JP5666937B2 - 機械翻訳装置、機械翻訳方法および機械翻訳プログラム - Google Patents
機械翻訳装置、機械翻訳方法および機械翻訳プログラム Download PDFInfo
- Publication number
- JP5666937B2 JP5666937B2 JP2011031240A JP2011031240A JP5666937B2 JP 5666937 B2 JP5666937 B2 JP 5666937B2 JP 2011031240 A JP2011031240 A JP 2011031240A JP 2011031240 A JP2011031240 A JP 2011031240A JP 5666937 B2 JP5666937 B2 JP 5666937B2
- Authority
- JP
- Japan
- Prior art keywords
- language
- translation
- acquired
- additional information
- reference data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/40—Processing or translation of natural language
- G06F40/42—Data-driven translation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Machine Translation (AREA)
Description
第1の実施形態の機械翻訳装置は、英語のテキストを目的言語である日本語のテキストに翻訳する装置である。この機械翻訳装置は、例えば、付加情報として利用者のプロファイルデータおよび利用場所に関する情報を取得し、この付加情報に適した翻訳の適応モデルを参照データを用いて学習する。参照データとは、目的言語である日本語と当該日本語を取得した際の利用者および利用場所に関する付加情報を対応付けたデータである。機械翻訳装置は、利用者が入力した英語とその付加情報を取得すると、同様な内容の付加情報を有する日本語の参照データを参照データ格納部から取得する。そして、取得した日本語の参照データのテキスト情報から訳出傾向を表す適応モデルを生成する。このように、翻訳の適応モデルをオンラインで動的に生成することにより、利用者の利用シーンに柔軟に対応した適応モデルを学習できる。本実施形態では、利用者の英語を通常の方法で機械翻訳し、複数の翻訳文候補とその翻訳スコアを算出する。そして、オンラインで動的に生成した適応モデルを利用して翻訳スコアを更新し、最終的な翻訳結果を出力する。
図1は、第1の実施形態にかかる機械翻訳装置を示すブロック図である。本実施形態の機械翻訳装置は、原言語である英語を入力する言語入力部101と、言語入力部101に入力された英語の利用者および利用場所に関する付加情報を取得する付加情報取得部102と、目的言語である日本語と当該日本語を取得した際の利用者および利用場所に関する付加情報を対応付けた日本語の参照データを格納する参照データ格納部103と、前記付加情報取得部102で取得された英語に関する付加情報の全部あるいは一部と同一な内容の付加情報を有する日本語の参照データからテキスト情報を取得するテキスト情報取得部104と、テキスト情報取得部104で取得された日本語のテキスト情報を利用して、言語入力部101に入力された英語を日本語に翻訳する翻訳部105と、翻訳部105の翻訳結果を出力する出力部106とを備える。
言語入力部101は、翻訳対象となる英語のテキストを入力する。ここで、入力には、キーボード、ポインティングデバイス、手書き文字認識、OCR、音声認識など、一般的に用いられる様々な方法を用いることができる。
付加情報取得部102は、言語入力部101に入力された英語の利用者のプロファイルデータおよび利用場所に関する付加情報を取得する。利用者のプロファイルデータは、利用者の性別、年齢、職業、趣味、使用言語等を表すデータである。このデータは、機械翻訳装置の利用登録時に利用者が一度入力すればよい。利用場所に関する情報は、機械翻訳装置に搭載されたGPSセンサで取得できる。例えば、図2(a)は、"It looks good."というテキストが言語入力部101に入力されたときに取得された付加情報を表している。この例では、利用者のプロファイルデータとして性別、生年、使用言語が、利用場所に関する情報として緯度、経度が取得される。
翻訳文候補取得部108は、言語入力部101に入力された英語のテキストを目的言語である日本語のテキストに翻訳する。具体的には、基本となる翻訳辞書107を用いて翻訳し、その結果として複数の候補文候補(翻訳文候補群)と各候補の確からしさを表す翻訳スコアを出力する。翻訳処理には、一般的なトランスファ方式、用例ベース方式、統計ベース方式、中間言語方式の機械翻訳システムにおいて利用されている様々な方法を用いることができる。
参照データ格納部103は、目的言語である日本語と当該日本語を取得した際の利用者および利用場所に関する付加情報とを対応付けた参照データを格納している。この参照データは、後述する適応モデル学習部109で適応モデルを計算する際の学習データとして利用する。図4に、日本語の参照データの例を示す。参照データには、他の利用者の機械翻訳装置で取得された情報を利用する。例えば、日本語を母国語とする他の利用者が別の機械翻訳装置を使用した際に入力した日本語と当該日本語の利用者および利用場所に関する付加情報とを対応付けたデータを参照データとして利用することができる。各言語の参照データは、ネットワークを介した共有サーバ上に蓄積してもよい。これにより、多数の利用者の参照データを容易に蓄積することができる。
テキスト情報取得部104は、翻訳文候補取得部108で取得された翻訳文候補と当該翻訳文候補に対応する英語の利用者および利用場所に関する付加情報を利用して、参照データ格納部103に格納された日本語の参照データから適応モデルの学習に用いる日本語のテキスト情報を取得する。まず、翻訳対象となる英語に関する付加情報と同一内容の付加情報を有する日本語の参照データを参照データ格納部103から取得する。ここで、本実施形態では、取得された全ての付加情報ではなく「性別」、「年代」、「施設カテゴリ」について内容の同一性を判断する。次に、取得された参照データの日本語テキストから、翻訳文候補取得部108で取得された翻訳文候補群との類似度が所定値以上になるテキストを取得し、後述する適応モデル学習部109に出力する。
適応モデル学習部109は、テキスト情報取得部104によって取得された日本語テキストから訳出傾向を表す適応モデルを学習する。本実施形態では、適応モデルとして適応文群から学習した単語バイグラム言語モデル(非特許文献1)を用いる。図6は、対数確率で表した単語バイグラムの適応モデルを示している。
適応翻訳部110は、適応モデル学習部109で学習された適応モデルを用いて、翻訳文候補取得部108で取得された複数の翻訳文候補の翻訳スコアを更新する。具体的には、翻訳文候補取得部108で取得された翻訳スコアと適応モデルによって計算された適応スコアとの平均を更新後の翻訳スコアとして取得する。
出力部106は、適応翻訳部110によって翻訳スコアが更新された翻訳文候補のうち最大の翻訳スコアをもつ翻訳文候補を最終的な翻訳結果として出力する。出力形式としては、ディスプレイ装置による画像出力、プリンタ装置による印字出力、音声合成装置による合成音声出力など、従来から用いられている方式を用いることができる。
図8は、本実施形態にかかる機械翻訳装置のフローチャートである。まず、言語入力部101は、翻訳対象となる英語を入力する(ステップS81)。次に、付加情報取得部102は、入力された英語に関する付加情報として、利用者のプロファイルデータと当該英語の利用場所に関する情報を取得する(ステップS82)。翻訳文候補取得部108は、言語入力部101に入力された英語を日本語に翻訳して、複数の翻訳文候補と各翻訳文候補の翻訳スコアを取得する(ステップS83)。テキスト情報取得部104は、翻訳文候補取得部108で取得された翻訳文候補と当該翻訳文候補に対応する英語に関する付加情報を利用して、参照データ格納部103に格納された日本語の参照データから適応モデル学習に用いる日本語のテキストを取得する(ステップS84)。ステップS84の詳細は後述する。適応モデル学習部109は、ステップS84で取得された日本語のテキストを学習データとして適応モデルを学習する(ステップS85)。適応翻訳部110は、適応モデル学習部109によって学習された適応モデルを用いて、翻訳文候補取得部108で取得された複数の翻訳文候補の翻訳スコアを更新する(ステップS86)。最後に、出力部106は、更新後の翻訳スコアが最大となる翻訳文候補を最終的な翻訳結果として出力する(ステップS87)。
このように、本実施形態にかかる機械翻訳装置は、付加情報の内容が一致する日本語のテキスト情報から訳出傾向を表す適応モデルをオンラインで動的に生成し、当該適応モデルを用いて翻訳スコアを更新している。これにより、利用者の現在の利用シーンに適した翻訳を行うことができる。また、機械翻訳装置で取得した付加情報から適応モデルを自動的に生成することにより、利用者が予め利用シーンを選択する手間を除くことができる。
本実施形態で取得した英語と当該英語の利用者および利用場所に関する付加情報を、英語の参照データとして参照データ格納部103に格納することもできる。この参照データは、日本語のテキストを英語のテキストに翻訳する際に利用できる。また、上記英語の参照データを、ネットワークを介した共有サーバ上に蓄積することもできる。これにより、他の利用者が適応モデルを学習する際の英語の参照データを、別途コストをかけることなく収集できる。ここで、参照データ格納部103は、図10に示すように、複数の言語の参照データを一括して格納するものであってもよい。
付加情報を取得するために、加速度センサ、ジャイロセンサ、環境光センサ、血圧センサ等の各種センサによるセンシングデータや、カメラデバイスによる周辺画像を用いることもできる。また、特開2010−74278記載の方法を用いて、加速度センサの情報から、車に乗っている、電車に乗っている、走っている、歩いている、立ち止まっている、などの利用者の行動に関する情報を抽出して付加情報として利用することもできる。さらに、機械翻訳装置が外部と通信する手段を有する場合は、基地局IDを利用場所に関する付加情報として取得することもできる。
本実施形態では、複数の翻訳文候補とその翻訳スコアを翻訳文候補取得部108で取得し、その後適応翻訳部110で翻訳スコアを更新するようにしたが、例えば非特許文献2のように、適応モデル学習部109で学習されたる適応モデルをインドメイン言語モデルとして使用し、最終的な翻訳スコアを直接計算するようにしてもよい。
参照データ格納部103に格納されている参照データの日本語を、テキスト形式でなく音声データの形式で格納することもできる。適応モデルを学習する際は、音声認識を使って当該音声データから日本語のテキスト情報を抽出することができる。
本実施形態では、1つの適応モデルを学習したが、参照データから複数の適応モデルを学習するようにしてもよい。例えば、年代が同一な参照データと場所が同一な参照データからそれぞれ適応モデルを学習し、学習された適応モデルを所定の重みで足し合わせるなどして翻訳スコアを計算することもできる。
102 付加情報取得部
103 参照データ格納部
104 テキスト情報取得部
105 翻訳部
106 出力部
107 翻訳辞書
108 翻訳文候補取得部
109 適応モデル学習部
110 適応翻訳部
Claims (5)
- 第1言語を第2言語に翻訳する機械翻訳装置であって、
第1言語を入力する言語入力手段と、
前記言語入力手段に入力された第1言語の利用者もしくは利用場所に関する付加情報を取得する付加情報取得手段と、
第2言語と当該第2言語を取得した際の利用者もしくは利用場所に関する付加情報を対応付けた第2言語の参照データを格納した参照データ格納手段と、
前記参照データ格納手段から、前記付加情報取得手段で取得された第1言語の付加情報の全部あるいは一部と同一な内容の付加情報を有する第2言語のテキスト情報を取得するテキスト情報取得手段と、
前記テキスト情報取得手段によって取得された第2言語のテキスト情報を利用して、前記言語入力手段に入力された第1言語を第2言語に翻訳する翻訳手段と、
前記翻訳手段が前記言語入力手段に入力された第1言語を第2言語に翻訳した複数の翻訳文候補と当該翻訳文候補の翻訳スコアを取得する翻訳文候補取得手段と、
前記テキスト情報取得手段によって取得された第2言語のテキスト情報から訳出傾向を表す適応モデルを学習する適応モデル学習手段と、
前記適応モデル学習手段によって学習された適応モデルを用いて前記翻訳文候補取得手段で取得された複数の翻訳文候補の翻訳スコアを更新する適応翻訳手段とを備え、
前記テキスト情報取得手段が、前記翻訳文候補取得手段で取得された翻訳文候補と前記参照データ格納手段に格納された第2言語のテキストの類似度を利用して、前記第2言語の参照データから第2言語のテキスト情報を取得する機械翻訳装置。 - 前記参照データ格納手段に格納された参照データが、前記機械翻訳装置以外の装置で取得された第2言語と当該第2言語を取得した際の利用者もしくは利用場所に関する付加情報を対応付けた第2言語の参照データを含む請求項1記載の機械翻訳装置。
- 前記参照データ格納手段が、前記言語入力手段に入力された第1言語と前記付加情報取得手段で取得された当該第1言語の付加情報とを対応付けたデータを第1言語の参照データとして格納する請求項1から請求項2の何れか1項に記載の機械翻訳装置。
- 第1言語を第2言語に翻訳する機械翻訳方法であって、
第1言語を入力する言語入力部で入力された第1言語の利用者もしくは利用場所に関する付加情報を取得する付加情報取得工程と、
第2言語と当該第2言語を取得した際の利用者もしくは利用場所に関する付加情報を対応付けた第2言語の参照データを格納した参照データ格納部から、前記付加情報取得工程で取得された第1言語の付加情報の全部あるいは一部と同一な内容の付加情報を有する第2言語のテキスト情報を取得するテキスト情報取得工程と、
前記テキスト情報取得工程によって取得された第2言語のテキスト情報を利用して、前記言語入力部で入力された第1言語を第2言語に翻訳する翻訳工程と、
前記翻訳工程が前記言語入力部で入力された第1言語を第2言語に翻訳した複数の翻訳文候補と当該翻訳文候補の翻訳スコアを取得する翻訳文候補取得工程と、
前記テキスト情報取得工程によって取得された第2言語のテキスト情報から訳出傾向を表す適応モデルを学習する適応モデル学習工程と、
前記適応モデル学習工程によって学習された適応モデルを用いて前記翻訳文候補取得工程で取得された複数の翻訳文候補の翻訳スコアを更新する適応翻訳工程とを備え、
前記テキスト情報取得工程が、前記翻訳文候補取得工程で取得された翻訳文候補と前記参照データ格納部に格納された第2言語のテキストの類似度を利用して、前記第2言語の参照データから第2言語のテキスト情報を取得する機械翻訳方法。 - 第1言語を第2言語に翻訳する機械翻訳装置に、
第1言語を入力する言語入力工程と、
前記言語入力工程で入力された第1言語の利用者もしくは利用場所に関する付加情報を取得する付加情報取得工程と、
第2言語と当該第2言語を取得した際の利用者もしくは利用場所に関する付加情報を対応付けた第2言語の参照データを格納した参照データ格納手段から、前記付加情報取得工程で取得された第1言語の付加情報の全部あるいは一部と同一な内容の付加情報を有する第2言語のテキスト情報を取得するテキスト情報取得工程と、
前記テキスト情報取得工程によって取得された第2言語のテキスト情報を利用して、前記言語入力工程で入力された第1言語を第2言語に翻訳する翻訳工程と、
前記翻訳工程が前記言語入力工程で入力された第1言語を第2言語に翻訳した複数の翻訳文候補と当該翻訳文候補の翻訳スコアを取得する翻訳文候補取得工程と、
前記テキスト情報取得工程によって取得された第2言語のテキスト情報から訳出傾向を表す適応モデルを学習する適応モデル学習工程と、
前記適応モデル学習工程によって学習された適応モデルを用いて前記翻訳文候補取得工程で取得された複数の翻訳文候補の翻訳スコアを更新する適応翻訳工程とを実現させ、
前記テキスト情報取得工程が、前記翻訳文候補取得工程で取得された翻訳文候補と前記参照データ格納手段に格納された第2言語のテキストの類似度を利用して、前記第2言語の参照データから第2言語のテキスト情報を取得することを実現させるための機械翻訳プログラム。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011031240A JP5666937B2 (ja) | 2011-02-16 | 2011-02-16 | 機械翻訳装置、機械翻訳方法および機械翻訳プログラム |
| US13/237,016 US9262408B2 (en) | 2011-02-16 | 2011-09-20 | Machine translation apparatus, machine translation method and computer program product for machine translation |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011031240A JP5666937B2 (ja) | 2011-02-16 | 2011-02-16 | 機械翻訳装置、機械翻訳方法および機械翻訳プログラム |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2012168893A JP2012168893A (ja) | 2012-09-06 |
| JP5666937B2 true JP5666937B2 (ja) | 2015-02-12 |
Family
ID=46637572
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2011031240A Active JP5666937B2 (ja) | 2011-02-16 | 2011-02-16 | 機械翻訳装置、機械翻訳方法および機械翻訳プログラム |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US9262408B2 (ja) |
| JP (1) | JP5666937B2 (ja) |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9519639B2 (en) * | 2012-06-08 | 2016-12-13 | Facebook, Inc. | Community translation of user-generated content |
| US9026425B2 (en) * | 2012-08-28 | 2015-05-05 | Xerox Corporation | Lexical and phrasal feature domain adaptation in statistical machine translation |
| US9183198B2 (en) * | 2013-03-19 | 2015-11-10 | International Business Machines Corporation | Customizable and low-latency interactive computer-aided translation |
| KR20150085145A (ko) * | 2014-01-13 | 2015-07-23 | 한국전자통신연구원 | 사용자 반응 기반 통역 시스템 및 그 방법 |
| EP3158420A4 (en) * | 2014-06-17 | 2018-02-21 | Google LLC | Input method editor for inputting names of geographic locations |
| US9519643B1 (en) | 2015-06-15 | 2016-12-13 | Microsoft Technology Licensing, Llc | Machine map label translation |
| JP2017058865A (ja) * | 2015-09-15 | 2017-03-23 | 株式会社東芝 | 機械翻訳装置、機械翻訳方法および機械翻訳プログラム |
| CN107704456B (zh) * | 2016-08-09 | 2023-08-29 | 松下知识产权经营株式会社 | 识别控制方法以及识别控制装置 |
| CN109145282B (zh) * | 2017-06-16 | 2023-11-07 | 贵州小爱机器人科技有限公司 | 断句模型训练方法、断句方法、装置及计算机设备 |
| JP6976448B2 (ja) * | 2018-08-24 | 2021-12-08 | 株式会社Nttドコモ | 機械翻訳制御装置 |
| CN109284503B (zh) * | 2018-10-22 | 2023-08-18 | 传神语联网网络科技股份有限公司 | 翻译语句结束判断方法与系统 |
| KR102206181B1 (ko) * | 2018-12-19 | 2021-01-22 | 엘지전자 주식회사 | 단말기 및 그의 동작 방법 |
| CN110083842B (zh) * | 2019-03-27 | 2023-10-03 | 华为技术有限公司 | 译文质量检测方法、装置、机器翻译系统和存储介质 |
| US11341340B2 (en) * | 2019-10-01 | 2022-05-24 | Google Llc | Neural machine translation adaptation |
| CN112560511B (zh) * | 2020-12-14 | 2024-04-23 | 北京奇艺世纪科技有限公司 | 台词翻译方法、装置及翻译模型训练方法、装置 |
Family Cites Families (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5004A (en) * | 1847-03-06 | Improvement in refining turpentine | ||
| US6021A (en) * | 1849-01-09 | Cast-iron cab-wheel | ||
| US10013A (en) * | 1853-09-13 | Revolving- mandrel for lining- cylinders with metal | ||
| JP3315221B2 (ja) * | 1993-11-19 | 2002-08-19 | シャープ株式会社 | 会話文翻訳装置 |
| AU3734395A (en) * | 1994-10-03 | 1996-04-26 | Helfgott & Karas, P.C. | A database accessing system |
| US5987402A (en) * | 1995-01-31 | 1999-11-16 | Oki Electric Industry Co., Ltd. | System and method for efficiently retrieving and translating source documents in different languages, and other displaying the translated documents at a client device |
| US6192332B1 (en) * | 1998-04-06 | 2001-02-20 | Mitsubishi Electric Research Laboratories, Inc. | Adaptive electronic phrase book |
| JP2001101187A (ja) * | 1999-09-30 | 2001-04-13 | Sony Corp | 翻訳装置および翻訳方法、並びに記録媒体 |
| US7107204B1 (en) * | 2000-04-24 | 2006-09-12 | Microsoft Corporation | Computer-aided writing system and method with cross-language writing wizard |
| JP2002082987A (ja) * | 2000-09-06 | 2002-03-22 | Seiko Epson Corp | 文書情報閲読支援装置、ディジタルコンテンツ作成システム、ディジタルコンテンツ配信システム及び記憶媒体 |
| JP2002366545A (ja) | 2001-06-08 | 2002-12-20 | Sony Corp | 外国語会話支援装置 |
| US7249012B2 (en) * | 2002-11-20 | 2007-07-24 | Microsoft Corporation | Statistical method and apparatus for learning translation relationships among phrases |
| JP3920812B2 (ja) * | 2003-05-27 | 2007-05-30 | 株式会社東芝 | コミュニケーション支援装置、支援方法、及び支援プログラム |
| JP2005100335A (ja) * | 2003-09-01 | 2005-04-14 | Advanced Telecommunication Research Institute International | 機械翻訳装置、機械翻訳コンピュータプログラム及びコンピュータ |
| US7539619B1 (en) * | 2003-09-05 | 2009-05-26 | Spoken Translation Ind. | Speech-enabled language translation system and method enabling interactive user supervision of translation and speech recognition accuracy |
| CN1942875B (zh) * | 2004-04-12 | 2010-05-26 | 松下电器产业株式会社 | 对话支援装置 |
| JP4263181B2 (ja) * | 2005-03-28 | 2009-05-13 | 株式会社東芝 | コミュニケーション支援装置、コミュニケーション支援方法およびコミュニケーション支援プログラム |
| JP4064413B2 (ja) | 2005-06-27 | 2008-03-19 | 株式会社東芝 | コミュニケーション支援装置、コミュニケーション支援方法およびコミュニケーション支援プログラム |
| JP2007072663A (ja) * | 2005-09-06 | 2007-03-22 | Advanced Telecommunication Research Institute International | 用例翻訳装置、及び用例翻訳方法 |
| JP2007323476A (ja) * | 2006-06-02 | 2007-12-13 | National Institute Of Information & Communication Technology | 機械翻訳装置及びコンピュータプログラム |
| US8185377B2 (en) * | 2007-08-11 | 2012-05-22 | Microsoft Corporation | Diagnostic evaluation of machine translators |
| CA2705133C (en) * | 2007-12-05 | 2014-09-23 | Facebook, Inc. | Community translation on a social network |
| US9323854B2 (en) * | 2008-12-19 | 2016-04-26 | Intel Corporation | Method, apparatus and system for location assisted translation |
| US8539359B2 (en) * | 2009-02-11 | 2013-09-17 | Jeffrey A. Rapaport | Social network driven indexing system for instantly clustering people with concurrent focus on same topic into on-topic chat rooms and/or for generating on-topic search results tailored to user preferences regarding topic |
| JP5208795B2 (ja) | 2009-02-12 | 2013-06-12 | 株式会社東芝 | 通訳装置、方法、及びプログラム |
| JP5221768B2 (ja) | 2009-09-25 | 2013-06-26 | 株式会社東芝 | 翻訳装置、及びプログラム |
-
2011
- 2011-02-16 JP JP2011031240A patent/JP5666937B2/ja active Active
- 2011-09-20 US US13/237,016 patent/US9262408B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| US9262408B2 (en) | 2016-02-16 |
| JP2012168893A (ja) | 2012-09-06 |
| US20120209587A1 (en) | 2012-08-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5666937B2 (ja) | 機械翻訳装置、機械翻訳方法および機械翻訳プログラム | |
| CN107038158B (zh) | 对译语料库制作方法、装置、记录介质以及机器翻译系统 | |
| CN109933785B (zh) | 用于实体关联的方法、装置、设备和介质 | |
| KR102329127B1 (ko) | 방언을 표준어로 변환하는 방법 및 장치 | |
| JP5997217B2 (ja) | 言語変換において複数の読み方の曖昧性を除去する方法 | |
| US10360903B2 (en) | Spoken language understanding apparatus, method, and program | |
| JP5449521B2 (ja) | 検索装置及び検索プログラム | |
| US20170075883A1 (en) | Machine translation apparatus and machine translation method | |
| US20140289238A1 (en) | Document creation support apparatus, method and program | |
| US8341171B2 (en) | Named entity database or mining rule database update apparatus and method using named entity database and mining rule merged ontology schema | |
| Vykhovanets et al. | An overview of phonetic encoding algorithms | |
| CN113868389A (zh) | 基于自然语言文本的数据查询方法、装置及计算机设备 | |
| CN111133429A (zh) | 提取表达以供自然语言处理 | |
| Lin et al. | Leveraging entity linking and related language projection to improve name transliteration | |
| KR20210147368A (ko) | 개체명 인식을 위한 학습 데이터 생성 방법 및 장치 | |
| JP4266222B2 (ja) | 単語翻訳装置およびそのプログラム並びにコンピュータ読み取り可能な記録媒体 | |
| US20230109411A1 (en) | Computer-implemented method of searching large-volume un-structured data with feedback loop and data processing device or system for the same | |
| JP6640618B2 (ja) | 言語処理装置、方法、およびプログラム | |
| JP5302784B2 (ja) | 機械翻訳方法、及びシステム | |
| CN113408302A (zh) | 一种机器翻译结果的评估方法、装置、设备及存储介质 | |
| JP2023507881A (ja) | ドメインベースのテキスト抽出方法およびシステム | |
| JP6374289B2 (ja) | 文字列検索装置および方法並びにプログラム | |
| Celikkaya et al. | A mobile assistant for Turkish | |
| CN120541293A (zh) | 一种基于社交媒体多模态数据的景点推荐方法 | |
| JP2019061297A (ja) | 情報処理装置、プログラム及び検索方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131025 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140421 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140516 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140715 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141114 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141211 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 5666937 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |