JP4074791B2 - House floor plan search program and house exterior search program - Google Patents
House floor plan search program and house exterior search program Download PDFInfo
- Publication number
- JP4074791B2 JP4074791B2 JP2002232701A JP2002232701A JP4074791B2 JP 4074791 B2 JP4074791 B2 JP 4074791B2 JP 2002232701 A JP2002232701 A JP 2002232701A JP 2002232701 A JP2002232701 A JP 2002232701A JP 4074791 B2 JP4074791 B2 JP 4074791B2
- Authority
- JP
- Japan
- Prior art keywords
- floor plan
- search
- house
- image
- procedure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Image Analysis (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、コンピュータを用いて住宅間取りを検索する技術に関する。
【0002】
【従来の技術】
現在、CAD(Computer-Aided Design)を用いた住宅設計が一般的に行なわれている。CADで作成された図面は、電子的データとして記憶装置に蓄積可能である。蓄積された図面データは、関係する住宅の情報と共にリレーショナルデータベースによって管理されるのが一般的である。また、CADデータによって間取りを記述した場合、図面中の閉領域と、玄関、水廻り、和室等の間取りを構成する要素(部品)との対応づけが定義される。
【0003】
【発明が解決しようとする課題】
玄関、水廻り、和室等の間取りを構成する要素(以下、単に「構成要素」という)が、図面中にどのように配置されているかに関心を持って検索することができ、その検索方法が一般の利用者に身近に扱える方法になれば、住宅情報サービスを格段に向上させることができる。
【0004】
構成要素の配置を対象にして検索を行なう、即ち、間取りの類似性に基づいて検索を行なう場合、現状では、「北側に玄関」等の形式で命題的に状態を表現したものを、属性値としてリレーショナルデータベースに登録しておいて検索する方法が考えられる。
【0005】
しかし、複数個存在する構成要素の形状とその空間的配置、構成要素間の空間的関係、構成要素間の大小関係をこのような命題的表現で網羅的に登録していくことは実際には不可能である。
【0006】
一方、間取りの全体的な形状も、間取り間の類似性を考える場合には、重要な情報である。これについても、命題的に表現してリレーショナルデータベースに登録することは困難である。
【0007】
また、検索利用者にとって納得できる属性が存在しない場合は、当然に検索を行なうことができない。
【0008】
従って、命題的な属性による検索だけでは、利用者の多様なニーズに対応することは困難である。
【0009】
本発明の目的は、コンピュータに対して、間取りの形状の類似性を基にして適確に住宅間取り検索を行なわせる住宅間取り検索プログラム及び住宅間取り検索装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するための本発明の住宅間取り検索装置は、間取り図面における構成要素毎の閉領域に対して、構成要素の種類で相互に異なる色を割り当てることによって図面を色画像に変換し、色画像を複数領域に分割し、分割した領域毎に色分布特徴量を算出してその全領域の集合を求め、検索キーとする住宅間取りと色分布特徴量集合の類似性が高い住宅間取りを検索することを特徴とする。
【0011】
色分布特徴量として色分布ヒストグラムを採用するとき、検索は、複数の間取り見本の色分布ヒストグラム集合を特徴量データファイルに格納しておき、同ファイルの中から検索キーの住宅間取りと類似する間取り見本を抽出することによって実行される。
【0012】
色分布ヒストグラム集合は、特徴量ベクトルとなるものであり、特徴量ベクトル間の距離を以って類似性が定義される。そして、色分布ヒストグラム集合を算出することによって、間取り図面内での構成要素の配置、大きさ、形状の情報が色画像中の画素値の色分布として表現される。
【0013】
なお、画像中の色の分布を特徴量ベクトル化するに際しては、上記の色分布ヒストグラムの他に、色分布の平均、分散等の統計量を用いることができる。
【0014】
上記目的を達成するための本発明のその他の住宅間取り検索装置は、間取り図面中の住宅間取りの部分とそれ以外の部分に異なる色を指定することによって2値画像を生成し、2値画像から輝度勾配ベクトルを求めて輝度勾配ベクトル画像を作成し、輝度勾配ベクトル画像を複数領域に分割し、分割した領域毎に輝度勾配ベクトル分布のヒストグラムを算出してその全領域の集合を求め、検索キーとする住宅間取りと輝度勾配ベクトル分布ヒストグラム集合の類似性が高い住宅間取り見本を検索することを特徴とする。
【0015】
検索は、複数の間取り見本の輝度勾配ベクトル分布ヒストグラム集合を特徴量データファイルに格納しておき、同ファイルの中から検索キーの住宅間取りと類似する間取り見本を抽出することによって実行される。
【0016】
輝度勾配ベクトル分布ヒストグラム集合は、住宅間取りの輪郭形状を反映する特徴量ベクトルとなるものであり、特徴量ベクトル間の距離を以って類似性が定義される。
【0017】
以上、色分布ヒストグラム集合の類似性又は輝度勾配ベクトル分布ヒストグラム集合の類似性のいずれによっても、間取りの形状の類似性を基にして適確に住宅間取り検索を行なうことが可能となり、更に、両者を組み合わせることにより、一層的確な検索が可能となる。
【0018】
また、検索キーとする住宅間取りは、利用者によって自由に作成可能なものであり、従って、本発明により、利用者が自ら描画した図面を検索キーデータとして用いる、といった、命題的な属性の選択による検索では成し得ない、自由度の高い検索条件の指定が可能となる。
【0019】
【発明の実施の形態】
以下、本発明に係る住宅間取り検索プログラム及び住宅間取り検索装置を図面に示した発明の実施の形態を参照して更に詳細に説明する。
【0020】
図1に本発明の住宅間取り検索装置の構成を示す。図1において、11は、本発明の住宅間取り検索プログラム21を格納したプログラムファイル、12は、住宅間取り検索プログラム21の基にデータ作成及び検索の処理を実行するCPU(中央処理装置)、2120は、検索対象の住宅の間取りを描いた図面であるCADデータのファイル111、特徴量ベクトルを算出するための画像データのファイル130及び検索に用いる特徴量データファイル142を有するデータファイル、14は、CPU12が処理中に用いるメモリ、15は、処理中の画面や各種データの内容等を表示するための表示装置、16は、住宅の間取り図面等を入力するための入力装置、17は、外部の処理装置2200と通信路2300を介して接続するための通信接続装置、18は、これら各部を相互に接続するための内部バスであり、2100は、以上によって構成されるコンピュータからなる住宅間取り検索装置である。
【0021】
住宅間取り検索装置2100は、離れた各所にある外部処理装置2200からアクセスされて、検索処理を行なう。外部処理装置2200は、間取り検索プログラム21の指示に従って入力装置26からデータや要求を住宅間取り検索装置2100に送り、検索結果を表示装置25に表示する。入力装置26からのデータや要求は、通信接続装置27から通信路2300を経て送られる。住宅間取り検索装置2100は、サーバ側の装置となり、外部処理装置2200は、一般の利用者が用いるクライアント側の装置(パーソナルコンピュータ)となるものである。
【0022】
図2に、住宅間取り検索プログラム21に従って上記コンピュータが構成要素の形状や配置を基に実行する検索処理の手順を示す。先ず、CADデータファイル111に格納している間取り図面において、図面中の構成要素毎の閉領域に対して、構成要素の種類で相互に異なる色を割り当てることによって図面を色画像に変換し(ステップS101)、これを画像ファイル130に収容する。次に、色画像を間取りとは独立に複数領域に分割する(ステップS102)。続いて、分割した領域毎に色分布のヒストグラムを算出して、その全領域の集合を求め(ステップS103)、求めた集合を特徴量ベクトルとしてそのデータを特徴量データファイル142に格納する。更に、検索対象の複数の住宅間取り見本の色分布ヒストグラム集合を特徴量データファイル142に格納する(ステップS104)。
【0023】
次いで、外部処理装置2200の入力装置26の操作により、相互に異なる色で定義された構成要素を用いて、検索キーとする間取りの色画像を作成し、その色分布ヒストグラム集合を算出する(ステップS105)。検索キーとする間取りと色分布ヒストグラム集合の類似性が高い間取り見本を特徴量データファイル142において検索し(ステップS106)、結果を表示装置25に表示する(ステップS107)。
【0024】
なお、先に述べたように、画像中の色の分布を特徴量ベクトル化するに際しては、上記の色分布ヒストグラムの他に、色分布の平均、分散等の統計量を用いることができ、これらの色分布ヒストグラムや色分布統計量等が色特徴量となる。
【0025】
続いて、図3に、住宅間取り検索プログラム21に従って上記コンピュータが間取りの全体形状を基に実行する検索処理の手順を示す。先ず、CADデータファイル111に格納している間取り図面において、図面中の住宅間取り部分とそれ以外の部分に異なる色を指定することによって2値画像を生成する(ステップS111)。次いで、2値画像から輝度勾配ベクトルを求め、輝度勾配ベクトルを画素とする輝度勾配ベクトル画像を作成し(ステップS112)、これを画像ファイル130に収容する。次に、輝度勾配ベクトル画像を間取りとは独立に複数領域に分割する(ステップS113)。続いて、分割した領域毎に輝度勾配ベクトル分布のヒストグラムを算出して、その全領域の集合を求め(ステップS114)、求めた集合を特徴量ベクトルとしてそのデータを特徴量データファイル142に格納する。更に、検索対象の複数の住宅間取り見本の輝度勾配ベクトル分布ヒストグラム集合を特徴量データファイル142に格納する(ステップS115)。
【0026】
次に、外部処理装置2200の入力装置26の操作によって、検索キーとする間取りの2値画像から輝度勾配ベクトル画像を作成し、その輝度勾配ベクトル分布ヒストグラム集合を算出する(ステップS116)。検索キーとする間取りと輝度勾配ベクトル分布ヒストグラム集合の類似性が高い間取り見本を特徴量データファイル142において検索し(ステップS117)、結果を表示装置25に表示する(ステップS118)。
【0027】
なお、全体形状の把握に上記の2値画像を用いる代わりに、CADデータに含まれる境界線の形状に関する情報を用い、その境界線情報から特徴量ベクトルを求め、距離が小さい特徴量ベクトルを持つ住宅間取りを抽出することによって検索を行なうことも可能である。
【0028】
ここで、上記ステップS101〜S104における、間取り図面データから特徴量を構成する際のデータの流れを図4を用いて更に説明する。入力データファイル110は、間取り図面のCADデータファイル111、及び間取り図面に対応する住宅が持つ書誌的属性データのファイル112からなる。
【0029】
CADデータファイル111からのCADデータは、画像コンバータ120によって、画像データに変換され、画像ファイル130に格納される。画像コンバータ120は、色テーブルファイル121上に定義された間取り構成要素と色の対応付けを参照し、図面中の閉領域の塗り潰しを行なう。なお、本実施形態で用いる特徴量は、画像のRGB値を直接参照する。従って、画像ファイル130の形式には、非圧縮、又はインデックスカラーを用いた画像圧縮形式が用いられる。
【0030】
画像ファイル130に格納された画像データは、新規データとして類似画像検索サーバ140に登録される。類似画像検索サーバ140は、画像ファイル130から画像データを読み込み、画像特徴量を算出し、その特徴量を特徴量データファイル142に格納する。特徴量のパラメータ設定等の情報は、類似画像検索サーバ140用の設定ファイル141に記述されている。
【0031】
図面内の間取り構成要素の配置、大きさを反映した特徴量は、本実施形態では以下のように計算される。
【0032】
まず、画像の縦横それぞれに対して一定の分割数を定義することによって、画像全体を一定の大きさの矩形領域に分割する。矩形領域毎に、各間取り構成要素と対応する色を持つ画素を数え上げることによってヒストグラムを構成する。矩形領域毎のヒストグラムを集めたヒストグラムの集合を画像の特徴量ベクトルとする。
【0033】
次に、上記ステップS111〜S115において算出される、間取りの全体的な形状を反映した特徴量は、具体的には以下のように計算される。
【0034】
まず、図面データ中の間取り構成要素が定義された領域に“1”、間取り構成要素が定義されていない領域に“0”を割り当てることによって2値画像を構成する。ここでは、割り当ての“1”に白を、“0”に黒を指定して、白黒画像を形成しているが、これに限ることなく、割り当ての“1”,“0”に互いに異なる色を指定することが可能である。
【0035】
2値画像に対して必要に応じて解像度を下げることによって縮小された白黒濃淡画像を構成する。解像度を下げることにより、図面中の線分データ等の間取り情報として不要なデータの影響を低減することが可能になる。
【0036】
2値画像或いは白黒濃淡画像に対して2次元の微分処理を行なうことによって、輝度勾配ベクトルを画素とする画像を構成する。本輝度勾配ベクトル画像について、縦横それぞれに対して一定の分割数を定義することによって、全体を一定の大きさの矩形領域に分割する。輝度勾配ベクトルの方向を離散化し、離散化された方向毎に各画素のベクトルノルムを加算することを各矩形領域について行なうことによって、各矩形領域中のベクトル方向の強度分布をヒストグラム状のデータとして表現する。ベクトル方向の強度分布ヒストグラムの例を図5に示す。
【0037】
矩形領域毎のデータを集めたデータの集合を画像の特徴量ベクトルとする。
【0038】
なお、入力データ中で書誌的属性データ112として提供される一部の数値データは、必要に応じて、別途、類似画像検索サーバ140に特徴量として登録される。書誌的属性データ112は、構成要素の形状や配置を基に実行する検索処理及び間取りの全体的な形状を基に実行する検索処理のいずれにおいても用いられる。類似画像検索サーバ140は、検索時には、本数値データを他の画像特徴量と全く同様に扱う。
【0039】
以上において、画像コンバータ120及び類似画像検索サーバ140は、図1において、間取り検索プログラム21を基にCPU12が処理を実行する際にCPU12が形成する機能ユニットである。
【0040】
また、上述の構成要素の形状、配置を対象にした検索及び間取りの全体形状を対象にした検索のいずれでも確度の高い検索が可能になるが、両者を一体化した検索を行なうことにより、一層的確な検索が可能になる。
【0041】
続いて、上記ステップS105〜S107及びS116〜S118における検索時の処理の流れを図6を用いて更に説明する。本実施形態の検索装置はサーバ側2100であり、検索の処理はクライアント側2200からの入力を基に進められる。
【0042】
類似画像検索サーバ140が稼動するサーバ側2100には、全件データ分の画像ファイル集合(データファイル)2120が備えられている。画像ファイル集合2120には、実際の住宅と対応する実データ2121、及び検索用データとしてクライアント(利用者)によって作成された手書きデータ2122の2種類のデータ群が存在する。
【0043】
クライアントプログラム2210が検索要求を発行すると、類似画像検索サーバ140は、検索を実行し検索結果に対応する画像を読み取り、通信路2300を介してプログラム2210に送付する。
【0044】
後述するクライアントプログラム2210上で作成した図面データをキーとした検索を行なう場合、プログラム2210は、該当データを新規登録用の画像データとして類似検索サーバ140に送付する。類似検索サーバ140は、送付されたデータから特徴量抽出を行ない、特徴量データを特徴量データファイル142に保存し、それに対応する画像データを画像ファイル集合2120に保存する。プログラム2210は、送付データの登録を確認した後、そのデータをキーとする検索要求を発行する。なお、プログラム2210は、作成した画面データ等を保存するためのファイル2220を有している。
【0045】
図7は、クライアントプログラム2210上で検索キー用の図面を作成するための画面の表示例である。検索は、構成要素の形状、配置を対象に行なわれる。表示部310は、描画を行なう部分である。縦横格子線で形成される背景の格子は、1枡が畳半畳分の大きさに対応する。表示部320に表示されているのは、間取り構成要素の一覧である。本一覧から指定したい間取り構成要素を選択した後、表示部310上でマウスをドラッグすると、対応する色で塗り潰された矩形領域が描画される。矩形領域の大きさ、縦横比、位置はマウスの操作によって変えることができる。表示例では、共有パーツ321が選択されて、住宅の大まかな形311が描かれ、その上に玄関部分312と水廻り313が描かれている。
【0046】
ボタン330を押すことによって、描画した図面と類似した間取り図面の検索が実行される。ボタン340では、検索の対象を指定する。本表示例では、1階部分間取り図面を検索対象としている。ボタン350は、描画した図面の大きさを検索の特徴量として有効にするか否かを指定するためのチェックボックスである。本表示例では、検索時に大きさの違いを考慮しない設定となっている。ボタン360は、住宅の価格を検索の特徴量として有効にするか否かを指定するためのチェックボックスである。本チェックボックスをチェックした場合、その右で入力できる価格の設定が検索条件として有効になる。
【0047】
図8は、表示装置25に表示される検索結果の表示例である。描画した図面と類似性が高い順に、上位20件の間取り見本400が表示される。
【0048】
本例の検索キーでは、玄関部分と水廻りのみが指定されている。従って、描画した図面と格納された住宅間取り図面との間で類似性を算出する際には、玄関部分と水廻りの一致、及び間取り全体の形状から得られる特徴が用いられる。
【0049】
図9は、実際に有効な特徴量の表示、及び有効な特徴量の変更を行なうためのパネルである。表示部510には、各間取りの構成要素(部品)の類似性が検索条件として有効か否かが表示されている。また、本表示例では、玄関部分と水廻りに対応するチェックボックスがチェックされた状態になっている。即ち、表示部510では、構成要素の選択が行なわれる。
【0050】
ボタン511は、全ての間取り部品の類似性を有効にするためのボタンである。本ボタンを押下すると、表示部510のチェックボックス全てがチェックされた状態になる。ボタン512は、全ての間取り部品の類似性を無効にするためのボタンである。本ボタンを押下すると、表示部510のチェックボックス全てがチェックされていない状態になる。
【0051】
ボタン521は、間取り全体の形状の類似性が検索条件として有効か否かを示すチェックボックスである。ボタン522は、図面の縦横比の類似性が検索条件として有効か否かを示すチェックボックスである。ボタン523は、図面の大きさの値の類似性が検索条件として有効か否かを示すチェックボックスである。ボタン524は、住宅の価格の類似性が検索条件として有効か否かを示すチェックボックスである。
【0052】
図9のパネル上のチェックボックスの状態を変更することによって検索条件を変更した後、ボタン530を押下すると、変更された検索条件が類似画像検索サーバ140に送信される。
【0053】
なお、表示部510の各構成要素には、重みを指定するためのスライダ513が必要に応じて設けられる。検索条件の一つとして、指定した重みが用いられる。図9においては、重みは0〜10の範囲で選択される。重みが指定された場合は、その大きさに応じて検索結果への影響が変化する。
【0054】
なお、重み0は構成要素を選択せず、重み10は構成要素を選択すると同等であるので、表示部510での構成要素の選択非選択は、重みの0,10によって表すことが可能である。
【0055】
図10のパネルは、図9のパネルと同一であるが、和室に対応するチェックボックス610がチェックされ、和室も追加して選択されている。
【0056】
図11は、先頭に表示されている図面700をキーデータとして、図10の条件で検索した結果である。検索キー図面自体は、常に最大の類似性を持つので先頭に表示される。図面700中の領域710は水廻り、領域720は和室、領域730は玄関部分である。この3つの間取り構成要素に関して配置が近い住宅間取り見本が検索されている。
【0057】
さて、住宅外構において、住宅間取りの全体(建物)、門扉、樹木、池、道路等のそれぞれ構成部品を住宅間取りにおける構成要素と看做し、改めて住宅外構を住宅間取りの全体と看做すと、住宅間取りを検索したのと同じ手法及び装置を用いて住宅外構を検索することが可能になる。
【0058】
図12は、そのような観点から実施した外構プラン検索における検索条件入力画面の表示例である。表示部810は、外構プランを入力する画面である。図12において、811は敷地の外形、812は建物部分、813は樹木、814は池、815は玄関、816は周辺の道路である。図7に示した場合と同様、表示部820の外構部品リストから描画する構成部品を選択し、表示部810にてその形状・位置を入力する。更に図12において、830は、検索実行ボタン、840は、図面の絶対的な大きさを検索条件として有効にするか否かを指定するチェックボックス、850は、価格を検索条件として有効にするか否かを指定するチェックボックスである。
【0059】
なお、上記では、構成部品に道路を加えて検索を行なったが、本発明はそのような検索に限定するものではなく、道路を含めず、住宅敷地内の範囲を対象にして検索を行なっても良い。
【0060】
【発明の効果】
本発明によって、住宅間取りを構成する要素の形状及び空間配置の類似性、並びに住宅間取りの全体的な形状の類似性に基づく検索が可能となり、住宅間取りの適確な検索が可能となる。
【図面の簡単な説明】
【図1】本発明に係る住宅間取り検索装置の発明の実施の形態を説明するための構成図。
【図2】本発明に係る住宅間取り検索プログラムの発明の実施の形態を説明するためのフローチャート。
【図3】本発明の住宅間取り検索プログラムの別の発明の実施の形態を説明するためのフローチャート。
【図4】図2における検索対象の間取りのデータを構築する手順を説明するための図。
【図5】ベクトル方向の強度分布ヒストグラムの例を説明するための図。
【図6】図2及び図3における検索処理を実行するシステムを説明するための構成図。
【図7】検索キーとなる図面の作成を説明するための図。
【図8】検索結果の表示例を示す図。
【図9】検索条件の設定を説明するための図。
【図10】検索条件の変更を説明するための図。
【図11】検索結果の別の表示例を示す図。
【図12】本発明の住宅外構検索において検索キーとなる図面の作成を説明するための図。
【符号の説明】
11…記憶装置、12…CPU、17,27…通信接続装置、21…住宅間取り検索プログラム、25…表示装置、110…入力データファイル、111…CADデータファイル、112…書誌的データファイル、120…画像コンバータ、130…画像ファイル、140…類似画像検索サーバ、142…特徴量データファイル、2100…住宅間取り検索装置、2120…データファイル、2200…外部処理装置、2210…クライアントプログラム、2300…通信路。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for searching for a house layout using a computer.
[0002]
[Prior art]
Currently, housing design using CAD (Computer-Aided Design) is generally performed. Drawings created by CAD can be stored in a storage device as electronic data. The accumulated drawing data is generally managed by a relational database together with related house information. Further, when the floor plan is described by CAD data, the correspondence between the closed area in the drawing and the elements (parts) constituting the floor plan, such as the entrance, the water area, and the Japanese-style room, is defined.
[0003]
[Problems to be solved by the invention]
It is possible to search with an interest in how the elements that constitute the floor plan of the entrance, water surround, Japanese-style room (hereinafter simply referred to as “components”) are arranged in the drawing. If it becomes a method that can be handled by ordinary users, the housing information service can be greatly improved.
[0004]
When searching for the arrangement of components, that is, when searching based on the similarity of the floor plan, at present, the attribute value is a propositional representation of the state in the form of “entrance on the north side”. It is possible to search by registering in a relational database.
[0005]
However, it is actually impossible to comprehensively register the shape of multiple components and their spatial arrangement, the spatial relationship between components, and the magnitude relationship between components in such a propositional expression. Impossible.
[0006]
On the other hand, the overall shape of the floor plan is also important information when considering the similarity between the floor plans. It is also difficult to express this propositionally and register it in the relational database.
[0007]
In addition, if there is no attribute that is acceptable to the search user, the search cannot be performed.
[0008]
Therefore, it is difficult to respond to various needs of users only by searching with propositional attributes.
[0009]
An object of the present invention is to provide a house layout search program and a house floor search apparatus that allow a computer to perform a house layout search accurately based on the similarity of the shape of the floor plan.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the house floor plan search device of the present invention converts a drawing into a color image by assigning different colors to the closed region for each component in the floor plan, depending on the type of component, Divide the color image into multiple areas, calculate the color distribution feature value for each divided area, find the set of all the areas, and find the house layout that has high similarity between the house layout as the search key and the color distribution feature quantity set It is characterized by searching.
[0011]
When the color distribution histogram is adopted as the color distribution feature amount, the search is performed by storing a set of color distribution histograms of a plurality of floor plans in a feature amount data file, and from the same file, a floor plan similar to the home layout of the search key. This is done by extracting a sample.
[0012]
The color distribution histogram set becomes a feature vector, and similarity is defined by the distance between the feature vectors. Then, by calculating the color distribution histogram set, information on the arrangement, size, and shape of the components in the floor plan is expressed as a color distribution of pixel values in the color image.
[0013]
It should be noted that, when the color distribution in the image is converted into a feature vector, in addition to the above color distribution histogram, statistics such as average and variance of the color distribution can be used.
[0014]
In order to achieve the above object, another housing layout search apparatus according to the present invention generates a binary image by designating different colors for the house layout portion and other portions in the floor plan, and generates a binary image from the binary image. A luminance gradient vector image is created by calculating a luminance gradient vector, the luminance gradient vector image is divided into a plurality of regions, a histogram of the luminance gradient vector distribution is calculated for each divided region, a set of all the regions is obtained, and a search key It is characterized by searching a house floor plan having a high similarity between the house floor plan and the luminance gradient vector distribution histogram set.
[0015]
The search is executed by storing a set of brightness gradient vector distribution histograms of a plurality of floor plans in a feature data file and extracting a floor plan similar to the home layout of the search key from the file.
[0016]
The luminance gradient vector distribution histogram set is a feature vector reflecting the outline shape of the house layout, and similarity is defined by the distance between the feature vectors.
[0017]
As described above, it is possible to accurately perform a house floor search based on the similarity of the shape of the floor plan, either by the similarity of the color distribution histogram set or the similarity of the luminance gradient vector distribution histogram set. By combining these, more accurate search becomes possible.
[0018]
Also, the house layout as a search key can be freely created by the user. Therefore, according to the present invention, the propositional attribute selection such as using a drawing drawn by the user as the search key data is used. It is possible to specify a search condition with a high degree of freedom, which cannot be achieved by a search by.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a house layout search program and a house floor search apparatus according to the present invention will be described in more detail with reference to embodiments of the invention shown in the drawings.
[0020]
FIG. 1 shows the configuration of the house floor search apparatus according to the present invention. In FIG. 1, 11 is a program file storing the house floor search program 21 of the present invention, 12 is a CPU (central processing unit) that executes data creation and search processing based on the house
[0021]
The house floor
[0022]
FIG. 2 shows a procedure of search processing executed by the computer based on the shape and arrangement of the components in accordance with the house floor plan search program 21. First, in the floor plan drawing stored in the CAD data file 111, the drawing is converted into a color image by assigning different colors depending on the type of component to the closed region for each component in the drawing (step S101), this is stored in the
[0023]
Next, by operating the
[0024]
As described above, when the color distribution in an image is converted into a feature vector, in addition to the above color distribution histogram, statistics such as the average and variance of the color distribution can be used. The color feature histogram is a color distribution histogram, a color distribution statistic, and the like.
[0025]
Next, FIG. 3 shows a procedure of search processing executed by the computer based on the overall shape of the floor plan according to the house floor plan search program 21. First, in the floor plan stored in the CAD data file 111, a binary image is generated by designating different colors for the house floor portion and other portions in the drawing (step S111). Next, a luminance gradient vector is obtained from the binary image, a luminance gradient vector image having the luminance gradient vector as a pixel is created (step S112), and this is stored in the
[0026]
Next, by operating the
[0027]
Instead of using the above binary image for grasping the overall shape, information on the shape of the boundary line included in the CAD data is used, a feature amount vector is obtained from the boundary line information, and the feature amount vector has a small distance. It is also possible to perform a search by extracting a house layout.
[0028]
Here, the flow of data when constructing the feature amount from the floor plan drawing data in steps S101 to S104 will be further described with reference to FIG. The input data file 110 includes a CAD data file 111 of a floor plan and a
[0029]
CAD data from the CAD data file 111 is converted into image data by the
[0030]
The image data stored in the
[0031]
In the present embodiment, the feature amount reflecting the arrangement and size of the floor plan components in the drawing is calculated as follows.
[0032]
First, by defining a fixed number of divisions for each of the vertical and horizontal directions of the image, the entire image is divided into rectangular regions having a fixed size. For each rectangular area, a histogram is constructed by counting up pixels having a color corresponding to each floor plan component. A set of histograms obtained by collecting histograms for each rectangular area is defined as an image feature vector.
[0033]
Next, the feature amount that reflects the overall shape of the floor plan calculated in steps S111 to S115 is specifically calculated as follows.
[0034]
First, a binary image is constructed by assigning “1” to an area in which the floor plan component is defined in the drawing data and “0” to an area in which the floor plan component is not defined. In this example, black and white images are formed by specifying white for allocation “1” and black for “0”. However, the present invention is not limited to this, and different colors are used for allocation “1” and “0”. Can be specified.
[0035]
A black-and-white grayscale image reduced by reducing the resolution as necessary for the binary image is constructed. By lowering the resolution, it is possible to reduce the influence of unnecessary data as floor plan data in the drawing.
[0036]
An image having a luminance gradient vector as a pixel is formed by performing a two-dimensional differentiation process on the binary image or the black and white image. By defining a certain number of divisions for each of the luminance gradient vector images in the vertical and horizontal directions, the entire luminance gradient vector image is divided into rectangular regions having a constant size. The intensity distribution in the vector direction in each rectangular area is converted into histogram-like data by discretizing the direction of the luminance gradient vector and adding the vector norm of each pixel for each discretized direction for each rectangular area. Express. An example of the intensity distribution histogram in the vector direction is shown in FIG.
[0037]
A set of data obtained by collecting data for each rectangular area is defined as an image feature vector.
[0038]
Note that some numerical data provided as the
[0039]
In the above, the
[0040]
In addition, it is possible to perform a highly accurate search by any of the search for the shape and arrangement of the above-described components and the search for the overall shape of the floor plan. Accurate search is possible.
[0041]
Next, the flow of processing at the time of searching in steps S105 to S107 and S116 to S118 will be further described with reference to FIG. The search apparatus according to the present embodiment is the
[0042]
The
[0043]
When the
[0044]
When performing a search using drawing data created on a
[0045]
FIG. 7 is a display example of a screen for creating a drawing for a search key on the
[0046]
By pressing the
[0047]
FIG. 8 is a display example of the search result displayed on the
[0048]
In the search key of this example, only the entrance and the water area are specified. Therefore, when calculating the similarity between the drawn drawing and the stored house floor plan, the features obtained from the coincidence of the entrance and the surroundings and the shape of the whole floor plan are used.
[0049]
FIG. 9 is a panel for displaying an actually effective feature amount and changing the effective feature amount.
[0050]
The
[0051]
A
[0052]
When the search condition is changed by changing the state of the check box on the panel of FIG. 9 and then the
[0053]
Each component of the
[0054]
Note that the
[0055]
The panel in FIG. 10 is the same as the panel in FIG. 9, but the
[0056]
FIG. 11 shows a result of searching under the conditions of FIG. 10 using the drawing 700 displayed at the top as key data. Since the search key drawing itself always has the maximum similarity, it is displayed at the top. An
[0057]
Now, regarding the exterior of the house, each component such as the entire house layout (building), gates, trees, ponds, roads, etc. is regarded as a component of the house layout, and the exterior of the house is regarded as the entire house layout. Then, it becomes possible to search for a housing exterior using the same method and apparatus as for searching for a house layout.
[0058]
FIG. 12 is a display example of a search condition input screen in a site plan search performed from such a viewpoint.
[0059]
In the above description, the road is added to the component and the search is performed. However, the present invention is not limited to such a search, and the search is performed for the range in the residential premises without including the road. Also good.
[0060]
【The invention's effect】
According to the present invention, it is possible to perform a search based on the similarity of the shape and spatial arrangement of elements constituting the house floor plan, and the similarity of the overall shape of the house floor plan, thereby enabling an accurate search of the house floor plan.
[Brief description of the drawings]
FIG. 1 is a configuration diagram for explaining an embodiment of a house layout search device according to the present invention.
FIG. 2 is a flowchart for explaining an embodiment of the house layout search program according to the present invention.
FIG. 3 is a flowchart for explaining another embodiment of the house layout search program of the present invention.
4 is a diagram for explaining a procedure for constructing floor plan data to be searched in FIG. 2;
FIG. 5 is a diagram for explaining an example of a vector direction intensity distribution histogram;
6 is a configuration diagram for explaining a system that executes search processing in FIGS. 2 and 3. FIG.
FIG. 7 is a view for explaining creation of a drawing serving as a search key.
FIG. 8 is a diagram showing a display example of search results.
FIG. 9 is a diagram for explaining setting of a search condition.
FIG. 10 is a diagram for explaining how search conditions are changed.
FIG. 11 is a diagram showing another display example of search results.
FIG. 12 is a diagram for explaining the creation of a drawing serving as a search key in a housing exterior search according to the present invention.
[Explanation of symbols]
11 ... Storage device, 12 ... CPU, 17, 27 ... Communication connection device, 21 ... Residential layout search program, 25 ... Display device, 110 ... Input data file, 111 ... CAD data file, 112 ... Bibliographic data file, 120 ... Image converter, 130 ... image file, 140 ... similar image search server, 142 ... feature data file, 2100 ... home layout search device, 2120 ... data file, 2200 ... external processing device, 2210 ... client program, 2300 ... communication path.
Claims (4)
住宅間取りを描いた図面における構成要素毎の閉領域に対して、構成要素の種類で相互に異なる色を割り当てることによって図面を色画像に変換する手順と、
該色画像を複数領域に分割する手順と、
分割した領域毎に色分布特徴量を算出してその全領域の集合を求める手順と、
検索キーとする住宅間取りと色分布特徴量集合の類似性が高い住宅間取りを検索する手順とを実行させ、
住宅間取りが有する前記構成要素に重みが指定されており、色分布特徴量集合の類似性が該重みを加味して求められていることを特徴とする住宅間取り検索プログラム。A home layout search program for searching for a home floor plan by a computer, the program comprising:
A procedure for converting a drawing into a color image by assigning different colors depending on the type of component to a closed region for each component in the drawing depicting the house layout;
Dividing the color image into a plurality of regions;
A procedure for calculating a color distribution feature amount for each divided area and obtaining a set of all the areas;
And a procedure for searching for a house floor plan having a high similarity between the color distribution feature quantity set and the house floor plan as a search key ,
A housing layout search program characterized in that a weight is specified for the component of the house floor plan, and the similarity of the color distribution feature quantity set is obtained in consideration of the weight .
上記色の割り当てを解消し、改めて住宅間取りを描いた図面中の住宅間取りの部分とそれ以外の部分に異なる色を指定することによって2値画像を生成する手順と、
該2値画像から輝度勾配ベクトルを求めて輝度勾配ベクトル画像を作成する手順と、
該輝度勾配ベクトル画像を複数領域に分割する手順と、
分割した領域毎に輝度勾配ベクトル分布のヒストグラムを算出してその全領域の集合を求める手順と、
検索キーとする住宅間取りと輝度勾配ベクトル分布ヒストグラム集合の類似性が高い住宅間取りを検索する手順とを実行させることを特徴とする請求項1に記載の住宅間取り検索プログラム。 After causing the computer to execute the above-described procedure for searching for a house floor plan having a high similarity in the color distribution feature amount set obtained by adding the weights ,
A procedure for generating a binary image by canceling the above color assignment and designating different colors for the house layout part and other parts in the drawing depicting the house layout anew .
A procedure for obtaining a luminance gradient vector from the binary image and creating a luminance gradient vector image;
Dividing the luminance gradient vector image into a plurality of regions;
A procedure for calculating a histogram of luminance gradient vector distribution for each divided area and obtaining a set of all the areas;
The home floor plan search program according to claim 1, wherein a home floor plan as a search key and a procedure for searching for a home floor plan having a high similarity between the brightness gradient vector distribution histogram sets are executed.
住宅外構を描いた図面における構成部品毎の閉領域に対して、構成部品の種類で相互に異なる色を割り当てることによって図面を色画像に変換する手順と、
該色画像を複数領域に分割する手順と、
分割した領域毎に色分布特徴量を算出してその全領域の集合を求める手順と、
検索キーとする住宅外構と色分布特徴量集合の類似性が高い住宅外構を検索する手順とを実行させ、
住宅外構が有する前記構成部品に重みが指定されており、色分布特徴量集合の類似性が該重みを加味して求められていることを特徴とする住宅外構検索プログラム。A housing exterior search program for retrieving a housing exterior by a computer, the program being stored in the computer,
A procedure for converting a drawing into a color image by assigning different colors to the closed region for each component in the drawing depicting the exterior of the house, depending on the type of component,
Dividing the color image into a plurality of regions;
A procedure for calculating a color distribution feature amount for each divided area and obtaining a set of all the areas;
And executing a procedure for searching for a housing exterior with a high similarity between the color distribution feature quantity set and the housing exterior as a search key ,
A housing exterior search program characterized in that weights are specified for the component parts of the housing exterior, and the similarity of the color distribution feature quantity set is obtained in consideration of the weights .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002232701A JP4074791B2 (en) | 2002-08-09 | 2002-08-09 | House floor plan search program and house exterior search program |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002232701A JP4074791B2 (en) | 2002-08-09 | 2002-08-09 | House floor plan search program and house exterior search program |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2004070861A JP2004070861A (en) | 2004-03-04 |
| JP4074791B2 true JP4074791B2 (en) | 2008-04-09 |
Family
ID=32018019
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002232701A Expired - Fee Related JP4074791B2 (en) | 2002-08-09 | 2002-08-09 | House floor plan search program and house exterior search program |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4074791B2 (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8625861B2 (en) * | 2008-05-15 | 2014-01-07 | International Business Machines Corporation | Fingerprint representation using gradient histograms |
| TWI479428B (en) * | 2008-10-14 | 2015-04-01 | Sicpa Holding Sa | Method and system for item identification |
| JP6292053B2 (en) * | 2014-06-25 | 2018-03-14 | カシオ計算機株式会社 | Information processing apparatus and program |
| JP2019125333A (en) * | 2018-01-12 | 2019-07-25 | 富士通株式会社 | Room layout extraction program, room layout extraction method and information processing device |
| JP2021064168A (en) * | 2019-10-15 | 2021-04-22 | 三井不動産リアルティ株式会社 | Floor plan retrieval system and floor plan retrieval program |
| CN110968905B (en) * | 2019-11-27 | 2023-08-01 | 贝壳找房(北京)科技有限公司 | House space area allocation method and device, storage medium and electronic equipment |
| WO2023062462A1 (en) * | 2021-10-12 | 2023-04-20 | Sepehrifar Alireza | Method and system for search of residential house plans |
| CN115035212B (en) * | 2022-05-05 | 2025-02-14 | 郑州大学 | Method for generating data set based on semantic control, system for generating image |
-
2002
- 2002-08-09 JP JP2002232701A patent/JP4074791B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2004070861A (en) | 2004-03-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102272650B1 (en) | System for providing virtual reality based interior service using three-dimentional space reconstruction | |
| US10083517B2 (en) | Segmentation of an image based on color and color differences | |
| KR102160990B1 (en) | Server and method for 3d city modeling based on object, and system using the same | |
| US8264488B2 (en) | Information processing apparatus, information processing method, and program | |
| CN114155299A (en) | Building digital twinning construction method and system | |
| EP1835466A2 (en) | Method and apparatus for geometric data processing and a parts catalog system | |
| JP6310149B2 (en) | Image generation apparatus, image generation system, and image generation method | |
| CN118069729B (en) | Method and system for visualizing homeland ecological restoration data based on GIS | |
| CN107729361B (en) | Automatically synthesized picture push method, device and storage medium | |
| US9984179B2 (en) | Providing building information modeling data | |
| KR20230153178A (en) | System, apparatus and method for providing interior service based on virtual simulation | |
| JP4074791B2 (en) | House floor plan search program and house exterior search program | |
| JP4160050B2 (en) | Image search program | |
| JP5372590B2 (en) | Information processing apparatus, information processing method, and program | |
| Argyridou et al. | The first attempt for standardisation in 3D digitisation. The EU study on quality in 3D digitisation of tangible Cultural Heritage | |
| CN113129155B (en) | Multi-type personnel information processing method, equipment and storage medium | |
| CN118865238A (en) | Forestry pest monitoring and early warning method, system and equipment based on data analysis | |
| JP2020030609A (en) | Property information presentation device, property information presentation method and property information presentation program | |
| JP5818202B2 (en) | Image analysis apparatus, image analysis method, image search system, and program | |
| Ren et al. | Exploration on 3D imaging model construction of clothing fitting based on virtual reality technology | |
| JP2001117958A (en) | Arrangement management device and arrangement simulation method | |
| CA2845601A1 (en) | Segmentation of an image based on color and color differences | |
| KR20230153165A (en) | Home Furnishing O2O service platform system based on virtual simulation using XR technologies and apparatus and method for the same | |
| JP2024131917A (en) | POINT CLOUD PROCESSING DEVICE, POINT CLOUD PROCESSING METHOD, PROGRAM, AND POINT CLOUD PROCESSING SYSTEM | |
| KR20250098267A (en) | Apparatus and method for managing trees |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050427 |
|
| RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050427 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050427 |
|
| RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070328 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070328 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070821 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071018 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080108 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080128 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110201 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110201 Year of fee payment: 3 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120201 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130201 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130201 Year of fee payment: 5 |
|
| LAPS | Cancellation because of no payment of annual fees |