[go: up one dir, main page]

JP4282302B2 - X線ct装置 - Google Patents

X線ct装置 Download PDF

Info

Publication number
JP4282302B2
JP4282302B2 JP2002301432A JP2002301432A JP4282302B2 JP 4282302 B2 JP4282302 B2 JP 4282302B2 JP 2002301432 A JP2002301432 A JP 2002301432A JP 2002301432 A JP2002301432 A JP 2002301432A JP 4282302 B2 JP4282302 B2 JP 4282302B2
Authority
JP
Japan
Prior art keywords
data
dimensional
ray
scan
trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002301432A
Other languages
English (en)
Other versions
JP2003199740A (ja
JP2003199740A5 (ja
Inventor
克行 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002301432A priority Critical patent/JP4282302B2/ja
Priority to US10/278,872 priority patent/US6907100B2/en
Priority to CN02151818.1A priority patent/CN1289034C/zh
Publication of JP2003199740A publication Critical patent/JP2003199740A/ja
Publication of JP2003199740A5 publication Critical patent/JP2003199740A5/ja
Application granted granted Critical
Publication of JP4282302B2 publication Critical patent/JP4282302B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/027Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis characterised by the use of a particular data acquisition trajectory, e.g. helical or spiral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • A61B6/4085Cone-beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/412Dynamic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S378/00X-ray or gamma ray systems or devices
    • Y10S378/901Computer tomography program or processor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コーンビーム状のX線を用いてスキャンを行いX線CT装置に係り、特に、2次元検出器により透過X線の2次元投影データを収集し、この2次元投影データから3次元再構成を行ってCT画像を得る、コーンビームCT装置とも呼ばれるX線CT装置に関する。
【0002】
【従来の技術】
X線CTスキャナは、その架台(ガントリ)内に被検体を挟むようにX線管(X線照射装置)およびX線検出器を配置し、例えばR−R方式で駆動する例ではX線管およびX線検出器を同期して被検体周りに回転させると共に、X線管から曝射されたX線ビームを、被検体を透過させてX線検出器に入射させる。このX線検出器には、DAS(データ収集装置)が接続されており、そのDASにより1スキャン毎の透過X線の強度データを収集し、その投影データを再構成処理することにより、被検体内の画像データ(スライスデータまたはボリュームデータ)を得ることができる。
【0003】
こういったX線CTスキャナの分野においては、近年、高分解能の3次元画像を高速に生成する試みの1つとして、コーンビームを用いてスキャンを行う、いわゆるコーンビームCTが盛んに研究されている。
【0004】
例えば、特開平9−19425号公報(特許文献1参照)によれば、実測のX線パスと計算上のX線パスとのずれによる再構成誤差を軽減して画質を向上し得るコーンビームCTとしてのX線コンピュータ断層撮影装置が提案されている。
【0005】
また、特開2000−102532号公報(特許文献2参照)によれば、連続X線を用いてコーンビームでスキャンを行うときにDASの実用的な回路規模を維持しつつ、スキャン時間を格別に長期化させないで、投影データの収集タイミングのずれに起因した実効パスの少ない高分解能な投影データを確実に収集できるコーンビームCTとしてのX線CTスキャナが提案されている。
【0006】
【特許文献1】
特開平9−19425号公報
【0007】
【特許文献2】
特開2000−102532号公報
【0008】
【発明が解決しようとする課題】
しかしながら、前述した従来例で提案されているコーンビームCTを実際の医用CTに適用しようとすると、被写体である患者が動くことがあるため、これを無視したまま汎用の3次元再構成アルゴリズムで投影データから画像を3次元再構成しようとすると、アーチファクトが生じ、また時間分解能も悪くなるといった問題があった。
【0009】
本発明は、このような従来の事情を背景になされたもので、コーンビームCTの3次元再構成アルゴリズムを医用CTに適用した場合でも被写体の動きに起因して生じるアーチファクトを低減できると共に、時間分解能も向上させることができるX線CT装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明に係るX線CT装置によれば、コーンビーム状のX線を曝射するX線源と、このX線源から曝射され且つ被検体を透過したX線を検出してそのX線量に対応した投影データを出力する2次元のX線検出器と、少なくとも前記X線源の一定軌道上の移動を伴う所望のスキャン方式の元で一定のスキャン範囲にて当該X線源から曝射されたX線で被検体をスキャンして、このスキャンに伴う前記投影データを前記X線検出器に収集させるスキャン手段と、このスキャン手段により収集された投影データから3次元分布の3次元ラドンデータを生成するラドンデータ生成手段と、このラドンデータ生成手段により生成された3次元ラドンデータのそれぞれを求めるための面積分の対象となる面それぞれに対応して、前記3次元ラドンデータに前記投影データの収集時刻に関して非一定の重みを呈する重み関数による重み付けを行う重み付け手段と、この重み付け手段により重み付けされた3次元ラドンデータを所望の3次元再構成アルゴリズムで再構成して画像を得る再構成手段とを備えたことを基礎的な特徴とする。
【0012】
例えば、前記重み付け手段は、前記重み関数として、前記再構成手段により再構成される画像の時刻を代表するデータ収集時刻で最大の重みを呈し、このデータ収集時刻から離れたデータ収集時刻で小さい重みを呈する重み関数を用いて、前記スキャン範囲で収集された投影データに対応した3次元ラドンデータに前記重み付けをする手段である。
【0013】
また例えば、前記重み付け手段は、前記重み関数として、前記再構成手段により再構成される画像の時刻を代表するデータ収集時刻及びそのデータ収集時刻に近い時刻で最大の重みを呈し、これらデータ収集時刻から離れたデータ収集時刻で小さい重みを呈する重み関数を用いて、前記スキャン範囲で収集された投影データに対応した3次元ラドンデータに前記重み付けをする手段に構成してもよい。
【0014】
さらに、例えば、前記重み付け手段は、前記重み関数として、前記再構成手段により再構成される画像の時刻を代表するデータ収集時刻で最大の重みを呈し、このデータ収集時刻から離れるにしたがって小さくなる重みを呈する重み関数を用いて、前記スキャン範囲で収集された投影データに対応した3次元ラドンデータに前記重み付けをする手段として構成してもよい。
【0015】
好適には、前記重み関数は前記スキャン方式の種類に応じて設定される。このスキャン方式は、例えば、前記軌道が1回転の円軌道を描く円軌道フルスキャン、前記軌道が1回転の円軌道を描き且つ360度のスキャン範囲からの投影データを使った拡張円の円軌道ハーフスキャン(MHS:Modified Half Scan)、或いは前記軌道が1回転の円軌道を描く円軌道アンダースキャン、前記軌道が2回転以上の円軌道を描く円軌道スキャン、前記軌道が直線軌道と円軌道とを組みあわせた軌道を描くスキャン、又は、前記軌道がヘリカル状の軌道を描くヘリカルスキャンに基づくスキャン方式である。
【0018】
本発明のその他の態様に係る具体的な構成及び特徴は、以下に記述する発明の実施形態及び添付図面により明らかにされる。
【0019】
【発明の実施の形態】
以下、本発明に係るX線CT装置を図1〜37に基づいて説明する
【0020】
図1〜図3に示すX線CTスキャナ(X線CT装置)は、ガントリ1、寝台2、制御キャビネット3、電源装置4、および各種のコントローラを備え、例えばR−R方式で駆動するようになっている。各種コントローラとしては、図3に示すように、高電圧コントローラ31、架台コントローラ33、および寝台コントローラ32が含まれる。
【0021】
ここで、図1、2に示す如く、寝台2の長手方向を列方向(または回転軸方向、またはスライス方向)Zとして、これに直交する2方向をチャンネル方向Xおよびビーム曝射方向Yとしてそれぞれ定義する。
【0022】
寝台2の上面には、その長手方向(列方向Z)にスライド可能に支持された状態で天板2aが配設されており、その天板2aの上面に被検体Pが載せられる。天板2aは、サーボモータで代表される寝台駆動装置2bの駆動によって、ガントリ1の診断用開口部(図示せず)に進退可能に挿入される。寝台駆動装置2bには、寝台コントローラ32から駆動信号が供給される。寝台2はまた、天板2aの寝台長手方向の位置を電気信号で検出するエンコーダなどの位置検出器(図示せず)を備え、この検出信号を寝台制御用の信号として寝台コントローラ32に送るようになっている。
【0023】
ガントリ1は、図1および図3に示すように、その内部に略円筒状の回転フレーム9を有する。回転フレーム9の内側には上述の診断用開口部が位置する。また回転フレーム9には、その内側に位置する診断用開口部に挿入された被検体Pを挟んで互いに対向するようにX線管10及びX線検出器としての2次元検出器11が設けられる。さらに、回転フレーム9の所定位置には、図3に模式的に示すように、高電圧発生器21、プリコリメータ22、ポストコリメータとしての散乱線除去コリメータ23、データ収集装置(DAS)24、および架台駆動装置25が備えられる。
【0024】
この内、X線源として機能するX線管10は、例えば回転陽極X線管の構造を成し、高電圧発生器21からフィラメントに電流を連続的に流すことによりフィラメントを加熱し、熱電子をターゲットに向かって放出する。この熱電子は、ターゲット面に衝突して実効焦点が形成され、ターゲット面の実効焦点の部位からX線ビームが広がりを持って連続的に曝射される。
【0025】
高電圧発生器21には、低圧スリップリング26を介して電源装置4から低電圧電源が供給されると共に、光信号伝送システム27を介して高電圧コントローラ31からX線曝射の制御信号が与えられる。このため、高電圧発生器21は、供給される低圧電源から高電圧を生成すると共に、この高電圧から制御信号に応じた連続的な管電圧を生成し、これをX線管10に供給する。
【0026】
プリコリメータ22は、X線管10と被検体Pとの間に、またポストコリメータとしての散乱線除去コリメータ2は、被検体Pと2次元検出器11との間に、それぞれ位置する。プリコリメータ22は、例えば列方向Zに一定幅の例えばスリット形状の開口を形成する。これにより、X線管10から曝射されたトータルのX線ビームの列方向Zの幅を制限して、例えば2次元検出器11の複数の検出素子列に対応したトータルの所望スライス幅のコーンビームを形成する。
【0027】
X線管10と2次元検出器11は回転フレーム9の回転によってガントリ1内で、診断用開口部における軸方向の回転中心軸の回りに対向状態で回転可能になっている。
【0028】
また、2次元検出器11には、その全体の形状が平面形及び円筒形のいずれのものでも適用可能であるが、本例の説明では平面形のものを例示する(本発明は、円筒形の検出器でも適用可能である)。この2次元検出器11は、複数の検出チャンネルを有する検出素子の列をスライス方向に複数列配した検出器で成る(図1参照)。各検出素子の検出部は、その一例として、入射X線を一度、光信号に変換し、この光信号を電気信号に変換するシンチレータおよびフォトダイオードの固体検出器で構成される。また、この各検出素子には、電荷蓄積部(サンプルホールド)が設けられている。このため、この2次元検出器11は、この電荷蓄積部をDAS24のスイッチ群で順に選択して電荷読出しを行い、これにより透過X線の強度を表す信号(投影データ)を検出する構造になっている。なお、各検出素子としては、入射X線を直接に電気信号に変換する方式のセンサ(I.I.など)を用いてもよい。
【0029】
DAS24は、スイッチ群の切換により、各検出素子から検出信号を順次読み出し、A/D変換(電圧に変換してサンプリング)する、いわゆるフィルタDASの構造になっている。これを行うため、DAS24は、検出器11が2次元検出器であることを考慮して、例えばNチャンネル数分の列選択部、1個のチャンネル選択部、1個のA/D変換器、及び制御回路を備える。
【0030】
データ伝送部28は、ガントリ1内の回転側と固定側の信号経路を接続するもので、ここではその一例として、非接触で信号伝送する光伝送システムが使用される。なお、このデータ伝送部28としてスリップリングの構造を用いてもよい。このデータ伝送部28を介して取り出されたデジタル量の投影データは制御キャビネット3の後述する補正ユニットに送られる。
【0031】
さらに、架台駆動装置25は、ガントリ1内の回転側要素全体を回転フレーム9と共にその中心軸周りに回転させるモータおよびギア機構などを備える。この架台駆動装置25には、架台コントローラ33から駆動信号が与えられる。
【0032】
高電圧コントローラ31、寝台コントローラ32、および架台コントローラ33は、信号的にはガントリ1および寝台2と制御キャビネット3との間に介在し、後述するメインコントローラからの制御信号に応答して、それぞれが担当する負荷要素を駆動する。
【0033】
制御キャビネット3は、システム全体を統括するメインコントローラ30のほか、メインコントローラ30にバスを介して接続された補正ユニット34、データ保存ユニット35、再構成ユニット36、表示プロセッサ37、ディスプレイ38、および入力器39とを備える。
【0034】
補正ユニット34は、メインコントローラ30からの処理指令に応じて、DAS24から送られてくるデジタル量の投影データに、オフセット補正やキャリブレーション補正などの各種の補正処理を施す。この補正処理された収集データは、メインコントローラ30の書き込み指令によって、データ保存ユニット35に一旦格納・保存される。この保存データは、メインコントローラ30の所望タイミングでの読み出し指令に応じてデータ保存ユニット35から読み出され、再構成ユニット36に転送される。
【0035】
再構成ユニット36は、メインコントローラ30の管理下において、再構成用の収集データが転送されてきた段階で、本発明のコーンビームCTの3次元再構成方法(後述)を適用した3次元再構成アルゴリズムに基づく再構成処理を行い、3次元領域の画像データを生成する。この画像データは、メインコントローラ30の制御の元、必要に応じてデータ保存ユニット35に保存される一方、表示プロセッサ37に送られる。
【0036】
表示プロセッサ37は、画像データにカラー化処理、アノテーションデータやスキャン情報の重畳処理などの必要な処理を行い、ディスプレイ38に供給する。
【0037】
ディスプレイ38は、その画像データをD/A変換し、断層像として表示する。
【0038】
入力器39は、スキャン条件(スキャン部位及び位置,スライス厚,X線管電圧及び電流、被検体に対するスキャン方向などを含む)、画像表示条件などの指令をメインコントローラ30に与えるために使用される。
【0039】
ここで、本実施形態の骨格をなすコーンビームCTの3次元再構成方法の原理を図4〜図27に基づいて説明する。
【0040】
ここでは、本発明者の視点から、既知の2次元再構成方法をレビューし、これを3次元再構成方法に適用する場合の問題点及びその要因を明確にし、これらを元に完成された本発明の3次元再構成アルゴリズムをその演算式を使って詳細に説明する。なお、n次元の画像再構成とは、n次元のラドン逆変換(inverse Radon transform)を意味するもので、この演算で用いられる被写体(上記の被検体Pに相当するもので、以下の説明でも同様とする。)内のX線吸収係数に応じた投影データに相当する2次元ラドンデータ(2D-Radon data)は被写体の線積分により、また3次元ラドンデータ(3D-Radon data)は被写体の面積分により、それぞれ得られるものである。
【0041】
(1) 2次元再構成法のレビュー
最初に、ファンビームによる2次元の再構成方法を本発明者の視点でレビューする。一般に、2次元のデータ収集の場合は、2次元分布の被写体を通過する又はその被写体に接する全ての直線の線積分データが2次元ラドンデータ(X線投影データ)に相当し、その2次元ラドンデータを収集すれば、完全な再構成が可能となる。このことを図4〜図19を参照して以下に説明する。ここでは、説明を簡単にするため、X線検出器として検出素子が円弧上に均等配列され、等角度サンプリングが可能な円弧型検出器を想定しているが、前述の通り、本発明では、その検出器の形状そのもの(円弧あるいは直線)は重要ではない。
【0042】
まず、図4に示すように、ガントリ1内の回転フレーム9(前述参照)の回転軸(回転中心)zを原点とする仮想的なxy座標系を用いて考えると、被写体fの2次元画像を再構成するには、回転軸zを中心として被写体fを含む半径rの円を支持体(support)とし、その支持体内の範囲で2次元ラドン空間を離散的に埋め尽くすように2次元ラドンデータを取得すればよいことになる。
【0043】
さて、図5に示すように、2次元ラドンデータに相当するCTなどで収集される被写体fのX線投影データpは、被写体fのX線吸収係数をファンビーム内のあるレイ(ray)に沿って線積分した値の集合となる。
【0044】
例えば、図5及び図6に示すように、X線管10のX線焦点が回転軸zを中心にして半径Rの円軌道上を回転する場合を考えると、その円軌道上のX線焦点βの位置からのレイに沿った被写体fの投影データp(β、γ)を収集することは、2次元ラドン空間では、回転軸zからレイ上に垂線を下ろしたときに得られる交点Aの2次元ラドンデータを収集することに相当する(ここでは、βは投影角度すなわちX線焦点の位置、γ(−γm〜γm)はレイ角を示す)。
【0045】
従って、図7に示すように、X線焦点βの位置から照射されるファンビームの全てのレイに沿った被写体fの投影データp(β、γ)を収集すると、X線焦点βと回転軸zとを直径とする円周(図7中の実線及び点線参照)上の2次元ラドンデータを収集できる。この場合、検出器の素子が離散的に配置されその広がり(ファン角度)が限定されている場合には図7中の実線で示す範囲内の2次元ラドンデータが収集される。
【0046】
そこで、図8及び図9に示すように、X線焦点βをz=0の平面上で回転軸zを中心に半径Rの円軌道に沿って1回だけ回転させてスキャンすると、同じA点の2次元ラドンデータを2回ずつ収集したことになるので、このスキャンのデータ収集は、冗長性をもって実行されていることが分かる。
【0047】
図10は、横軸にレイ角γ(−γm〜γm)、縦軸にX線焦点の位置である投影角度β(0〜2π)を取ったサイノグラムを使って上記のデータ収集の様子を説明するものである。この場合、例えば、図中の実線で示すβ=βのときに得られる2次元ラドンデータと、図中の点線で示すβ=π+2γのときに得られる2次元ラドンデータとは互いに同じ値となる。
【0048】
次に、上記のように2次元の円軌道上のスキャンで得られる2次元ラドンデータ(投影データ)から被写体fの画像を再構成するアルゴリズムを説明する。
【0049】
まず、2次元の円軌道フルスキャン(以下、必要に応じ「FS(Full Scan)」と略記する)の再構成法を説明する。これは、1回転スキャンで得られた2次元ラドンデータのうちの互いに冗長なデータ同士に対し均等に重み付けするものである。これを演算式で示すと、次の式(1)〜式(5)で表される。
【0050】
【数1】
Figure 0004282302
ここで、式(1)は重み付けの式で、w(β、γ)は重み付けで用いる関数を示す。また、式(2)〜式(5)は、等角度データ収集におけるファンビーム再構成の式で、f(x、y)は、再構成する被写体fのデータ、g(γ)はフィルタ処理で用いる関数、h(t)は関数g(γ)の演算で用いる関数、L(β、x、y)は逆投影で用いる関数をそれぞれ示す。
【0051】
上記のうち、式(1)は、重み付けの式である。この再構成法は、2次元逆ラドン変換であり、被写体fの断面像を正確に再構成するものである。
【0052】
上記のことを概念的に説明する。最初に、円軌道上の任意のX線焦点βで収集された投影データp(β、γ)を、cosγと、上記式中の関数w(β、γ)とで重み付けし(ステップ1)、その重み付けされた投影データを上記式中の関数g(γ)でフィルタ処理し(ステップ2)、そのフィルタ処理されたデータを上記式中のL−2(β、x、y)で重み付けしながら、ファンビーム逆投影を行う(ステップ3)。そして、同様のステップ1〜3を円軌道上の全ての焦点位置βに対し繰り返し適用することにより、被写体fの画像を再構成する(ステップ4)。
【0053】
この再構成法では、1)被写体fが静止しているか、あるいは動きが無視できるほど小さい、2)CTスキャナが機械的に十分に安定し、かつ、収集位置の幾何学的な誤差は無視できる程度である、3)被写体f内の散乱線の影響は無視できる、4)X線焦点βと検出素子のサイズは有限であること(互いの位置を入れ替えたこと)の影響を無視できる、ことが仮定されている。
【0054】
従って、この再構成法によれば、式(1)のように冗長なデータを均等に重み付けすることでノイズによる誤差を最小限にすることができる。これは、異なる焦点位置βで収集された2つの対向するレイ(図8及び図9参照)は、上記の仮定の元でフォトンノイズ(photon noise)以外は同じ線積分値を与えるためである。
【0055】
図11は、上記の円軌道フルスキャンFSで得られる被写体fのスライス画像における時間感度プロファイルを説明するもので、横軸が時間に相当する焦点位置βを、縦軸が重み付け関数wをそれぞれ示す。図11において、時間分解能(プロファイルの半値幅に相当)は、X線焦点βが1回転する時間Tと同じである。
【0056】
次に、2次元の円軌道ハーフスキャン(以下、必要に応じ「HS(Half Scan)」と略記する)の再構成法を説明する。円軌道ハーフスキャンHSは、上記のように1回転スキャンを行う円軌道フルスキャンFSの場合には2次元ラドンデータを冗長に収集することになるため、こういったデータ収集の冗長度を最小限にするために半回転と少しの範囲(π+2γm)でスキャンするものである。
【0057】
この円軌道ハーフスキャンHSの再構成法では、重み付けで用いる関数w(β、γ)として、部分的に冗長なデータに対しては「ビュー方向β、レイ方向γで連続的になるような重み関数」を用いる。このことを演算式で示すと、次の式(11)〜式(14)で表される。
【0058】
【数2】
Figure 0004282302
ここで、f(x、y)を求める式(14)中の焦点位置βの範囲が前述の式(2)の場合の[0、2π]から[0、π+2γm]に変化している。この場合、β∈[π+2γm、2π]の範囲で、x(β、γ)=w[x(β、γ)]=0として、式(13)の代わりに式(2)をそのまま適用してもよい。
【0059】
図13は、上記のハーフスキャンHSの再構成法を概念的に説明するものである。また、図14は、そのサイノグラムを、図15は、これで得られるスライス画像中央部の時間感度プロファイルをそれぞれ示す。
【0060】
図13において、円軌道の外側に示す円形のグラフは、各X線焦点位置(投影角度)での中心レイ(γ=0)に対する重みを示す。例えば、X線焦点β=0では、全てのレイが対向するデータによって再度収集されているので、重みをゼロとし、またそこから移動したX線焦点では大半のレイが2回収集されているが、ごく一部のレイはそのX線焦点のみで1回しか収集されないので、1回しか収集されないレイに対しては重みを1とし、2回収集されるレイに対しては上記の式(11)と「ビュー方向β、レイ方向γで連続的になるような重み関数」のルールとに基づいて滑らかに変化するように重みを決定する。
【0061】
ここでのスキャン及びその再構成法では、画像再構成のための投影角度の範囲、すなわちデータ収集時間が1回転スキャンの場合の約半分で済むため、図14に示すスライス画像中央部の時間感度プロファイルが得られ、その時間分解能はT/2となって非常によくなる。このことは、図12中の重みのグラフや、図13のサイノグラムのグラムで示される結果とも一致する。しかし、このように時間分解能が向上する代償として、画像再構成で必要とする投影数(データ数、すなわちフォトン数)が上述の円軌道フルスキャンFSの約半分と少なくなるので、画像ノイズがFSの約1.4倍に増大することになる。
【0062】
なお、前述の「ビュー方向β、レイ方向γで連続的になるような重み関数」に関して、その連続性の重要性を補足すると、上述の式(2)及び式(14)で示される再構成演算では、レイ方向に高周波数領域を強調するコンボリューション演算を行うため、これで重み付けされたデータがレイ方向に不連続であると、このことが必要以上に強調されてしまい、最終画像(再構成された画像)にアーチファクトとして残ってしまうことになる。そこで、被写体fが元来有しているX線吸収係数などの不連続な分布以外は回避するように重み関数はレイ方向に連続的であることが必要となる。
【0063】
また、上記の2次元の円軌道ハーフスキャンHSの概念を拡張し、2γmの代わりに仮想的なファン角度2Γmを導入し、再構成に供する投影角度をπ+2γm〜2πとする、いわゆる2次元の円軌道Modifiedハーフスキャン(以下、必要に応じ「MHS(Modified Half Scan)」と略記する)の再構成法(「M.D. Silver:“A method for including redundant data in computed tomography,”Med. Phys. 27,pp.773-774,2000」参照)の場合でも、時間分解能はT/2となる。
【0064】
次に、2次元の円軌道アンダースキャン(以下、必要に応じ「US(Under Scan)」と略記する)の再構成の場合を説明する。
【0065】
ここで、前述したFSにおける1回転スキャンの収集開始時(β=0、t=0)と収集終了時(β=2π、t=T)のX線焦点で得られるデータは、2次元ラドン空間では非常に近いものになるが、1回転スキャン中に被写体が動いた場合には、前述した再構成法で仮定する条件の1つ、すなわち「被写体fが静止しているか、あるいは動きが無視できるほど小さい」が満たされないために被写体fの動きの影響でその値は大きく異なったものになる。その影響により、前述したフルスキャンFSの再構成法を用いると、データに矛盾が生じ、β=0の焦点位置から扇状に広がるアーチファクトが生じることになる。
【0066】
そこで、2次元の円軌道アンダースキャンUSの再構成では、上記のような被写体の動きに起因して生じるアーチファクトを抑制するため、前述したFSの再構成の式(2)と併用して、重み付けの式として、次の式(21)及び式(22)が採用される。
【0067】
【数3】
Figure 0004282302
【0068】
図15は、上記の円軌道アンダースキャンHSの再構成法を概念的に説明するものである。また、図16は、そのサイノグラムを、図17は、これで得られるスライス画像中央部の時間感度プロファイルをそれぞれ示す。
【0069】
図15において、円軌道の外側に示す円形のグラフは、各X線焦点位置(投影角度)での中心レイ(γ=0)に対する重みを示す。図15〜図17に示すように、円軌道アンダースキャンHSでは、上記のFSにおけるデータの矛盾を解消するため、信頼度の低いデータ(β=0、2π付近)に対する重み付けを軽く(重みを低く)し、重みの連続性を保ちつつ必要な2次元ラドン空間のデータを収集してなるべく均一となるように重みが決定されている。
【0070】
次に、2次元の円軌道オーバースキャン(以下、必要に応じ「OS(Over Scan)」と略記する)の再構成の場合を説明する。これは、前述のアンダースキャンの場合と同じ目的で、1回転より余分にスキャンし、同じ投影角度(焦点位置)で収集した1回転前と後の2つの投影データに対しそれぞれ重み付けした後で、前述したFSと同様の再構成法を用いるものである。この場合の重み付けの式は、次の通りである。
【0071】
【数4】
Figure 0004282302
【0072】
図18は、上記の円軌道オーバースキャンOSの再構成法を概念的に説明するものである。また、図19は、そのサイノグラムをそれぞれ示す。図19において、円軌道の外側に示す円形のグラフは、各X線焦点位置(投影角度)での中心レイ(γ=0)に対する重みを示す。図18及び図19に示すように、この場合の時間分解能はTとなる。
【0073】
(2) 3次元再構成法のレビュー及びその問題点
次に、本発明者の視点から、前述した2次元再構成法のレビュー結果を元に既知の3次元再構成法をレビューし、その問題点を明確にする。ここでは、2次元検出器として、円筒型検出器(検出素子が円筒面上に均等に配列され、xy平面内ではレイ方向に等角度サンプリング、z軸方向に等距離サンプリングされる)と、平面検出器(検出器面上で検出素子が均等な間隔で配列され、等距離サンプリングされる)とのうち、各々のアルゴリズムにとって都合の良い方を想定する。
【0074】
図20及び図21は、3次元座標系において3次元のデータ収集を概念的に説明するものである。図20及び図21に示すように、3次元のデータ収集は、X線焦点βからの投影データp(β、γ、α)(図示しない)で、X線焦点β及び面積分の対象とする平面Qとを含む平面(図20中の例えば平面検出器上では直線L)に沿って積分した値を処理して、3次元ラドン空間では点A(図21)の3次元ラドンデータ(ζ、φ、s)を収集することに相当する。ここで、βは投影角度(X線焦点の位置)、γはレイ角、αはコーン角度(xy平面とレイとが成す角度)をそれぞれ示す。
【0075】
従って、図22に示すように、X線焦点βの位置から照射されるコーンビームの全てのレイによって、X線焦点βと座標系の座標中心O(x=0、y=0、z=0)とを直径とする球面上の3次元ラドンデータが収集される。この際、前述した2次元の場合と同様に、検出器の素子が離散的で広がり(ファン角度)が限定されている場合には、上記球面上のうち、ある限定された範囲のデータが収集されることになる。
【0076】
なお、図23に示すように、被写体の支持体が半径rの球体である場合、正確な3次元再構成のためには、その球体と交わるか又は接する全ての面の面積分を収集する必要がある。
【0077】
以上の3次元データ収集の概要を元に、3次元の再構成法を説明する。
【0078】
まず、3次元の円軌道フルスキャンFSの再構成法を説明する。これは、前述した2次元のFS再構成法の方法論を3次元に単純に適用したもので、本来、平面検出器(検出器面上で検出素子が均等な間隔で配列され、等距離サンプリングになる)用に開発された、Feldkamp 再構成法(「L.A. Feldkam,L.C. Davis,and J.W. Kress:“Practical cone-beam algorithm,”J. Opt. Soc. Am.,1(6),pp. 612-619,1984」参照)を、円筒検出器用に拡張した手法である(「H. Kudo and T. Saito:“Three-dimensional helical-scan computed tomography using cone-beam projection,”IEICE(D-II) J74-D-II,1108-1114(1991)」参照)。以下、この場合の手法に関しては、2次元の場合の「FS」に対し、必要に応じて「Feldkamp+FS」と略記する。
【0079】
この3次元の円軌道フルスキャンFSの再構成法は、具体的には、1回転スキャンで得られた3次元ラドンデータ(投影データ)のうちの互いに冗長なデータ同士に対し均等に重み付けするものである。これを演算式で示すと、次の式(31)〜式(35)で表される。
【0080】
【数5】
Figure 0004282302
【0081】
この式(31)〜式(35)と、前述した2次元のFSの演算式(式(1)〜式(5))とを比べると、式(32)において投影角度の積分式(逆投影部)が2次元逆投影の代わりに3次元逆投影である点と、cosαの項が加わっている点とを除くと、全て同様となる。
【0082】
このことを概念的に説明する。最初に、円軌道上の任意のX線焦点βで収集された投影データp(β、γ、α)を、cosγcosαと、関数w(β、γ、α)とで重み付けし(ステップ1)、その重み付けされた投影データを上記式中の関数g(γ)でフィルタ処理し(ステップ2)、そのフィルタ処理されたデータを上記式中のL−2(β、x、y)で重み付けしながら、3次元コーンビーム逆投影を行う(ステップ3)。そして、同様のステップ1〜3を円軌道上の全ての焦点位置βに対し繰り返し適用することにより、被写体fの画像を再構成する(ステップ4)。
【0083】
例えば、z=0の平面を回転軸zを中心とする円軌道上を1回だけ回転してスキャンすると、図24に示すように、前述した図22中の焦点及び座標中心(回転軸)を含む球体(半径r)をその座標中心を中心に1回転させたときの全軌跡をカバーする領域(以下、便宜上、「りんご状領域」と呼ぶ)の3次元ラドンデータを2回ずつ収集したことになる。すなわち、z=0の平面上でみる限り、2次元のFSの場合と同様に、データ収集は冗長である。
【0084】
しかし、3次元で再構成すべき被写体は、前述した図23中の半径rの球体(支持体)内にあるため、この球体をカバーする領域のデータを収集する必要があるが、この点で言えば、前述の3次元のFeldkamp+FSでは欠落したデータがあるために不完全である。このことは、図25に示すように、図23と図24とを重ね合わせた図を見ることで一目瞭然となる。すなわち、被写体の支持体を再構成するためには、Feldkamp+FSでは、本来、図25に示す被写体を含む球体をカバーするりんご状領域のデータが必要であるにも関わらず、図24に示すようにりんご状領域の芯部側のデータが明らかに欠落しており、これにより、必要な全ての3次元データを収集できていないことが分かる(この場合の欠落したデータを「missing data」と呼ぶことがある)。
【0085】
なお、この3次元のFeldkamp+FSで得られるスライス画像の時間感度プロファイルは、前述した図11と同様になる。
【0086】
次に、3次元の円軌道ハーフスキャンの再構成法を説明する。ここでは、前述した3次元のFeldkamp+FSと同様に、2次元のHSの方法論を3次元に適用している。以下、この場合の手法に関しては、2次元の場合の「HS」に対し、必要に応じて「Feldkamp+HS」と略記する。
【0087】
この3次元のFeldkamp+HSでは、半回転と少しの範囲(π+2γm)の円軌道上をスキャンし、ビュー方向β及びレイ方向γで連続的になるような重み関数で重み付けする。このときの重みは、コーン角αの関数ではない(全検出器列に同じ重みを乗じる)。このことを演算式で示すと、次の式(41)〜式(44)で表される。
【0088】
【数6】
Figure 0004282302
【0089】
図26は、前述した3次元Feldkamp+HSのデータ収集を概念的に説明するものである。図26に示すように、この場合の3次元ラドンデータは、z=0の平面で回転軸zを中心とする半径Rの円軌道上をβ=[0、π+2γm]の範囲でスキャンして収集されている。
【0090】
図27は、図23と図26とを重ね合せたものである。この図27と図26との比較により、3次元Feldkamp+HSは、前述した3次元Feldkamp+FSの場合よりも、3次元ラドンデータの欠落領域が広がっていることが分かる。これは、2次元の再構成における方法論を単純に3次元の再構成に適用したためである。従って、3次元Feldkamp+HSでは、再構成された画像は時間分解能は高くなるものの、データ欠落領域の拡大によりアーチファクトはFeldkamp+FSの場合よりも強くなり、実用に耐えないといった問題があることが確認された。
【0091】
また、前述した2次元のMHSにFeldkamp 再構成法を適用したFeldkamp+MHSの場合には、失うデータはFeldkamp+HSよりも少ないが、冗長なデータ収集を補正する重み付けが3次元ラドンデータではなく、2次元ラドンデータの収集位置に基づいているため、スキャン面以外の不正確さがFeldkamp+FSよりも増してしまうことはFeldkamp+HSと同様である。
【0092】
次に、3次元の円軌道アンダースキャンUSの再構成法を説明する。これも、前述した3次元のFeldkamp+FSと同じく、2次元のUSの方法論を3次元の単純に適用したものである。以下、この場合の手法に関しては、2次元の場合の「US」に対し、必要に応じて「Feldkamp+US」と略記する。
【0093】
この3次元のFeldkamp+USでは、1回転のスキャン範囲の全データを使用しているが、やはり一部のデータの重みが軽いので、Feldkamp+FSよりもデータ欠落は大きくなる。また、冗長なデータ収集に関しては、補正する重み付けが3次元ラドンデータではなく、2次元ラドンデータの収集位置に基づいているので、スキャン面以外の不正確さがFeldkamp+FSよりも増してしまうといった問題がある。
【0094】
また、2次元の円軌道オーバースキャンOSの方法論を3次元の単純に適用した3次元の円軌道オーバースキャンUSの再構成法(以下、必要に応じて「Feldkamp+OS」と略記する)の場合には、3次元ラドンデータの取得率は、3次元のFeldkamp+FSと同じであるが、時間分解能がFSと同じくTとなり良くないといった問題がある。
【0095】
以上の3次元再構成法のほか、「Grnatgeat 法」と呼ばれるアルゴリズムも知られている。
【0096】
このGrnatgeat 法は、被写体が体軸方向に境界があり、検出器はみ出しがない場合(被写体が孤立物体であり、検出器が被写体全部の投影データを常に収集できる場合)、このことを専門用語で言い換えれば、「Short-object problemでdetector truncation」がない場合、焦点の軌道がTuyのデータ必要条件、すなわち「被写体の支持体と交わるか又は接する全ての平面が、少なくとも一度、焦点の軌道と交わるか又は接する」の条件を満たしていれば、正確な3次元再構成が出来るものである。従って、円軌道の場合には、前述したFeldkamp+FSと同じく近似解となる。
【0097】
このGrnatgeat 法による3次元再構成法のアルゴリズムは、次のステップ1〜9に示す通りである。
【0098】
まず、焦点βで収集した投影データp(β、γ、α)を、cosγcosαで重み付けし、G(1)(β、γ、α)を得る(ステップ1)。
【0099】
次いで、焦点βを含む平面Q(ξ、φ、s)に含まれるG(1)(β、γ、α)を積分(平面検出器上では直線Lに沿って線積分)して、重み付き面積分データG(2)(ξ、φ、s)を得る(ステップ2)。
【0100】
次いで、平面Qの近傍の平面Q’(直線L’)のデータを使ってG(2)(ξ、φ、s)を微分して、3次元ラドンデータの1次微分データP(2)(ξ、φ、s)を得る(ステップ3)。
【0101】
次いで、上記ステップ3で得られた3次元ラドンデータの1次微分データを3次元ラドン空間に変換する(rebinning)(ステップ4)。
【0102】
次いで、上記ステップ1〜4を全ての焦点位置βに対して適用する(ステップ5)。
【0103】
次いで、3次元ラドン空間で3次元ラドンデータの冗長度を、そのラドンデータを収集した回数M(ξ、φ、s)の逆数で除して補正(正規化)する(Mはその平面と焦点の軌道との交点の数を示す)(ステップ6)。
【0104】
次いで、1次微分データを半径方向に微分して2次微分データP(2)(ξ、φ、s)を得る(ステップ7)。
【0105】
次いで、2次微分データP(2)(ξ、φ、s)を平面Q(ξ、φ、s)に3次元逆投影する(ステップ8)。
【0106】
そして、上記ステップ6〜8の演算を、必要な全ての3次元ラドン空間のデータに繰り返し実行し、被写体fを再構成する(ステップ9)。
【0107】
また、その他の3次元再構成法として、上記のGrangeat 法の別の実装法であり、上記rebinning(ステップ4)を避けて各焦点で収集したデータを独立に扱える、「shift-variant FBP(filtered backprojection)法」と呼ばれる手法が知られている。
【0108】
このshift-variant FBP 法は、前述した上記Grangeat 法の条件(Tuyのデータ必要十分条件を含む)を満たしていれば、円軌道の場合にはFeldkamp+FSとなる(「H. Kudo and T. Saito:“Derivation and implementation of a cone-beam reconstruction algorithm for nonplanar orbits,”IEEE Trans. Med. Imag.,MI-13, pp.186-195,1994」、「M. Defrise and R. Clack:“A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection,”IEEE Trans. Med. Imag., MI-13, pp.186-195,1994」等参照)。
【0109】
図28(a)〜(c)は、上記のshift-variant FBP 法を説明する概要図である。図28(a)は焦点から平面検出器上へのコーンビーム投影による投影データを用いてその再投影データを得る段階(ステップ1〜2)を、図28(b)は再投影データを用いてそのコーンビーム逆投影による再構成データを得る段階(ステップ3〜9)を、図28(c)は平面検出器上でFeldkamp 法により逆投影されるデータ範囲の例を、それぞれ示す。
【0110】
このshift-variant FBP 法のアルゴリズムは、次のステップ1〜9に示す通りである。
【0111】
まず、図28(a)に示すように、焦点βで収集した投影データp(β、u、v)を、cosγcosαで重み付けし、G(2)(β、u、v)を得る(ステップ1)。
【0112】
そして、この焦点を含む平面Q(ξ、φ、s)に含まれるG(2)(β、u、v)を積分(平面検出器上では直線Lに沿って線積分)して、再投影データとして、重み付き面積分データP(3)(ξ、φ、s)を得る(ステップ2)。
【0113】
次いで、図28(b)に示すように、平面Qの近傍の平面Q’(直線L’)のデータを使って、上記のP(3)(θ、φ、s)をフィルタ処理(微分)して、3次元ラドンデータの1次微分データP(4)(ξ、φ、s)を得る(ステップ3)。
【0114】
そして、このP(4)(ξ、φ、s)に重み関数Wを乗算することにより、データ冗長度を補正してP(5)(ξ、φ、s)を得る(ステップ4)。この3次元ラドンデータの1次微分P(5)(ξ、φ、s)を直線Lに沿って検出器面に(2次元)平行逆投影する(ステップ5)。
【0115】
次いで、上記ステップ2〜5の処理を検出器面上で全ての角度に適用して、G(3)(β、u、v)を得る(ステップ6)。このG(3)(β、u、v)を焦点の軌跡の接線方向(焦点の移動方向)に微分してG(4)(β、u、v)を得る(ステップ7)。このG(4)(β、u、v)をL−2で重み付けしながら、(3次元)コーンビーム逆投影する(ステップ8)。
【0116】
そして、上記ステップ1〜8の処理を全焦点位置βに適用することにより、被写体fを再構成する(ステップ9)。
【0117】
上記のアルゴリズムを数式で表現すると、次の式(51)〜式(57)で示す通りである。
【0118】
【数7】
Figure 0004282302
ここで、関数Wは、冗長度補正関数と呼ばれるもので、検出器面上の直線に対応する平面と焦点軌道との交点の数Mの逆数に相当する。あるいは、この関数Wは、交点数Mをスムージングしたものでもよい。上記では、平面検出器で説明してあるが、前述した通り、円筒型検出器にも適用可能であることは言うまでもない。
【0119】
また、上記のshift-variant FBP 法(FBPアルゴリズム)を円軌道スキャンに適用した3次元再構成法の場合には、平面と焦点軌道との交点数は常に2になるため、
【数8】
Figure 0004282302
を上記式(54)に代入すると、上記式(51)〜(57)を簡略化でき、Feldkamp再構成の式(32)に帰着させることが可能である。
【0120】
また、上記のshift-variant FBP 法を、円と直線の組合わせからなるスキャン軌道に適用した場合には、次の条件1〜3を満たすアルゴリズムを採用することができる。
【0121】
1)円軌道だけと交わる平面に属するデータに関しては、平面と焦点軌道との交点数は常に2であるため、上記と同様に式(58)を式(54)に代入することで、式(51)〜(57)をFeldkamp 再構成法の式(32)に帰着させる(条件1)。
【0122】
2)円軌道と直線軌道の両者と交点をもつ平面に関しては、円軌道で収集したデータに式(58)を、また直線軌道で収集したデータに、
【数9】
Figure 0004282302
を代入して使用しない(条件2)。
【0123】
3)円軌道と交わらずに直線軌道とのみに交点をもつ平面に属するデータに関しては、直線軌道との交点の数に応じて冗長度補正関数Wβ(r、θ)を与えて式(51)〜(57)を適用する(条件3)。
【0124】
以上で明らかな通り、3次元再構成における冗長度補正関数Wβ(r、θ)と、2次元再構成における重み関数w(β、γ)は、いずれも「n次元ラドンデータの冗長度を補正する」といった同じ目的を達成している。
【0125】
上記の冗長度補正関数Wβ(r、θ)の設計法に関しては、Shift-variant FBP 法の発展法が提案されている(「H. Kudo and T. Saito:“An extended completeness condition for exact cone-beam reconstruction and its application,”Conf. Rec. 1994 IEEE Med. Imag. Conf. (Norfolk, VA)(New York:IEEE)1710-14」、「H. Kudo and T. Saito: “Fast and stable cone-beam filtered backprojection method for non-planar orbits,”1998 Phys. Med. Biol. 43,pp. 747-760,1998」等参照)。これによると、冗長度補正関数Wβ(r、θ)は、次の目的1、2のいずれかに合せて設定される。
【0126】
1)専門用語で言う長大物体問題(Long-object problem)を解く。すなわち、人体の一部をスキャンする場合のように、体軸方向に長い被写体の一部を体軸歩行の幅の狭い検出器でスキャンして再構成するために、被写体はみ出しに相当する面に対応するデータに対する重みをゼロにする(目的1)。
【0127】
2)再構成の計算誤差を最小にする。同じ平面の誤差の少ない水平方向のramp filtering で処理できる焦点と、誤差の大きいshift-variant filtering で処理すべき焦点とに属する場合、関数Mを均等にせず、ramp filtering に対応するデータの重みを大きく、shift-variant filtering に対応するデータの重みを小さくする(目的2)。
【0128】
なお、ヘリカルスキャンの場合の正確な3次元再構成法としては、「n-PI method」と呼ばれる手法が提案されている(「R. Proksa et. al.:“The n-pi-method for helical cone-beam CT,”IEEE Trans. Med. Img., 19,848-863(2000)」参照)。本方法は、その他のヘリカルスキャンの3次元再構成法が3次元ラドンデータを冗長に収集しないのに対し、各々の3次元ラドンデータを1、3、5、7、…といったように奇数回収集するものである。従って、冗長に収集したデータは、冗長度補正関数Wβ(r、θ)(上記 Proksa らの文献中の式24、すなわち
【数10】
Figure 0004282302
で示される関数が、この場合の冗長度補正関数に相当する)によって重み付けされ、補正される。
【0129】
従って、前述した2次元再構成法及び3次元再構成法の独自のレビューにより、正確な3次元再構成における冗長度補正関数Wの設定法においては、「収集時刻」という概念がなく、「被写体が動く可能性がある」という前提条件もないことが明らかになった。しかしながら、3次元再構成アルゴリズムを医用CTに適用するときには、被写体である患者が動くことがあり、これを無視するとアーチファクトが生じることがある。また、時間分解能を向上したいという要求がある。
【0130】
(3) 本発明の3次元再構成法の原理
本発明は、前述した2次元再構成法及び3次元再構成法の独自のレビューから明確になった「被写体である患者の動きによるアーチファクトの解消および時間分解能の向上」といった要求を実現する3次元再構成法を提供する。
【0131】
この目的実現のため、本発明は、前述した正確な3次元再構成法において、冗長度補正関数Wをデータの収集時刻を元にした信頼度に基づいて設計し、その設計した冗長度補正関数Wを用いて3次元のラドンデータを補正するという構成を採る。
【0132】
ここで設計される冗長度補正関数Wは、データ収集が冗長であり、言い換えると同じ3次元ラドンデータを複数回収集できるスキャンの再構成法であれば、いずれの方法であってもそのまま適用できる。さらに、後述するように、信頼度の低いデータの画像への寄与率を積極的に下げた方が良い場合には、データ収集が冗長でない再構成の場合にも、上述した冗長度補正関数Wによる補正を適用することができる。
【0133】
この冗長度補正関数Wによる補正は、また、3次元のラドンデータのそれぞれに対して、すなわち、この各ラドンデータを演算(面積分)する対象となった平面Q毎に、補正ユニット34により実行される。
【0134】
ここで導入される冗長度補正関数Wβ(r、θ)の設計指針は、次のルール1〜3で規定される。
【0135】
まず、データの信頼性関数T(β)が大きく信頼できるデータ収集時刻(又は収集時刻範囲)で収集した3次元ラドンデータのそれぞれに対する重みを大きくする(ルール1)。これを数式で表現すると、次の通りである。
【0136】
【数11】
Figure 0004282302
【0137】
また、データの信頼性関数T(β)が小さく信頼できないデータ収集時刻(又は収集時刻範囲)で収集した3次元ラドンデータのそれぞれに対する重みを小さくする(ルール2)。これを数式で表現すると、次の通りである。
【0138】
【数12】
Figure 0004282302
【0139】
このルール1及び2をより具体的に説明する。
【0140】
一例として、前述したように、X線管10の焦点βが円軌道(フルスキャン)を描くように移動するスキャンの場合、この焦点βとX線検出器11が提示する検出器面上の直線Lとを含む平面Q(つまり、3次元のラドンデータのそれぞれを演算(面積分)する対象となった平面)を想定する(図20参照)。繰返しの説明になるが、この場合、平面Qが円軌道の面に対して僅かでも傾いている限り、円軌道は平面Qに対してデータ収集時刻の異なる2箇所で交差する。この平面Qを面積分することにより、1つの点Aのラドンデータが演算される(図21参照)。したがって、2箇所で交差するということは、点Aのラドンデータが2回収集されていることになる。
【0141】
この平面Qと円軌道面との交差状態は、より平易には、図33〜34に示すように模式化できる。図中、t1、t2は交差する2点でのデータ収集時刻を表す。また、図33〜34において、(b)図は、(a)図をある横方向Aから見たときの模式図を示す。
【0142】
例えば図33に示すデータ収集時刻t1、t2に対し、データ収集の冗長性を補正するため、一方のデータ収集時刻t1が得たい画像の時刻であり且つこの時刻を基準に3次元ラドンデータの再構成処理を行いたいものとすると、もう一方の時刻t2で収集された投影データは、一方の時刻t1で収集された投影データに対しては、t1〜t2間に被検体が動いた可能性があるため、信頼度が低いものと推定される。この場合、時刻t1で収集された投影データから演算されるラドンデータには最大の信頼度を与える一方で、時刻t2で収集された投影データから演算されるラドンデータには、時刻t1のそれよりも低い信頼度、すなわち、低い重みが与えられるようにする。この場合、例えば、時刻t1〜t2の時間差が大きくなるほど、重みが下げられるようにする。
【0143】
また図34に示すデータ収集時刻t1、t2の場合、データ収集の冗長性を補正するため、両方の時刻t1、t2の中間の時刻t0を得たい画像の時刻とし且つこの時刻t0を基準に3次元ラドンデータの再構成処理を行いたいものとする。この場合、時刻t0〜t1及び時刻t0〜t2の時間差に応じて(例えば、それらの時間差が大きくなるにつれて)、より低い信頼度、すなわち、低い重みが与えられるようにする。
【0144】
また一方で、X線管10の焦点βが円軌道(ハーフスキャン)を描くように移動するスキャンの場合、データ収集の観点からは、一部のデータ収集範囲において2箇所で交差することを除けば、焦点βの軌道は平面Qと1箇所でしか交差しない。この交差の様子を図35に概念的に示す。この図35において、(b)図は、(a)図をある横方向Aから見たときの模式図を示す。1箇所交差の場合、データ収集の冗長性は無い。t1は交差する1点でのデータ収集時刻を表す。いま、データ収集の信頼度を考慮した補正を行うため、時刻t0を得たい画像の時刻とし且つこの時刻t0を基準に3次元ラドンデータの再構成処理を行いたいものとする。この場合、時刻t0〜t1の絶対時間差に応じて(例えば、それらの時間差が大きくなるにつれて)、より低い信頼度、すなわち、低い重みが与えられるようにする。
【0145】
実際には、後述するようにスキャン方法(すなわちX線焦点βの移動軌跡)に応じてデータ収集時刻tに対応した信頼度関数Tが決められており、この信頼度関数Tから冗長度補正関数Wによる重みが後述するように演算又は決められる。
【0146】
さらに、残りのルールは、同じ平面Qに対応する重みの積分は、0以上1以下で、データの信頼性関数の積分によって決定することである(ルール3)。これを数式で表現すると、次の通りである。
【0147】
【数13】
Figure 0004282302
【0148】
したがって、X線焦点βが円軌道を描くとすると、その円軌道に適用した場合のデータの信頼性関数T(β)は、例えば、次式(104)及び(105)で示すように収集時刻に基づいて決定される。
【0149】
【数14】
Figure 0004282302
【0150】
上記のルール1と2を具体化すると、次式(106)で表現される。
【0151】
【数15】
Figure 0004282302
【0152】
(データの信頼性関数の例)
本実施形態におけるデータの信頼性関数は、そのスキャン態様(例えば、円スキャン、直線スキャン、ヘリカルスキャン等)によって適宜設定されるが、その一例を図30〜図32に基づいて説明する。
【0153】
図30は、スキャン態様が直線軌道と円1回転の軌道とから成るスキャンである場合のデータの信頼性関数T(β)又はT(t)の例を説明するものである。
【0154】
この場合のスキャン軌道は、図30中の上段グラフ(縦軸:スキャン軌道Z、横軸:時間t=β)に示すように、直線方向(Z軸方向、回転軸方向、又はスライス方向)の所定区間(Z=Z〜Z、t=t〜t)分、行われる直線スキャンと、これに引き続いて直線方向の一定位置(Z=Z)で行われる円周方向の1回転(β=0〜2π)分の円スキャンとで構成される。
【0155】
このスキャン軌道におけるデータの信頼性関数T(t)又はT(β)は、例えば図30中の中段グラフ(縦軸:T(t)又はT(β)、横軸:t又はβ)に示すように、円スキャンの中心部(β=π)で最も信頼性が高くなるように設定される。この場合のT(t)又はT(β)は、スキャンの終始点、すなわち直線スキャンの始点Z(t=t)と、円スキャンの終点(β=2π)で最も低く、その両者の間で、直線スキャンの始点Zからその終点Z(t=t)を介し円スキャンの始点(t=0)を経てその中心部(β=π)に向けて連続して増加していき、その円スキャンの中心部(β=π)で最も高くなり、これをピークにして円スキャンの終点(β=2π)に向けて連続して減少していくパターンとなる。
【0156】
これ以外の上記スキャン軌道におけるデータの信頼性関数T(t)又はT(β)としては、図30中の下段グラフ(縦軸:T(t)又はT(β)、横軸:t又はβ)に示すように、上記と同様に円スキャンの中心部(β=π)で最も信頼性が高くなるように設定される一方で、直線スキャン及び円スキャンの始終点(t=t)の信頼性がほぼ同じレベルで低くなるパターンのものでもよい。
【0157】
図30に示す例によれば、スキャン態様が直線と円1回転スキャンである場合により適したコーンビームCTによる3次元再構成アルゴリズムを構築でき、これにより、上記効果を最大限に発揮させ、被写体の動きに起因して生じるアーチファクトをより効果的に低減できる。
【0158】
なお、上述した図30の例の場合、スキャンは直線軌道及び円軌道の順に1回だけなされる態様で説明したが、先に1回の円軌道のスキャンが行われ、この後に1回の直線軌道のスキャンが実行されるものであってもよい。その場合の信頼性関数は、例えば上述した図30の中段又は下段に記した信頼性関数の時間順序を逆にすればよい。
【0159】
また、上述した直線軌道及び円軌道が組合されたスキャンは、複数回実行されるようにしてもよい。
【0160】
図31は、スキャン態様が複数回転の連続した円軌道スキャンである場合のデータの信頼性関数T(β)又はT(t)の設定例を説明するものである。
【0161】
この場合のスキャン軌道は、図31中の最上段グラフ(縦軸:スキャン軌道Z、横軸:時間t=β)に示すように、直線方向の一定位置で円周方向に連続回転させる円スキャン(β=0〜2π〜4π〜6π)となる。このスキャン軌道におけるT(β)又はT(t)は、図31中の中央2段〜最下段の各グラフ(縦軸:T(β)又はT(t)、横軸:t=β)に示すように、円スキャンの所定区間毎にその中央部(図中の例では、β=0〜2π区間ではβ=π、β=π〜3π区間ではβ=2π、β=2π〜4π区間ではβ=3π)が最も高くなるように設定される。
【0162】
図31に示す例によれば、スキャン態様が複数回転の連続した円軌道スキャンである場合により適したコーンビームCTによる3次元再構成アルゴリズムを構築でき、これにより、上記効果を最大限に発揮させ、被写体の動きに起因して生じるアーチファクトをより効果的に低減できる。
【0163】
図32は、スキャン態様がヘリカルスキャンである場合のデータの信頼性関数T(β)又はT(t)の例を説明するものである。
【0164】
この場合のスキャン軌道は、図32中の最上段グラフ(縦軸:スキャン軌道Z、横軸:時間t=β)に示すように、直線位置を変えながら円スキャンを行うヘリカルスキャン(Z=Z1〜Z2〜Z3〜Z4、t=t1〜t2〜t3〜t4)となる。このスキャン軌道におけるT(β)又はT(t)は、図32中の中央2段〜最下段の各グラフ(縦軸:T(β)又はT(t)、横軸:t=β)に示すように、ヘリカルスキャンの所定区間毎にその中央区間(図中の例では、上限がt=t3より小さい区間でt=t1〜t2、t=t1〜t4の間の区間でt=t2〜t3、上限がt=t4を超える区間でt=t3〜t4)でほぼ一定値で最も高くなるパターン(略台形状パターン)に設定される。
【0165】
図32に示す例によれば、スキャン態様がヘリカルスキャンである場合により適したコーンビームCTによる3次元再構成アルゴリズムを構築でき、これにより、上記効果を最大限に発揮させ、被写体の動きに起因して生じるアーチファクトをより効果的に低減できる。
【0166】
本実施形態にあっては、上述した信頼性関数Tを例えば式(106)に適用して冗長度補正関数Wとして演算される。この補正関数Wに従う重みは、補正ユニット34又は再構成ユニット36により求められるもので、式(106)などの式に基づく演算を各補正演算の度に行ってもよいし、予め補正ユニット34の内蔵メモリ又はデータ保存ユニット35に格納しておく記憶テーブルを参照する方法で求めてもよい。
【0167】
この重みを設定する手順は概略、以下のようである。まず、スキャン軌道(円軌道か、直線軌道及び円軌道の組合せ軌道かなど)及び得たい画像(再構成したい画像)の時刻が決められる。次いで、平面Q毎に、スキャン軌道と平面Qとが交差する収集時刻(ビュー)が決められる。つまり、平面Q毎に、収集されるビューが決まる。逆に言えば、各ビューで収集される平面Qが複数決まる。従って、各平面Qについて、同じ平面が収集される別のビューのデータが分かる。次いで、交差する収集時刻と上述した得たい画像の時刻との時間関係を信頼性関数に適用して、データの信頼性が決められる。次いで、この決められて信頼性を冗長度補正関数に適用して、信頼性に応じて重みが決められる。これにより、例えば、得たい画像の時刻により近い時刻で収集されたデータに、より大きな重みが設定され、一方、得たい画像の時刻から離れた時刻で収集されたデータには、相対的に小さい重みが設定される。
【0168】
なお、この設定は3次元再構成処理と並行して又は適宜な事前のタイミングで行っておけばよい。
【0169】
次に、上記の設計指針に基づいて求まる冗長度補正関数Wを用いた、実際の3次元再構成アルゴリズムによる画像再構成の処理を説明する。
【0170】
(Shift-variant FBP法 その1)
3次元再構成アルゴリズムとしてのShift-variant FBP 法に適用した例を説明する。この場合の処理は、図36に示すステップS101a〜S110の順に、補正ユニット34及び再構成ユニット36により協働して実行される。
【0171】
最初に所定の収集時刻が指定され(ステップS101a)、検出器面上の所定角度が指定され(ステップS101b)、この焦点βの位置及び検出面上の角度位置(すなわち積分対象の面に相当)で収集した投影データp(β、u、v)を、cosγcosαで重み付けし、G(2)(β、u、v)を得る(ステップS102)。
【0172】
次いで、焦点を含む平面Q(ξ、φ、s)に含まれるG(2)(β、u、v)を積分(平面検出器上では直線Lに沿って線積分)して、重み付き面積分データP(3)(ξ、φ、s)を得る(ステップS103)。
【0173】
次いで、平面Qの近傍の平面Q’(直線L’)のデータを使って、P(3)(ξ、φ、s)をフィルタ処理(微分)して、3次元ラドンデータの1次微分データP(4)(ξ、φ、s)を得る(ステップS104)。
【0174】
次いで、前述の式(101)〜(106)で求まる信頼性関数T(β)に基づいた重み関数Wβ(r、θ)を乗算してデータ冗長度を補正してP(5)(ξ、φ、s)を得る(ステップS105)。
【0175】
次いで、3次元ラドンデータの1次微分P(5)(ξ、φ、s)を直線Lに沿って検出器面に(2次元)平行逆投影する(ステップS106)。
【0176】
次いで、検出器面上で全ての角度に上記ステップS101b〜106を適用してG(3)(β、u、v)を得る(ステップS107)。
【0177】
次いで、焦点の軌跡の接線方向(焦点の移動方向)にG(3)(β、u、v)を微分してG(4)(β、u、v)を得る(ステップS108)。
【0178】
次いで、G(4)(β、u、v)をL−2で重み付けしながら、(3次元)コーンビーム逆投影する(ステップS109)。
【0179】
そして、上記ステップ101a〜109を焦点βのデータ収集範囲内の全ての位置(すなわち全収集時刻)に適用して、被写体fを再構成する(ステップS110)。
【0180】
上記のアルゴリズムを数式で表現すると、次の式(111)〜式(117)で示す通りである。
【0181】
【数16】
Figure 0004282302
【0182】
なお、本例において、信頼性関数T(β)や冗長度補正関数Wβ(r、θ)に負の値を持つことを許容すると外挿になり、ゼロの値の領域を広げて信頼できる区間を狭くすると、時間分解能を更に向上させることが可能となる(データ取得率を犠牲にする)。
【0183】
(X線焦点の直線と円とを組み合せた軌道を移動するスキャン)
その他、X線焦点βが直線と円とを組み合せた軌道を移動するスキャンの再構成法に上述した冗長度補正関数Wを適用した例を説明する。
【0184】
まず、焦点の軌道λ(β)を、次式(121)及び(122)で定義する。
【0185】
【数17】
Figure 0004282302
【0186】
このうち、次式(123)で示される範囲のデータを使って、被写体fを再構成する場合を考える。
【0187】
【数18】
Figure 0004282302
【0188】
この場合、データの信頼性関数T(β)及び冗長度補正関数Wβ(r、θ)は、それぞれ次式(124)及び(125)で定義される。
【0189】
【数19】
Figure 0004282302
【0190】
なお、本例の3次元再構成法は、上記のほか、Grangeat 法及びn-PI method 等の全ての3次元再構成アルゴリズムに適用可能である。また、データ収集が冗長でない再構成法であっても、「信頼の出来ないデータの重みを軽くした方が例えデータ取得率が低下しても良い結果を得ることが出来る」場合には、前述のルール1〜3の「データの信頼度に基づいて3次元ラドンデータに対する重み付けを同じ3次元ラドンデータに対する重みの総和が0〜1の間になるように決定する」という基本的な考え方は適用できる。
【0191】
また、本例の3次元再構成法で用いる検出器の形状は、平面検出器、円筒型検出器、球面型検出器等の任意の形状に適用できる。
【0192】
(shift-variant FBP法 その2)
次に、その他の3次元再構成法の例を説明する。
【0193】
図29は、本例のジオメトリを示すものである。図29に示す検出器面上のジオメトリにおいて、その検出器面上の点(u,v)に向けて焦点βのコーンビーム頂点位置s(β)(sはベクトル)からコーンビーム投影される投影データg(u,v,β)は、次式(129)及び(130)で与えられる円軌道に沿った演算で求められる。
【0194】
【数20】
Figure 0004282302
ここで、f(r)(rはベクトル)は再構成すべき被写体、Rは円軌道の半径、αu,v,βは単位ベクトルをそれぞれ示す。
【0195】
上記のジオメトリにおいて、本適用例の3次元再構成アルゴリズムは、1)データの信頼性関数T(β)を定義し、2)3次元ラドンデータのT(β)に基づいて冗長度補正関数w(s、μ、β)を演算する、3)w(s、μ、β)をshift-variant FBP 法に適用するものである。以下、この内容を順次説明する。
【0196】
まず、データ信頼性関数T(β)に関しては、1)T(β−β)が│β−β│と共に減少する、2)∂T(β)/∂βが連続性を有するといったルールの元で、次式(131)及び(132)で定義する。
【0197】
【数21】
Figure 0004282302
【0198】
次いで、冗長度補正関数w(s、μ、β)に関しては、1)w(s、μ、β)がT(β)と共に増加する、2)同じ3次元ラドン面のw(s、μ、β)における総和が1に等しくなる、3)w(s、μ、β)がs、μの座標軸において連続性を有するといったルールの元で、次式(133)及び(134)で定義する。
【0199】
【数22】
Figure 0004282302
【0200】
次いで、図37に示すステップ121〜126により、上記で求まる冗長度補正関数w(s、μ、β)をshift-variant FBP 法に適用して、被写体fを再構成する。なお、図37に示す一連の処理は、補正ユニット34及び再構成ユニット36が協働して実行される。
【0201】
まず、所定の収集時刻及び検出器面上の位置が指定される(ステップS121,S122)。次に、次式(135)により、重み付けを行う(ステップ123)。
【0202】
【数23】
Figure 0004282302
【0203】
次いで、shift-variant filtering を行う(ステップ124)。このステップ2は、次のサブステップ2a〜2cで構成される。
【0204】
まず、次式(136)により、3次元ラドンデータを面積分で計算する(サブステップ124a)。
【0205】
【数24】
Figure 0004282302
【0206】
次いで、次式(137)により、冗長性補正を行う(サブステップ124b)。これらの処理は、検出面上に設定した全ての線(すなわち面積分の対象となる全平面)について個別に繰り返される(ステップS124c)。
【0207】
【数25】
Figure 0004282302
【0208】
次いで、次式(138)により、2次元逆投影とμ軸に沿った微分を行う(サブステップ124d)。
【0209】
【数26】
Figure 0004282302
【0210】
そして、コーンビーム逆投影を行い、被写体fを再構成する(ステップ125)。以上の処理は、X線焦点βの必要なデータ収集範囲内の全ての位置(すなわち全収集時刻)について繰り返される(ステップS126)。
【0211】
上記のように構成されたX線CTスキャナにおいて、X線管10および2次元検出器11がR−R方式で回転駆動され、マルチスキャンまたはヘリカルスキャンなどのスキャン法でX線投影される。この回転駆動の間、X線管10からはX線が連続的に被検体Pに向けて曝射される。この連続X線はプリコリメータ22によりコーン状に整形され、コーンビームとして被検体Pに照射される。被検体Pを透過したX線は2次元検出器11で検出され、読み出される。これで読み出された投影データは、データ伝送部28を通って補正ユニット34に送られ、ここで各種の補正を受けた後、データ保存ユニット35にビュー毎に保存される。
【0212】
この保存データに対し、再構成ユニット36にて前述した3次元再構成法のいずれかのアルゴリズム(例えば、前述したステップS101a〜S110で示すアルゴリズム)に基づく画像処理が行われて被検体Pの再構成画像が作成され、これがメインコントローラ30の制御の元、必要に応じてデータ保存ユニット35に保存される一方、表示プロセッサ37に送られ、ここでカラー化処理、アノテーションデータやスキャン情報の重畳処理などの必要な処理が行われ、ディスプレイ38にてD/A変換され、断層像又はボリューム像(3次元像)として表示される。
【0213】
以上のように、前述したファンビームのMHS(2次元の円軌道 Modified ハーフスキャン)によれば、仮想ファン角度2Γmをπとしたときと同じ重み付けを3次元ラドンデータに対して実現しつつ、焦点回転面(z=0の平面)では2次元ファンビーム再構成におけるMHS(2Γm=π)と同じ効果が得られる。すなわち、1)3次元ラドンデータのデータ取得率を信頼性に基づいた合理的な値にできる、2)時間分解能がT/2に向上できる、3)コーン角度の小さな領域での正確性を保てる、4)重みの連続性を保つことができるのでアーチファクトが生じない等の利点がある。
【0214】
従って、本実施形態によれば、コーンビームCTによる3次元再構成アルゴリズムを医用CTに適用する際に被写体の動きに起因して生じるアーチファクトを低減すると共に、時間分解能を向上させることができる。
【0215】
なお、本実施形態及びその適用例では、X線CTスキャナは、第3世代CTに適用した例を説明してあるが、第四世代CTや、高速スキャンのできる多管球CT(第3世代CTでX線管と検出器のペアが複数あるもの)、第5世代CT(X線管を装備しないで、リング状に形成されたターゲットに対する電子ビームの衝突位置を変更してX線焦点を回転させるもの)等のその他のX線CT装置でも適用可能である。また、X線検出器についても、その形状は平面型に限定されず、円筒型など、他の形状の検出器を用いることもできる。
【0216】
なお、本発明は、代表的に例示した上述の実施形態及びその適用例に限定されるものではなく、当業者であれば、特許請求の範囲の記載内容に基づき、その要旨を逸脱しない範囲内で種々の態様に変形、変更することができ、それらも本発明の権利範囲に属するものである。
【0217】
【発明の効果】
以上説明したように、本発明によれば、コーンビームCTによる3次元再構成アルゴリズムを医用CTに適用する際に被写体の動きに起因して生じるアーチファクトを低減できると共に、時間分解能を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係るX線CTスキャナ(X線装置)のガントリ内のX線管と2次元検出器の位置関係を説明する図。
【図2】X線CTスキャナの概略構成図。
【図3】X線CTスキャナの電気系の概略ブロック図。
【図4】2次元のデータ収集を座標上で説明する図。
【図5】2次元ラドン空間における2次元のデータ収集を説明する図。
【図6】2次元ラドンデータを座標上で説明する図。
【図7】X線焦点からのファンビームで収集される2次元ラドンデータの集まりを座標上で説明する図。
【図8】冗長性をもつ2次元ラドンデータを説明する図。
【図9】冗長性をもつ2次元ラドンデータ収集の様子を座標上で説明する図。
【図10】冗長性をもつ2次元ラドンデータをサイノグラム上で説明する図。
【図11】2次元の円軌道フルスキャン(FS)の場合のスライス画像の時間感度プロファイルを示す図。
【図12】2次元の円軌道ハーフスキャン(HS)の再構成を説明する図。
【図13】HS再構成の場合の2次元ラドンデータをサイノグラム上で説明する図。
【図14】HS再構成の場合のスライス画像の時間感度プロファイルを示す図。
【図15】2次元の円軌道アンダースキャン(US)の再構成を説明する図。
【図16】US再構成の場合の2次元ラドンデータをサイノグラム上で説明する図。
【図17】US再構成の場合のスライス画像の時間感度プロファイルを示す図。
【図18】2次元の円軌道オーバースキャン(OS)の再構成を説明する図。
【図19】OS再構成の場合の2次元ラドンデータをサイノグラム上で説明する図。
【図20】3次元のデータ収集を座標上で説明する図。
【図21】3次元ラドン空間における3次元のデータ収集を説明する図。
【図22】ある焦点からのコーンビームで収集される3次元ラドンデータを説明する図。
【図23】被写体を再構成するのに必要な3次元ラドンデータを説明する図。
【図24】3次元の円軌道スキャンで収集される3次元ラドンデータを説明する図。
【図25】図23と図24とを重ね合わせた図。
【図26】3次元の円軌道ハーフスキャン(β=[0〜π+2γm])で収集される3次元ラドンデータを説明する図。
【図27】図23と図26とを重ね合わせた図。
【図28】 shift-variant FBP 法を説明する図。
【図29】その他の3次元再構成法の例におけるジオメトリを説明する図。
【図30】直線と円1回転スキャンの場合のデータの信頼性関数の例を説明する図。
【図31】複数回転の連続した円軌道スキャンの場合のデータの信頼性関数の例を説明する図。
【図32】ヘリカルスキャンの場合のデータの信頼性関数の例を説明する図。
【図33】データ収集の冗長性を説明する説明図。
【図34】データ収集の冗長性を説明する別の説明図。
【図35】冗長性の無いデータ収集を説明する説明図。
【図36】本発明を実施した3次元再構成アルゴリズムの一例を説明する概略フローチャート。
【図37】本発明を実施した3次元再構成アルゴリズムの別の例を説明する概略フローチャート。
【符号の説明】
1 ガントリ
2 寝台
3 制御キャビネット
4 電源装置
10 X線管
11 2次元検出器
24 DAS
30 メインコントローラ
31〜33 コントローラ
36 再構成ユニット
38 ディスプレイ

Claims (8)

  1. コーンビーム状のX線を曝射するX線源と、
    このX線源から曝射され且つ被検体を透過したX線を検出してそのX線量に対応した投影データを出力する2次元のX線検出器と、
    少なくとも前記X線源の一定軌道上の移動を伴う所望のスキャン方式の元で一定のスキャン範囲にて当該X線源から曝射されたX線で被検体をスキャンして、このスキャンに伴う前記投影データを前記X線検出器に収集させるスキャン手段と、
    このスキャン手段により収集された投影データから3次元分布の3次元ラドンデータを生成するラドンデータ生成手段と、
    このラドンデータ生成手段により生成された3次元ラドンデータのそれぞれを求めるための面積分の対象となる面それぞれに対応して、前記3次元ラドンデータに前記投影データの収集時刻に関して非一定の重みを呈する重み関数による重み付けを行う重み付け手段と
    この重み付け手段により重み付けされた3次元ラドンデータを所望の3次元再構成アルゴリズムで再構成して画像を得る再構成手段と
    を備えたことを特徴とするX線CT装置。
  2. 前記スキャン手段は、前記一定軌道として、前記被検体の周りに少なくとも「180度+前記コーンビーム状X線のファン角度」の経路を前記スキャン範囲として含む軌道を描くように前記X線源を移動させるように構成した請求項1に記載のX線CT装置。
  3. 前記重み付け手段は、前記重み関数として、前記再構成手段により再構成される画像の時刻を代表するデータ収集時刻で最大の重みを呈し、このデータ収集時刻から離れたデータ収集時刻で小さい重みを呈する重み関数を用いて、前記スキャン範囲で収集された投影データに対応した3次元ラドンデータに前記重み付けをする手段である請求項に記載のX線CT装置。
  4. 前記重み付け手段は、前記重み関数として、前記再構成手段により再構成される画像の時刻を代表するデータ収集時刻及びそのデータ収集時刻に近い時刻で最大の重みを呈し、これらデータ収集時刻から離れたデータ収集時刻で小さい重みを呈する重み関数を用いて、前記スキャン範囲で収集された投影データに対応した3次元ラドンデータに前記重み付けをする手段である請求項に記載のX線CT装置。
  5. 前記重み付け手段は、前記重み関数として、前記再構成手段により再構成される画像の時刻を代表するデータ収集時刻で最大の重みを呈し、このデータ収集時刻から離れるにしたがって小さくなる重みを呈する重み関数を用いて、前記スキャン範囲で収集された投影データに対応した3次元ラドンデータに前記重み付けをする手段である請求項に記載のX線CT装置。
  6. 前記重み関数は前記スキャン方式の種類に応じて設定されている請求項に記載のX線CT装置。
  7. 前記スキャン方式は、前記軌道が1回転の円軌道を描く円軌道フルスキャン、前記軌道が1回転の円軌道を描き且つ360度のスキャン範囲からの投影データを使った拡張円の円軌道ハーフスキャン(MHS:Modified Half Scan)、或いは前記軌道が1回転の円軌道を描く円軌道アンダースキャン、前記軌道が2回転以上の円軌道を描く円軌道スキャン、前記軌道が直線軌道と円軌道とを組みあわせた軌道を描くスキャン、又は、前記軌道がヘリカル状の軌道を描くヘリカルスキャンに基づくスキャン方式である請求項に記載のX線CT装置。
  8. 前記各面に対する前記投影データの収集時刻に応じて予め決められた当該投影データの信頼度から前記重み関数を決め、この重み関数による重み情報を前記各面毎に提供する提供手段を更に備える請求項2〜の何れか一項に記載のX線CT装置。
JP2002301432A 2001-10-25 2002-10-16 X線ct装置 Expired - Fee Related JP4282302B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002301432A JP4282302B2 (ja) 2001-10-25 2002-10-16 X線ct装置
US10/278,872 US6907100B2 (en) 2001-10-25 2002-10-24 Cone beam type of X-ray CT system for three-dimensional reconstruction
CN02151818.1A CN1289034C (zh) 2001-10-25 2002-10-25 X射线ct装置、三维图象再次构成方法及权重设定方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001327789 2001-10-25
JP2001-327789 2001-10-25
JP2002301432A JP4282302B2 (ja) 2001-10-25 2002-10-16 X線ct装置

Publications (3)

Publication Number Publication Date
JP2003199740A JP2003199740A (ja) 2003-07-15
JP2003199740A5 JP2003199740A5 (ja) 2005-12-02
JP4282302B2 true JP4282302B2 (ja) 2009-06-17

Family

ID=27666496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301432A Expired - Fee Related JP4282302B2 (ja) 2001-10-25 2002-10-16 X線ct装置

Country Status (3)

Country Link
US (1) US6907100B2 (ja)
JP (1) JP4282302B2 (ja)
CN (1) CN1289034C (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672426B2 (en) * 2002-12-04 2010-03-02 Varian Medical Systems, Inc. Radiation scanning units with reduced detector requirements
US7189000B2 (en) * 2003-12-22 2007-03-13 Kabushiki Kaisha Toshiba Image-quality control system
US7250949B2 (en) * 2003-12-23 2007-07-31 General Electric Company Method and system for visualizing three-dimensional data
JP4498023B2 (ja) * 2004-06-15 2010-07-07 キヤノン株式会社 X線ct装置
EP1774475A1 (en) * 2004-06-28 2007-04-18 Koninklijke Philips Electronics N.V. Examination apparatus for perfusion studies
US8160337B2 (en) * 2004-10-11 2012-04-17 Koninklijke Philips Electronics N.V. Imaging system for the generation of high-quality X-ray projections
WO2006040713A1 (en) * 2004-10-15 2006-04-20 Philips Intellectual Property & Standards Gmbh Computer tomography method
WO2006073584A2 (en) * 2004-11-24 2006-07-13 Wisconsin Alumni Research Foundation Cone-beam filtered backprojection image reconstruction method for short trajectories
FI20055168A0 (fi) * 2005-04-13 2005-04-13 Gen Electric Tomografiamenetelmä
US7991558B2 (en) * 2005-09-29 2011-08-02 Roche Molecular Systems, Inc. Systems and methods for determining real-time PCR cycle thresholds using cluster analysis
CN100447816C (zh) * 2005-12-31 2008-12-31 清华大学 Ct投影数据三维解析模拟方法
US7831012B2 (en) * 2006-02-09 2010-11-09 L-3 Communications Security and Detection Systems Inc. Radiation scanning systems and methods
US7760849B2 (en) * 2006-04-14 2010-07-20 William Beaumont Hospital Tetrahedron beam computed tomography
US8983024B2 (en) 2006-04-14 2015-03-17 William Beaumont Hospital Tetrahedron beam computed tomography with multiple detectors and/or source arrays
US9339243B2 (en) 2006-04-14 2016-05-17 William Beaumont Hospital Image guided radiotherapy with dual source and dual detector arrays tetrahedron beam computed tomography
EP1986551A1 (en) * 2006-04-19 2008-11-05 Philips Intellectual Property & Standards GmbH Cone beam computed tomography with multiple partial scanning trajectories
WO2008013598A2 (en) * 2006-05-25 2008-01-31 William Beaumont Hospital Real-time, on-line and offline treatment dose tracking and feedback process for volumetric image guided adaptive radiotherapy
JP4322894B2 (ja) * 2006-06-20 2009-09-02 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置
US7995819B2 (en) * 2006-10-30 2011-08-09 General Electric Company Methods for displaying a location of a point of interest on a 3-D model of an anatomical region
US8270559B2 (en) 2006-11-24 2012-09-18 Kabushiki Kaisha Toshiba Method and system for tomographic reconstruction in medical imaging using the circle and line trajectory
DE102007022714A1 (de) * 2007-05-15 2008-12-04 Siemens Ag Verfahren zur Streustrahlungskorrektur bei einem Röntgen-Computertomografie-System und Verfahren zur Erzeugung einer streustrahlungskorrigierten tomografischen Darstellung, sowie Röntgen-Computertomografie-System
DE102007025678A1 (de) * 2007-06-01 2008-12-04 Rwth Aachen Verfahren zur Bildverarbeitung und Bildverarbeitungseinrichtung
EP2170932A4 (en) * 2007-06-20 2012-10-10 Phylogica Ltd COMPOSITIONS AND APPLICATIONS THEREOF IN THE TREATMENT OF ACUTE ATOMIC SYNDROME (ARDS) AND ASSOCIATED CLINICAL ILLNESSES
US7848479B1 (en) * 2007-06-29 2010-12-07 University Of Central Florida Research Foundation, Inc. Image reconstruction for a general circle-plus trajectory
JP5269358B2 (ja) * 2007-07-18 2013-08-21 株式会社東芝 X線ct装置
JP5525706B2 (ja) * 2007-07-25 2014-06-18 株式会社東芝 X線コンピュータ断層撮影装置
US7929742B2 (en) * 2007-09-28 2011-04-19 Siemens Medical Solutions Usa, Inc. Method and system for computed tomographic imaging
JP5142664B2 (ja) * 2007-10-25 2013-02-13 株式会社東芝 X線コンピュータ断層撮影装置
JP2009142300A (ja) * 2007-12-11 2009-07-02 Toshiba Corp X線ct装置、及びスキャン計画作成方法
KR100923094B1 (ko) 2008-01-15 2009-10-22 (주)이우테크놀로지 트렁케이션 아티팩트를 보정하는 방법
US20110044559A1 (en) * 2008-05-06 2011-02-24 Koninklijke Philips Electronics N.V. Image artifact reduction
JP5461803B2 (ja) * 2008-08-22 2014-04-02 株式会社東芝 X線ct装置
JP5340748B2 (ja) * 2009-01-05 2013-11-13 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置
US8212641B2 (en) * 2009-02-27 2012-07-03 Cyntec Co., Ltd. Choke
US9117580B2 (en) 2009-02-27 2015-08-25 Cyntec Co., Ltd. Choke
US9208937B2 (en) 2009-02-27 2015-12-08 Cyntec Co., Ltd. Choke having a core with a pillar having a non-circular and non-rectangular cross section
USRE48472E1 (en) 2009-02-27 2021-03-16 Cyntec Co., Ltd. Choke having a core with a pillar having a non-circular and non-rectangular cross section
US8559687B2 (en) * 2009-10-30 2013-10-15 Kabushiki Kaisha Toshiba Method for circular scan reconstruction in computed tomography and computed tomographic device
BR112012016558A2 (pt) 2010-01-05 2016-04-26 Beaumont Hospital William terapia de arco de intensidade modulada com rotação/deslocamento de cama de exame e formação de imagem de feixe de cone simultânea
JP5417644B2 (ja) * 2010-02-10 2014-02-19 株式会社東芝 粒子線ビーム照射装置及びその制御方法
WO2011148277A2 (en) * 2010-05-27 2011-12-01 Koninklijke Philips Electronics N.V. Improved reconstruction for cone-beam computed tomography imaging with off-center flat panel detector
AU2011278308B2 (en) * 2010-07-16 2014-09-04 Technical University Of Denmark Nanoparticle-guided radiotherapy
US8437522B2 (en) * 2011-02-17 2013-05-07 Kabushiki Kaisha Toshiba Motion index for medical imaging data based upon Grangeat's formula
US8805037B2 (en) 2011-05-31 2014-08-12 General Electric Company Method and system for reconstruction of tomographic images
CN103239253B (zh) * 2012-02-14 2015-07-15 株式会社东芝 医用图像诊断装置
US9069092B2 (en) 2012-02-22 2015-06-30 L-3 Communication Security and Detection Systems Corp. X-ray imager with sparse detector array
CN102973291B (zh) * 2012-12-20 2015-03-11 电子科技大学 C型臂半精确滤波反投影断层成像方法
US9091628B2 (en) 2012-12-21 2015-07-28 L-3 Communications Security And Detection Systems, Inc. 3D mapping with two orthogonal imaging views
KR101534098B1 (ko) * 2013-09-13 2015-07-07 삼성전자주식회사 Ct 장치 및 이를 이용한 엑스선 제어 방법
US9949709B2 (en) 2014-06-23 2018-04-24 University Of Maryland, Baltimore Techniques for suppression of motion artifacts in medical imaging
CN106534861B (zh) * 2016-11-25 2019-10-01 中北大学 图像压缩及解压方法及装置
WO2019230741A1 (ja) * 2018-05-28 2019-12-05 国立研究開発法人理化学研究所 角度オフセットによる断層画像データの取得方法、取得装置、および制御プログラム
JP2024048207A (ja) * 2022-09-27 2024-04-08 キヤノンメディカルシステムズ株式会社 X線ct装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5784481A (en) 1996-06-25 1998-07-21 General Electric Company CT cone beam image reconstruction with circle and line scan path
US5706325A (en) 1996-12-05 1998-01-06 General Electric Company Exact regional reconstruction of longitudinally-unbounded objects using a circle-and-line cone beam tomographic system
US5970111A (en) * 1997-09-30 1999-10-19 Siemens Corporate Research, Inc. Fast and efficient multiprocessor implementation for exact for an exact cone beam image reconstruction
US6014419A (en) 1997-11-07 2000-01-11 Hu; Hui CT cone beam scanner with fast and complete data acquistion and accurate and efficient regional reconstruction
US5960055A (en) * 1997-12-19 1999-09-28 Siemens Corporate Research, Inc. Fast cone beam image reconstruction using a detector weight list
US6009142A (en) * 1998-03-31 1999-12-28 Siemens Corporate Research, Inc. Practical cone beam image reconstruction using local regions-of-interest
DE19842859A1 (de) * 1998-09-18 2000-03-23 Basf Ag Additive für Zement enthaltende mineralische Baustoffe
US6584186B1 (en) * 2000-01-12 2003-06-24 Lucent Technologies Inc. Protecting communications network integrity
US6542570B1 (en) 2000-04-14 2003-04-01 Kabushiki Kaisha Toshiba Method and system for reconstructing computed tomography images using redundant data
US6546067B2 (en) 2001-01-30 2003-04-08 Kabushiki Kaisha Toshiba Reconstruction and scan of 4D-CT
US6584166B2 (en) 2001-04-03 2003-06-24 Kabushiki Kaisha Toshiba X-ray computerized tomographic apparatus
US6560308B1 (en) 2001-10-26 2003-05-06 Kabushiki Kaisha Toshiba Method and system for approximating missing data in cone beam x-ray CT reconstruction
US6574297B2 (en) * 2001-10-30 2003-06-03 Siemens Corporate Research, Inc. System and method for image reconstruction in a cone beam imaging system

Also Published As

Publication number Publication date
CN1289034C (zh) 2006-12-13
US6907100B2 (en) 2005-06-14
JP2003199740A (ja) 2003-07-15
CN1437914A (zh) 2003-08-27
US20040086074A1 (en) 2004-05-06

Similar Documents

Publication Publication Date Title
JP4282302B2 (ja) X線ct装置
JP4360817B2 (ja) 放射線断層撮影装置
US7903779B2 (en) Apparatus and method for reconstruction of volumetric images in a divergent scanning computed tomography system
JP5337031B2 (ja) Ct画像取得
US6937690B2 (en) Method for computed tomography of a periodically moving object to be examined, and a CT unit for carrying out this method
US6944260B2 (en) Methods and apparatus for artifact reduction in computed tomography imaging systems
JP3637074B2 (ja) ヘリカルスキャン方式のコンピュータ断層撮影装置
JP4441095B2 (ja) コーン・ビーム・マルチスライス式ct補正方法及び装置
US6778630B2 (en) Method and system for reconstructing computed tomography images using redundant data
JPH0661327B2 (ja) 断層撮影像作成方法および装置
JP4612294B2 (ja) X線コンピュータ断層装置、x線コンピュータ断層装置制御方法、及びx線コンピュータ断層撮影プログラム
JPH0661326B2 (ja) らせん走査で断層像を作成する方法および装置
JPH0620451B2 (ja) 投影データを収集する装置
JP4514394B2 (ja) コンピュータトモグラフィ方法およびコンピュータトモグラフィ装置
JPH0669452B2 (ja) 入れなおしを用いた扇状ビームらせん走査法
US6426989B2 (en) Computed tomography method
US7529335B2 (en) Voxel-driven spiral reconstruction for cone-beam computer tomography
JP3851675B2 (ja) 物体の断層写真像を作成するシステム
JPH11253435A (ja) コンピュ―タトモグラフ
JP2000102530A (ja) 被検体の中の関心領域の3次元コンピュ―タ断層画像形成のための方法および装置
JP2004113785A (ja) コンピュータ断層撮影法における画像形成方法およびこの方法を実施するためのct装置
JPH0661330B2 (ja) 断層撮影像作成方法および装置
US7583777B2 (en) Method and apparatus for 3D reconstruction of images
JP3980696B2 (ja) 画像再構成処理装置
JPH105210A (ja) X線ct装置及びそのミスアライメント補正方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees