JP4266011B2 - Distribution system load assumption method, distribution system load assumption device - Google Patents
Distribution system load assumption method, distribution system load assumption device Download PDFInfo
- Publication number
- JP4266011B2 JP4266011B2 JP2005014505A JP2005014505A JP4266011B2 JP 4266011 B2 JP4266011 B2 JP 4266011B2 JP 2005014505 A JP2005014505 A JP 2005014505A JP 2005014505 A JP2005014505 A JP 2005014505A JP 4266011 B2 JP4266011 B2 JP 4266011B2
- Authority
- JP
- Japan
- Prior art keywords
- load
- consumer
- daily load
- measurement
- daily
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Description
本発明は、配電系統負荷想定方式に係り、特に配電系統における需要家負荷や区間負荷の想定を行う配電系統負荷想定方法、および配電系統負荷想定装置に関する。 The present invention relates to a power distribution system load assumption method, and more particularly to a power distribution system load assumption method and a power distribution system load assumption device for estimating a consumer load and a section load in a power distribution system.
配電系統は、変電所、発電所もしくは送電線路と電力需要設備との間、または需要設備相互間の電線路およびSW機器(以下、開閉器という)で構成される電力設備であり、電力会社では、配電系統配電設備計画に伴って将来の消費電力量(負荷)を想定することを行っている。すなわち、上記の計画に伴って、将来負荷が必要となったときに、配電系統における将来の負荷を想定する。そして、配電系統の設備計画に伴って必要となってくる将来負荷のうち、過去の実績データを基に開閉器間(区間)、フィーダ、変圧器単位の将来日負荷をいかにして高精度に求めるか、が配電系統負荷想定問題である。 A power distribution system is a power facility composed of electrical lines and SW devices (hereinafter referred to as switches) between substations, power plants or transmission lines and power demand facilities, or between demand facilities. The future power consumption (load) is assumed along with the distribution system distribution facility plan. That is, when a future load becomes necessary in accordance with the above plan, a future load in the distribution system is assumed. And among the future loads that will be required in connection with the distribution system equipment plan, the future daily loads for each switch (section), feeder, and transformer unit will be accurately determined based on past performance data. It is the distribution system load assumption problem.
この配電系統負荷想定問題に対して「フィーダ負荷を各区間の設備容量比に基づき按分する」方式(以下、按分負荷想定方式)が用いられている。そして、上記の按分方式に基づいた様々な解法が示されてきた。例えば、特開平7−79530号公報では、配電区間負荷推定方法における地域特性を考慮することによって負荷推定の精度の向上を図っている。また、特開平11−206016号公報では、按分率に基づいて各負荷の所定期間後の負荷想定量を算出すると共に、その分布状況を視覚的に表示している。また、特開2001−112171号公報では、将来予測される電力需要の算出と共に、将来予想される事故ケースの作成とその対策費のミニマム化を支援している。
従来の区間負荷想定では、想定対象の一日の負荷の推移を示すグラフ形状(負荷形状)がフィーダ全体における負荷形状と相似になるので区間毎の特性が反映されない。すなわち、1つの区間にはさまざまな種別(住宅、商店、工場など)の需要家が存在し、各需要家の負荷形状が全く異なるからである。したがって、精度の面で問題が残る。また、近年の電力需要は「深夜電力」「季節別電力」等のように、負荷形状が多岐に及んでいる。また、住宅用太陽光発電設備などの普及により、発電が分散化し、その分散発電された余剰分電力をフィーダへ戻す「逆潮流」もあって、負荷想定をより困難にしている。しかも従来は、数年先のピーク負荷を算出するだけに止まっていたが、より詳細な時間刻みの想定負荷が求められている。かかる現状から、従来の負荷想定方式では精度に問題があり、実際の配電系統に適用するのには困難があった。精度は上げるために計測器などを設置してデータ量を増やそうとすればその計測設置に多大なコストが掛かる。 In the conventional section load assumption, the graph shape (load shape) indicating the transition of the daily load to be assumed is similar to the load shape in the entire feeder, so the characteristics for each section are not reflected. That is, there are consumers of various types (houses, shops, factories, etc.) in one section, and the load shape of each consumer is completely different. Therefore, a problem remains in terms of accuracy. Moreover, the power demand in recent years has a wide variety of load shapes such as “midnight power” and “seasonal power”. In addition, due to the spread of residential solar power generation facilities and the like, there is also a “reverse power flow” in which power generation is dispersed and the surplus power generated by the distributed power generation is returned to the feeder, making the load assumption more difficult. In addition, conventionally, it has been limited only to calculating the peak load several years ahead, but more detailed assumed load in time increments is required. Under such circumstances, the conventional load assumption method has a problem in accuracy, and it has been difficult to apply to an actual power distribution system. In order to increase the amount of data by installing a measuring instrument or the like in order to increase the accuracy, the measurement and installation costs a great deal.
上記課題に鑑み本発明を創作した。本発明は、区間ごとの負荷を安価に、かつ高精度で想定できる配電系統負荷想定方法および装置を提供することを目的としている。そして、 本発明の基本となるのは、次の事項(1)〜(4)により特定される。
(1)複数の開閉器によって複数の区間に区分され、日負荷計測データを持つ計測需要家と持たない非計測需要家が混在する配線系統の将来負荷を予測する配電系統負荷想定方法であること。
(2) 非計測需要家と計測需要家の双方の過去の月間消費電力量の年間変動に基づいて、各非計測需要家ごとに予測対象日の日負荷に類似すると想定される計測需要家の日負荷計測データを特定すること。
(3)非計測需要家については前記特定した日負荷計測データに基づく日負荷を、計測需要家については日負荷計測データに基づく日負荷をそれぞれ求めるとともに、各区間の全需要家についての日負荷を総合して区間別日負荷を求めること。
(4)前記区間別日負荷に基づいて、将来負荷の予測対象日における配電系統全体の日負荷に対する各区間の日負荷の按分比率を求めるとともに、前記配電系統の総負荷と当該按分比率とに基づいて各区間の負荷を決定すること。
The present invention has been created in view of the above problems. An object of the present invention is to provide a distribution system load estimation method and apparatus that can estimate a load for each section at low cost and with high accuracy. The basis of the present invention is specified by the following items (1) to (4).
(1) It is a distribution system load assumption method that predicts the future load of a wiring system that is divided into a plurality of sections by a plurality of switches and that includes a measurement customer having daily load measurement data and a non-measurement customer having no daily load measurement data. .
(2) Based on the annual fluctuations in past monthly power consumption of both non-measurement consumers and measurement consumers, each non-measurement consumer is assumed to be similar to the daily load of the forecast target day. Specify daily load measurement data.
(3) The daily load based on the specified daily load measurement data is determined for non-measured consumers, the daily load based on the daily load measurement data is determined for measured consumers, and the daily load is calculated for all consumers in each section. To calculate the daily load by section.
(4) Based on the daily load of each section, the distribution ratio of the daily load of each section to the daily load of the entire distribution system on the prediction target day of the future load is obtained, and the total load of the distribution system and the distribution ratio Determine the load of each section based on.
また本発明は、前記(1)〜(4)の事項に加え、以下の(11)〜(14)のいずれかの事項、あるいは(11)〜(14)のいずれかを適宜に組み合わせた事項を備えた配電系統負荷想定方法としてもよい。 In addition to the above items (1) to (4), the present invention includes any of the following items (11) to (14) or any combination of any of (11) to (14). It is good also as a distribution system load assumption method provided with.
(11)ある非計測需要家について、類似すると想定される計測需要家の日負荷計測データを特定する際、前記過去の月間消費電力量の年間変動のパターン形状と絶対消費電力量のそれぞれについての相関を求めるとともに、各非計測需要家ごとに予測対象日の日負荷として類似すると想定される計測需要家の日負荷計測データを前記パターン形状と絶対消費電力量のそれぞれの相関に基づいて特定する
(12)前記非計測需要家の日負荷は需要家種別が同じ計測需要家の日負荷計測データに基づいて特定されること。
(11) When specifying daily load measurement data of a measured consumer that is assumed to be similar for a non-measured consumer, the pattern shape of the annual fluctuation of the past monthly power consumption and the absolute power consumption While obtaining the correlation, the daily load measurement data of the measurement consumer assumed to be similar to the daily load of the prediction target day for each non-measurement consumer is specified based on the correlation between the pattern shape and the absolute power consumption. (12) The daily load of the non-measurement consumer is specified based on the daily load measurement data of the measurement consumer having the same consumer type.
(13)ある非計測需要家について、類似すると想定される計測需要家の日負荷計測データを特定する際、計測需要家の日負荷計測データに対し、前記月間消費電力量の年間推移グラフの形状の相関が強い順に順位を対応付けするとともに、前記月間消費電力量の絶対消費電力量の相関が強い順に順位を対応づけし、各計測需要家の日負荷計測データに対応付けされた、前記形状と絶対消費電力量のそれぞれについての順位の合計値が最も低い日負荷計測データを特定対象とすること。 (13) When specifying daily load measurement data of a measured consumer that is assumed to be similar for a non-measurement consumer, the shape of the annual transition graph of the monthly power consumption for the daily load measurement data of the measurement consumer The shapes are associated in the order of strong correlation with each other, and the ranks are associated in order of strong correlation of the absolute power consumption of the monthly power consumption, and are associated with the daily load measurement data of each measurement consumer. And daily load measurement data with the lowest total sum of ranks for absolute power consumption and absolute power consumption.
(14)ある非計測需要家についての日負荷は、予測対象日が属する月における当該非計測需要家とこの非計測需要家に類似すると想定される計測需要家の双方の月間消費電力量の比率に応じて補正されること。 (14) The daily load for a non-measurement consumer is the ratio of the monthly power consumption of both the non-measurement consumer and the measurement consumer assumed to be similar to this non-measurement consumer in the month to which the forecast target day belongs To be corrected accordingly.
(15)前記日負荷は予測対象日の気温データに応じて補正されること。 (15) The daily load should be corrected according to the temperature data of the prediction target day.
本発明は、上記配電系統負荷想定方法に基づいて、配電系統負荷を想定する装置にも及んでおり、次の事項(21)〜(26)を備えている。
(21)複数の開閉器によって複数の区間に区分され、日負荷計測データを持つ計測需要家と持たない非計測需要家が混在する配線系統の将来負荷を予測する配電系統負荷想定装置であること。
(22)需要家別に個人情報、日負荷計測データ、月間消費電力量などの情報を蓄積管理するデータベースにアクセスする手段を備えること。
(23)非計測需要家と計測需要家の双方の過去の月間消費電力量の年間変動に基づいて、各非計測需要家ごとに予測対象日の日負荷として最も類似すると想定される1つの計測需要家の日負荷計測データを特定する手段を備えること。
(24)非計測需要家については前記特定した日負荷計測データに基づく日負荷を、計測需要家については日負荷計測データに基づく日負荷をそれぞれ求めるとともに、各区間の全需要家についての日負荷を総合して区間別日負荷を求める手段を備えること。
(25)前記区間別日負荷に基づいて、将来負荷の予測対象日における配電系統全体の日負荷に対する各区間の日負荷の按分比率を求める手段を備えること。
(26)前記区間別日負荷に基づいて、将来負荷の予測対象日における配電系統全体の日負荷に対する各区間の日負荷の按分比率を求めるとともに、前記配電系統の総負荷と当該按分比率とに基づいて各区間の負荷を決定すること。
The present invention extends to a device that assumes a distribution system load based on the above distribution system load assumption method, and includes the following items (21) to (26).
(21) It is a distribution system load assumption device that predicts the future load of a distribution system that is divided into multiple sections by multiple switches and that includes non-measurement consumers who have daily measurement data and non-measurement consumers. .
(22) Provide a means for accessing a database for storing and managing information such as personal information, daily load measurement data, and monthly power consumption for each consumer.
(23) One measurement that is assumed to be the most similar to the daily load of the forecast target day for each non-measurement consumer based on the annual fluctuations in past monthly power consumption of both the non-measurement consumer and the measurement consumer A means for specifying daily load measurement data of a consumer is provided.
(24) Daily load based on the specified daily load measurement data for non-measured consumers, daily load based on the daily load measurement data for measured consumers, and daily load for all consumers in each section A means to obtain the daily load of each section by integrating
(25) A means for obtaining a prorated ratio of the daily load of each section to the daily load of the entire distribution system on the prediction target date of the future load based on the daily load by section.
(26) Based on the daily load of each section, obtain a prorated ratio of the daily load of each section to the daily load of the entire distribution system on the prediction target day of the future load, and calculate the total load of the distribution system and the prorated ratio Determine the load of each section based on.
本発明の配電系統負荷想定装置は、上記事項(21)〜(26)に加え、以下の事項(31)〜(35)のいずれかの事項、あるいは(31)〜(35)のいずれかを適宜に組み合わせた事項を備えていてもよい。 In addition to the above items (21) to (26), the distribution system load assumption device of the present invention includes any of the following items (31) to (35) or any of (31) to (35): You may provide the matter combined suitably.
(31)前記日負荷計測データを特定する手段は、前記過去の月間消費電力量の年間変動のパターン形状と絶対消費電力量のそれぞれについての相関を求めるとともに、各非計測需要家ごとに予測対象日の日負荷に類似すると想定される計測需要家の日負荷計測データを前記パターン形状と絶対消費電力量のそれぞれの相関に基づいて特定すること。 (31) The means for identifying the daily load measurement data obtains a correlation for each of the pattern shape of the annual fluctuation of the past monthly power consumption and the absolute power consumption, and is a prediction target for each non-measurement consumer. Specifying daily load measurement data of a measurement consumer assumed to be similar to the daily load of the day based on the correlation between the pattern shape and the absolute power consumption.
(32)日負荷計測データを特定する手段は、各非計測需要家の日負荷をそれぞれの非計測需要家の種別と同じ種別の計測需要家から特定すること。 (32) The means for specifying the daily load measurement data is to specify the daily load of each non-measurement consumer from the measurement consumers of the same type as the type of each non-measurement consumer.
(33)日負荷計測データを特定する手段は、計測需要家の日負荷計測データに対し、前記月間消費電力量の年間変動のパターン形状の相関が強い順に順位を対応付けするとともに、前記月間消費電力量の絶対消費電力量の相関が強い順に順位を対応づけし、各計測需要家の日負荷計測データに対応付けされた、前記パターン形状と絶対消費電力量のそれぞれについての順位の合計値が最も低い日負荷計測データを特定対象とすること。 (33) The means for specifying the daily load measurement data associates the rank with the daily load measurement data of the measurement consumer in order of increasing correlation of the pattern shape of the annual fluctuation of the monthly power consumption, and the monthly consumption Associating ranks in descending order of the correlation between the absolute power consumption and the power consumption, the total value of the ranks for each of the pattern shape and the absolute power consumption associated with the daily load measurement data of each measurement consumer is The lowest daily load measurement data should be specified.
(34)ある非計測需要家についての日負荷を、予測対象日が属する月における当該非計測需要家とこの非計測需要家に類似すると想定される計測需要家の双方の月間消費電力量の比率に応じて補正する手段を備えること。 (34) Percentage of daily power consumption of a non-measurement consumer for both the non-measurement consumer and the measurement consumer assumed to be similar to this non-measurement consumer in the month to which the forecast target day belongs Provide a means to correct according to.
(35)日負荷の予測対象日の気温データを取得する手段と、日負荷を当該予測対象日の気温データに応じて補正する手段とを備えること。 (35) A means for acquiring the temperature data for the prediction target day of the daily load and a means for correcting the daily load according to the temperature data of the prediction target day.
本発明の配電系統負荷想定方法によれば、月間消費電力量に基づいて各区間の将来負荷を正確に想定することができる。そのため、日負荷の推移を計測する装置などを多数の需要家に追加設置することなく、負荷想定にかかるコストを安価にすることができる。また、正確に負荷を想定できることから、配電系統に各種設備を設置する際にもコストダウンが図れる。 According to the distribution system load estimation method of the present invention, the future load of each section can be accurately estimated based on the monthly power consumption. Therefore, it is possible to reduce the cost for load assumption without additionally installing a device for measuring the daily load transition to a large number of consumers. Moreover, since the load can be accurately estimated, the cost can be reduced when various facilities are installed in the distribution system.
===配電系統===
図1は、本発明の配電系統負荷想定方法が適用される配電系統の一例を示している。この例における配電系統は、変電所における配電線用遮断機(CB)1を介して接続される。配電系統には、複数の開閉器2が設置され、各開閉器2の間を「区間」5としている。各区間5には多数の需要家(電力を消費する施設)4が所属している。変電所出口からの高電圧電力は各区間5の変圧器3にて降圧され、各主需要家(住宅4a、商店4b、事務所4cなど)へ配電される。このようにして、CB1から各需要家4へ電力を供給する配電線網(フィーダ)10が構成される。
=== Distribution system ===
FIG. 1 shows an example of a distribution system to which the distribution system load assumption method of the present invention is applied. The distribution system in this example is connected via a distribution line breaker (CB) 1 in a substation. A plurality of
CB1では、フィーダ10全体の負荷を時間刻みで計測した実績データが記録されているが、開閉器2や変圧器3では負荷の実績データは記録されていない。また、需要家4には日負荷を計測するためのロードサーベイ計量器を持つ計測需要家と、持たない非計測需要家とが混在する。周知の通り、ロードサーベイ計量器は、1日における消費電力(負荷)の時間推移を記録する。
In
図2(A)〜(C)に各種計測需要家についての日負荷計測データの例を示した。この図では一般的な住宅(A)と、深夜電力を消費する需要家(B)と、商業施設(C)の日負荷計測データをそれぞれ示した。なお、非計測需要家には、電力計が設置され、電力会社では、検針員がこの電力計を毎月の検針することで、非計測需要家における月間消費電力量を記録している。図3に月間消費電力量の年間変動の例を示した。 The example of the daily load measurement data about various measurement consumers was shown in Drawing 2 (A)-(C). This figure shows the daily load measurement data of a general house (A), a consumer (B) who consumes midnight power, and a commercial facility (C). In addition, a wattmeter is installed in a non-measurement consumer, and in a power company, a meter reader records the monthly power consumption in a non-measurement consumer by reading the wattmeter every month. Fig. 3 shows an example of annual fluctuation of monthly power consumption.
===負荷想定方法の概略===
参考までに、図1に示した配電系統において、従来の按分負荷想定方式により想定した場合の区間5ごとに按分される現在電流とフィーダ10全体の現在電流との関係を図4に示した。例えば、ある配電系統にa〜dの区間があるとする。従来の按分負荷想定方式では、CB1におけるフィーダ10全体の電流を各区間a〜dに属する需要家4全体の容量で按分するため、フィーダ10全体の電流と各区間a〜dの電流のそれぞれの時間推移を示すグラフ形状が相似する。しかし、図2に示したように、各需要家4の日負荷の時間推移は様々であることから、フィーダ10全体、および各区間5の日負荷のグラフ形状は相似とはならない。したがって、従来の按分負荷想定方式は精度に欠けることがわかる。
=== Outline of Load Assumption Method ===
For reference, FIG. 4 shows the relationship between the current distributed in each
そこで本発明は、全需要家4の日負荷データを区間5ごとに総合し、各区間5の日負荷を求めた上でフィーダ10全体における各区間5の日負荷の按分割合を計算している。それによって、各区間5ごとに日負荷の推移傾向を反映させ、高い精度で日負荷を想定することができる。しかし、需要家4には計測需要家と非計測需要家とが存在することから、非計測需要家の日負荷については計測需要家の日負荷計測データを参考にして想定する必要がある。
Therefore, the present invention calculates the proportion of daily load of each
本発明者らは、同じ種別の需要者同士の場合、双方の日負荷が類似する可能性が高いことを経験的に知見している。なお種別とは、商業施設と住宅などの施設の区別、化学工場と縫製工場などの業種の区別、100Vと6.6kVなどの受電電圧である。また、月間電力消費量の年間変動のパターン形状(図3のグラフ形状)が類似している需要者同士ほど、日負荷の傾向(図2のグラフ形状)がより類似していることも知見している。しかしながら、例えば、同じ種別として「化学工場」という同じ業種の需要家同士の月間電力消費量の年間推移の傾向を見る場合、大工場と町工場とでは、消費電力量の絶対量が異なり、ある非計測需要家の日負荷として、同じ業種の日負荷計測データをそのまま採用することはできない。本実施例では、ある非計測需要家の1年間の月間消費電力量の変動パターンと月間消費電力量の絶対値のそれぞれを、この非計測需要家と同じ種別の全計測需要家における消費電力量の推移と絶対値と比較している。そして、月間消費電力量の変動パターンと絶対値との相関関係に基づいて、最も類似・近似していると思われる計測需要家の日負荷計測データを特定し、その日負荷計測データを非計測需要家の日負荷を想定するための最も適した起源として採用している。それによって、同じ種別の需要家の月間消費電力量同士を比較し、かつその消費電力量の年間変動のパターン形状と月間消費電力量の絶対値のそれぞれの相関に基づいて非計測需要家の日負荷の起源となる日負荷計測データを特定しているため、比較対象を絞り込んでその特定処理に掛かる負荷や時間を抑えるとともに、より類似する日負荷計測データを抽出することができる。なお本実施例では、計測需要家については前年のその想定日と同じ月/週/曜日の日負荷計測データに基づいて想定日の日負荷を求め、非計測需要家については、同じ種別で最も類似した需要家の過去年の同じ月/週/曜日の日負荷計測データに基づいて想定日の日負荷を求めている。 The present inventors have empirically found that there is a high possibility that both daily loads are similar between consumers of the same type. The type is a distinction between facilities such as commercial facilities and houses, a distinction between industries such as chemical factories and garment factories, and received voltages such as 100 V and 6.6 kV. In addition, it is also found that the tendency of daily load (graph shape in FIG. 2) is more similar between consumers who have similar pattern shapes (graph shape in FIG. 3) of annual fluctuation of monthly power consumption. ing. However, for example, when looking at the annual trend of monthly power consumption between customers of the same industry, “Chemical Factory” as the same type, the absolute amount of power consumption differs between large factories and town factories. The daily load measurement data of the same industry cannot be adopted as it is as the daily load of non-measurement consumers. In the present embodiment, the fluctuation pattern of the monthly power consumption for a certain non-measurement consumer for one year and the absolute value of the monthly power consumption are respectively represented by the power consumption of all measurement consumers of the same type as this non-measurement consumer. Compare the transition and absolute value. Based on the correlation between the fluctuation pattern of the monthly power consumption and the absolute value, the daily load measurement data of the measurement consumer that seems to be the most similar / approximate is identified, and the daily load measurement data is determined as non-measurement demand. It is adopted as the most suitable origin for assuming the daily load of the house. As a result, the monthly power consumption of the same type of consumers is compared, and based on the correlation between the annual fluctuation pattern shape of the power consumption and the absolute value of the monthly power consumption, Since the daily load measurement data that is the origin of the load is specified, it is possible to narrow down the comparison target and suppress the load and time required for the specifying process and extract more similar daily load measurement data. In this example, for the measured consumer, the daily load of the expected date is obtained based on the daily load measurement data of the same month / week / day of the week as the expected date of the previous year. The daily load of the assumed date is obtained based on the daily load measurement data of the same month / week / day of the past year of similar customers.
このようにして全需要家4についての想定日の日負荷を得たら、各区間5ごとに所属する全需要家4の日負荷を合計する。それによって、区間別5の日負荷が求まる。図5に区間別の日負荷についての概略を示した。ある区間に属する需要家a〜cの時間ごとの負荷20a〜20cを合計するとその区間の日負荷30が求まる。
Thus, if the daily load of the assumption day about all the
このようにして全区間の日負荷が得られたならば、フィーダ10全体の負荷を1として、各区間5ごとの負荷を按分する。それによって、想定日におけるフィーダ10全体の日負荷と各区間5に振り分けられる日負荷とが時間刻みで想定できる。
If the daily load of all sections is obtained in this way, the load of the
===配電系統負荷想定装置===
ここで、本発明の方法に基づいて配電系統上の各区間5の日負荷を想定する配電系統負荷想定装置(以下、負荷想定装置)を本発明の一実施形態として挙げる。図6にその負荷想定装置の機能ブロック構成を示した。負荷想定装置40は、データベース42を付帯したコンピュータを主体として構成される。
=== Distribution system load assumption device ===
Here, a distribution system load assumption device (hereinafter referred to as load assumption device) that assumes the daily load of each
データベース42には、配電系統に属する全需要家4についての個人情報(氏名、住所、電話番号、契約番号、需要家種別、所属電柱番号、日負荷データの有無など)や、過去の月間消費電力量や計測需要家であればその日負荷計測データなどが蓄積管理されている。遠隔監視制御部60は、本実施例では、負荷想定装置40とは別のコンピュータであり、適宜な通信手段により、開閉器2の開閉状態や電力潮流など、配電系統の状態を監視したり、開閉器の開閉動作を遠隔操作したりする。
The
負荷想定計算制御部(以下、計算制御部)43は、想定装置40に実装されているプログラムの実行により実現され、本発明の方法に従って区間5ごとの日負荷を想定するための各種演算を行う。この計算制御部43に含まれる主な処理部としては、需要家種別判別判定部(以下、種別判定部)44、相関処理部45、類似需要家抽出部46、負荷補正部47、想定結果出力部48がある。そして、全体制御部41は、キーボードなど想定装置40に付帯する入力装置49からの情報入力や、遠隔監視制御部60から出力される情報の入力、あるいはデータベース42の格納情報の取得、および、これらの入力/取得情報を計算制御部43に与えたり、この計算制御部43からの処理結果をディスプレイやプリンタなどの出力装置50や遠隔監視制御装置60に出力したり、あるいはデータベース42に記憶させたりするための入出力インタフェース機能を備える。
The load assumption calculation control unit (hereinafter, calculation control unit) 43 is realized by executing a program installed in the
===日負荷想定処理===
図7に本実施例の負荷想定装置40における負荷想定処理の流れを示した。ここで、配電系統全体における非計測需要家の数をN、配電系統全体における計測需要家をLとし、日負荷データを想定しようとしているある非計測需要家(想定需要家)をi(i=1,2,…,N)とし、そのiと同種別の計測需要家の数をMとし、そのiと同種別の計測需要家をk(k=1,2,…,M)とする。したがって、Mはiに応じて可変する数となる。また、ある計測需要家をj(j=1,2,…,L)とする。
=== Daily load assumption processing ===
FIG. 7 shows a flow of load assumption processing in the
全体制御部41は、データベース42から非計測需要家の月間消費電力量データx(i)と、計測需要家の日負荷計測データy(j)を読み込む(s1、s2)。さらに本実施例では、気温によって日負荷が変動することから、入力装置を介して入力される、想定日における想定需要家の所在地域の気温を取得することとしている(s3)。なお気温に関するデータは、地域別に時間刻みで気象庁から入手することができる。もちろん、負荷想定装置40を気象庁などにある気温データを提供している外部のコンピュータと通信可能に構成しておき、この外部コンピュータから気温データを入手してもよい。
The
必要な気温データを入力したら、つぎに、計測需要家について月別に日負荷計測データを積算して月間の消費電力量を算出する(s4)。なお、計測需要家も検針により月間消費電力量が記録されていることから、非計測需要家と同様にその検針によって取得される月間消費電力量をそのままデータベース42から読み出すようにしてもよい。そして全体制御部41は、取得した日負荷の想定に関わる各種データを計算制御部43へ与える。計算制御部43は、日負荷の想定対象となる非計測需要家(想定需要家)iを抽出し(s5)、このiについて付帯する各種処理部により、非計測需要家についての日負荷を想定する。
After the necessary temperature data is input, the daily load measurement data is integrated for each measurement consumer by month to calculate the monthly power consumption (s4). In addition, since the measurement consumer also records the monthly power consumption by meter reading, the monthly power consumption acquired by the meter reading may be read from the
以下に具体的な日負荷の想定処理について説明する。まず種別判定部44により、想定需要家と同じ種別の計測需要家kをデータベースより検索し(s6)、相関処理部45により、想定需要家iと計測需要家kの月間電力量について、その年間推移の傾向を示すグラフの形状相関係数r1と、月間電力量の絶対量相関係数r2を、それぞれ以下の式(数1)と(数2)により算出する(s7,s8)。なお数1、数2において、Si、Skは、非計測需要家iおよび計測需要家kのそれぞれの月間消費電力量に関する標準偏差であり、mは月である。そして、fim、fiaveは、それぞれ非計測需要家iのm月の月間消費電力量と月平均消費電力量であり、fkm、fkaveは、それぞれ計測需要家kのm月の月間消費電力量と月平均消費電力量である。なお標準偏差Sについては(数3)により求めている。
ある想定需要家iについて、上記2つの相関係数r1とr2をiと同種別の全ての計測需要家(総数M)について算出し終えたら、類似需要家抽出部46により、このiの日負荷として最も類似する日負荷計測データとその計測データを持つ計測需要家(類似需要家)を特定する(s9→s11)。本実施例では、この類似需要家の特定に際し「ランキング手法」と呼ばれる方式を採用している。ランキング手法は、r1とr2のそれぞれについて、その値が大きな方から順に該当する計測需要家に順位を付与してリストアップし、それぞれの順位の合計が最も少ない需要家を類似需要家とし、その類似需要家の日負荷計測データを想定需要家の日負荷(想定日負荷)の算出起源として採用する(s12→s13)。図8(A)(B)にそのランキング手法についての概略を示した。ある想定需要家iについて、r1とr2の値の大きさに応じてa〜eの計測需要家に順位が付与されている(図8A)。そして、r1とr2の値に対する順位の合計を計測需要家ごとに求める(図8B)。図8に示した例では、計測需要家bが類似需要家であると判定され、その類似需要家bの日負荷計測データに基づいて想定日負荷を求める。このように、2つの順位の合計値に基づいて相関関係を判定することで、実体が異なるとともに均等に重要視されるべき2つの相関関係を公平に扱うことができ、より適切な日負荷計測データを抽出することができる。なお本実施例では、r1やr2の値があらかじめ設定されている閾値を超えない場合には、想定需要家iの日負荷として、そのiと同種別の計測需要家の日負荷計測データの平均を求め、その平均日負荷を想定日負荷を求めるための起源として採用することとしている(s12→s14)。
When the above two correlation coefficients r1 and r2 are calculated for all measured consumers (total number M) of the same type as i for a certain assumed customer i, the similar
類似需要家と想定需要家iとは消費電力量が異なることから、類似需要家の日負荷計測データをそのまま想定需要家iの日負荷として採用するわけにはいかない。そこで、負荷補正部47は、想定需要家iの月間消費電力と類似需要家の月間消費電力とに基づいて類似需要家の日負荷計測データを補正する。具体的には、例えば、過去の想定日の月と同じ月について、想定需要家と類似需要家の月間消費電力量を取得し、双方の電力量の比を求め、この比を類似需要家の日負荷データに乗算してまず第1の補正をする(s15)。この第1の補正により、想定需要家の消費電力量を時間刻みで正確に求めることができる。
Since the similar consumer and the assumed consumer i have different power consumption, the daily load measurement data of the similar consumer cannot be directly adopted as the daily load of the assumed consumer i. Therefore, the
さらに負荷補正部47は、想定日の平均気温に基づいて類似需要家の日負荷計測データを補正する(s16)。本実施例では、データベース42に過去の日平均気温データが格納されており、負荷補正部47は、過去一年間の平均気温データと計測需要家についての過去一年間の日負荷計測データとを取得する。なお、この場合の計測需要家は、想定需要家と同種別の需要家であってもよいし、先に特定した類似需要家であってもよい。そして、過去一年間の各日について平均負荷を算出し、気温と平均負荷との相関を求める。図9にその相関関係を示した。平均気温に対する平均負荷の実測値をプロットした散布図70から、気温−平均負荷の相関を示す回帰曲線71の関数を導出する。導出した関数に想定日の予報平均気温を代入して想定日の平均負荷を算出する。そして、この気温に対する平均負荷と第1の補正により得た日負荷の平均との比を求め、この比を第1の補正により得た日負荷にさらに乗算する。それによって、最終的に想定日の気温を加味したより精度の高い想定需要家の日負荷を得ることができる。
Furthermore, the
計算制御部43は、このようにして、全非計測需要家についての日負荷が得られたならば、区間別に所属する全需要家についての日負荷を総合して、各区間におけるフィーダ負荷の按分定数を求める(s17→s19)。すなわち、計測需要家については想定日と同じ月/週/曜日の日負荷計測データに気温補正を施した日負荷を採用し、非計測需要家については上記手法により求めた日負荷を採用して、全需要家についての時間刻みの負荷を積算して、その区間全体の日負荷を求める。各区間についての日負荷が得られたならば、全区間の負荷の時間刻みの比(按分定数)を算出するともに、フィーダへ送り出す電流を算出した按分定数で按分する(s20)。それによって、各区間に割り当てる想定日の時間刻みの負荷を高精度に想定することができ、今後、配電系統に各種設備を設置する際、その系統における負荷をより正確に想定でき、適切な設備を過不足無く設置することができる。
In this way, when the daily load for all non-measured consumers is obtained, the
なお、上述の処理の過程で求められる各種情報は、想定結果出力部により、例えば、ディスプレイやプリンタなどの出力装置50に向けて出力されたり、データベース42への格納データとして出力されたりする。出力される情報やその情報の提示形式としては、例えば、フィーダ全体の想定日の日負荷をグラフにして表示出力したり、需要家や区間を選択する利用者入力を受け付けて、指定の需要家や区間についての想定日負荷グラフを出力したりするなど、適宜に出力することができる。
Note that various types of information obtained in the process described above are output to the
1 配電線用遮断機(CB)
2 開閉器
3 変圧器
4,4a〜4c 需要家
10 フィーダ
40 配電系統負荷想定装置
41 全体制御部
42 データベース
43 負荷想定計算制御部
60 遠隔監視制御装置
1 Distribution line breaker (CB)
DESCRIPTION OF
Claims (12)
非計測需要家と計測需要家の双方の過去の月間消費電力量の年間変動に基づいて、各非計測需要家ごとに予測対象日の日負荷に類似すると想定される計測需要家の日負荷計測データを特定し、
非計測需要家については前記特定した日負荷計測データに基づく日負荷を、計測需要家については日負荷計測データに基づく日負荷をそれぞれ求めるとともに、各区間の全需要家についての日負荷を総合して区間別日負荷を求め、
前記区間別日負荷に基づいて、将来負荷の予測対象日における配電系統全体の日負荷に対する各区間の日負荷の按分比率を求めるとともに、前記配電系統の総負荷と当該按分比率とに基づいて各区間の負荷を決定する、
ことを特徴とする配電系統負荷想定方法。 A distribution system load assumption method that predicts the future load of a distribution system that is divided into a plurality of sections by a plurality of switches and that has both a measurement consumer with daily load measurement data and a non-measurement consumer without
Daily load measurement of the measured consumer that is assumed to be similar to the daily load of the forecast target day for each non-measured consumer, based on the annual fluctuations in past monthly power consumption of both the non-measured consumer and the measured consumer Identify the data,
For non-measured consumers, the daily load based on the specified daily load measurement data is obtained, and for the measured consumer, the daily load based on the daily load measurement data is obtained, and the daily load for all consumers in each section is integrated. To determine the daily load for each section,
Based on the daily load of each section, the distribution ratio of the daily load of each section to the daily load of the entire distribution system on the prediction target day of the future load is determined, and each of the distribution load based on the total load of the distribution system and the distribution ratio Determine the load on the leg,
Distribution system load assumption method characterized by this.
計測需要家の日負荷計測データに対し、前記月間消費電力量の年間変動のパターン形状の相関が強い順に順位を対応付けするとともに、前記月間消費電力量の絶対消費電力量の相関が強い順に順位を対応づけし、
各計測需要家の日負荷計測データに対応付けされた、前記パターン形状と絶対消費電力量のそれぞれについての順位の合計値が最も低い日負荷計測データを特定対象とする、
ことを特徴とする配電系統負荷想定方法。 In any one of Claims 1-3, when specifying the daily load measurement data of one measurement consumer assumed to be the most similar about a certain non-measurement consumer,
Corresponding ranks in order of increasing correlation of the pattern shape of the annual fluctuation of the monthly power consumption to the daily load measurement data of the measurement consumer, and ranking in order of strong correlation of the absolute power consumption of the monthly power consumption , And
The daily load measurement data that is associated with the daily load measurement data of each measurement consumer and has the lowest total value of the ranks for each of the pattern shape and the absolute power consumption is targeted for identification.
Distribution system load assumption method characterized by this.
需要家別に個人情報、日負荷計測データ、月間消費電力量などの情報を蓄積管理するデータベースにアクセスする手段と、
非計測需要家と計測需要家の双方の過去の月間消費電力量の年間変動に基づいて、各非計測需要家ごとに予測対象日の日負荷に類似すると想定される計測需要家の日負荷計測データを特定する手段と、
非計測需要家については前記特定した日負荷計測データに基づく日負荷を、計測需要家については日負荷計測データに基づく日負荷をそれぞれ求めるとともに、各区間の全需要家についての日負荷を総合して区間別日負荷を求める手段と、
前記区間別日負荷に基づいて、将来負荷の予測対象日における配電系統全体の日負荷に対する各区間の日負荷の按分比率を求める手段と、
前記区間別日負荷に基づいて、将来負荷の予測対象日における配電系統全体の日負荷に対する各区間の日負荷の按分比率を求めるとともに、前記配電系統の総負荷と当該按分比率とに基づいて各区間の負荷を決定する、
を備えたことを特徴とする配電系統負荷想定装置。 A distribution system load assumption device that predicts the future load of a wiring system that is divided into a plurality of sections by a plurality of switches and that includes a measurement customer having daily load measurement data and a non-measurement customer having no daily load measurement data,
Means for accessing a database for storing and managing information such as personal information, daily load measurement data, and monthly power consumption for each consumer;
Daily load measurement of the measured consumer that is assumed to be similar to the daily load of the forecast target day for each non-measured consumer, based on the annual fluctuations in past monthly power consumption of both the non-measured consumer and the measured consumer A means of identifying data;
For non-measured consumers, the daily load based on the specified daily load measurement data is obtained, and for the measured consumer, the daily load based on the daily load measurement data is obtained, and the daily load for all consumers in each section is integrated. To obtain the daily load by section,
Based on the daily load of each section, a means for obtaining a prorated ratio of the daily load of each section with respect to the daily load of the entire distribution system on the prediction target day of the future load;
Based on the daily load of each section, the distribution ratio of the daily load of each section to the daily load of the entire distribution system on the prediction target day of the future load is determined, and each of the distribution load based on the total load of the distribution system and the distribution ratio Determine the load on the leg,
A distribution system load assumption device characterized by comprising:
The method according to any one of claims 7 to 11, comprising means for acquiring temperature data of a daily load prediction target day, and means for correcting the daily load according to the temperature data of the prediction target day. Distribution system load assumption device.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005014505A JP4266011B2 (en) | 2005-01-21 | 2005-01-21 | Distribution system load assumption method, distribution system load assumption device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005014505A JP4266011B2 (en) | 2005-01-21 | 2005-01-21 | Distribution system load assumption method, distribution system load assumption device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2006204039A JP2006204039A (en) | 2006-08-03 |
| JP4266011B2 true JP4266011B2 (en) | 2009-05-20 |
Family
ID=36961543
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2005014505A Expired - Fee Related JP4266011B2 (en) | 2005-01-21 | 2005-01-21 | Distribution system load assumption method, distribution system load assumption device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4266011B2 (en) |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4531638B2 (en) * | 2005-06-15 | 2010-08-25 | 中国電力株式会社 | Transformer load assumption method, transformer load assumption device |
| JP5000952B2 (en) * | 2006-09-05 | 2012-08-15 | 中国電力株式会社 | Load accommodation judgment method and voltage accommodation judgment method |
| JP2009050064A (en) * | 2007-08-17 | 2009-03-05 | Hitachi Ltd | Distribution system state estimation device |
| JP2010193605A (en) * | 2009-02-18 | 2010-09-02 | Tokyo Electric Power Co Inc:The | Load estimating method of power distribution section and power distribution system control method |
| JP5565193B2 (en) * | 2010-08-16 | 2014-08-06 | 東京電力株式会社 | Load prediction method for distribution section and distribution system control system |
| JP5394430B2 (en) * | 2011-03-31 | 2014-01-22 | 中国電力株式会社 | Life cycle use system and life cycle use method |
| JP5638546B2 (en) * | 2012-02-07 | 2014-12-10 | 三菱電機株式会社 | Load estimation device |
| KR20140032138A (en) * | 2012-09-06 | 2014-03-14 | 한국전력공사 | Apparatus and method for estimating section loads in power distribution systems |
| JP2015002588A (en) * | 2013-06-14 | 2015-01-05 | 株式会社日立製作所 | Power consumption management system and method |
| JP6407110B2 (en) * | 2015-07-13 | 2018-10-17 | 三菱電機株式会社 | Load estimating apparatus and load estimating method |
| JP6275207B2 (en) * | 2016-07-13 | 2018-02-07 | 三菱電機株式会社 | Management device, management method, and management program |
| JP6188883B1 (en) * | 2016-07-13 | 2017-08-30 | 三菱電機株式会社 | Management device, management method, and management program |
| WO2022153444A1 (en) * | 2021-01-14 | 2022-07-21 | 三菱電機ビルテクノサービス株式会社 | Power consumption estimation device and program |
| CN113657032B (en) * | 2021-08-12 | 2023-11-24 | 国网安徽省电力有限公司 | A low-frequency load shedding method and system for centralized coordination and real-time distributed control in advance |
| CN114219133B (en) * | 2021-11-29 | 2024-06-07 | 国网青海省电力公司经济技术研究院 | Bottom-up load prediction method for power distribution network taking land block as unit |
-
2005
- 2005-01-21 JP JP2005014505A patent/JP4266011B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2006204039A (en) | 2006-08-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4266011B2 (en) | Distribution system load assumption method, distribution system load assumption device | |
| LaCommare et al. | Cost of power interruptions to electricity consumers in the United States (US) | |
| Amjady | Short-term bus load forecasting of power systems by a new hybrid method | |
| US7089125B2 (en) | Distributed asset optimization (DAO) system and method | |
| US8065098B2 (en) | Progressive humidity filter for load data forecasting | |
| JP5958921B2 (en) | Energy planning system | |
| US20210141353A1 (en) | System, apparatus and method for energy management, for usage by consumers of energy from electric utility service providers, and monitoring and management of same | |
| US20160364807A1 (en) | Electric power business profit and loss calculation system and electric power business profit and loss calculation method | |
| WO2015087470A1 (en) | Demand prediction device and program | |
| JP2017169289A (en) | Power prediction system, power prediction method, and program | |
| JP2017034797A (en) | Baseline load estimation device and baseline load estimation program | |
| JP4261471B2 (en) | Distribution system load assumption method and apparatus | |
| JP2007020314A (en) | Electricity supply and demand forecasting system | |
| JP4531638B2 (en) | Transformer load assumption method, transformer load assumption device | |
| JP5560828B2 (en) | Transformer load estimation method | |
| JP7140569B2 (en) | Photovoltaic power generation output estimation device and output estimation method | |
| Addy et al. | How baseline model implementation choices affect demand response assessments | |
| Aravind et al. | Smart electricity meter on real time price forecasting and monitoring system | |
| JP2005045899A (en) | Power trading system and power trading method | |
| JP2005224023A (en) | Supply and demand electric energy calculation method and apparatus | |
| JP2016140230A (en) | Sample extraction apparatus, sample extraction method, and sample extraction program | |
| JP4606257B2 (en) | Demand factor analysis system and demand factor analysis method | |
| KR101762626B1 (en) | Apparatus and method for calculating electric power charge in power automation system | |
| JP2018156540A (en) | Prediction apparatus and prediction method | |
| JP2024005765A (en) | Water demand forecasting device and water demand forecasting method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071026 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090127 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090210 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090212 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4266011 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 4 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140227 Year of fee payment: 5 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |