[go: up one dir, main page]

JP3834122B2 - 誤り位置検出多項式計算装置 - Google Patents

誤り位置検出多項式計算装置 Download PDF

Info

Publication number
JP3834122B2
JP3834122B2 JP12451397A JP12451397A JP3834122B2 JP 3834122 B2 JP3834122 B2 JP 3834122B2 JP 12451397 A JP12451397 A JP 12451397A JP 12451397 A JP12451397 A JP 12451397A JP 3834122 B2 JP3834122 B2 JP 3834122B2
Authority
JP
Japan
Prior art keywords
discrepancy
output
position detection
polynomial
error position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12451397A
Other languages
English (en)
Other versions
JPH1093445A (ja
Inventor
龍煕 任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WiniaDaewoo Co Ltd
Original Assignee
Daewoo Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daewoo Electronics Co Ltd filed Critical Daewoo Electronics Co Ltd
Publication of JPH1093445A publication Critical patent/JPH1093445A/ja
Application granted granted Critical
Publication of JP3834122B2 publication Critical patent/JP3834122B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6502Reduction of hardware complexity or efficient processing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/1515Reed-Solomon codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/1525Determination and particular use of error location polynomials
    • H03M13/153Determination and particular use of error location polynomials using the Berlekamp-Massey algorithm

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Correction Of Errors (AREA)
  • Complex Calculations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、格納または伝送されたデータ内に存在するエラーを訂正するための誤り訂正装置に関し、特に、リードソロモンコード(Reed-Solomon Code)により符号化されたデータ内の誤りを訂正するのに用いられる誤り位置検出多項式の係数を決定する誤り位置検出多項式計算装置に関する。
【0002】
【従来の技術】
データの伝送、格納または取出しの過程の際発生する雑音は、対応する各過程でエラーをもたらし得る。従って、そのようなエラーまたは誤りを訂正するために、多様な符号化方法が提案されてきた。
【0003】
そのような符号化方法においては、1組のチェックビットが1群のメッセージビットや情報ビットに付加されて符号語を形成する。このチェックビットは、エンコーダにより定められ、誤りの検出及び訂正に用いられる。ここで、エンコーダは基本的にメッセージビットを含むビットを2進メッセージ多項式の係数として取り扱うと共に、メッセージ多項式i(X)と符号発生多項式g(X)との間の乗算または除算を通じてチェックビットを求めることによって、符号語多項式c(X)を求める。符号語発生多項式g(X)は符号語に所望の特性を付加して、符号語が誤り訂正2進群コードの特定のクラスには属するようにする(例えば、S.Linらの論文“Error Comtrol Coding: Fundamentals and Applications」, Prentice-Hall,1983”参照)。
【0004】
誤り訂正コードの1つのクラスとして、BCH(Bose-Chaughuri-Hocquenghen)コードクラスが周知となっており、このBCHコードはリードソロモンコード(以下、「RSコード」と称す)を備える。このRSコードの数学的基板は、例えば、Linらによる上記論文及びBerlekampに許与された米国特許第4,162,480号明細書に開示されている。
【0005】
RSコードの符号発生多項式g(X)の根がαの連続した2t個のべき乗(tは正整数)であるならば、αを有限体GF(2m)の基本要素とし、f(1)・(f2)・...・f(n)=П[k=l,n]f(k)と表すものとすると、下記式(1)のようにしてt個の誤りを訂正し得る。
【0006】
【数1】
g(X)=П[i=1,2t](X−αi) 式(1)
【0007】
伝送符号語を受け取るかまたは格納符号語を取り出す際に付随する雑音は符号語の誤りパターンに表され得る。RSコードから発生した誤りパターンを取り扱うためには一般に4段階の過程が用いられる。この誤り訂正過程を説明するために、1つのRSコードが、N個のMビットシンボルよりなるを有する符号語を備えるものと仮定する。ここで、N及びMは正の整数であり、K個のシンボルは情報シンボルを、(N−K)個のシンボルはチェックシンボルを表し、KはNより小さい正の整数である。この場合、符号語多項式c(X)は(N−1)次多項式であり、2tは(N−K)と等しい。
【0008】
第1の誤り訂正段階では、シンドロームS0,S1,...S2t-1が受信符号語を表す(N−1)次の受信符号語多項式r(X)を用いて求められる。この受信符号語多項式r(X) は、rN-1N-1+rN-2N-2+...+rii+r0として表現され、rjは、符号語の(N−j)番目の受信シンボルを表す。jは1〜Nの正の整数である。
【0009】
第2段階においては、上記のシンドロームを用いて誤り位置検出多項式σ(X)の係数が求められる。第3段階においては、誤り位置検出多項式σ(X)の根を求めるられ、その根は受信符号語における誤りの位置を表す。詳述すれば、基本要素の乗数α-jを誤り位置検出多項式σ(X)の変数Xに代入すると該式は0になる。つまり、α-jが誤り位置検出多項式σ(X)の根となる。これは、rj(即ち、符号語の(N−j)番目のシンボル)に誤りが発生したことを意味する。
【0010】
最後に、第4段階においては、誤り値が誤り位置とシンドロームとを用いて計算される。シンドロームと誤り位置検出多項式の係数に対する数学的表現は、前述したBerlekampによる米国特許出願第4,162,480号に記載されている。
【0011】
第4段階の詳細は、以下のようなものである。
【0012】
まず、誤り評価多項式Ω(x)が以下の式(2)のように求められる。
【0013】
【数2】
Ω(x)=σ(X)s(x) 式(2)
【0014】
ここで、σ(X)は誤り位置検出多項式であり、(x)はシンドロームをその係数とするシンドローム多項式である。
【0015】
【数3】
j=αj・Ω(α-j)/σ′(α-j) 式(3)
【0016】
ここで、σ′(X)は誤り位置検出多項式σ(X)の一次導関数、α-jは第3段階で求めた誤り位置検出多項式σ(X)の根であり、誤り値ejは第3段階で、シンボルを有する誤りとして定められる(N−j)番目のシンボルに対応する。
【0017】
誤り値を決定した後、下記式のようにその誤り値を該当シンボルに加えて、元の符号語を復元し得る。
【0018】
【数4】
Figure 0003834122
【0019】
ここで、c′(X)は誤り訂正符号語多項式である。
【0020】
リードソロモン(RS)符号化語に用いられる誤り位置検出多項式計算装置の動作を説明するため、Berlekamp循環アルゴリズム(RBA)を下記に紹介する。
【0021】
RBAとは、誤り位置検出多項式σ(X)を計算するアルゴリズムである。t個の誤り訂正能力を有するRSコードがt個の根を有するため、誤り位置検出多項式σ(X)は下記式のようにt次の多項式から構成される。
【0022】
【数5】
Figure 0003834122
【0023】
誤り位置検出多項式σ(X)は、下記の4つの段階からなるRBAを用いて計算する。
【0024】
第1段階として、初期化を行う。
【0025】
σ0(X)=1、B0(X)=1、k0=0、L0=0、b0=1なる初期値を設定する。即ち、誤り位置検出多項式の初期値σ(X)は「1」、中間値の初期値B0は「1」、誤り位置検出多項式の実際の次数の初期値L0は「0」、X次関数の初期値k0は「0」、遅延ディスクレパンシの初期値b0は「1」である。
【0026】
誤り位置検出多項式σ(X)の次数がtであるため、定数項「1」を含んで誤り位置検出多項式の係数を格納するには、全てt+1個のレジスタが必要である。誤り位置検出多項式の実際次数LNは必要な場合のみに1ずつ増加する。各値BN(X)、kN、bNは誤り位置検出多項式σ(X)を更新するのに用いられる値を表す。
【0027】
第2段階として、ディスクレパンシ(discrepancy)の計算を行う。
【0028】
ディスクレパンシの初期値はシンドロームS0と等しく、他のディスクレパンシは、f(1)+f(2)+...+f(n)=Σ[k=1,n]f(n)と表すものとすると、下記式のように計算される。
【0029】
【数6】
N+Σ[i=1,L]σi・SN-1(N≧1) 式(6)
【0030】
ここで、DNはディスクレパンシ、σiはσ(X)の係数、SN,SN-1はシンドローム、Nは反復回数を表す0〜15の正の整数である。
【0031】
第3段階として、ディスクレパンシの更新を行う。ディスクレパンシは以下のように更新される。
【0032】
ケース(1)、即ちD=0の場合、
N+1=K+1、
と更新され、
ケース(2)、即ちD≠0,2L≦Nの場合、
σN+1(X)=σ(X)−D、b −1 (X)
N+1=N+1−L
N+1=1
N+1(X)=σ(X)
N+1=D
と更新され、
ケース(3)、即ちD≠0、2L>Nの場合、
σN+1(X)=σ(X)−D、b −1 、B(X)
N+1=K+1
と更新される。
【0033】
第4段階として、第2段階を実行する。即ち、Nが2t−1となるまで第2段階を反復して行う。
【0034】
図1には、誤り位置検出多項式σ(X)の係数を決定する、従来の誤り位置検出多項式計算装置100のブロック図が示されている。
【0035】
従来の誤り位置検出多項式計算装置100は、t個の計算セル10−1〜10−t、ディスクレパンシ及び逆遅延ディスクレパンシ(D及びb-1)計算部18を備える。ここで、遅延ディスクレパンシは遅延されたディスクレパンシを、逆遅延ディスクレパンシは遅延されたディスクレパンシの逆を各々表す。各計算セル10−i(iは1〜t)は3つのレジスタ(即ち、第1レジスタ(FRi)11−i、第2レジスタ(SRi)14−i、第3レジスタ(TRi)17−i)と、この2つのガロア体(GF)乗算器12−i及び16−iと、1つのGF加算器13−iと、マルチプレクサ(MUX)とから構成される。
【0036】
第1の計算セル10−1においてFR_Nは制御部(図示せず)から入力される。この制御部はディスクレパンシD値及び反復回数Nに応じて「0」または「1」を供給する。また、第1の計算セル10−1で、TR1は外部シフトレジスタ(図示せず)に接続されており、このシフトレジスタにはシンドロームSj(jは0〜2t−1) が格納されている。
【0037】
レジスタシフトクロツクSHIFT_CLKの立ち上がりエッジにてS0から始める外部シンドロームに新たなシンドロームシンボルが入力される。同時に、各TRiの内容は1つのシンドローム位置ずつ右側にシフトされ、外部のシフトレジスタの内容は第1計算セル10−1のTR1にシフトされる。
【0038】
各計算セル10−iのSRI及びTRiの各内容はセル単位で乗ぜられ、その乗算結果をD及びb-1計算部において加算してDを発生する。計算されたDはD及びb-1計算部18にてb-1と乗じられる。ここで、bはDを遅らせたディスクレパンシであり、b-1はbの逆数である。
【0039】
その後、乗算結果D、b-1は、各計算セル10−iのFRiの内容と乗じられ、その結果は各計算セル10−iのSRiの内容と加えられて、SRiにフィードバックされる。シンボルクロックSYM_CLKの立ち上がりエッジでは、FRi及びSRiに新たな内容が入力されると共に、SHIFT_CLKも新たなシンドロームを入力する。
【0040】
N=0である場合、D、b-1も同様に0になる。よって、各計算セル10−iのSRiの内容は、SYM_CLKによって変化しない。各計算セル10−iのMUX15−iは、選択信号SELによってFRiの出力を選択する。従って、SYM_CLKの立ち上がりエッジにおいて、各計算セル10−iの各FRiの内容は1つのシンボル位置だけ右側にシフトされ、第1の計算セル10−1のFRiには「0」が入力される。
【0041】
DN≠0であり、2LN≦Nである場合、SYM_CLKの立ち上がりエッジにてGF加算器13−iの結果はSRiに入力される。MUX15−iは選択信号SELに応じてSRiの出力を選択する。結果として、SYM_CLKの立ち上がりエッジにて1つのシンボル位置だけ右側にシフトされたSRiの内容がFRiに入力されると共に、第1の計算セル10−1のFR1には「1」が入力される。
【0042】
DN≠0であり、2LN>Nである場合、SYM_CLKの立ち上がりエッジにてGF加算器13−iの出力がSRiに入力される。FRiの内容はDN≠0である場合と同様に決定される。
【0043】
D及びb-1計算部18は、各計算セル10−iの第2GF加算器16−iの各出力を全て逆遅延ディスクレパンシb-1計算する。その後、加えてディスクレパンシDを計算する。また、Dを遅らせて遅延ディスクレパンシbを発生し、Dとb-1とを通じて第1GF乗算器12−iに出力する。
【0044】
この動作はNが2tになるまで反復する。動作が終了された後、SRiの内容が誤り位置検出多項式σ(X)の係数となる。
【0045】
上述した従来の誤り位置検出多項式計算装置100によれば、各計算セル10−1〜10−tが2つのGF乗算器及び1つのGF加算器を要するため、装置の構造がより複雑になり、よってVLSI技術を用いてこれを具現し難いという不都合がある。
【0046】
【発明が解決しようとする課題】
従って本発明の主な目的は、ベーレカムプ循環アルゴリズムを用いて組み込まれるべきGF乗算器及びGF加算器の数を減らした、リードソロモン復号化器に用いられ誤り位置検出多項式を計算する高効率性の誤り位置検出多項式計算装置を提供することにある。
【0047】
【課題を解決するための手段】
上記の目的を達成するために、本発明によれば、リードソロモン復号化器に用いられ、ベーレカム循環アルゴリズム(recursive Berlekamp algorithm)を用いてt次の多項式(tは予め定められた正整数)である誤り位置検出多項式σ(X)を計算する誤り位置検出多項式計算装置であって、
状態がどのケースであるかを判断して遅延ディスクレパンシ(discrepancy)、反復の回数、誤り位置検出多項式σ(X)の実際の次数を含む各変数を更新し、制御信号CASE3_FLAG及び遅延ディスクレパンシを発生する変数発生部と、
前記変数発生部からの遅延ディスクレパンシの逆数を発生する逆ルックアップテーブルと、
シンドローム及び更新済みのエラー位置多項式を用いてディスクレパンシを計算し、制御信号D−ZEROを発生し、更新済みの誤り位置検出多項式を遅延出力し、最後に更新済みの誤り位置検出多項式を完全誤り位置検出多項式として出力するディスクレパンシ計算部と、
前記ディスクレパンシ計算部からの前記ディスクレパンシと前記逆ルックアップテーブルからの逆遅延ディスクレパンシとを乗じる第1ガロア体(GF)乗算器と、
定数、または前記ディスクレパンシ計算部からの前記更新済みの誤り位置検出多項式またはフィードバック値を選択的に出力する選択部と、
前記選択部からの出力をシフトさせ、該シフト値を出力し、該シフト値を前記選択部へフィードバックさせる第1シフトレジスタ部と、
前記第1GF乗算器からの出力と前記第1シフトレジスタ部からの出力とを乗じる第2GF乗算器と、
前記第2GF乗算器からの出力と前記ディスクレパンシ計算部からの更新済みの誤り位置検出多項式とを加えて、その結果を前記ディスクレパンシ計算部へフィードバックさせる第1GF加算器と、
制御信号を前記第1GF加算器、前記第1シフトレジスタ部及び前記ディスクレパンシ計算部に供給する第1信号発生部とを含むことを特徴とする誤り位置検出多項式計算装置が提供される。
【0048】
【発明の実施の形態】
以下、本発明の好適実施例について図面を参照しながらより詳しく説明する。図2には、本発明による誤り位置検出多項式計算装置200のブロック図が示されている。t個の係数を決定し得る誤り位置検出多項式計算装置200は、従来の誤り位置検出多項式計算装置100とは異なり、t個の計算セルからなっていない。図2、3、4及び5における実施例では便宜上tを8と仮定する。
【0049】
誤り位置検出多項式計算装置200は、遅延ディスクレパンシbN、反転回数N、誤り位置検出多項式の実際次数などの各変数を更新し、制御信号CASE3_FLAG及び遅延ディスクレパンシbNを出力する変数発生部210と、レジスタディスクレパンシの逆数bN -1を求する逆ルックアップテーブル220と、ディスクレパンシDを計算し、制御信号D_ZEROを出力し、更新された誤り位置検出多項式σ_INを遅延させ、最後に更新済みの誤り位置検出多項式σ_OUTを完全誤り多項式として出力するディスクレパンシ計算部230と、ディスクレパンシ計算部からの逆遅延ディスクレパンシbN -1とDNとを乗じる第1GF乗算器240と、定数、またはディスクレパンシ計算部230からの更新済みの誤り位置検出多項式σ_OUTまたはフィードバック値を選択的に出力する選択部250と、8個のレジスタが直列に接続されている第1シフトレジスタ部260と、第1GF乗算器240からの出力と第1シフトレジスタ部260からの出力とを乗じる第2GF乗算器270と、第2GF乗算器270からの出力と更新済みの誤り位置検出多項式σ_OUTとを加える第1GF加算器280と、制御信号を選択部250、第1シフトレジスタ部260及びディスクレパンシ計算部230へ出力する第1信号発生部290とを含む。
【0050】
また.図3によれば、ディスクレパンシ計算部230は9個のレジスタが直列に接続され、第1GF加算器280から出力されたσ_INをシフトさせ、最後に更新済みの誤り位置検出多項式σ_OUTを完全誤り位置検出多項式として出力する第2シフトレジスタ部231と、第1GF加算器280からの出力または第2シフトレジスタ部231からの出力を選択的に出力する第3MUX232と、第3MUX232からの出力とシンドロームとを乗じる第3GF乗算器233と、第3GF乗算器233からの出力とフィードバック値とを加える第2GF加算器234と、第2GF加算器234からの出力をビットクロックBIT_CLKによってラッチして、これを第2GF加算器234にフィードバックさせるフイードバックレジスタ235と、第2GF加算器234からの出力をラッチして、これをディスクレパンシDNとして出力する出力レジスタ236と、ディスクレパンシが「0」である場合、ハイレベルのD_ZEROを出力するディスクレパンシ確認部237と、各制御信号を第2シフトレジスタ部231及び出力レジスタ236に出力する第2信号発生部238と係数選択部239とを含む。
【0051】
図2に示した誤り位置検出多項式計算装置200の動作を以下に詳しく説明する。
【0052】
0番目の反復を始める前に、図4に示した第1シフトレジスタ部280におけるレジスタXB0〜XB7が中間値の初期値に初期化される。即ち、XB0は「1」に、XB1〜XB7は「0」に各々初期化される。また、図5に示した第2シフトレジスタ部231におけるレジスタσ0〜σ8が誤り位置検出多項式の初期値として初期化される。即ち、σ0は「1」に、σ1〜σ8は「0」に各々初期化される。
【0053】
図3を再び参照すれば、各シンドロームは、下記表1に表れている順次のとおりディスクレパンシ計算部230に順に入力されてDNを計算するのに用いられる、各反復は9個のBIT_CLKからなっており、全ての動作はBIT_CLKによって行われる。
【0054】
【表1】
Figure 0003834122
【0055】
制御信号D0_FLAGは、0番目の反復の間ハイレベルになって、第3MUX232第2シフトレジスタ部231からの出力を選択させて第3GF乗算器233に出力させるように作用する。D0_FLAGは、0番目を除いた残りの反復の間ローレベルになって、第3MUX232第1GF加算器280からの更新済みの誤り位置検出多項式を選択させるように作用する
【0056】
第3GF乗算器233において、シンドロームは第3MUX232からの出力と乗じられ、乗算結果は第2GF加算器234に入力される。
【0057】
第2GF加算器234においては、第3GF乗算器233からの出力はフィードバックレジスタ235からの出力と加える。その加算結果はフィードバックレジスタ235及び出力レジスタ236へ各々入力される。
【0058】
フィードバックレジスタ235は、第2GF加算器234からの出力をBIT_CLKによってラッチし、これを第2GF加算器234にフィードバックさせる。
【0059】
制御信号D_ENDは各反復のBIT_CLKにおいてハイレベルとなって出力レジスタ236をイネーブル状態にさせる。出力レジスタ236は第2GF加算器234からの出力をラッチし、D_ENDによってこれをディスクレパンシDNとして第1GF乗算器240に出力する。ディスクレパンシ確認部237は出力レジスタ236からの出力されたディスクレパンシDNを調べる。もし、DNが「0」である場合、ディスクレパンシ確認部237はD_ZEROをハイレベルにして変数発生部210及び第1信号発生部290に出力する。
【0060】
図2を参照すれば、ディスクレパンシDNはディスクレパンシ計算部230から第1GF乗算器240に出力される。第1信号発生部290の第1ORゲート292はCASE3_FLAGとD0_FLAGとを論理和の計算をして選択信号SEL1を出力する。第2ORゲート294は第1ORゲート292からのSEL1とD_ZEROとを論理和の計算をして選択信号SEL2を出力する。
【0061】
選択部250内において、第1MUX254は第1信号発生部290における第2ORゲート294からのSEL2がハイレベルである場合、ROM252から入力ポート1に入力された定数を選択し、SEL2がローレベルである場合、ディスクレパンシ計算部230から入力ポート0に入力されたσ_OUTを選択する。第2MUX256は第1信号発生部290における第1ORゲート292からのSEL1がローレベルである場合、第1MUX254から入力ポート0に入力される値を選択し、SEL1がハイレベルである場合、第1シフトレジスタ部260から入力ポート1にフィードバック値を選択する。
【0062】
第1シフトレジスタ部260は、第2MUX256からの出力をBIT_CLKによってシフトさせ、これを第2MUX256にフィードバックさせると共に、第2GF乗算器270に出力する。
【0063】
一方、変数発生部210はディスクレパンシDN、反復回数N及び誤り位置検出多項式の実際次数LNを用いて、どのケースに該当するかを決定する。そのように決定されたケースによって、DN、N、LNが更新され、CASE3_FLAG及び遅延ディスクレパンシbNが出力される。
【0064】
ディスクレパンシDNが「0」である場合には、ケース1に該当し、よって、CASE3_FLAGはローレベルであり、D_ZEROはハイレベルである。ディスクレパンシDNが「0」でなく2LNがN以下である場合は、ケース2に該当し、CASE3_FLAGはローレベルとなり、D_ZEROはローレベルとなる。ディスクレパンシDNが「0」でなく、2LNがNより大きい場合は、ケース3に該当し、CASE3_FLAGはハイレベルとなり、D_ZEROはローレベルとなる。
【0065】
逆ルックアップテーブル220は遅延ディスクレパンシの逆数bN -1を計算して、これを第1GF乗算器240に出力する。第1GF乗算器240にてディスクレパンシDNは逆遅延ディスクレパンシbN -1と乗じられる。
【0066】
第2GF乗算器270は、第1GF乗算器240からの出力と第1シフトレジスタ部260からの出力とを乗じて第1GF加算器280に出力する。
【0067】
第1GF加算器280においては、第2GF乗算器270からの出力と第2シフトレジスタ部231からの出力(即ち、更新済みの誤り位置検出多項式σ_OUT)とが加算される。その後、その結果はディスクレパンシ計算部230にフィードバックされる。
【0068】
以下、Berlekamp循環アルゴリズムと比較して本発明の実施例を説明する。
【0069】
ケース1において、CASE3_FLAGはローレベル、D0_FLAGはローレベル、D_ZEROはハイレベルである。SEL2はハイレベル、SEL1はローレベルであり、ここでは第1MUX254が入力ポート1の定数を、第2MUX256が入力ポート0の定数を各々選択するようにする役割を果たしている。定数「0」が第1シフトレジスタ部260に入力される、即ち、XBiの内容は右側にシフトされ、XB0の内容は「0」になる。
【0070】
ケース2においては、CASE3_FLAGはローレベル、D0_FLAGはローレベル、D_ZEROはローレベルである。SEL2はローレベル、SEL1はハイレベルであり、ここでは第1MUX254が入力ポート0のσ_OUTを、第2MUX256が入力ポート0のσ_OUTを各々選択するようにしている。従って、σ_OUTが第1シフトレジスタ部260に入力され、σ(X)、XB(X)、LN、bNが全て更新される。
【0071】
ケース3においては、CASE3_FLAGはハイレベル、D0_FLAGはローレベル、D_ZEROはローレベルである。SEL2はハイレベル、SEL1はハイレベルであり、ここでは第1MUX254が入力ポート1の定数を、第2MUX256が入力ポート1のフィードバック値を各々選択するようにする役目を果たしている。結果として、フィードバック値が更に第1シフトレジスタ部260に入力され、XBiの内容は右側にシフトされXB7の内容はXB0に入力される。
【0072】
第1信号発生部290内においては、第1インバータ296は符号語終了信号CW_ENDを反転させ、第1ANDゲートに入力する。また、リセット信号RSTも第1ANDゲートに入力される。第1ANDゲートからの出力RST1は第1シフトレジスタ部260及び第2シフトレジスタ部231にリセット信号として入力される。
【0073】
第1シフトレジスタ部260及び第2シフトレジスタ部231における各レジスタは、CW_ENDがハイレベルであるか、またはRSTがローレベルであればリセットされる。つまり、符号語が終了しさえすれば、RST値に係わらずリセットされ、または、リセット信号が受取られるとCW_END値に係わらずリセットされる。
【0074】
第2信号発生部238内において、第2インバータ238−1はディスクレパンシ終了信号D_ENDを反転させ第2ANDゲート238−2に出力する。また、RSTも第2ANDゲート238−2及び出力レジスタ236に入力される。第2ANDゲート238−2の出力はフィードバックレジスタ235に入力される。
【0075】
RSTがローレベルであるかまたはD_ENDがハイレベルである場合、フィードバックレジスタ235はリセットされ、RSTがローレベルである場合、出力レジスタ236がリセットされる。詳述すると、フィードバックレジスタ235は各反復が終了するとRST値に関係なくリセットされ、またはリセット信号を受信するとD_END値に関係なくリセットされる。そして、出力レジスタ236はリセット信号を受信するとリセットされる。
【0076】
表2乃至表7には、各ケースによる第1シフトレジスタ部260及び第2シフトレジスタ部231の内容が表されている。
【0077】
【表2】
Figure 0003834122
【0078】
【表3】
Figure 0003834122
【0079】
【表4】
Figure 0003834122
【0080】
【表5】
Figure 0003834122
【0081】
【表6】
Figure 0003834122
【0082】
【表7】
Figure 0003834122
【0083】
このような方法によって、誤り位置検出多項式計算装置200は、Nが15になるまで、動作を行い、完全誤り位置検出多項式σ(X)を出力する。
【0084】
便宜上、図2の変数発生部210、逆ルックアップテーブル220及び図3の係数選択部239に対する詳細は省略する。変数発生部210及び逆ルックアップテーブル220の役割は前述のとおりである。そして、係数選択部239の役割は制御信号σ_COEF_SELによって係数を選択して、誤り位置検出多項式Ω(X)を計算するΩ計算部(図示せず)に出力する。当業者において、変数発生部210、逆ルックアップテーブル220及び係数選択部239の詳細構造及び機能は周知のことであるので省略する。
【0085】
本発明の装置では、所定数の誤り、例えば、8個が用いられているが、その他の数の誤りが誤り位置検出多項式σ(X)の係数を計算するのに用いられ得ることは勿論である。
【0086】
上記において、本発明の好適な実施の形態について説明したが、本発明の請求範囲を逸脱することなく、当業者は種々の改変をなし得るであろう。
【0087】
【発明の効果】
従って、本発明によれば、従来の装置とは異なり組み込まれるべきGF乗算器及び加算器の個数を減らすことによって、低コストでサイズが小さく、より一層効果的な誤り位置検出多項式計算装置を具現することができる。
【図面の簡単な説明】
【図1】従来の誤り位置検出多項式計算装置を示したブロック図である。
【図2】本発明の好適実施例によって、Berlekamp循環アルゴリズムを用いて、誤り位置検出多項式計算装置を示したブロック図である。
【図3】図2のディスクレパンシ計算部の詳細なブロック図である。
【図4】図2の第1シフトレジスタ部の詳細なブロック図である。
【図5】図3の第2シフトレジスタ部の詳細なブロック図である。
【符号の説明】
17 D及びb-1計算部
100 従来の誤り位置検出多項式計算装置
200 本発明の誤り位置検出多項式計算装置
210 変数発生部
220 逆ルックアップテーブル
230 ディスクレパンシ計算部
231 第2シフトレジスタ部
232 第3MUX
233 第3GF乗算器
234 第2GF加算器
235 フィードバックレジスタ
236 出力レジスタ
237 ディスクレパンシ確認部
238 第2信号発生部
238−1 第2インバータ
239 係数選択部
240 第1GF乗算器
250 選択部
252 ROM
254 第1MUX
256 第2MUX
260 第1シフトレジスタ部
270 第2GF乗算器
280 第1GF加算器
290 第1信号発生部
292 第1ORゲート
294 第2ORゲート
296 第1インバータ

Claims (7)

  1. リードソロモン復号化器に用いられ、ベーレカム循環アルゴリズム(recursive Berlekamp algorithm)を用いてt次の多項式(tは予め定められた正整数)である誤り位置検出多項式σ(X)を計算する誤り位置検出多項式計算装置であって、
    前記ベーレカムプ循環アルゴリズムは、以下の4段階、即ち
    (1)誤り位置検出多項式の初期値σ (X)、中間値の初期値B (X)、誤り位置検出多項式の実際の次数の初期値L (X)、及び遅延ディスクレパンシb の初期化を行う段階と、
    (2)D をディスクレパンシ、σiをσ(X)の係数、S をS N−1 のシンドロームとし、σi・S N−1 の整数iを1から1ずつ増加させてi=Lになるまでの総和をΣ[i=1,L]σi・S N−1 と表すものとしたとき、式
    =S +Σ[i=1,L]σi・S N−1 (N≧1)
    を用いてディスクレパンシの計算を行う段階と、
    (3)下記の3つのケースによってディスクレパンシを更新する段階であって、
    ケース1、即ちD =0の場合、
    N+1 =K +1、
    と更新され、
    ケース2、即ちD ≠0,2L ≦Nの場合、
    σ N+1 (X)=σ (X)−D ・b −1 ・X ・B (X)、
    N+1 =N+1−L
    N+1 =1、
    N+1 (X)=σ (X)、
    N+1 =D
    と更新され、
    ケース3、即ちD ≠0、2L >Nの場合、
    σ N+1 (X)=σ (X)−D ・b −1 ・X ・B (X)、
    N+1 =K +1
    と更新される、該段階と、
    (4)Nが2t−1となるまで段階(2)を反復する段階からなることを特徴とし
    前記誤り位置検出多項式計算装置は、
    状態が前記ケース1乃至ケース3の何れであるかを判断して遅延ディスクレパンシ(discrepancy)、反復の回数、誤り位置検出多項式σ(X)の実際の次数を含む各変数を更新し、制御信号CASE3FLAG及び遅延ディスクレパンシを発生する変数発生部と、
    前記変数発生部からの遅延ディスクレパンシの逆数を発生する逆ルックアップテーブルと、
    シンドローム及び更新済みのエラー位置多項式を用いてディスクレパンシを計算し、制御信号D−ZEROを発生し、更新済みの誤り位置検出多項式を遅延出力し、最後に更新済みの誤り位置検出多項式を完全誤り位置検出多項式として出力するディスクレパンシ計算部と、
    前記ディスクレパンシ計算部からの前記ディスクレパンシと前記逆ルックアップテーブルからの逆遅延ディスクレパンシとを乗じる第1ガロア体(GF)乗算器と、
    定数、または前記ディスクレパンシ計算部からの前記更新済みの誤り位置検出多項式またはフィードバック値を選択的に出力する選択部と、
    前記選択部からの出力をシフトさせ、該シフト値を出力し、該シフト値を前記選択部へフィードバックさせる第1シフトレジスタ部と、
    前記第1GF乗算器からの出力と前記第1シフトレジスタ部からの出力とを乗じる第2GF乗算器と、
    前記第2GF乗算器からの出力と前記ディスクレパンシ計算部からの更新済みの誤り位置検出多項式とを加えて、その結果を前記ディスクレパンシ計算部へフィードバックさせる第1GF加算器と、
    制御信号を前記第1GF加算器、前記第1シフトレジスタ部及び前記ディスクレパンシ計算部に供給する第1信号発生部とを含むことを特徴とし、
    誤り位置検出多項式の更新は前記逆ルックアップテーブル、前記第1GF乗算器、前記第1シフトレジスタ部、前記第1GF加算器により行われ、状態が前記ケース1乃至ケース3の何れであるかは、制御信号である前記CASE3−FLAG及び前記D−ZEROの組合せによって示され、ケース1の場合は、CASE3−FLAGがローレベルでD−ZEROはハイレベルとなり、ケース2の場合は、CASE3−FLAGがローレベルとD−ZEROがローレベルとなり、ケース3の場合は、CASE3−FLAGはハイレベルでD−ZEROがローレベルとなることを特徴とし、
    前記第1信号発生部が、
    前記制御信号CASE3−FLAGと前記制御信号D−ZEROとの論理和を計算して、選択信号SEL1を出力する第1ORゲートと、
    前記D−ZEROと前記第1ORゲートからの出力SEL1との論理和を計算して、選択信号SEL2を出力する第2ORゲートと、
    符号語終了信号CW−ENDを反転させる第1インバータと、
    第1インバータからの反転CW−ENDとリセット信号RSTとの論理積を計算し、リセット信号RST1を発生して前記第1シフトレジスタ部及び前記ディスクレパンシ計算部に供給する第1ANDゲートを有することを特徴とする誤り位置検出多項式計算装置。
  2. 前記選択部が、
    定数を格納するROMと、
    前記第2ORゲートからのSEL2がハイレベルである場合、前記ROMからの定数を選択出力し、前記SEL2がローレベルである場合には、前記ディスクレパンシ計算部からの更新済みの誤り位置検出多項式を選択出力する第1MUXと、
    前記第1ORゲートからのSEL1がローレベルである場合、前記第1MUXからの出力を選択出力し、前記SEL1がハイレベルである場合には、前記第1シフトレジスタ部からのフィードバック値を選択供給する第2MUXを有することを特徴とする請求項1に記載の誤り位置検出多項式計算装置。
  3. 前記定数が、「0」であることを特徴とする請求項1若しくは2に記載の誤り位置検出多項式計算装置。
  4. 前記第1シフトレジスタ部が、t個のレジスタが直列に接続されたものであり、前記選択部からの出力をシフトさせ出力することを特徴とする請求項1乃至に記載の誤り位置検出多項式計算装置。
  5. 前記ディスクレパンシ計算部が、
    前記第1GF加算器からの更新済みの誤り位置検出多項式をシフトさせ、最後に更新済みの誤り位置検出多項式を完全誤り位置検出多項式として出力する第2シフトレジスタ部と、
    前記第1GF加算器からの出力または前記第2シフトレジスタ部からのシフトされた誤り位置検出多項式を選択出力する第3MUXと、
    前記第3MUXからの出力とシンドロームとを乗じる第3GF乗算器と、
    前記第3GF乗算器からの出力とフィードバック値とを加算する第2GF加算器と、
    ビットクロックBIT−CLKによって前記第2GF加算器からの出力をラッチして、前記第2GF加算器にフィードバックさせるフィードバックレジスタと、
    前記第2GF加算器からの出力をラッチしてディスクレパンシとして出力する出力レジスタと、
    前記ディスクレパンシを判断して前記DZEROを出力するディスクレパンシ確認部と、
    制御信号を前記出力レジスタ及び前記第2シフトレジスタ部に出力する第2信号発生部と、
    前記第2シフトレジスタ部からの出力を前記更新済みの誤り位置検出多項式の係数として選択して出力する係数選択部とを有することを特徴とする請求項1乃至に記載の誤り位置検出多項式計算装置。
  6. 前記第2信号発生部が、
    前記ディスクレパンシ終了信号D−ENDを反転させる第2インバー夕と、
    前記第2インバータからの反転D−ENDと前記RSTとを論理積を計算して、前記フィードバックレジスタに出力する第2ANDゲートとを有することを特徴とする請求項5に記載の誤り位置検出多項式計算装置。
  7. 前記第2シフトレジスタ部が、t+1個のレジスタが直列に接続されたものであり、前記第1GF加算器からの出力をシフトさせ出力することを特徴とする請求項5若しくは6に記載の誤り位置検出多項式計算装置。
JP12451397A 1996-05-14 1997-05-14 誤り位置検出多項式計算装置 Expired - Fee Related JP3834122B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1996-16009 1996-05-14
KR1019960016009A KR100192795B1 (ko) 1996-05-14 1996-05-14 리드 솔로몬 복호기의 에러 위치 다항식 계산 장치

Publications (2)

Publication Number Publication Date
JPH1093445A JPH1093445A (ja) 1998-04-10
JP3834122B2 true JP3834122B2 (ja) 2006-10-18

Family

ID=19458650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12451397A Expired - Fee Related JP3834122B2 (ja) 1996-05-14 1997-05-14 誤り位置検出多項式計算装置

Country Status (5)

Country Link
US (1) US5878058A (ja)
EP (1) EP0808029A3 (ja)
JP (1) JP3834122B2 (ja)
KR (1) KR100192795B1 (ja)
CN (1) CN1114999C (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061826A (en) * 1997-07-29 2000-05-09 Philips Electronics North America Corp. Hardware-optimized reed-solomon decoder for large data blocks
US6047395A (en) * 1998-01-30 2000-04-04 Cirrus Logic, Inc. Error correction processor for correcting a multi-dimensional code by generating an erasure polynomial over one dimension for correcting multiple codewords in another dimension
JP3238128B2 (ja) * 1998-06-02 2001-12-10 松下電器産業株式会社 リードソロモン符号化装置および方法
EP1131893B1 (en) * 1998-11-09 2004-08-04 Broadcom Corporation Forward error corrector
US6694476B1 (en) 2000-06-02 2004-02-17 Vitesse Semiconductor Corporation Reed-solomon encoder and decoder
US6738942B1 (en) 2000-06-02 2004-05-18 Vitesse Semiconductor Corporation Product code based forward error correction system
US7199549B2 (en) 2001-08-17 2007-04-03 Delphi Technologies, Inc Feedback parameter estimation for electric machines
US6900607B2 (en) 2001-08-17 2005-05-31 Delphi Technologies, Inc. Combined feedforward and feedback parameter estimation for electric machines
US7576506B2 (en) 2001-12-11 2009-08-18 Delphi Technologies, Inc. Feedforward parameter estimation for electric machines
WO2004107586A1 (en) * 2003-05-28 2004-12-09 Telefonaktiebolaget L M Ericsson (Publ) Logic circuit
US20070150798A1 (en) * 2005-12-12 2007-06-28 Jia-Horng Shieh Method for decoding an ecc block and related apparatus
US7661057B2 (en) * 2006-02-01 2010-02-09 Broadcom Corporation Clocking Chien searching at different frequency than other Reed-Solomon (RS) ECC decoding functions
US7543679B2 (en) 2006-07-28 2009-06-09 Delphi Technologies, Inc. Compensation of periodic sensor errors in electric power steering systems
US7549504B2 (en) 2006-07-28 2009-06-23 Delphi Technologies, Inc. Quadrant dependent active damping for electric power steering
US7725227B2 (en) 2006-12-15 2010-05-25 Gm Global Technology Operations, Inc. Method, system, and apparatus for providing enhanced steering pull compensation
CN103236852B (zh) * 2013-04-19 2016-02-10 荣成市鼎通电子信息科技有限公司 无乘法运算的dtmb中准循环矩阵串行乘法器
US10521296B2 (en) * 2018-02-20 2019-12-31 Micron Technology, Inc. Performing an additional decoding operation on an identified set of bits of a data block
US20240297668A1 (en) * 2023-01-17 2024-09-05 Micron Technology, Inc. Heterogenous interleaved reed-solomon (hetirs) with erasure decoding

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649541A (en) * 1984-11-21 1987-03-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Reed-Solomon decoder
US4763332A (en) * 1987-03-02 1988-08-09 Data Systems Technology Corp. Shared circuitry for the encoding and syndrome generation functions of a Reed-Solomon code
US4833678A (en) * 1987-07-22 1989-05-23 Cyclotomics, Inc. Hard-wired serial Galois field decoder
JPH0391188A (ja) * 1989-09-04 1991-04-16 Matsushita Electric Ind Co Ltd Fifoメモリ
DE69700283D1 (de) * 1996-02-28 1999-07-29 Daewoo Electronics Co Ltd Vorrichtung zur Bestimmung des Fehlerwert-Polynoms zur Verwendung in einem Reed-Solomon Dekodierer
US5805617A (en) * 1996-02-28 1998-09-08 Daewoo Electronics Co., Ltd. Apparatus for computing error correction syndromes
US5751732A (en) * 1996-02-28 1998-05-12 Daewoo Electronics Co., Ltd. Polynomial evaluator for use in a reed-solomon decoder

Also Published As

Publication number Publication date
JPH1093445A (ja) 1998-04-10
KR100192795B1 (ko) 1999-06-15
CN1176534A (zh) 1998-03-18
KR970078044A (ko) 1997-12-12
US5878058A (en) 1999-03-02
CN1114999C (zh) 2003-07-16
EP0808029A3 (en) 2001-12-05
EP0808029A2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
JP3834122B2 (ja) 誤り位置検出多項式計算装置
US6374383B1 (en) Determining error locations using error correction codes
US4873688A (en) High-speed real-time Reed-Solomon decoder
US5446743A (en) Coefficient updating method and apparatus for Reed-Solomon decoder
US6571368B1 (en) Systolic Reed-Solomon decoder
JP4777258B2 (ja) ガロア体乗算のためのルックアップテーブルを使用するリード・ソロモン符号の符号化および復号化
KR20020047134A (ko) 데이터를 코딩 및 디코딩하는 방법 및 장치
US7870468B1 (en) Reed-solomon decoder using a configurable arithmetic processor
US6467063B1 (en) Reed Solomon coding apparatus and Reed Solomon coding method
US5805617A (en) Apparatus for computing error correction syndromes
US5535225A (en) Time domain algebraic encoder/decoder
CN101277119A (zh) 里德所罗门码解码器硬件复用方法及其低硬件复杂度解码装置
CN1636324A (zh) 纠错解码器的钱搜索单元
US6263471B1 (en) Method and apparatus for decoding an error correction code
JP3343857B2 (ja) 復号装置、演算装置およびこれらの方法
US5971607A (en) Polynomial evaluator for use in a Reed-Solomon decoder
JP3812983B2 (ja) エラー評価多項式係数計算装置
US6971056B1 (en) Decoder-usable syndrome generation with representation generated with information based on vector portion
Chang et al. VLSI architecture of modified Euclidean algorithm for Reed–Solomon code
JP2591611B2 (ja) t重誤り訂正符号の符号化復号化回路
EP0817391A1 (en) Polynomial evaluator for use in a reed-solomon decoder
KR100215570B1 (ko) 고화질 텔레비젼용 리드 솔로몬 디코더
WO2004059851A1 (en) An encoder for high rate parallel encoding
KR100192802B1 (ko) 리드 솔로몬 디코더의 에러값 계산 및 정정 장치
Lee et al. An efficient recursive cell architecture of modified Euclid's algorithm for decoding Reed-Solomon codes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060320

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees