. Specifically, as shown in FIG. 3, the known data of one plate 11 (first layer) is density ρ 1 , specific heat C 1 , thermal diffusivity α 1 , thickness dl 1 , and measurement sample The known data of 10 (second layer) is density ρ 2 , specific heat C 2 , absorption coefficient μ, refractive index n, thickness dl 2 (also referred to as dl), and the other plate material 12 (third layer). Known data are density ρ 3 , specific heat C 3 , thermal diffusivity α 3 , and thickness dl 3 .

ただし、放射伝熱的熱伝導が無視できる場合には、測定試料の熱伝導率が得られるので、各層の全ての物性値は、既知である必要はない。
測定される熱物性値は、材料特性に依存し、次の2つのケースがある。
1)放射伝熱的熱伝導が無視できる場合:第2層の熱伝導率k
2)放射伝熱的熱伝導が無視できない場合:第2層の熱拡散率α(αとも表す)と、この熱拡散率αに密度ρと比熱Cを掛けた熱伝導率k(=ρα)と、測定厚さにおける見かけの熱伝導率k´(dl
However, when radiative heat transfer is negligible, the thermal conductivity of the measurement sample can be obtained, so that all physical property values of each layer need not be known.
The measured thermophysical value depends on the material properties, and there are the following two cases.
1) When radiative heat transfer can be ignored: thermal conductivity k 2 of the second layer
2) When radiant heat transfer cannot be ignored: thermal diffusivity α 2 (also expressed as α) of the second layer, and thermal conductivity k obtained by multiplying this thermal diffusivity α 2 by density ρ 2 and specific heat C 2. 2 (= ρ 2 C 2 α 2 ) and apparent thermal conductivity k 2 ′ (dl 2 ) at the measured thickness

まず、ステップ1(ST1)の判定工程について説明する。
測定試料10の吸収係数μと厚さdlとを用いて光学厚さμdl(吸収係数μと厚さdlとの積)を計算し、放射伝熱的熱伝導と拡散伝熱的熱伝導の境界を与える光学厚さeとの比較を行う。
具体的には、測定試料10の光学厚さμdlが、この境界に与える光学厚さeに対して十分大きい場合(μdl≫e)、即ち、測定試料の熱伝導が拡散伝熱に起因すると判定した場合には、ステップ2(ST2)へ進む。一方、そうでない場合、即ち、測定試料の熱伝導が放射伝熱に起因すると判定した場合には、ステップ3(ST3)へ進む。
First, the determination process of step 1 (ST1) will be described.
The optical thickness μdl 2 (product of the absorption coefficient μ and the thickness dl 2 ) is calculated using the absorption coefficient μ and the thickness dl 2 of the measurement sample 10, and radiant heat transfer heat and diffusion heat transfer heat and it compares the optical thickness e 2 which gives the boundaries of conduction.
Specifically, when the optical thickness μdl 2 of the measurement sample 10 is sufficiently larger than the optical thickness e 2 given to this boundary (μdl 2 >> e 2 ), that is, the heat conduction of the measurement sample is diffusion heat transfer. If it is determined that the error has occurred, the process proceeds to step 2 (ST2). On the other hand, if not, that is, if it is determined that the heat conduction of the measurement sample is due to radiant heat transfer, the process proceeds to step 3 (ST3).

ここで、測定試料の光学厚さμdlが、放射伝熱的熱伝導と拡散伝熱的熱伝導の境界を与える光学厚さeに対して、十分に大きいかどうかの判断方法の一例を示す。
両熱伝導現象が存在する場合、熱伝導が拡散伝熱のみに起因すると仮定して得られた熱伝導率k、即ち、k=ραに比較して、後述する見かけの熱伝導率k´が大きくなる。ここで、k´がkに比較して5%大きくなる(k´/k=105%)試料厚さの吸収係数の依存性を、図4に示す。
Here, an example of a method for determining whether or not the optical thickness μdl 2 of the measurement sample is sufficiently larger than the optical thickness e 2 that provides a boundary between radiative heat transfer and diffusion heat transfer heat conduction. Show.
When both heat conduction phenomena exist, compared to the thermal conductivity k obtained by assuming that the heat conduction is caused only by diffusion heat transfer, that is, k 2 = ρ 2 C 2 α 2 The thermal conductivity k 2 ′ increases. Here, k 2 '5% increase as compared to the k 2 (k 2' / k 2 = 105%) the dependency of the absorption coefficient of the sample thickness, shown in FIG.

判定に際しては、図4に従い、測定試料の吸収係数よりk´がkに比較して5%大きくなる厚さを確認し、測定試料の厚さdlがこの厚さより厚い場合には、ステップ2へ進んで、拡散伝熱的熱伝導による熱伝導率kを測定する。一方、薄い場合には、ステップ3へ進んで、見かけの熱伝導率k´を測定する。
なお、図4は、以下に示す表1の物性値に基づいて、前記した(8)式を用いて作成したものであり、実際の対応としては、測定対象の物性値に基づいて(8)式を用いてk´/kを評価し、判断する。
When deciding in accordance with FIG. 4, is from k 2 'absorption coefficient of the measurement sample as compared to the k 2 Ensure 5% larger thickness, when the thickness dl 2 of the measurement sample is thicker than this thickness, It proceeds to step 2, to measure the thermal conductivity k 2 by the diffusion heat transfer thermal conduction. On the other hand, if it is thin, the process proceeds to step 3 to measure the apparent thermal conductivity k 2 ′.
In addition, FIG. 4 was created using the above-described formula (8) based on the physical property values shown in Table 1 below, and as an actual correspondence, based on the physical property values of the measurement target (8) K 2 ′ / k 2 is evaluated and judged using an equation.

Figure 0006243811
Figure 0006243811

なお、上記した判定は、図4と同様の図を作成し、その図より行ってもよい。
また、図4では、見かけの熱伝導率k´が、拡散伝熱のみによる熱伝導率kに比較して5%大きい条件としたが、これは一例であり、実用上は、必要とする精度に応じた同様の検討により、熱伝導が拡散伝熱と放射伝熱のいずれに起因するかの判断を行うことが望ましい。その際、測定試料の物性値については不明なため、同様の材料の文献値等を参考にした物性値を用いてもよい。
Note that the above-described determination may be performed by creating a diagram similar to FIG.
In FIG. 4, the apparent thermal conductivity k 2 ′ is 5% larger than the thermal conductivity k 2 by only diffusion heat transfer, but this is an example, and it is necessary for practical use. It is desirable to determine whether the heat conduction is caused by diffusion heat transfer or radiant heat transfer by the same examination according to the accuracy to be performed. At this time, since the physical property value of the measurement sample is unknown, a physical property value referring to a literature value or the like of a similar material may be used.

続いて、ステップ2の拡散伝熱起因の熱伝導率算出工程について説明する。
ここでは、測定試料の熱伝導率kを(17)式より計算する。なお、このステップ2は、測定試料の熱伝導が、拡散伝熱的熱伝導のみと判断される場合に行われるため、この熱伝導率kは、拡散伝熱による熱伝導率となる。
ここで、qは、単位時間かつ単位面積当たりの入熱量(熱流束)である。
従って、第1層あるいは第3層に熱伝導率が既知の材料を用いる場合は、第1層あるいは第3層の両端の温度差と厚みを用いて、(18)式で求められる。一方、熱伝導率が不明の材料を用いる場合には、後述する図に示す方法により、熱流束を求める。
Then, the heat conductivity calculation process resulting from the diffusion heat transfer of step 2 is demonstrated.
Here, to calculate the thermal conductivity k 2 of the measurement sample from (17). Note that this step 2, the thermal conductivity of the measurement sample, to be done when it is determined that only the diffusion heat conduction thermal conductivity, the thermal conductivity k 2 is a thermal conductivity by the diffusion heat transfer.
Here, q is the amount of heat input (heat flux) per unit time and unit area.
Therefore, when a material having a known thermal conductivity is used for the first layer or the third layer, the temperature difference and the thickness at both ends of the first layer or the third layer are used to obtain the equation (18). On the other hand, when a material whose thermal conductivity is unknown is used, the heat flux is obtained by the method shown in the drawings described later.

Figure 0006243811
Figure 0006243811

また、ステップ3の放射伝熱起因の見かけ熱伝導率算出工程について説明する。
ここでは、上記したステップ2と同様に、測定試料の見かけの熱伝導率k´を、(19)式と(18)式を用いて(即ち、測定試料の表裏面で測定した温度と測定試料の厚さを用いて)計算する。なお、このステップ3は、前記したステップ1の判定で、測定試料の熱伝導において、放射伝熱的熱伝導が無視できないと判定される場合に行われる。
In addition, the apparent heat conductivity calculation step due to radiant heat transfer in step 3 will be described.
Here, as in step 2 described above, the apparent thermal conductivity k 2 ′ of the measurement sample is measured using the equations (19) and (18) (that is, the temperature and measurement measured on the front and back surfaces of the measurement sample). Calculate (using sample thickness). In addition, this step 3 is performed when it is determined in the above-described determination in step 1 that the radiative heat transfer cannot be ignored in the heat transfer of the measurement sample.

Figure 0006243811
Figure 0006243811

上記したステップ3が終了した後は、ステップ4(ST4)のλ、λの算出工程とステップ5(ST5)の物性値(熱拡散率)算出工程を、順次行う。
まず、ステップ4について説明する。
測定試料10の測定に際し、前記した3層材13(あるいは2層材)を用いる場合、前記した(8)式を用いて、後述するステップ5で熱拡散率解析を行う必要がある。しかし、この場合、(8)式中に記載の板材のλ、λを計算しておく必要があるため、(20)式と(21)式を用いて、λ、λを計算する。
また、測定試料の測定に際し、前記した単層材を用いる場合には、(22)式を用いてλ、λを計算する。
なお、λは、第1層と第3層を同一材料とすれば、λ=λとなり、求められる。
After the above step 3 is completed, the calculation process of λ 1 and λ 3 in step 4 (ST4) and the physical property value (thermal diffusivity) calculation process in step 5 (ST5) are sequentially performed.
First, step 4 will be described.
When using the above-described three-layer material 13 (or two-layer material) when measuring the measurement sample 10, it is necessary to perform thermal diffusivity analysis in step 5 described later using the above-described equation (8). However, in this case, since it is necessary to calculate the lambda 1, lambda 3 of sheet material described in (8), using (20) and (21), lambda 1, lambda 3 calculations To do.
In the measurement of the measurement sample, when using the above-described single layer material, λ 1 and λ 3 are calculated using the equation (22).
Note that λ 1 is obtained as λ 1 = λ 3 when the first layer and the third layer are made of the same material.

Figure 0006243811
Figure 0006243811

続いて、ステップ5(ST5)について説明する。
ステップ5では、測定試料の見かけの熱伝導率k´を与える(8)式に、前記したステップ3で測定された見かけの熱伝導率k´を代入して、測定試料の熱拡散率αを計算する。なお、(8)式は、測定試料10の厚さdlと熱拡散率αに依存する見かけの熱伝導率k´を示す式である。
ここで、測定試料の熱拡散率αを求めるに際し、前記した表1に示す3層材の物性値を用いた例について、説明する。
Next, step 5 (ST5) will be described.
In step 5, the apparent thermal conductivity k 2 ′ measured in step 3 described above is substituted into the equation (8) that gives the apparent thermal conductivity k 2 ′ of the measurement sample, and the thermal diffusivity of the measurement sample is substituted. α 2 is calculated. Incidentally, an expression showing the expression (8), the thermal conductivity k 2 the apparent depends on the thickness dl 2 and the thermal diffusivity alpha 2 of the measurement sample 10 '.
Here, when obtaining the thermal diffusivity α 2 of the measurement sample, an example using the physical property values of the three-layer material shown in Table 1 will be described.

測定試料の厚みが50mmのとき、放射伝熱的熱伝導と拡散伝熱的熱伝導の境界を与える吸収係数はμ=35.9(1/m)となる。
ここで、例として、測定試料の吸収係数がμ=25.1(1/m)の場合を取り上げると、測定試料の吸収係数は、放射伝熱的熱伝導と拡散伝熱的熱伝導の境界を与える境界吸収係数に比較して小さくなり、測定試料は、放射伝熱的熱伝導の領域にあると判断される。
そして、測定された見かけの熱伝導率をk´=21.8(W/(mK))とすると、この値を、前記した(8)式に代入する。同式は、測定試料の熱拡散率αのみの関数となっているので、測定試料の熱拡散率を求めることができ、α=9.99×10−6(m/s)を得る。なお、図5に、上記した見かけの熱伝導率k´と第2層の熱拡散率αの関係を示す。
When the thickness of the measurement sample is 50 mm, the absorption coefficient that gives the boundary between radiative heat transfer and diffusion heat transfer is μ c = 35.9 (1 / m).
Here, taking as an example the case where the absorption coefficient of the measurement sample is μ = 25.1 (1 / m), the absorption coefficient of the measurement sample is the boundary between radiant heat transfer and diffusion heat transfer heat conduction. The measurement sample is judged to be in the region of radiative heat transfer.
Then, assuming that the measured apparent thermal conductivity is k 2 ′ = 21.8 (W / (mK)), this value is substituted into the aforementioned equation (8). Since this equation is a function of only the thermal diffusivity α 2 of the measurement sample, the thermal diffusivity of the measurement sample can be obtained, and α 2 = 9.99 × 10 −6 (m 2 / s) is obtained. obtain. FIG. 5 shows the relationship between the apparent thermal conductivity k 2 ′ and the thermal diffusivity α 2 of the second layer.

最後に、ステップ6(ST6)では、以下のように、得られた測定結果を出力する。
なお、測定結果は、次のものである。
1)吸収係数が十分大きく、放射伝熱的熱伝導が無視できる場合には、ステップ2で得られた測定試料10の熱伝導率kが測定結果となるため、これを物性値として出力する。
2)放射伝熱的熱伝導が無視できない場合は、ステップ5で得られた測定試料10の熱拡散率αが測定結果となるため、これを物性値として出力する。また、この熱拡散率αに密度ρと比熱Cを掛けて、拡散伝熱による熱伝導率k(=ρα)を、測定結果(物性値)として追加してもよい。更に、見かけの熱伝導率を測定結果に付け加える場合には、測定試料の厚さにおける見かけの熱伝導率として、ステップ3で測定して得られたk´をk´(dl)とし、これを物性値として出力する。
Finally, in step 6 (ST6), the obtained measurement result is output as follows.
The measurement results are as follows.
1) When the absorption coefficient is sufficiently large and radiative heat transfer can be ignored, the thermal conductivity k2 of the measurement sample 10 obtained in step 2 is the measurement result, and this is output as a physical property value. .
2) If the radiation heat transfer thermal conductivity can not be ignored, since the thermal diffusivity alpha 2 of the measurement sample 10 obtained in Step 5 is the measurement result, and outputs it as physical property values. Further, the thermal conductivity k 2 (= ρ 2 C 2 α 2 ) by diffusion heat transfer is added as a measurement result (physical property value) by multiplying the thermal diffusivity α 2 by the density ρ 2 and the specific heat C 2. Also good. Furthermore, when adding the apparent thermal conductivity to the measurement result, k 2 ′ obtained by measuring in step 3 is set as k 2 ′ (dl 2 ) as the apparent thermal conductivity in the thickness of the measurement sample. This is output as a physical property value.

放射伝熱的熱伝導が無視できない材料の見かけの熱伝導率は、厚さ依存性があるため、ある特定の厚さで測定した見かけの熱伝導率の値を、実際の運用の際にそのまま用いた場は、誤差のもととなる。
特に、放射伝熱的熱伝導の領域においては顕著である。なお、一例として、同じ物性値を有する材料の見かけの熱伝導率の厚さ依存性を、図6に示す。
The apparent thermal conductivity of a material for which radiative heat transfer cannot be ignored is thickness dependent, so the apparent thermal conductivity value measured at a specific thickness can be used as is in actual operation. The field used is a source of error.
This is particularly noticeable in the region of radiative heat transfer. As an example, the thickness dependence of the apparent thermal conductivity of materials having the same physical property values is shown in FIG.

以上に示した測定試料の物性値の測定手順として、図3では、ステップ1の判定工程を行った後に、ステップ3の放射伝熱起因の見かけ熱伝導率算出工程を行った場合について説明したが、ステップ3の放射伝熱起因の見かけ熱伝導率算出工程を行った後に、ステップ1の判定工程を行ってもよい。
また、図3に示す解析フローにおいては、第1層と第3層の放射率ε、εをそれぞれ未知としているが、放射率ε、εが既知、従って、λ、λが既知の場合には、ステップ4を省略することもできる。
As a measurement procedure of the physical property value of the measurement sample shown above, FIG. 3 illustrates the case where the apparent heat conductivity calculation step due to radiant heat transfer in step 3 is performed after the determination step in step 1 is performed. After performing the apparent heat conductivity calculation process due to radiant heat transfer in step 3, the determination process in step 1 may be performed.
Further, in the analysis flow shown in FIG. 3, the emissivities ε 1 and ε 3 of the first layer and the third layer are unknown, but the emissivities ε 1 and ε 3 are known, and thus λ 1 and λ 3 are known. If is known, step 4 can be omitted.

更に、測定試料を、拡散伝熱的熱伝導と放射伝熱的熱伝導の双方を有する材料として仮定し、物性値の測定を行うこともできる。以下、測定試料の物性値の測定手順を、図7を参照しながら説明するが、基本的に上記した図3と同様であるため、詳しい説明は省略する。
図7においては、測定試料を、拡散伝熱的熱伝導と放射伝熱的熱伝導の双方を有する材料として扱っているため、測定試料の熱伝導が拡散伝熱と放射伝熱のいずれに起因するかの判定を行う図3のステップ1を省略できる。これは、図3のステップ3と同様のステップ11(ST11)において、測定試料の見かけの熱伝導率k´を計算する際に、図3のステップ2の計算も含まれるためである。
従って、まず、ステップ11により、測定試料の見かけの熱伝導率k´を計算する。
Furthermore, the physical property value can be measured by assuming that the measurement sample is a material having both diffusion heat transfer heat conduction and radiation heat transfer heat conduction. Hereinafter, the measurement procedure of the physical property value of the measurement sample will be described with reference to FIG. 7, but since it is basically the same as FIG. 3 described above, detailed description thereof will be omitted.
In FIG. 7, since the measurement sample is handled as a material having both diffusion heat transfer and radiant heat transfer, the heat transfer of the measurement sample is caused by either diffusion heat transfer or radiant heat transfer. Step 1 of FIG. 3 for determining whether to do can be omitted. This is because the calculation of step 2 in FIG. 3 is included when calculating the apparent thermal conductivity k 2 ′ of the measurement sample in step 11 (ST11) similar to step 3 in FIG.
Therefore, first, in step 11, the apparent thermal conductivity k 2 ′ of the measurement sample is calculated.

上記したステップ11が終了した後は、ステップ12(ST12)でλ、λを計算し(図3のステップ4と同様)、更に、ステップ13(ST13)で測定試料の熱拡散率αを計算する(図3のステップ5と同様)。
最後に、ステップ14(ST14)では、以下の得られた測定結果を出力する。
ステップ13で得られた測定試料10の熱拡散率αが測定結果となるため、これを物性値として出力する。また、この熱拡散率αに密度ρと比熱Cを掛けて、拡散伝熱による熱伝導率k(=ρα)を、物性値として出力する。更に、測定試料の厚さにおける見かけの熱伝導率として、ステップ11で測定して得られたk´をk´(dl)とし、これを物性値として出力する。
なお、測定試料が、放射伝熱的熱伝導を無視でき、拡散伝熱的熱伝導のみと見なされる材料の場合は、熱拡散率に密度と比熱を掛けた熱伝導率k(=ρα)と、見かけの熱伝導率k´(dl)は、略等しいものとなる。
After step 11 is completed, λ 1 and λ 3 are calculated in step 12 (ST12) (similar to step 4 in FIG. 3), and the thermal diffusivity α 2 of the measurement sample is further measured in step 13 (ST13). (Similar to step 5 in FIG. 3).
Finally, in step 14 (ST14), the following obtained measurement results are output.
Since the thermal diffusivity α 2 of the measurement sample 10 obtained in step 13 is a measurement result, this is output as a physical property value. Further, the thermal diffusivity α 2 is multiplied by the density ρ 2 and the specific heat C 2, and the thermal conductivity k 2 (= ρ 2 C 2 α 2 ) by diffusion heat transfer is output as a physical property value. Further, as the apparent thermal conductivity in the thickness of the measurement sample, k 2 ′ obtained by measurement in step 11 is set as k 2 ′ (dl 2 ), and this is output as a physical property value.
In the case where the measurement sample is a material in which radiant heat transfer heat conduction can be ignored and is only regarded as diffusion heat transfer heat transfer, the heat conductivity k 2 (= ρ 2) obtained by multiplying the thermal diffusivity by the density and specific heat. C 2 α 2 ) and the apparent thermal conductivity k 2 ′ (dl 2 ) are substantially equal.

なお、以下に、上記した本発明の定常法による物性値の測定方法に適用可能な定常熱流束加熱方法の具体例を示す。
<第1層あるいは第3層の材料として熱伝導率が既知の材料を用いる場合>
この加熱法の一例として、3層材の場合を図8(A)に、2層材の場合を図8(B)に、それぞれ示す。
ここで、図8(A)は、3層材13の試料端面(第1層である板材11の表面)を加熱光で連続照射し、定常状態においては、照射側から裏面側への定常熱流束が実現される。この場合、熱流束qは、前記した(18)式により求められる。
また、図8(B)は、第1層を電気抵抗体(発熱体)14とし、加熱電源15を用いて電流を流し加熱制御する。このとき、定常状態において、熱流束qは、熱伝導率が既知の第3層の両端温度差と厚さを用いて、前記した(18)式により求められる。
A specific example of a steady heat flux heating method applicable to the above-described physical property value measuring method according to the steady method of the present invention will be shown below.
<When a material with known thermal conductivity is used as the material of the first layer or the third layer>
As an example of this heating method, the case of a three-layer material is shown in FIG. 8A, and the case of a two-layer material is shown in FIG. 8B.
Here, FIG. 8A shows that the sample end surface of the three-layer material 13 (the surface of the plate material 11 as the first layer) is continuously irradiated with heating light, and in a steady state, a steady heat flow from the irradiation side to the back surface side. A bundle is realized. In this case, the heat flux q is obtained by the above-described equation (18).
Further, in FIG. 8B, the first layer is an electric resistor (heating element) 14, and heating is controlled by supplying a current using a heating power supply 15. At this time, in a steady state, the heat flux q is obtained by the above-described equation (18) using the temperature difference and the thickness at both ends of the third layer whose thermal conductivity is known.

<第1層と第3層の材料の熱伝導率が既知でない場合>
この加熱方法の一例として、3層材の場合を図9(A)、(B)に、単層材の場合を図10に、それぞれ示す。
3層材の場合について、図9(A)を参照しながら、以下説明する。
1)発熱体aと発熱体bは、若干の隙間を空けて設置されており、両者を温度「T+T」の同一温度に加熱制御する。なお、発熱体aの加熱制御は、加熱電源aにより行い、発熱体bの加熱制御は、加熱電源bにより行う。
ここで、温度上昇分Tとしては、例えば、10℃とする。
<When the thermal conductivity of the material of the first layer and the third layer is not known>
As an example of this heating method, the case of a three-layer material is shown in FIGS. 9A and 9B, and the case of a single-layer material is shown in FIG.
The case of a three-layer material will be described below with reference to FIG.
1) The heating element a and the heating element b are installed with a slight gap therebetween, and both are controlled to be heated to the same temperature “T 0 + T”. The heating control of the heating element a is performed by the heating power source a, and the heating control of the heating element b is performed by the heating power source b.
Here, the temperature rise T is, for example, 10 ° C.

2)この場合、加熱電源aによる一方の発熱体aの電気的入熱量Q(=IR)は、ほとんど測定試料10側に流れる。また、発熱体aから発熱体b側への放射熱流束は、両発熱体a、bが同一温度に制御されているので、抑制されている状態である。
3)よって、発熱体aへの電気的入熱量Qが、測定試料10への入熱量となり、試料面積で割ることにより、熱流束qが得られる。
4)第1層と第3層の板材11、12の材料に、熱伝導率が既知の材料を用いれば、この層の両端温度差、厚さ、熱伝導率を用いて、熱流束qを求めることができ、更に精度良く熱流束を求めることができる。
2) In this case, the amount of electrical heat input Q (= I 2 R) of one heating element a by the heating power source a almost flows to the measurement sample 10 side. In addition, the radiant heat flux from the heating element a to the heating element b side is suppressed because both the heating elements a and b are controlled at the same temperature.
3) Therefore, the amount of electrical heat input Q to the heating element a becomes the amount of heat input to the measurement sample 10, and the heat flux q is obtained by dividing by the sample area.
4) If a material having a known thermal conductivity is used as the material of the plate materials 11 and 12 of the first layer and the third layer, the heat flux q is calculated using the temperature difference, thickness, and thermal conductivity at both ends of this layer. The heat flux can be obtained with higher accuracy.

なお、上記した図9(A)の代わりに、図9(B)のように、発熱体bの構造を変形することもできる。
図9(B)に示すように、発熱体bの構造を、発熱体aに接触することなく、発熱体aを覆うような構造とすることで、発熱体aのジュール熱を、より効率的に測定試料10へ伝達することができる。
Note that, instead of the above-described FIG. 9A, the structure of the heating element b can be modified as shown in FIG. 9B.
As shown in FIG. 9B, the structure of the heating element b is configured so as to cover the heating element a without contacting the heating element a, so that the Joule heat of the heating element a can be made more efficient. Can be transmitted to the measurement sample 10.

続いて、単層材の場合について、図10を参照しながら、以下説明する。
上記した図9(A)と同じ加熱方法を用いれば、測定試料10が単体の場合でも、測定が可能である。なお、ここでは、測定試料10の表面に、発熱体a(発熱板)を貼り付けて、測定試料10を加熱している。
測定試料10に入熱する発熱体aの電気的入熱量Qから熱流束qが得られる。
ここで、単層材の見かけの熱伝導率k´は、(23)式により求める。
Next, the case of a single layer material will be described below with reference to FIG.
If the same heating method as that in FIG. 9A is used, measurement is possible even when the measurement sample 10 is a single body. Here, the heating sample a is heated on the surface of the measurement sample 10 to heat the measurement sample 10.
A heat flux q is obtained from the electric heat input amount Q of the heating element a that inputs heat into the measurement sample 10.
Here, the apparent thermal conductivity k 2 ′ of the single layer material is obtained by the equation (23).

Figure 0006243811
Figure 0006243811

この値と、単層材の見かけの熱伝導率の式である前記した(16)式を用いることにより、3層材の場合と同様に、前記した測定結果を得ることができる。
即ち、単層材の測定試料10について、放射伝熱的熱伝導が拡散伝熱的熱伝導に比較して十分小さい場合には、測定試料の熱伝導率kを、また、放射伝熱的熱伝導が無視できない場合には、熱拡散率αを、それぞれ求めることができる。
なお、放射伝熱が無視できない場合の見かけの熱伝導率が厚さ依存性を有することは、3層材での測定と同様である。
By using this value and the above-described equation (16) that is an equation of the apparent thermal conductivity of the single-layer material, the above-described measurement results can be obtained as in the case of the three-layer material.
That is, for the measurement sample 10 of a single layer material, when the radiant heat transfer heat conduction is sufficiently smaller than the diffusion heat transfer heat transfer, the heat conductivity k 2 of the measurement sample is set to When the heat conduction cannot be ignored, the thermal diffusivity α 2 can be obtained respectively.
In addition, it is the same as the measurement with a three-layer material that the apparent thermal conductivity in the case where radiant heat transfer cannot be ignored has thickness dependency.

この際、測定試料10端面からの放射率ε、εを用いた定数率λ、λを、同式に用いているので、同条件を実現するためには、測定試料10の端面を不透光膜で被覆する必要がある。
また、定常状態で測定試料10に入る熱流束が、測定試料の裏面から放射される熱流束と等しいという前記した(22)式の条件を用いることにより、λを測定試料の裏面温度T(L)より求めることができる。
なお、測定試料10両端の不透光膜を同一とすることにより、λはλと同値となる。
At this time, constant ratios λ 1 and λ 3 using the emissivities ε 1 and ε 3 from the end face of the measurement sample 10 are used in the same expression. Therefore, in order to realize the same condition, the end face of the measurement sample 10 is used. Must be covered with a light-impermeable film.
Further, by using the condition of the above-described formula (22) that the heat flux entering the measurement sample 10 in a steady state is equal to the heat flux radiated from the back surface of the measurement sample, λ 3 is set to the back surface temperature T ( L).
Note that, by making the opaque films at both ends of the measurement sample 10 the same, λ 1 has the same value as λ 3 .

ここで、λ、λの計算方法を、以下に説明する。
まず、3層材と2層材の場合について説明する。
前記した(8)式に、見かけの熱伝導率k´を代入して、測定試料の熱拡散率を求める場合、第1層と第3層の表面の放射に関わる定数λ、λを計算しておく必要がある。
上記した図8(A)、(B)、図9(A)に示す測定の場合、第3層を流れる熱流速qは、測定試料の裏面から放射されるエネルギー流束と等しく、前記した(20)式が成立する。これにより、第3層の裏面から外部に放射されるエネルギー流束の係数uλは、前記した(21)式で与えられる。この結果より、第3層の放射率εが不明でも、温度測定によりλを求めることができる。
なお、図9(A)の加熱方法の場合には、電気入熱量Qより熱流束qを求めることができ、第3層の温度を用いなくても、前記した(20)式の左側の式より、λを求めることができる。
また、第1層と第3層を同一材料とすれば、λ=λとなり、λも求められる。
Here, a method of calculating λ 1 and λ 3 will be described below.
First, the case of a three-layer material and a two-layer material will be described.
When the apparent thermal conductivity k 2 ′ is substituted into the above equation (8) to obtain the thermal diffusivity of the measurement sample, the constants λ 1 and λ 3 related to the radiation of the surfaces of the first layer and the third layer are obtained. Need to be calculated.
In the case of the measurements shown in FIGS. 8A, 8B, and 9A, the heat flow rate q flowing through the third layer is equal to the energy flux radiated from the back surface of the measurement sample. 20) Formula is materialized. Thus, the coefficient u 1 λ 3 of the energy flux radiated to the outside from the back surface of the third layer is given by the above-described equation (21). From this result, even if the emissivity ε 3 of the third layer is unknown, λ 3 can be obtained by temperature measurement.
In the case of the heating method of FIG. 9A, the heat flux q can be obtained from the electric heat input amount Q, and the equation on the left side of the above equation (20) can be obtained without using the temperature of the third layer. Thus, λ 3 can be obtained.
If the first layer and the third layer are made of the same material, λ 1 = λ 3 and λ 1 is also obtained.

続いて、単層材の場合について説明する。
前記した(16)式に、見かけの熱伝導率k´を代入して、測定試料の熱拡散率を求める場合にも、定数λ、λを計算しておく必要がある。
この場合については、前述したように、前記した(22)式により、λを求める。
ここで、測定試料の両端の不透光膜を同一のものとすることにより、λはλと同値として得られる。
Subsequently, the case of a single layer material will be described.
Even when the apparent thermal conductivity k 2 ′ is substituted into the above-described equation (16) to obtain the thermal diffusivity of the measurement sample, the constants λ 1 and λ 3 need to be calculated.
In this case, as described above, λ 3 is obtained by the above-described equation (22).
Here, by making the opaque films at both ends of the measurement sample the same, λ 1 is obtained as the same value as λ 3 .

次に、前記した図8(A)の加熱方法(光照射法)を適用する測定装置を図11(A)に、図9(A)の加熱方法(抵抗体加熱法)を適用する測定装置を図11(B)に、それぞれ示す。
図11(A)に示す加熱炉20は、その内部に、支持台21を介して3層材13を配置するものである。この加熱炉20の端部(ここでは上部)には、3層材13の表面に加熱光を照射するための透明ガラス22が配置されている。
図11(B)に示す加熱炉25も、その内部に、支持台21を介して3層材13を配置するものである。この加熱炉25は密閉状態となっており、発熱体a、bを用いて3層材13の加熱を行っている。
なお、図11(A)、(B)に示す説明図では、測定試料10の横方向(露出した側面)への熱の逃げを抑制する保護熱板を、特に記載していないが、このような保護熱板を、測定試料の側面に設置して、この側面からの熱の逃げを抑制してもよい。
Next, a measuring apparatus to which the heating method (light irradiation method) in FIG. 8A is applied is shown in FIG. 11A, and a measuring apparatus to which the heating method (resistor heating method) in FIG. 9A is applied. Are shown in FIG.
A heating furnace 20 shown in FIG. 11 (A) is one in which the three-layer material 13 is disposed via a support base 21. A transparent glass 22 for irradiating the surface of the three-layer material 13 with heating light is disposed at the end (here, the upper portion) of the heating furnace 20.
The heating furnace 25 shown in FIG. 11 (B) also has a three-layer material 13 disposed therein via a support base 21. The heating furnace 25 is hermetically sealed, and the three-layer material 13 is heated using the heating elements a and b.
In the explanatory diagrams shown in FIGS. 11A and 11B, a protective heat plate that suppresses heat escape in the lateral direction (exposed side surface) of the measurement sample 10 is not particularly described. A protective heat plate may be installed on the side surface of the measurement sample to suppress heat escape from the side surface.

なお、いずれの測定装置についても、温度測定は熱電対等によって行われ、測定結果が温度記録装置へ出力されることで、この測定結果が前記したコンピュータへ入力され、前記した方法に従って、測定試料10の物性値の測定が行われる。
以上のことから、本発明の定常法による物性値の測定方法及びその測定装置を用いることで、従来取り扱いが困難であった放射伝熱現象と拡散伝熱現象が共存状態の測定試料であっても、この測定試料の物性値を定常法によって精度よく求めることができる。
In any of the measuring devices, the temperature measurement is performed by a thermocouple or the like, and the measurement result is output to the temperature recording device. This measurement result is input to the computer described above. The physical property value is measured.
From the above, by using the measurement method of physical property values by the steady method of the present invention and its measurement device, a radiant heat transfer phenomenon and a diffusion heat transfer phenomenon, which have been difficult to handle in the past, are measurement samples in a coexisting state. In addition, the physical property value of the measurement sample can be obtained with high accuracy by a steady method.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の定常法による物性値の測定方法及びその測定装置を構成する場合も本発明の権利範囲に含まれる。   As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case in which a part of or all of the above-described embodiments and modifications are combined to constitute a physical property value measuring method and measuring device according to the stationary method of the present invention is also included in the scope of the present invention.

10:測定試料、11、12:板材、13:3層材、14:電気抵抗体、15:加熱電源、20:加熱炉、21:支持台、22:透明ガラス、25:加熱炉 10: measurement sample, 11, 12: plate material, 13: three-layer material, 14: electrical resistor, 15: heating power source, 20: heating furnace, 21: support base, 22: transparent glass, 25: heating furnace

Claims (8)

板状の測定試料を温度Tに設定した後、該測定試料の表面側を一定強度の熱流束で加熱し、該測定試料の物性値を求める定常法による物性値の測定方法において、
前記測定試料の表裏面で測定した温度と該測定試料の厚さdlを用いて見かけの熱伝導率k´を求め、前記測定試料の厚さdlと該測定試料の熱拡散率αに依存する前記見かけの熱伝導率k´を示す式を用いて、該測定試料の熱拡散率αを物性値として求める物性値算出工程を有することを特徴とする定常法による物性値の測定方法。
In a method for measuring physical property values by a steady method, after setting a plate-shaped measurement sample to a temperature T 0 , the surface side of the measurement sample is heated with a heat flux having a constant intensity, and the physical property value of the measurement sample is obtained.
The apparent thermal conductivity k ′ is obtained using the temperature measured on the front and back surfaces of the measurement sample and the thickness dl of the measurement sample, and depends on the thickness dl of the measurement sample and the thermal diffusivity α of the measurement sample. A method for measuring a physical property value by a steady-state method, comprising a physical property value calculating step of obtaining the thermal diffusivity α of the measurement sample as a physical property value using an equation indicating the apparent thermal conductivity k ′.
請求項1記載の定常法による物性値の測定方法において、前記物性値算出工程の前に、前記測定試料の吸収係数μと厚さdlとの積である光学厚さμdlを求め、該光学厚さμdlに基づいて、前記測定試料の表面から裏面への熱伝導が、拡散伝熱と放射伝熱のいずれに起因するかを判定する判定工程を行うことを特徴とする定常法による物性値の測定方法。   2. The method of measuring a physical property value by a steady method according to claim 1, wherein an optical thickness μdl which is a product of an absorption coefficient μ and a thickness dl of the measurement sample is obtained before the physical property value calculating step. The determination of whether the heat conduction from the front surface to the back surface of the measurement sample is caused by diffusion heat transfer or radiation heat transfer is performed based on the thickness μdl. Measuring method. 請求項1又は2記載の定常法による物性値の測定方法において、前記測定試料の表裏面にそれぞれ、熱伝導率が既知である、熱移動が拡散伝熱により生じる材料を密着配置、又は、不透光膜を形成し、前記測定試料の表面側の加熱を、加熱光で連続照射することにより行うことを特徴とする定常法による物性値の測定方法。   3. The method for measuring physical property values by the steady method according to claim 1 or 2, wherein a material having a known thermal conductivity and heat transfer caused by diffusion heat transfer is closely arranged on the front and back surfaces of the measurement sample, or is not A method for measuring a physical property value by a steady method, wherein a light-transmitting film is formed and the surface side of the measurement sample is heated by continuous irradiation with heating light. 請求項1又は2記載の定常法による物性値の測定方法において、前記測定試料の表面に発熱体aを密着配置し、該測定試料の裏面に、熱伝導率が既知である、熱移動が拡散伝熱により生じる材料を密着配置、又は、不透光膜を形成して、前記発熱体aを加熱制御することを特徴とする定常法による物性値の測定方法。   3. The method for measuring physical property values by the steady method according to claim 1 or 2, wherein a heating element a is disposed in close contact with the surface of the measurement sample, and heat transfer is diffused on the back surface of the measurement sample with a known thermal conductivity. A method for measuring a physical property value by a steady method, wherein a material generated by heat transfer is closely arranged or an opaque film is formed, and the heating element a is controlled by heating. 請求項1又は2記載の定常法による物性値の測定方法において、前記測定試料の表面に発熱体aを密着配置し、更に、前記発熱体aとは隙間を有して発熱体bを配置して、前記発熱体aと前記発熱体bを同一温度に加熱制御することを特徴とする定常法による物性値の測定方法。   3. The method of measuring a physical property value by a steady method according to claim 1 or 2, wherein a heating element a is disposed in close contact with the surface of the measurement sample, and a heating element b is disposed with a gap from the heating element a. The method of measuring physical property values by a steady method, wherein the heating element a and the heating element b are controlled to be heated to the same temperature. 請求項5記載の定常法による物性値の測定方法において、前記発熱体aを、熱伝導率が既知である、熱移動が拡散伝熱により生じる材料、又は、不透光膜を介して、前記測定試料の表面に配置し、前記測定試料の裏面に、熱伝導率が既知である、熱移動が拡散伝熱により生じる材料を密着配置、又は、不透光膜を形成することを特徴とする定常法による物性値の測定方法。   6. The method for measuring physical property values by a steady method according to claim 5, wherein the heating element a has a thermal conductivity known, a material in which heat transfer is caused by diffusion heat transfer, or an opaque film, It is arranged on the surface of a measurement sample, and on the back surface of the measurement sample, a material having a known thermal conductivity, heat transfer caused by diffusion heat transfer is closely arranged, or an opaque film is formed A method for measuring physical properties by a steady method. 請求項5又は6記載の定常法による物性値の測定方法において、前記発熱体bは、前記発熱体aを覆っていることを特徴とする定常法による物性値の測定方法。   7. The physical property value measuring method according to claim 5 or 6, wherein the heating element b covers the heating element a. 請求項3記載の定常法による物性値の測定方法に用いる測定装置であって、前記測定試料を内部に配置可能な加熱炉と、該加熱炉の端部に設けられ、前記測定試料の表面側に加熱光を連続照射するための透明ガラスとを有することを特徴とする定常法による物性値の測定装置。   A measuring apparatus used in the method for measuring a physical property value by the steady method according to claim 3, wherein the measuring sample is disposed inside, a heating furnace provided at an end of the heating furnace, and a surface side of the measuring sample And a transparent glass for continuously irradiating with heating light.
JP2014148809A 2014-07-22 2014-07-22 Method and apparatus for measuring physical property values by steady method Expired - Fee Related JP6243811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014148809A JP6243811B2 (en) 2014-07-22 2014-07-22 Method and apparatus for measuring physical property values by steady method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148809A JP6243811B2 (en) 2014-07-22 2014-07-22 Method and apparatus for measuring physical property values by steady method

Publications (2)

Publication Number Publication Date
JP2016024083A JP2016024083A (en) 2016-02-08
JP6243811B2 true JP6243811B2 (en) 2017-12-06

Family

ID=55270945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148809A Expired - Fee Related JP6243811B2 (en) 2014-07-22 2014-07-22 Method and apparatus for measuring physical property values by steady method

Country Status (1)

Country Link
JP (1) JP6243811B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918580A (en) * 2018-04-28 2018-11-30 上海工程技术大学 A kind of lossless steady heat conduction rate measurement method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6840514B2 (en) * 2016-11-14 2021-03-10 株式会社超高温材料研究センター Thermal diffusivity analysis method
CN114813200B (en) * 2022-07-01 2022-10-04 中国飞机强度研究所 Device and method for measuring high-temperature characteristics of airplane component
KR20250098421A (en) * 2023-12-22 2025-07-01 오씨아이 주식회사 Measuring method for thermal diffusivity of silicon nitride heat dissipation substrate specimen and silicon nitride heat dissipation substrate measured using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103558A (en) * 1985-10-25 1987-05-14 Showa Denko Kk Method for measuring thermal conductivity of sheet material
JP3568304B2 (en) * 1995-12-06 2004-09-22 株式会社超高温材料研究所 Analysis method of thermal constant using laser flash method
JPH10160694A (en) * 1996-11-28 1998-06-19 Chokoon Zairyo Kenkyusho:Kk Analytic method for thermal constant using light irradiation
JP2005345385A (en) * 2004-06-04 2005-12-15 Rikogaku Shinkokai Characteristic measuring instrument and characteristic measuring method
JP2006214921A (en) * 2005-02-04 2006-08-17 Institute Of Physical & Chemical Research Method and apparatus for measuring thermal diffusivity of substances

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918580A (en) * 2018-04-28 2018-11-30 上海工程技术大学 A kind of lossless steady heat conduction rate measurement method
CN108918580B (en) * 2018-04-28 2021-03-26 上海工程技术大学 Nondestructive steady-state thermal conductivity measurement method

Also Published As

Publication number Publication date
JP2016024083A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
Li et al. Structured thermal surface for radiative camouflage
Tian et al. Flexible and stretchable 3ω sensors for thermal characterization of human skin
Sun Analysis of pulsed thermography methods for defect depth prediction
Elkholy et al. An improved transient plane source technique and methodology for measuring the thermal properties of anisotropic materials
JP6243811B2 (en) Method and apparatus for measuring physical property values by steady method
JP2015225034A (en) Measurement method of thermal diffusivity of translucent material
Mendes et al. Measurement and simplified numerical prediction of effective thermal conductivity of open-cell ceramic foams at high temperature
Sfarra et al. Ceramics and defects: Infrared thermography and numerical simulations—a wide-ranging view for quantitative analysis
CN109997032B (en) Thermal conductivity measuring device, thermal conductivity measuring method, and vacuum degree evaluating device
KR20090042396A (en) Apparatus for measuring heat diffusion coefficient by flash method and measuring method thereof
Liu et al. Analytical inverse heat transfer method for temperature-sensitive-coating measurement on a finite base
JP2014122843A (en) Heat conductivity measuring apparatus and measuring method
Abreu et al. Thermography detection of contact failures in double layered materials using the reciprocity functional approach
Beddiaf et al. Parametric identification of a heating mobile source in a three-dimensional geometry
Penazzi et al. Influence of radiation heat transfer on parallel hot-wire thermal conductivity measurements of semi-transparent materials at high temperature
Cohen et al. Analysis of the transient hot-wire method to measure thermal conductivity of silica aerogel: influence of wire length, and radiation properties
Tavkari et al. Thermal characterization of Xenon-Arc flash lamp heating system for automated fiber placement (AFP) of thermoplastic composites
CN107843616A (en) The apparatus and method of the thermal conductivity of quick measurement thin-film material
Li et al. Enhanced far-field coherent thermal emission using mid-infrared bilayer metasurfaces
CN108918580B (en) Nondestructive steady-state thermal conductivity measurement method
Wallace et al. Spectral absorption coefficient of additive manufacturing materials
JP4180523B2 (en) Insulation characterization method
Anuchin et al. Influence of the Method of Attaching Surface Thermocouples on the Error of Temperature Determination in Testing Ceramic Materials on Radiative Heating Installations
Zhou et al. Inverse estimation of surface temperature induced by a moving heat source in a 3-d object based on back surface temperature with random measurement errors
Cherepanov et al. Highly porous thermal protection materials: Modelling and prediction of the methodical experimental errors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171110

R150 Certificate of patent or registration of utility model

Ref document number: 6243811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees