[go: up one dir, main page]

JP3597341B2 - Globally accelerated learning method for neural network model and its device - Google Patents

Globally accelerated learning method for neural network model and its device Download PDF

Info

Publication number
JP3597341B2
JP3597341B2 JP14433197A JP14433197A JP3597341B2 JP 3597341 B2 JP3597341 B2 JP 3597341B2 JP 14433197 A JP14433197 A JP 14433197A JP 14433197 A JP14433197 A JP 14433197A JP 3597341 B2 JP3597341 B2 JP 3597341B2
Authority
JP
Japan
Prior art keywords
value
iteration
weight
search
global
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14433197A
Other languages
Japanese (ja)
Other versions
JPH10334070A (en
Inventor
慶広 落合
智 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Inc
NTT Inc USA
Original Assignee
Nippon Telegraph and Telephone Corp
NTT Inc USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, NTT Inc USA filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14433197A priority Critical patent/JP3597341B2/en
Publication of JPH10334070A publication Critical patent/JPH10334070A/en
Application granted granted Critical
Publication of JP3597341B2 publication Critical patent/JP3597341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ニューラルネットを用いた処理、非線形最適化法を用いた処理などに適用できる神経回路網モデルの大域的加速化学習法およびその装置に関し、更に詳しくは、学習データが提示される毎に重み振動を抑制した逐次学習を用いて学習時間の短縮化を図ると共に最適解を探索する際に乱数探索に変更して局所的極小値を回避し、大域的極小値に探索しうる神経回路網モデルの大域的加速化学習法およびその装置に関する。
【0002】
【従来の技術】
初めに、本発明が適用できる神経回路網モデルの一例を挙げ、これに対する学習法を説明する。ここでは、典型例として階層型神経回路網モデルを用いるが、再帰結合をもつ神経回路網モデルなど、他の構造をもつモデルにも適用できる。
【0003】
階層型神経回路網モデルは、図2に示すように、1層の入力層、複数層の中間層、1層の出力層からなる層状のネットワークモデルであり、各層はユニット、重み、バイアスから構成される。ユニットは、前層のユニットの出力値(x (i=1,2,…,L,L:前層のユニット数)と重み(w,i:重みの番号)の積の総和、およびバイアス(b,i:ユニットの番号)を加算した値を入力値として受け、入力値にある非線形変換(f(・))を施した値(y)を出力し、この出力値を次層のユニットへ伝達する構造をもつ(図2、式(1))。但し、ここでは、入力層のユニットの入出力変換関数は、線形、入力層以外の層のユニットの非線形変換関数f(・)は、典型例であるシグモイド関数を用いる(式 (1))が、モデルに応じて他の変換関数を用いることも考えられる。
【0004】
【数1】

Figure 0003597341
【外1】
Figure 0003597341
る評価基準を最小化するような重みの値を推定するための学習則を考える。ここでは、評価基準の典型例として神経回路網モデルの出力値(O(j=1,2,…,M),M:出力層のユニットの番号)と学習用出力値である教師データ(T(j=1,2,…,M))の残差二乗和(式(2))を用いる。
【0005】
【数2】
Figure 0003597341
D.E.Rumelhart らは神経回路網モデルの学習法として重みの更新則に慣性項を付加した学習法を提案した。しかし、評価関数曲面が谷の形状を成す場合、学習過程において、重みが谷を横切る方向に振動するため、重みは、最適解が存在する谷を降下する方向に更新されず、収束速度が低下するという問題がある。この問題を解決するために、落合らは、重みの振動を抑制するKick Out法を提案した(文献:落合慶広、戸田尚宏、臼井支朗:“重みの振動を抑制する階層型ニューラルネットワークの加速化−Kick Out法−”、電気学会論文誌、Vol.113−C,No.12,pp.1154−1162(1993)参照)。
【0006】
この学習法を以下に示す。
【0007】
【数3】
Figure 0003597341
【0008】
一方、評価関数曲面上に局所的極小値が存在する場合、探索過程において局所的極小値に収束するため、大域的極小値を探索できないという問題がある。
【0009】
これを解決する学習則として、極値探索において局所的極小値が求められた場合、その局所解を中心としたペナルティー関数を構成し、極小値を消滅させた評価関数((9)式)を構成し、これに基づいて新たな極小値を探索するダイナミックトンネルアルゴリズム(文献:Y.Yao:”Dynamic tunneling algorithm for global optimization”,IEEE Trans.on Sys.Man and Cybern.SMC−19−5,pp.1222−1230(1989)参照)が提案されている。この方法は、2つのアルゴリズムから構成される。次のような最適化問題が与えられた場合、
【外2】
Figure 0003597341
【0010】
【数5】
Figure 0003597341
【0011】
【外3】
Figure 0003597341
【0012】
【数6】
Figure 0003597341
【0013】
【外4】
Figure 0003597341
【数7】
Figure 0003597341
【外5】
Figure 0003597341
【0014】
【数8】
Figure 0003597341
前述したように、ダイナミックトンネルアルゴリズムでは、極値探索と大域探索を繰り返して用いることにより、大域的最適解を求めている。
【0015】
しかしながら、この大域的最適化法で用いられている極値探索アルゴリズムは、原始的な最急降下法を用いており、収束が非常に遅く、また、数値積分による常微分方程式の解を求めるのも収束速度の点では遅いという問題がある。
【0016】
また、実際的には、大域的探索を行う際に調整しなければならないパラメータとしてk,kがあるが、この調整は経験的にしか調整することができず、その調整も非常に困難である。
【0017】
【発明が解決しようとする課題】
Kick Out法は、評価関数曲面における谷の形状に対して加速化の効果を発揮する極値探索型のアルゴリズムであり、Kick Out法のみでは、評価関数曲面上に局所的な極小値が存在する場合、これを回避することは困難である。
【0018】
また、ダイナミックトンネリングアルゴリズムは、大域的な最小値を探索するアルゴリズムであるが、収束が非常に遅いという問題がある。
【0019】
更に、Kick Out法は、学習すべきパターンを全て提示した後に1回だけ重みを更新する一括学習法を用いており、重みの振動を補正するための補正項の係数は、全学習パターンを提示した後にしか求めることができない。従って、学習アルゴリズムを一反復するために要する時間は、パターン数の増加に対して指数関数的に増加し、学習時間も膨大になるという問題がある。これを改善するためには、学習パターンを1パターン提示する度に重みを更新する逐次学習を導入する必要があるが、一括学習型のKick Out法を単純に逐次学習型に変更しても、Kick Out法と同程度の加速効果は得られないという問題がある。
【0020】
本発明は、上記に鑑みてなされたもので、その目的とするところは、評価関数曲面上に局所的極小値が存在しても大域的な極小値を探索することができると共に学習の収束の速さを加速して短時間で大域的極小値を探索しうる神経回路網モデルの大域的加速化学習装置を提供することにある。
【0021】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の本発明は、ファイル読み込み装置および時系列データを計測するセンサを有する入力部と、処理部と、出力部から構成される神経回路網モデルの大域的加速化学習装置であって、前記処理部は、神経回路網モデルの重みの初期値、学習率の初期値、学習率の増減率、平滑化微係数、慣性率、補正係数の初期値、極値探索および大域的探索の停止基準値、制約条件の係数、および大域的最適化に関する係数を前記入力部から転送されて初期設定する変数初期化手段と、学習すべき入力データを前記入力部から転送されて一時的に蓄積し、該入力データの全パターンを神経回路網モデルに提示し、各入力パターンに対して神経回路網モデルの出力値を計算し、この出力値と教師データから計算される全パターンに対する評価基準値に基づいて現在の反復点(k反復目とする)における重みに関する評価関数の一次偏微分である勾配を計算するデータ提示手段と、1から平滑化微係数を引いた値を前記データ提示手段で求めたk反復目の勾配に乗じ、この値と1反復前(k−1反復目とする)の平滑化微分に平滑化微係数を乗じた値を加算し、k反復目における平滑化微分値を計算して求める平滑化微分値算出手段と、前記平滑化微分値算出手段で求めたk反復目の勾配およびk−1反復目の平滑化微分値を各要素毎に個別に乗じた演算結果が正値の場合、学習率に学習率の増加率を加えて学習率を増加させて各学習率を個別に更新し、演算結果が負値の場合、学習率に学習率の減少率を乗じて学習率を減少させ、各学習率を個別に更新する学習率更新手段と、前記データ提示手段で求めた勾配、および前記学習率更新手段で求めた各重みに対応した個別の学習率を乗じた修正量を各要素毎に個別に計算し、この修正量にk−1反復目の重みの修正量に慣性率を乗じた修正量を各重みに個別に加えて、重みの修正量を計算する重み更新手段と、前記データ提示手段で求めたk反復目の勾配とk−1反復目の勾配から勾配の差分(k反復目における勾配の差分とする)を計算し、この結果を補正項付加判断手段に転送する勾配差分計算手段と、前記勾配差分計算手段で求めたk反復目の勾配の差分と1反復前のk−1反復目の勾配の差分の内積を計算し、この結果が負値の場合には補正項を追加すると判断して補正量計算手段に重みを転送し、前記内積の結果が正値の場合には補正量を付加しないと判断して極値探索収束判定手段に重みを転送する補正項付加判定手段と、前記重み更新手段で求めた重みの修正量に、更にk反復目の勾配の差分とk反復目の重みの修正量の内積値をk反復目の勾配の差分の大きさ(ノルム)の2乗および2で除算した結果(スカラー量)にk反復目の勾配の差分を乗じた補正量を計算し、この結果を重み補正手段に転送する補正量計算手段と、前記補正量計算手段から転送された重みの補正量に基づき、重みを要素毎に個別に更新し、前記極値探索収束判定手段に転送する重み補正手段と、極値探索により探索された点である局所解を初期値として、局所解における評価関数の極値を取り除いた新たな評価関数を構成し、この評価関数を最小化することにより大域的探索を行う大域的探索手段と、前記重み更新手段あるいは前記重み補正手段から転送された重みを用いて極値探索を行い、極値探索の停止基準を満たす場合には、極値探索を終了して大域的探索手段による処理を実行し、極値探索の停止基準を満たさない場合には、該停止基準を満たすまで前記データ提示手段による処理から反復実行させる極値探索収束判定手段と、前記大域的探索手段による大域的探索の実行結果が大域的最適化の停止基準を満たしているか否かを判定し、該大域的最適化の停止基準を満たしている場合は処理を終了させる大域的探索収束判定手段と、前記大域的収束判定手段により大域的最適化の停止基準を満たさないと判定されたとき、局所解における評価関数値よりも更に小さな評価関数値を有する解が探索できた場合は、制約条件に関するパラメータを調整した後、前記データ提示手段による処理以降の極値探索を実行させる制約条件係数更新手段と、前記大域的収束判定手段により大域的最適化の停止基準を満たさないと判定されたとき、局所解における評価関数値よりも更に小さな評価関数値を有する解が探索できない場合は、大域的最適化に関する係数を調整した後、前記大域的探索手段による処理に戻り、大域的探索を反復実行し、指定された回数だけ反復実行した場合は処理を終了する大域的最適化係数調整手段とを有することを主旨とする。
【0028】
請求項記載の本発明にあっては、評価関数曲面上に局所的極小値が存在するような場合でも、大域的な極小値を探索することが可能となるとともに、局所的極小値を探索する際、谷などの条件数の大きい曲面が存在する場合、この領域において発生する重みの振動を抑制することにより収束を加速化し、大域的な極小値を探索する時間を短縮することができる。
【0029】
また、請求項2記載の本発明は、ファイル読み込み装置および時系列データを計測するセンサを有する入力部と、処理部と、出力部から構成される神経回路網モデルの大域的加速化学習装置であって、前記処理部は、神経回路網モデルの重みの初期値、学習率の初期値、学習率の増減率、平滑化微係数、慣性率、補正係数の初期値、極値探索および大域的探索の停止基準値、制約条件の係数、および大域的最適化に関する係数を前記入力部から転送されて初期設定する変数初期化手段と、学習すべき入力データを前記入力部から転送されて一時的に蓄積し、該入力データの全パターンを神経回路網モデルに提示し、各入力パターンに対して神経回路網モデルの出力値を計算し、この出力値と教師データから計算される全パターンに対する評価基準値に基づいて現在の反復点(k反復目とする)における重みに関する評価関数の一次偏微分である勾配を計算するデータ提示手段と、1から平滑化微係数を引いた値を前記データ提示手段で求めたk反復目の勾配に乗じ、この値と1反復前(k−1反復目とする)の平滑化微分に平滑化微係数を乗じた値を加算し、k反復目における平滑化微分値を計算して求める平滑化微分値算出手段と、前記平滑化微分値算出手段で求めたk反復目の勾配およびk−1反復目の平滑化微分値を各要素毎に個別に乗じた演算結果が正値の場合、学習率に学習率の増加率を加えて学習率を増加させて各学習率を個別に更新し、演算結果が負値の場合、学習率に学習率の減少率を乗じて学習率を減少させ、各学習率を個別に更新する学習率更新手段と、前記データ提示手段で求めた勾配、および前記学習率更新手段で求めた各重みに対応した個別の学習率を乗じた修正量を各要素毎に個別に計算し、この修正量にk−1反復目の重みの修正量に慣性率を乗じた修正量を各重みに個別に加えて、重みの修正量を計算する重み更新手段と、前記データ提示手段で求めたk反復目の勾配とk−1反復目の勾配から勾配の差分(k反復目における勾配の差分とする)を計算し、この結果を補正項付加判断手段に転送する勾配差分計算手段と、前記勾配差分計算手段で求めたk反復目の勾配とk−1反復目の平滑化微分を各要素毎に計算し、この結果が負値の場合には、前記重み更新手段で求めた重みの修正量に、現在の反復点における勾配の差分に固定値の補正係数を乗じた補正量を各要素毎に個別に各重みに加えるかまたは前記学習率更新手段で求めた勾配と平滑化微分の内積値が正値の場合には補正量を付加しない補正量計算手段と、k反復目の勾配とk−1反復目の平滑化微分を乗算した結果が正値の場合は補正係数を減少し、乗算結果が負値の場合は補正係数を増加する補正係数増減手段と、前記重み更新手段および補正量計算手段で求めた重みの修正量を用いて重みを要素毎に個別に更新する重み補正手段と、極値探索により探索された点である局所解を初期値として、局所解における評価関数の極値を取り除いた新たな評価関数を構成し、この評価関数を最小化することにより大域的探索を行う大域的探索手段と、極値探索の停止基準を満たす場合には、極値探索を終了して、前記大域的探索手段による処理を実行し、極値探索の停止基準を満たさない場合には、前記データ提示手段による処理に戻り、極値探索の停止基準を満たすまで前記データ提示手段による処理を反復実行する極値探索収束判定手段と、前記大域的探索手段による大域的探索の実行結果が大域的最適化の停止基準を満たしているか否かを判定し、該大域的最適化の停止基準を満たしている場合は処理を終了させる大域的探索収束判定手段と、前記大域的収束判定手段により大域的最適化の停止基準を満たさないと判定されたとき、局所解における評価関数値よりも更に小さな評価関数値を有する解が探索できた場合は、制約条件に関するパラメータを調整した後、前記データ提示手段による処理以降の極値探索を実行させる制約条件係数更新手段と、前記大域的収束判定手段により大域的最適化の停止基準を満たさないと判定されたとき、局所解における評価関数値よりも更に小さな評価関数値を有する解が探索できない場合は、大域的最適化に関する係数を調整した後、前記大域的探索手段による処理に戻り、大域的探索を反復実行し、指定された回数だけ反復実行した場合は処理を終了する大域的最適化係数調整手段とを有することを主旨とする。
【0030】
請求項記載の本発明にあっては、評価関数曲面上に局所的極小値が存在するような場合でも、大域的な極小値を探索することが可能となるとともに、重みおよび学習率を個別に更新することが可能となり、多くの学習パターンを有する課題の学習または時系列データなどを用いた逐次学習などにおいて学習時間の大幅な短縮が可能となる。
【0031】
更に、請求項3記載の本発明は、請求項2記載の発明において、前記平滑化微分値算出手段は、1から平滑化微係数を引いた値をk−1反復目の平滑化微分値に乗じ、この値と平滑化微係数を勾配に乗じた値を加算し、k反復目における平滑化微分値を各要素毎に個別に計算する手段を有し、前記学習率更新手段は、前記平滑化微分値算出手段で求めたk反復目の平滑化微分およびk−1反復目の平滑化微分値を各要素毎に個別に乗じ、この演算結果が正値の場合、学習率に学習率の増加率を加えて学習率を増加させ、演算結果が負値の場合、学習率に学習率の減少率を乗じて学習率を減少させるように学習率を要素毎に個別に更新する手段を有し、前記補正量計算手段は、前記平滑化微分値算出手段で求めたk反復目の平滑化微分とk−1反復目の平滑化微分を各要素毎に乗算し、この結果が負値の場合には、前記平滑化微分値算出手段で求めた重みの修正量に、k反復目における勾配の差分に可変の補正係数を乗じた補正量を求めるかまたはk反復目およびk−1反復目の平滑化微分の乗算結果が正値の場合には補正量を計算しない手段を有し、前記補正係数増減手段は、k反復目の平滑化微分とk−1反復目の平滑化微分を乗算した結果が正値の場合は補正係数を減少し、乗算結果が負値の場合は補正係数を増加する手段を有することを主旨とする。
【0032】
請求項記載の本発明にあっては、評価関数曲面上に局所的極小値が存在するような場合でも、大域的な極小値を探索することが可能となるとともに、学習時の収束の不安定性を減少させることができる。
【0033】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態について説明する。
【0034】
図1は、本発明の第1ないし第3の実施形態に適用される神経回路網モデルの大域的加速化学習法を実施する学習装置の構成を示すブロック図である。図1に示す学習装置は、入力部100、処理部200および出力部300から構成され、入力部100は、学習に用いる学習率などの各種変数などを読み込むためのファイル読み込み装置101、時系列データを計測する各種センサ102、TVカメラ103などからなる。処理部200は、変数初期化部201、データ提示部202、学習率更新部203、重み更新部204、勾配差分計算部205、補正項付加判断部206、補正量計算部207、重み補正部208、極値探索の収束判定部209、大域的探索部210、大域的探索収束判定部211、制約条件係数更新部212、大域的最適化係数更新部213からなる。
【0035】
本発明の第1の実施形態に係る神経回路網モデルの大域的加速化学習法は、Kick Out法とトンネルアルゴリズムを融合させた学習法とし、トンネルアルゴリズムにおいて収束が遅いおよびパラメータkの調整が困難であるという問題点を解決するために、次の手順により探索する。始めに、局所的極小値を見い出すために(3)〜(6)式のKick Out法を用いて極値探索を行う。そして、極値探索において局所的最小値が見い出された後、この局所的最小値よりも更に小さな評価関数値をもつ点を見つけるために、次の手順に基づいた大域的探索を行う。
【0036】
大域的探索を行う際の評価関数を次式のように定義する。
【0037】
【数9】
Figure 0003597341
これに対して、大域的探索においてもKick Out法を適用する。
【0038】
【数10】
Figure 0003597341
また、ダイナミックトンネリングアルゴリズムでは、経験的にしか調整することができなかったパラメータkj、λを次のように調整する。
【0039】
(1)k,μ,α>0,0<β<1を設定する。
【0040】
【外6】
Figure 0003597341
【数11】
Figure 0003597341
条件((15)式)を満足しないで、大域的探索により、極値解における評価関
【外7】
Figure 0003597341
合、すなわち、
【数12】
Figure 0003597341
【外8】
Figure 0003597341
開始点として、(6)以下を実行する。(16)式を満たす点を見い出せなかった場合、(4)以下を実行する。
【0041】
【数13】
Figure 0003597341
【0042】
【外9】
Figure 0003597341
外ならば、μk+1 =μ、k=k+1として(2)へ戻る。しかし、大域的探索を指定された回数だけ反復実行しても、大域的探索の停止基準を満たさない場合は終了する。
【0043】
本発明の第2の実施形態に係る大域的加速化学習法では、重みが振動する際、各要素ごとに個別に重みの値を補正する補正法を備えた逐次型の学習法であり、本学習法における補正項の計算方法は、重みの振動を判定するために、評価関数曲面上の大域的な勾配を表す平滑化微分、および勾配を利用して求めている。
【0044】
記憶容量、計算量を極力低減させるために、学習率の更新基準、または重みの補正基準としてk反復目の勾配とk−1反復目の平滑化微分の積を用いている。更に、補正係数として計算値ではなく設定値を用いることにより、第1の実施形態で用いていた内積演算を排除し、重みの振動を各要素ごとに個別に補正することを可能にする。
【0045】
第2の実施形態において、第1の実施形態の中で用いられているKick Out法に相当する部分の学習則を以下に示す。
【0046】
【数14】
Figure 0003597341
但し、上記は極値探索における学習則であり、大域的探索においては、下記の記号に置き換えた学習則を使用する。
【0047】
k,i → ek,i …(23)
k,i → zk,i …(24)
本発明の第3の実施形態の学習法では、学習を安定して収束するためには、学習率、および補正項付加の判断基準に用いる勾配などの評価関数曲面の情報として全パターンに対する大域的な情報を用いる必要があるため、k、およびk−1反復目の平滑化微分の積を用いている。更に、補正係数を学習の状況に応じて変化させることにより、適切な補正を可能にする。
【0048】
第3の実施形態で用いられる学習則を以下に示す。
【0049】
【数15】
Figure 0003597341
但し、上記は極値探索における学習則であり、大域的探索においては、下記の記号に置き換えた学習則を使用する。
【0050】
k,i → ek,i …(29)
k,i → zk,i …(30)
次に、図3および図4に示すフローチャートを参照して、作用を説明する。
【0051】
図1において、入力部100からセンサ102、TVカメラ103などを用いて計測した時系列データなどを入力し、データ提示部202に学習用データを転送する(ステップS11)。従って、データ提示部202には時系列データが一時的に蓄えられる。また、ファイル読み込み装置101から、学習に必要な学習率などの値を読み込み、変数初期化部201に転送される(ステップS13)。
【0052】
変数初期化部201は、神経回路網モデルの重み、および学習率などの初期値を設定し(ステップS15)、データ提示部202は、センサ102、TVカメラ103などから転送されてきた時系列データを1パターンずつ神経回路網モデルに提示し、前向きの計算により、神経回路網モデルの出力値を計算し(ステップS17)、このモデル出力と教師データを用いて、予め、与えられた評価基準値を計算する。この後、上記の評価基準値に基づいて神経回路網モデルの逆方向計算を行い、勾配を計算する(ステップS19)。
【0053】
学習率変更部203は、勾配または平滑化微分の符合に基づいて学習率を更新し(ステップS21)、重み更新部204は、上述した学習率、勾配などとを用いて重みを更新し、勾配などを勾配差分計算部205に転送する(ステップS23)。
【0054】
勾配差分計算部205は、データ提示部202において求められた勾配を用いてk,k−1の反復点における勾配の差分を計算し、この情報などを補正項付加判断部206に転送する(ステップS25)。
【0055】
補正項付加判断部206は、転送された勾配などに基づき、第1の実施形態においては、平滑化微分の積を、第2の実施形態においては、勾配と平滑化微分の積を計算し、この値が負値の場合、補正量計算部207に重みの値などを転送する。または、上記の値が正値の場合には、収束判定部209に重みの値などを転送する(ステップS27)。
【0056】
補正量計算部207では、補正項付加判断部206の指令に従い、転送された重み、勾配の差分などから、重みの補正量を計算し、これを重み補正部208に転送する(ステップS29)。
【0057】
重み補正部208は、転送された重みの補正量に基づき重みの値を補正し、補正した重みを収束判定部209に転送する(ステップS31)。
【0058】
極値探索収束判定部209は、重み補正部208または重み更新部204から転送された重みを用いて、極値探索の停止基準が満たされているかを判定する (ステップS33)。
【0059】
大域的探索部210は、新たに設定された評価関数E(w)に対して最小化を実行することにより、評価関数値E(w)がより小さくなる点を探索する(ステップS35)。
【0060】
大域的探索収束判定部211は、大域的探索を実行した結果見い出された点が大域的最適化の停止基準を満たしているかを判定する(ステップS37)。
【0061】
制約条件係数更新部212は、大域的探索の結果、評価関数値がより小さな点が見い出された場合には、制約条件の係数を更新する(ステップS39)。
【0062】
大域的最適化係数更新部213は、大域的探索の結果、評価関数値がより小さな点が見い出されなかった場合、大域的最適化の係数を更新する(ステップS41)。以上の処理を大域的探索を指定した回数だけ反復しても終了していない場合には、終了する。
【0063】
上記各実施形態の学習装置には、(1)全ての学習率を同じ値に設定し、この値を学習過程において固定(学習率の増加率を0、学習率の減少率を1と設定)、または可変とした場合、(2)平滑化微係数を0と設定した場合、すなわち、重みの補正基準、学習率の更新基準に勾配のみを用いる場合、(3)慣性率の値を0に設定した場合も含まれる。
【0064】
また、第2の実施形態の学習装置には、(1)補正係数を増加させる際、補正係数に正の値を加算する場合、または1より大きい値を乗算する場合、(2)補正係数を減少させる際、補正係数に、0より大きく、かつ、1未満の値を乗じる場合、または補正係数から正の値を減算する場合、(3)上記(1),(2)を併用して、補正係数を増減する場合、(4)補正係数を増減せずに、一定値に設定する場合も含まれる。
【0065】
【発明の効果】
以上説明したように、本発明によれば、評価関数曲面上に局所的極小値が存在するような問題に対して、大域的な極小値を探索することが可能となるとともに、局所探索においては、評価関数曲面上で谷の構造が存在する場合には、収束を加速化し、短時間で大域的な極小値を探索することができる。
【0066】
また、本発明によれば、評価関数曲面上に局所的極小値が存在するような場合でも大域的な極小値を探索することが可能となるとともに、少ない記憶領域および計算量により時系列データなどのように学習データが無限個存在する課題の学習を短時間で終了することができる。
【0067】
更に、本発明によれば、評価関数曲面上に局所的極小値が存在するような場合でも大域的な極小値を探索することが可能となるとともに、時系列データなどのように学習データが無限個存在する課題の学習を短時間で終了し、かつ安定した収束が可能となる。
【図面の簡単な説明】
【図1】本発明の第1ないし第3の実施形態に適用される神経回路網モデルの大域的加速化学習法を実施する学習装置の構成を示すブロック図である。
【図2】神経回路網モデルの一例を示す図である。
【図3】図1に示す神経回路網モデルの大域的加速化学習法の手順の一部を示すフローチャートである。
【図4】図1に示す神経回路網モデルの大域的加速化学習法の手順の残りの部分を示すフローチャートである。
【符号の説明】
100 入力部
200 処理部
201 変数初期化部
202 データ提示部
203 学習率更新部
204 重み更新部
205 勾配差分計算部
206 補正項付加判断部
207 補正量計算部
208 重み補正部
209 極値探索収束判定部
210 大域的探索部
211 大域的探索収束判定部
212 制約条件係数更新部
213 大域的最適化係数更新部
300 出力部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and a device for global acceleration learning of a neural network model applicable to processing using a neural network, processing using a non-linear optimization method, and the like. A neural circuit that can reduce the learning time by using sequential learning with weight oscillation suppressed, change to random number search when searching for the optimal solution, avoid local minima, and search for global minima The present invention relates to a global acceleration learning method for a network model and an apparatus therefor.
[0002]
[Prior art]
First, an example of a neural network model to which the present invention can be applied will be described, and a learning method for the model will be described. Here, a hierarchical neural network model is used as a typical example, but the present invention can be applied to a model having another structure such as a neural network model having a recursive connection.
[0003]
As shown in FIG. 2, the hierarchical neural network model is a layered network model including one input layer, a plurality of intermediate layers, and one output layer, and each layer includes a unit, a weight, and a bias. Is done. The unit is the output value (x i (I = 1, 2,..., L, L: the number of units in the previous layer) and weight (w i , I: the number of weights) and the bias (b i , I: unit number) as an input value, output a value (y) obtained by applying a non-linear transformation (f (·)) to the input value, and transmit the output value to a unit in the next layer. (FIG. 2, Equation (1)). Here, the input / output conversion function of the unit of the input layer is linear, and the nonlinear conversion function f (·) of the unit of the layer other than the input layer uses a sigmoid function which is a typical example (Equation (1)). It is also conceivable to use another conversion function according to the model.
[0004]
(Equation 1)
Figure 0003597341
[Outside 1]
Figure 0003597341
Consider a learning rule for estimating a weight value that minimizes an evaluation criterion. Here, as a typical example of the evaluation criterion, the output value (O j (J = 1, 2,..., M), M: unit number of the output layer) and teacher data (T j (J = 1, 2,..., M)) is used.
[0005]
(Equation 2)
Figure 0003597341
D. E. FIG. Have proposed a learning method in which an inertia term is added to a weight updating rule as a learning method for a neural network model. However, when the evaluation function surface has a valley shape, the weight oscillates in the direction crossing the valley in the learning process, so the weight is not updated in the direction of descending the valley where the optimal solution exists, and the convergence speed decreases. There is a problem of doing. To solve this problem, Ochiai et al. Proposed the Kick Out method for suppressing weight oscillations (Literature: Yoshihiro Ochiai, Naohiro Toda, Shiro Usui: "Acceleration of hierarchical neural networks for suppressing weight oscillations" -Kick Out Method- ", Transactions of the Institute of Electrical Engineers of Japan, Vol. 113-C, No. 12, pp. 1154-1162 (1993)).
[0006]
This learning method will be described below.
[0007]
(Equation 3)
Figure 0003597341
[0008]
On the other hand, when a local minimum exists on the evaluation function surface, there is a problem that the global minimum cannot be searched because the search process converges to the local minimum.
[0009]
As a learning rule to solve this, when a local minimum is found in the extremum search, a penalty function centering on the local solution is constructed, and an evaluation function (Eq. (9)) that eliminates the local minimum is used. A dynamic tunneling algorithm that constructs and searches for a new minimum value based on the dynamic tunneling algorithm (literature: Y. Yao: "Dynamic tunneling algorithm for global optimization", IEEE Trans. On Sys. Man and Cyber. SMC-19p. .1222-1230 (1989)). This method consists of two algorithms. Given the following optimization problem,
[Outside 2]
Figure 0003597341
[0010]
(Equation 5)
Figure 0003597341
[0011]
[Outside 3]
Figure 0003597341
[0012]
(Equation 6)
Figure 0003597341
[0013]
[Outside 4]
Figure 0003597341
(Equation 7)
Figure 0003597341
[Outside 5]
Figure 0003597341
[0014]
(Equation 8)
Figure 0003597341
As described above, in the dynamic tunnel algorithm, a global optimal solution is obtained by repeatedly using an extremum search and a global search.
[0015]
However, the extremum search algorithm used in this global optimization method uses a primitive steepest descent method, convergence is very slow, and it is also difficult to find the solution of the ODE by numerical integration. There is a problem that the convergence speed is slow.
[0016]
In practice, k is a parameter that must be adjusted when performing a global search. j , K, but this adjustment can only be made empirically and is very difficult.
[0017]
[Problems to be solved by the invention]
The Kick Out method is an extremum search type algorithm that exerts the effect of acceleration on the shape of the valley on the evaluation function surface. With the Kick Out method alone, a local minimum exists on the evaluation function surface. In this case, it is difficult to avoid this.
[0018]
The dynamic tunneling algorithm is an algorithm for searching for a global minimum, but has a problem that convergence is extremely slow.
[0019]
Further, the Kick Out method uses a collective learning method in which the weight is updated only once after all the patterns to be learned are presented, and the coefficient of the correction term for correcting the vibration of the weight indicates all the learning patterns. Can only be sought after. Therefore, the time required for one iteration of the learning algorithm increases exponentially with the increase in the number of patterns, and there is a problem that the learning time becomes enormous. In order to improve this, it is necessary to introduce sequential learning in which the weight is updated each time one learning pattern is presented, but even if the collective learning type Kick Out method is simply changed to the sequential learning type, There is a problem that the same acceleration effect as in the kick out method cannot be obtained.
[0020]
The present invention has been made in view of the above, and it is an object of the present invention to be able to search for a global minimum value even if a local minimum value exists on an evaluation function surface, and to reduce learning convergence. A neural network model that can search for global minima in a short time by accelerating speed Global accelerated learning device Is to provide.
[0021]
[Means for Solving the Problems]
To achieve the above object, the present invention according to claim 1 provides a global neural network model comprising an input unit having a file reading device and a sensor for measuring time-series data, a processing unit, and an output unit. The acceleration learning device, wherein the processing unit includes an initial value of a weight of the neural network model, an initial value of a learning rate, an increase / decrease rate of the learning rate, a smoothed differential coefficient, an inertia rate, an initial value of a correction coefficient, and an extreme value. A variable initialization means for transferring and initializing a stop reference value of value search and global search, a coefficient of a constraint condition, and a coefficient relating to global optimization from the input unit, and input data to be learned from the input unit. Transferred and temporarily stored, presents all the patterns of the input data to the neural network model, calculates the output value of the neural network model for each input pattern, and calculates the output value and the teacher data. All Data presenting means for calculating a gradient, which is the first partial derivative of an evaluation function relating to the weight at the current iteration point (k-th iteration), based on the evaluation reference value for the pattern, and a value obtained by subtracting the smoothing derivative from 1 Is multiplied by the gradient at the k-th iteration determined by the data presentation means, and a value obtained by multiplying this value by the smoothing derivative of the previous iteration (referred to as the (k-1) -th iteration) by the smoothing derivative is added. Means for calculating a smoothed differential value in the eye, and a gradient at the k-th iteration and a smoothed differential value at the (k-1) th iteration obtained by the smoothed differential value calculating means for each element. If the result of individual multiplication is a positive value, the learning rate is increased by adding the learning rate to the learning rate, the learning rate is increased, and each learning rate is individually updated.If the calculation result is a negative value, the learning rate is learned. Learning to reduce the learning rate by multiplying by the rate reduction rate and update each learning rate individually An update unit, a gradient obtained by the data presentation unit, and a correction amount multiplied by an individual learning rate corresponding to each weight obtained by the learning rate update unit are individually calculated for each element; weight updating means for individually adding a correction amount obtained by multiplying the weight correction amount of the (k-1) th iteration by the inertia rate to each weight to calculate the weight correction amount; A gradient difference calculating means for calculating a gradient difference (hereinafter referred to as a gradient difference at the k-th iteration) from the gradient and the gradient at the (k-1) th iteration, and transferring the result to a correction term addition determining means; Calculates the inner product of the difference between the gradient at the k-th iteration and the difference between the gradient at the (k-1) -th iteration before, and if the result is a negative value, determines that a correction term is to be added and calculates the correction amount. Transfer the weight to the means, and add a correction amount if the result of the inner product is a positive value A correction term addition determining means for transferring the weight to the extreme value search convergence determining means upon determining that the weight is not to be corrected; Is calculated by multiplying the result (scalar amount) obtained by dividing the inner product value of the correction amount of the above by the square of the magnitude (norm) of the gradient difference at the k-th iteration and 2 and the difference of the gradient at the k-th iteration, A correction amount calculating unit that transfers the result to the weight correcting unit; and a weight that is individually updated for each element based on the correction amount of the weight transferred from the correction amount calculating unit, and is transferred to the extreme value search convergence determining unit. Weight correction means to perform, and a new evaluation function from which the extremum of the evaluation function in the local solution is removed, using the local solution which is a point searched by the extremum search as an initial value, and minimizing the evaluation function A global search means for performing a global search by An extremum search is performed using the weight transferred from the weight updating means or the weight correction means, and when the stop criteria for the extremum search is satisfied, the extremum search is terminated and the processing by the global search means is executed. When the stop criterion for the extremum search is not satisfied, the extremum search convergence determining means for repeatedly executing the processing from the data presenting means until the stop criterion is satisfied, and the execution of the global search by the global search means A global search convergence determination means for determining whether a result satisfies a global optimization stop criterion, and terminating the process when the result satisfies the global optimization stop criterion; When it is determined by the means that the stopping criteria of the global optimization are not satisfied, if a solution having an evaluation function value smaller than the evaluation function value of the local solution can be searched, the parameter relating to the constraint condition is searched. After adjusting the data, when the constraint condition coefficient updating means for executing the extremum search after the processing by the data presenting means and the global convergence determining means determine that the stop criteria of the global optimization is not satisfied. If it is not possible to search for a solution having an evaluation function value smaller than the evaluation function value in the local solution, after adjusting the coefficients related to global optimization, the process returns to the global search means, and the global search is repeatedly executed. The main purpose is to have a global optimization coefficient adjusting means for terminating the process when the process is repeatedly executed a designated number of times.
[0028]
Claim 1 In the present invention described, even when a local minimum exists on the evaluation function surface, it is possible to search for a global minimum, and when searching for a local minimum, When a curved surface having a large number of conditions such as a valley exists, convergence can be accelerated by suppressing the oscillation of the weight generated in this region, and the time for searching for a global minimum can be reduced.
[0029]
According to a second aspect of the present invention, there is provided a global acceleration learning apparatus for a neural network model including an input unit having a file reading device and a sensor for measuring time-series data, a processing unit, and an output unit. The processing unit includes an initial value of the weight of the neural network model, an initial value of the learning rate, an increase / decrease rate of the learning rate, a smoothed differential coefficient, an inertia rate, an initial value of the correction coefficient, an extreme value search, and a global value. A variable initialization means for transferring and initializing a search stop reference value, a constraint condition coefficient, and a coefficient relating to global optimization from the input unit, and temporarily transferring input data to be learned from the input unit. And presents all the patterns of the input data to the neural network model, calculates the output value of the neural network model for each input pattern, and evaluates all the patterns calculated from this output value and the teacher data. Data presenting means for calculating a gradient, which is a first-order partial differential of an evaluation function relating to a weight at a current iteration point (k-th iteration) based on a quasi-value, and presenting a value obtained by subtracting a smoothing derivative from 1 The value obtained by multiplying the gradient at the k-th iteration obtained by the means and a value obtained by multiplying this value by the smoothing derivative one iteration before (referred to as the (k-1) -th iteration) by the smoothing differential coefficient is added, and smoothing at the k-th iteration is performed. Smoothing differential value calculating means for calculating and calculating a differential value, and the gradient at the k-th iteration and the smoothing differential value at the (k-1) -th iteration obtained by the smoothing differential value calculating means are individually multiplied for each element. If the calculation result is a positive value, the learning rate is added to the learning rate and the learning rate is increased to increase the learning rate, and each learning rate is individually updated. If the calculation result is a negative value, the learning rate is reduced to the learning rate. Learning rate updating means for reducing the learning rate by multiplying The amount of correction obtained by multiplying the gradient obtained by the data presentation means and the individual learning rate corresponding to each weight obtained by the learning rate updating means is calculated individually for each element, and this correction amount is k-1 repeated. Weight updating means for individually adding to each weight a correction amount obtained by multiplying the correction amount of the eye weight by the inertia ratio, and a gradient and k-th of the k-th iteration obtained by the data presentation means. A gradient difference is calculated from the gradient at the first iteration (referred to as a gradient difference at the k-th iteration), and the result is transferred to the correction term addition determining means; and k obtained by the gradient difference calculating means is calculated. The gradient at the iteration and the smoothed derivative at the (k-1) th iteration are calculated for each element, and if the result is a negative value, the correction amount of the weight obtained by the weight updating means is added to the current iteration point. The correction amount obtained by multiplying the gradient difference by a fixed value correction coefficient is individually weighted for each element. Or a correction amount calculating unit that does not add a correction amount when the inner product of the gradient and the smoothing derivative obtained by the learning rate updating unit is a positive value. When the result of multiplication by the smoothing derivative is a positive value, the correction coefficient is decreased by the correction coefficient, and when the result of the multiplication is a negative value, the correction coefficient is increased by the correction coefficient increasing / decreasing means, and the weight updating means and the correction amount calculating means are used. Weight correction means for individually updating the weight for each element using the weight correction amount, and a new method in which a local solution which is a point searched by the extreme value search is set as an initial value and an extreme value of an evaluation function in the local solution is removed. Global search means for performing a global search by minimizing the evaluation function, and, when a stop criterion for the extremum search is satisfied, terminating the extremum search and completing the global search. Execute processing by search means and stop extreme value search If the criterion is not satisfied, the process returns to the data presenting means, and the extreme value search convergence determining means for repeatedly executing the processing by the data presenting means until the stop criteria of the extreme value search is satisfied, and the global search means Global search convergence determining means for determining whether or not the execution result of the global search satisfies the stop criterion of global optimization, and terminating the process if the stop criterion of the global optimization is satisfied, When the global convergence determining means determines that the stop criteria of the global optimization is not satisfied, if a solution having an evaluation function value smaller than the evaluation function value in the local solution can be searched, a parameter relating to the constraint condition is used. After the adjustment, the constraint condition coefficient updating means for executing the extremum search after the processing by the data presenting means, and the global optimization is stopped by the global convergence determining means. When it is determined that the criterion is not satisfied, if a solution having an evaluation function value smaller than the evaluation function value in the local solution cannot be searched for, after adjusting the coefficient related to global optimization, the processing by the global search unit is performed. The main purpose is to have a global optimization coefficient adjusting means for repeatedly executing the global search and terminating the process when the specified number of times has been repeatedly executed.
[0030]
Claim 2 According to the present invention described above, even when a local minimum exists on the evaluation function surface, it is possible to search for a global minimum, and individually update the weight and the learning rate. This makes it possible to greatly reduce the learning time in learning a task having many learning patterns or in sequential learning using time-series data or the like.
[0031]
Further, in the invention according to claim 3, in the invention according to claim 2, the smoothing differential value calculating means calculates a value obtained by subtracting a smoothing differential coefficient from 1 as a smoothing differential value at the (k-1) th iteration. Multiplying this value and a value obtained by multiplying the gradient by the smoothing differential coefficient, and individually calculating a smoothed differential value at the k-th iteration for each element. The k-th iteration smoothing differential and the k-1th iteration smoothing differential obtained by the generalized differential value calculation means are individually multiplied for each element, and if the operation result is a positive value, the learning rate is calculated by subtracting the learning rate from the learning rate. There is a means to increase the learning rate by adding the rate of increase, and if the calculation result is a negative value, multiply the learning rate by the reduction rate of the learning rate to update the learning rate individually for each element so as to reduce the learning rate. The correction amount calculating means calculates the k-th iteration of the smoothed differential obtained by the smoothed differential value calculating means and k-1. The smoothing differential of the second iteration is multiplied for each element. If the result is a negative value, the correction amount of the weight obtained by the smoothing differential value calculation means is changed to the difference of the gradient at the kth iteration. A means for calculating a correction amount by multiplying the correction coefficient or calculating a correction amount when a multiplication result of the smoothing differentiation at the k-th iteration and the (k-1) -th iteration is a positive value; Has a means for decreasing the correction coefficient when the result of multiplying the smoothing derivative at the kth iteration and the smoothing derivative at the k-1th iteration is a positive value, and increasing the correction coefficient when the result of the multiplication is a negative value That is the main purpose.
[0032]
Claim 3 In the present invention described above, even when a local minimum exists on the evaluation function surface, it is possible to search for a global minimum, and to reduce the instability of convergence during learning. Can be done.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0034]
FIG. 1 is a block diagram showing a configuration of a learning device that performs a global accelerated learning method of a neural network model applied to the first to third embodiments of the present invention. The learning device shown in FIG. 1 includes an input unit 100, a processing unit 200, and an output unit 300. The input unit 100 includes a file reading device 101 for reading various variables such as a learning rate used for learning, and time-series data. , A TV camera 103, and the like. The processing unit 200 includes a variable initialization unit 201, a data presentation unit 202, a learning rate update unit 203, a weight update unit 204, a gradient difference calculation unit 205, a correction term addition determination unit 206, a correction amount calculation unit 207, and a weight correction unit 208. , An extreme value search convergence determination unit 209, a global search unit 210, a global search convergence determination unit 211, a constraint condition coefficient update unit 212, and a global optimization coefficient update unit 213.
[0035]
The global accelerated learning method of the neural network model according to the first embodiment of the present invention is a learning method in which the Kick Out method and the tunnel algorithm are fused, and the tunnel algorithm has slow convergence and it is difficult to adjust the parameter k. In order to solve the problem of, search is performed according to the following procedure. First, in order to find a local minimum, an extreme value search is performed using the Kick Out method of the equations (3) to (6). After a local minimum is found in the extremum search, a global search is performed based on the following procedure to find a point having an evaluation function value smaller than the local minimum.
[0036]
An evaluation function for performing a global search is defined as follows.
[0037]
(Equation 9)
Figure 0003597341
On the other hand, the Kick Out method is also applied to the global search.
[0038]
(Equation 10)
Figure 0003597341
Also, with the dynamic tunneling algorithm, the parameter k which could only be adjusted empirically j , Λ are adjusted as follows.
[0039]
(1) k j , Μ 0 , Α> 0, 0 <β <1.
[0040]
[Outside 6]
Figure 0003597341
(Equation 11)
Figure 0003597341
Without satisfying the condition (Equation (15)), an evaluation function in the extreme value solution is obtained by a global search.
[Outside 7]
Figure 0003597341
If,
(Equation 12)
Figure 0003597341
[Outside 8]
Figure 0003597341
(6) The following is executed as a starting point. If no point satisfying the expression (16) is found, the following (4) is executed.
[0041]
(Equation 13)
Figure 0003597341
[0042]
[Outside 9]
Figure 0003597341
If outside, μ k + 1 = Μ k , K = k + 1, and returns to (2). However, if the global search does not satisfy the global search stop criterion even if the global search is repeatedly executed a specified number of times, the process ends.
[0043]
The global acceleration learning method according to the second embodiment of the present invention is a sequential learning method including a correction method for individually correcting the weight value for each element when the weight oscillates. In the method of calculating the correction term in the learning method, a smoothing derivative representing a global gradient on the evaluation function surface and a gradient are used to determine the oscillation of the weight.
[0044]
In order to reduce the storage capacity and the amount of calculation as much as possible, the product of the gradient at the k-th iteration and the smoothed derivative at the (k-1) -th iteration is used as a criterion for updating the learning rate or as a criterion for correcting the weight. Further, by using the set value instead of the calculated value as the correction coefficient, the inner product operation used in the first embodiment can be eliminated, and the vibration of the weight can be individually corrected for each element.
[0045]
In the second embodiment, a learning rule corresponding to the kick out method used in the first embodiment will be described below.
[0046]
[Equation 14]
Figure 0003597341
However, the above is a learning rule in an extremum search, and a learning rule replaced with the following symbols is used in a global search.
[0047]
g k, i → e k, i … (23)
y k, i → z k, i … (24)
In the learning method according to the third embodiment of the present invention, in order to stably converge the learning, global information for all patterns is used as information of a learning rate and an evaluation function surface such as a gradient used as a criterion for adding a correction term. Therefore, the product of the smoothed derivatives at the k-th and (k−1) -th iterations is used. Further, appropriate correction is made possible by changing the correction coefficient according to the learning situation.
[0048]
The learning rules used in the third embodiment are shown below.
[0049]
[Equation 15]
Figure 0003597341
However, the above is a learning rule in an extremum search, and a learning rule replaced with the following symbols is used in a global search.
[0050]
g k, i → e k, i … (29)
y k, i → z k, i … (30)
Next, the operation will be described with reference to the flowcharts shown in FIGS.
[0051]
In FIG. 1, time-series data and the like measured using the sensor 102, the TV camera 103, and the like are input from the input unit 100, and the learning data is transferred to the data presentation unit 202 (step S11). Therefore, the time series data is temporarily stored in the data presentation unit 202. Further, a value such as a learning rate required for learning is read from the file reading device 101 and transferred to the variable initialization unit 201 (step S13).
[0052]
The variable initializing unit 201 sets initial values such as the weight of the neural network model and the learning rate (step S15), and the data presenting unit 202 generates the time-series data transferred from the sensor 102, the TV camera 103, and the like. Is presented to the neural network model one pattern at a time, the output value of the neural network model is calculated by forward calculation (step S17), and the evaluation reference value given in advance is calculated using the model output and the teacher data. Is calculated. Thereafter, a backward calculation of the neural network model is performed based on the evaluation reference value, and a gradient is calculated (step S19).
[0053]
The learning rate changing unit 203 updates the learning rate based on the gradient or the sign of the smoothing derivative (step S21), and the weight updating unit 204 updates the weight using the learning rate and the gradient described above, and updates the gradient. Is transferred to the gradient difference calculation unit 205 (step S23).
[0054]
The gradient difference calculation unit 205 calculates a gradient difference at k, k−1 repetition points using the gradient obtained by the data presentation unit 202, and transfers this information and the like to the correction term addition determination unit 206 (step S25).
[0055]
The correction term addition determining unit 206 calculates the product of the smoothing derivative in the first embodiment and the product of the gradient and the smoothing derivative in the second embodiment, based on the transferred gradient and the like. If the value is a negative value, the weight value and the like are transferred to the correction amount calculation unit 207. Alternatively, if the above value is a positive value, the weight value or the like is transferred to the convergence determining unit 209 (step S27).
[0056]
The correction amount calculation unit 207 calculates a weight correction amount based on the transferred weight, gradient difference, and the like in accordance with the instruction from the correction term addition determination unit 206, and transfers this to the weight correction unit 208 (step S29).
[0057]
The weight correction unit 208 corrects the value of the weight based on the transferred correction amount of the weight, and transfers the corrected weight to the convergence determination unit 209 (Step S31).
[0058]
The extreme value search convergence determination unit 209 determines whether the stop criteria for the extreme value search is satisfied using the weight transferred from the weight correction unit 208 or the weight update unit 204 (step S33).
[0059]
The global search unit 210 searches for a point where the evaluation function value E (w) becomes smaller by performing minimization on the newly set evaluation function E (w) (step S35).
[0060]
The global search convergence determination unit 211 determines whether a point found as a result of performing the global search satisfies a global optimization stop criterion (step S37).
[0061]
When a point having a smaller evaluation function value is found as a result of the global search, the constraint condition coefficient update unit 212 updates the constraint condition coefficient (step S39).
[0062]
When a point having a smaller evaluation function value is not found as a result of the global search, the global optimization coefficient updating unit 213 updates the global optimization coefficient (step S41). If the above process has not been completed after repeating the global search the specified number of times, the process ends.
[0063]
In the learning apparatus of each of the above embodiments, (1) all learning rates are set to the same value, and the values are fixed in the learning process (the increasing rate of the learning rate is set to 0, and the decreasing rate of the learning rate is set to 1). Or (2) when the smoothing differential coefficient is set to 0, that is, when only the gradient is used as the weight correction reference and the learning rate update reference, (3) the value of the inertia rate is set to 0. This includes the case of setting.
[0064]
Further, the learning apparatus of the second embodiment has the following features: (1) when increasing the correction coefficient, when adding a positive value to the correction coefficient, or when multiplying the correction coefficient by a value larger than 1, When decreasing the correction coefficient, when multiplying the correction coefficient by a value greater than 0 and less than 1, or when subtracting a positive value from the correction coefficient, (3) using the above (1) and (2) together The case where the correction coefficient is increased or decreased includes (4) the case where the correction coefficient is set to a constant value without being increased or decreased.
[0065]
【The invention's effect】
As described above, according to the present invention, it is possible to search for a global minimum for a problem in which a local minimum exists on the evaluation function surface, and in the local search, When a valley structure exists on the evaluation function surface, convergence can be accelerated, and a global minimum can be searched in a short time.
[0066]
Further, according to the present invention, it is possible to search for a global minimum even when a local minimum exists on the evaluation function surface, and time-series data and the like can be obtained with a small storage area and a small amount of calculation. Thus, learning of a task having an infinite number of learning data can be completed in a short time.
[0067]
Furthermore, according to the present invention, it is possible to search for a global minimum even when a local minimum exists on the evaluation function surface, and the learning data is infinite, such as time-series data. Learning of a plurality of existing tasks is completed in a short time, and stable convergence becomes possible.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a learning device that performs a global accelerated learning method for a neural network model applied to first to third embodiments of the present invention.
FIG. 2 is a diagram illustrating an example of a neural network model.
FIG. 3 is a flowchart showing a part of a procedure of a global acceleration learning method of the neural network model shown in FIG. 1;
FIG. 4 is a flowchart showing the rest of the procedure of the global acceleration learning method of the neural network model shown in FIG. 1;
[Explanation of symbols]
100 Input section
200 processing unit
201 Variable initialization section
202 Data presentation part
203 Learning rate update unit
204 weight update unit
205 Gradient difference calculator
206 Correction term addition judgment unit
207 Correction amount calculation unit
208 Weight correction unit
209 Extreme value search convergence judgment unit
210 Global Search Unit
211 Global search convergence judgment unit
212 constraint condition coefficient update unit
213 Global optimization coefficient update unit
300 output unit

Claims (3)

ファイル読み込み装置および時系列データを計測するセンサを有する入力部と、処理部と、出力部から構成される神経回路網モデルの大域的加速化学習装置であって、
前記処理部は、
神経回路網モデルの重みの初期値、学習率の初期値、学習率の増減率、平滑化微係数、慣性率、補正係数の初期値、極値探索および大域的探索の停止基準値、制約条件の係数、および大域的最適化に関する係数を前記入力部から転送されて初期設定する変数初期化手段と、
学習すべき入力データを前記入力部から転送されて一時的に蓄積し、該入力データの全パターンを神経回路網モデルに提示し、各入力パターンに対して神経回路網モデルの出力値を計算し、この出力値と教師データから計算される全パターンに対する評価基準値に基づいて現在の反復点(k反復目とする)における重みに関する評価関数の一次偏微分である勾配を計算するデータ提示手段と、
1から平滑化微係数を引いた値を前記データ提示手段で求めたk反復目の勾配に乗じ、この値と1反復前(k−1反復目とする)の平滑化微分に平滑化微係数を乗じた値を加算し、k反復目における平滑化微分値を計算して求める平滑化微分値算出手段と、
前記平滑化微分値算出手段で求めたk反復目の勾配およびk−1反復目の平滑化微分値を各要素毎に個別に乗じた演算結果が正値の場合、学習率に学習率の増加率を加えて学習率を増加させて各学習率を個別に更新し、演算結果が負値の場合、学習率に学習率の減少率を乗じて学習率を減少させ、各学習率を個別に更新する学習率更新手段と、
前記データ提示手段で求めた勾配、および前記学習率更新手段で求めた各重みに対応した個別の学習率を乗じた修正量を各要素毎に個別に計算し、この修正量にk−1反復目の重みの修正量に慣性率を乗じた修正量を各重みに個別に加えて、重みの修正量を計算する重み更新手段と、
前記データ提示手段で求めたk反復目の勾配とk−1反復目の勾配から勾配の差分(k反復目における勾配の差分とする)を計算し、この結果を補正項付加判断手段に転送する勾配差分計算手段と、
前記勾配差分計算手段で求めたk反復目の勾配の差分と1反復前のk−1反復目の勾配の差分の内積を計算し、この結果が負値の場合には補正項を追加すると判断して補正量計算手段に重みを転送し、前記内積の結果が正値の場合には補正量を付加しないと判断して極値探索収束判定手段に重みを転送する補正項付加判定手段と、
前記重み更新手段で求めた重みの修正量に、更にk反復目の勾配の差分とk反復目の重みの修正量の内積値をk反復目の勾配の差分の大きさ(ノルム)の2乗および2で除算した結果(スカラー量)にk反復目の勾配の差分を乗じた補正量を計算し、この結果を重み補正手段に転送する補正量計算手段と、
前記補正量計算手段から転送された重みの補正量に基づき、重みを要素毎に個別に更新し、前記極値探索収束判定手段に転送する重み補正手段と、
極値探索により探索された点である局所解を初期値として、局所解における評価関数の極値を取り除いた新たな評価関数を構成し、この評価関数を最小化することにより大域的探索を行う大域的探索手段と、
前記重み更新手段あるいは前記重み補正手段から転送された重みを用いて極値探索を行い、極値探索の停止基準を満たす場合には、極値探索を終了して大域的探索手段による処理を実行し、極値探索の停止基準を満たさない場合には、該停止基準を満たすまで前記データ提示手段による処理から反復実行させる極値探索収束判定手段と、
前記大域的探索手段による大域的探索の実行結果が大域的最適化の停止基準を満たしているか否かを判定し、該大域的最適化の停止基準を満たしている場合は処理を終了させる大域的探索収束判定手段と、
前記大域的収束判定手段により大域的最適化の停止基準を満たさないと判定されたとき、局所解における評価関数値よりも更に小さな評価関数値を有する解が探索できた場合は、制約条件に関するパラメータを調整した後、前記データ提示手段による処理以降の極値探索を実行させる制約条件係数更新手段と、
前記大域的収束判定手段により大域的最適化の停止基準を満たさないと判定されたとき、局所解における評価関数値よりも更に小さな評価関数値を有する解が探索できない場合は、大域的最適化に関する係数を調整した後、前記大域的探索手段による処理に戻り、大域的探索を反復実行し、指定された回数だけ反復実行した場合は処理を終了する大域的最適化係数調整手段
を有することを特徴とする神経回路網モデルの大域的加速化学習装置。
An input unit having a file reading device and a sensor for measuring time-series data, a processing unit, and a global acceleration learning device for a neural network model including an output unit,
The processing unit includes:
Neural network model weight initial value, learning rate initial value, learning rate increase / decrease rate, smoothed differential coefficient, inertia rate, correction coefficient initial value, extreme value search and global search stop reference values, constraints Coefficient, and a coefficient for global optimization, transferred from the input unit and initialized by a variable initialization means ,
Input data to be learned is transferred from the input section and temporarily stored , all patterns of the input data are presented to the neural network model, and the output value of the neural network model is calculated for each input pattern. Data presenting means for calculating a gradient which is a first-order partial differential of an evaluation function relating to the weight at the current iteration point (k-th iteration) based on the output value and evaluation reference values for all patterns calculated from the teacher data; ,
The value obtained by subtracting the smoothing derivative from 1 is multiplied by the gradient at the k-th iteration obtained by the data presentation means , and this value and the smoothing derivative before the first iteration (referred to as the (k-1) th iteration) are added to the smoothing derivative. And a smoothed differential value calculating means for calculating and obtaining a smoothed differential value at the k-th iteration,
If the result of multiplying the gradient of the k-th iteration and the smoothed differential value of the (k-1) th iteration obtained by the smoothing differential value calculation means individually for each element is a positive value, the learning rate is increased by the learning rate. Each learning rate is updated individually by increasing the learning rate by adding the rate.If the calculation result is a negative value, the learning rate is reduced by multiplying the learning rate by the reduction rate of the learning rate, and each learning rate is individually adjusted. Learning rate updating means for updating ;
The amount of correction obtained by multiplying the gradient obtained by the data presentation means and the individual learning rate corresponding to each weight obtained by the learning rate updating means is individually calculated for each element, and this correction amount is k-1 repeated. Weight update means for individually adding to each weight a correction amount obtained by multiplying the correction amount of the eye by the inertia rate, and calculating the correction amount of the weight ;
A gradient difference (hereinafter referred to as a gradient difference at the k-th iteration) is calculated from the gradient at the k-th iteration and the gradient at the (k-1) -th iteration determined by the data presentation means , and the result is transferred to the correction term addition determining means. Gradient difference calculating means ,
An inner product of the difference between the gradient at the k-th iteration obtained by the gradient difference calculator and the difference between the gradient at the (k-1) -th iteration before the first iteration is calculated, and when the result is a negative value, it is determined that a correction term is added. And transferring the weight to the correction amount calculating means, and when the result of the inner product is a positive value, determining that the correction amount is not added and transferring the weight to the extreme value search convergence determining means,
In addition to the weight correction amount obtained by the weight updating means , the inner product of the gradient difference at the k-th iteration and the weight correction amount at the k-th iteration is squared to the magnitude ( norm ) of the gradient difference at the k-th iteration. Correction amount calculating means for calculating a correction amount obtained by multiplying a result (scalar amount) obtained by dividing by 2 and 2 with a gradient difference at the k-th iteration , and transferring the result to weight correction means ;
Weight correction means for updating the weight individually for each element based on the correction amount of the weight transferred from the correction amount calculation means, and transferring the weight to the extreme value search convergence determination means;
Using the local solution, which is the point searched by the extremum search, as the initial value, construct a new evaluation function by removing the extremum of the evaluation function in the local solution, and perform a global search by minimizing this evaluation function Global search means ;
An extremum search is performed using the weight transferred from the weight updating means or the weight correction means , and when the stop criteria of the extremum search is satisfied, the extremum search is terminated and the processing by the global search means is executed. If the stop criterion for the extremum search is not satisfied, an extremum search convergence determination unit that repeatedly executes the processing from the data presentation unit until the stop criterion is satisfied ,
It is determined whether or not the execution result of the global search performed by the global search unit satisfies a stop criterion for global optimization. If the stop criterion for global optimization is satisfied, the process is terminated. Search convergence determining means ;
When the global convergence determining means determines that the stop criteria of the global optimization is not satisfied, if a solution having an evaluation function value smaller than the evaluation function value in the local solution can be searched, a parameter relating to the constraint condition is used. After adjusting, a constraint condition coefficient updating means for executing an extremum search after the processing by the data presenting means ,
When the global convergence determination means determines that the stop criteria of the global optimization is not satisfied, if a solution having an evaluation function value smaller than the evaluation function value in the local solution cannot be searched for, the global optimization after adjusting the coefficients, returns to processing by the global search means, performs repeated global search, a case where only iteration number of times specified to have a global optimization coefficient adjusting means for terminating the process A globally accelerated learning device for neural network models.
ファイル読み込み装置および時系列データを計測するセンサを有する入力部と、処理部と、出力部から構成される神経回路網モデルの大域的加速化学習装置であって、
前記処理部は、
神経回路網モデルの重みの初期値、学習率の初期値、学習率の増減率、平滑化微係数、慣性率、補正係数の初期値、極値探索および大域的探索の停止基準値、制約条件の係数、および大域的最適化に関する係数を前記入力部から転送されて初期設定する変数初期化手段と、
学習すべき入力データを前記入力部から転送されて一時的に蓄積し、該入力データの全パターンを神経回路網モデルに提示し、各入力パターンに対して神経回路網モデルの出力値を計算し、この出力値と教師データから計算される全パターンに対する評価基準値に基づいて現在の反復点(k反復目とする)における重みに関する評価関数の一次偏微分である勾配を計算するデータ提示手段と、
1から平滑化微係数を引いた値を前記データ提示手段で求めたk反復目の勾配に乗じ、この値と1反復前(k−1反復目とする)の平滑化微分に平滑化微係数を乗じた値を加算し、k反復目における平滑化微分値を計算して求める平滑化微分値算出手段と、
前記平滑化微分値算出手段で求めたk反復目の勾配およびk−1反復目の平滑化微分値を各要素毎に個別に乗じた演算結果が正値の場合、学習率に学習率の増加率を加えて学習率を増加させて各学習率を個別に更新し、演算結果が負値の場合、学習率に学習率の減少率を乗じて学習率を減少させ、各学習率を個別に更新する学習率更新手段と、
前記データ提示手段で求めた勾配、および前記学習率更新手段で求めた各重みに対応した個別の学習率を乗じた修正量を各要素毎に個別に計算し、この修正量にk−1反復目の重みの修正量に慣性率を乗じた修正量を各重みに個別に加えて、重みの修正量を計算する重み更新手段と、
前記データ提示手段で求めたk反復目の勾配とk−1反復目の勾配から勾配の差分(k反復目における勾配の差分とする)を計算し、この結果を補正項付加判断手段に転送する勾配差分計算手段と、
前記勾配差分計算手段で求めたk反復目の勾配とk−1反復目の平滑化微分を各要素毎に計算し、この結果が負値の場合には、前記重み更新手段で求めた重みの修正量に、現在の反復点における勾配の差分に固定値の補正係数を乗じた補正量を各要素毎に個別に各重みに加えるかまたは前記学習率更新手段で求めた勾配と平滑化微分の内積値が正値の場合には補正量を付加しない補正量計算手段と、
k反復目の勾配とk−1反復目の平滑化微分を乗算した結果が正値の場合は補正係数を減少し、乗算結果が負値の場合は補正係数を増加する補正係数増減手段と、
前記重み更新手段および補正量計算手段で求めた重みの修正量を用いて重みを要素毎に個別に更新する重み補正手段と、
極値探索により探索された点である局所解を初期値として、局所解における評価関数の極値を取り除いた新たな評価関数を構成し、この評価関数を最小化することにより大域的探索を行う大域的探索手段と、
極値探索の停止基準を満たす場合には、極値探索を終了して、前記大域的探索手段による処理を実行し、極値探索の停止基準を満たさない場合には、前記データ提示手段による処理に戻り、極値探索の停止基準を満たすまで前記データ提示手段による処理を反復実行する極値探索収束判定手段と、
前記大域的探索手段による大域的探索の実行結果が大域的最適化の停止基準を満たしているか否かを判定し、該大域的最適化の停止基準を満たしている場合は処理を終了させる大域的探索収束判定手段と、
前記大域的収束判定手段により大域的最適化の停止基準を満たさないと判定されたとき、局所解における評価関数値よりも更に小さな評価関数値を有する解が探索できた場合は、制約条件に関するパラメータを調整した後、前記データ提示手段による処理以降の極値探索を実行させる制約条件係数更新手段と、
前記大域的収束判定手段により大域的最適化の停止基準を満たさないと判定されたとき、局所解における評価関数値よりも更に小さな評価関数値を有する解が探索できない場合は、大域的最適化に関する係数を調整した後、前記大域的探索手段による処理に戻り、大域的探索を反復実行し、指定された回数だけ反復実行した場合は処理を終了する大域的最適化係数調整手段
を有することを特徴とする神経回路網モデルの大域的加速化学習装置。
An input unit having a file reading device and a sensor for measuring time-series data, a processing unit, and a global acceleration learning device for a neural network model including an output unit,
The processing unit includes:
Neural network model weight initial value, learning rate initial value, learning rate increase / decrease rate, smoothed differential coefficient, inertia rate, correction coefficient initial value, extreme value search and global search stop reference values, constraints Coefficient, and a coefficient for global optimization, transferred from the input unit and initialized by a variable initialization means ,
Input data to be learned is transferred from the input section and temporarily stored , all patterns of the input data are presented to the neural network model, and the output value of the neural network model is calculated for each input pattern. Data presenting means for calculating a gradient which is a first-order partial differential of an evaluation function relating to the weight at the current iteration point (k-th iteration) based on the output value and evaluation reference values for all patterns calculated from the teacher data; ,
The value obtained by subtracting the smoothing derivative from 1 is multiplied by the gradient at the k-th iteration obtained by the data presentation means , and this value and the smoothing derivative before the first iteration (referred to as the (k-1) th iteration) are added to the smoothing derivative. And a smoothed differential value calculating means for calculating and obtaining a smoothed differential value at the k-th iteration,
If the result of multiplying the gradient of the k-th iteration and the smoothed differential value of the (k-1) th iteration obtained by the smoothing differential value calculation means individually for each element is a positive value, the learning rate is increased by the learning rate. Each learning rate is updated individually by increasing the learning rate by adding the rate.If the calculation result is a negative value, the learning rate is reduced by multiplying the learning rate by the reduction rate of the learning rate, and each learning rate is individually adjusted. Learning rate updating means for updating ;
The amount of correction obtained by multiplying the gradient obtained by the data presentation means and the individual learning rate corresponding to each weight obtained by the learning rate updating means is individually calculated for each element, and this correction amount is k-1 repeated. Weight update means for individually adding to each weight a correction amount obtained by multiplying the correction amount of the eye by the inertia rate, and calculating the correction amount of the weight ;
A gradient difference (hereinafter referred to as a gradient difference at the k-th iteration) is calculated from the gradient at the k-th iteration and the gradient at the (k-1) -th iteration determined by the data presentation means , and the result is transferred to the correction term addition determining means. Gradient difference calculating means ,
The gradient at the k-th iteration and the smoothed derivative at the (k-1) -th iteration calculated by the gradient difference calculation means are calculated for each element. If the result is a negative value, the weight of the weight determined by the weight update means is calculated. A correction amount obtained by multiplying the difference of the gradient at the current repetition point by a correction coefficient of a fixed value to the correction amount is individually added to each weight for each element, or the gradient and the smoothed derivative obtained by the learning rate updating means are calculated . A correction amount calculating unit that does not add a correction amount when the inner product value is a positive value;
correction coefficient increasing / decreasing means for decreasing the correction coefficient when the result of multiplying the gradient at the k-th iteration and the smoothing differentiation at the k-1th iteration is a positive value, and increasing the correction coefficient when the result of the multiplication is a negative value;
Weight correction means for individually updating the weight for each element using the correction amount of the weight determined by the weight update means and the correction amount calculation means ,
Using the local solution, which is the point searched by the extremum search, as the initial value, construct a new evaluation function by removing the extremum of the evaluation function in the local solution, and perform a global search by minimizing this evaluation function Global search means ;
When the stop criterion for the extreme value search is satisfied, the extreme value search is terminated, and the processing by the global search means is executed. When the stop criterion for the extreme value search is not satisfied, the processing by the data presentation means is performed. Returning to the extreme value search convergence determination means repeatedly performing the processing by the data presentation means until the stop criteria of the extreme value search is satisfied,
It is determined whether or not the execution result of the global search performed by the global search unit satisfies a stop criterion for global optimization. If the stop criterion for global optimization is satisfied, the process is terminated. Search convergence determining means ;
When the global convergence determining means determines that the stop criteria of the global optimization is not satisfied, if a solution having an evaluation function value smaller than the evaluation function value in the local solution can be searched, a parameter relating to the constraint condition is used. After adjusting, a constraint condition coefficient updating means for executing an extremum search after the processing by the data presenting means ,
When the global convergence determination means determines that the stop criteria of the global optimization is not satisfied, if a solution having an evaluation function value smaller than the evaluation function value in the local solution cannot be searched for, the global optimization after adjusting the coefficients, returns to processing by the global search means, performs repeated global search, a case where only iteration number of times specified to have a global optimization coefficient adjusting means for terminating the process A globally accelerated learning device for neural network models.
前記平滑化微分値算出手段は、1から平滑化微係数を引いた値をk−1反復目の平滑化微分値に乗じ、この値と平滑化微係数を勾配に乗じた値を加算し、k反復目における平滑化微分値を各要素毎に個別に計算する手段を有し、
前記学習率更新手段は、前記平滑化微分値算出手段で求めたk反復目の平滑化微分およびk−1反復目の平滑化微分値を各要素毎に個別に乗じ、この演算結果が正値の場合、学習率に学習率の増加率を加えて学習率を増加させ、演算結果が負値の場合、学習率に学習率の減少率を乗じて学習率を減少させるように学習率を要素毎に個別に更新する手段を有し、
前記補正量計算手段は、前記平滑化微分値算出手段で求めたk反復目の平滑化微分とk−1反復目の平滑化微分を各要素毎に乗算し、この結果が負値の場合には、前記平滑化微分値算出手段で求めた重みの修正量に、k反復目における勾配の差分に可変の補正係数を乗じた補正量を求めるかまたはk反復目およびk−1反復目の平滑化微分の乗算結果が正値の場合には補正量を計算しない手段を有し、
前記補正係数増減手段は、k反復目の平滑化微分とk−1反復目の平滑化微分を乗算した結果が正値の場合は補正係数を減少し、乗算結果が負値の場合は補正係数を増加する手段を有することを特徴とする請求項2記載の神経回路網モデルの大域的加速化学習装置。
The smoothing differential value calculating means multiplies a value obtained by subtracting the smoothing differential coefficient from 1 into a smoothing differential value at the (k-1) th iteration, and adds a value obtained by multiplying this value by a gradient of the smoothing differential coefficient, means for individually calculating the smoothed differential value at the k-th iteration for each element,
The learning rate updating means individually multiplies the smoothed differential value at the k-th iteration and the smoothed differential value at the (k-1) th iteration obtained by the smoothed differential value calculating means for each element, and calculates the positive value In the case of, the learning rate is increased by adding the learning rate increasing rate to the learning rate, and when the calculation result is a negative value, the learning rate is multiplied by the learning rate decreasing rate to reduce the learning rate. It has means to update individually for each,
The correction amount calculating means multiplies, for each element, the smoothing derivative at the k-th iteration and the smoothing derivative at the (k-1) th iteration obtained by the smoothing differential value calculating means , and when the result is a negative value, Calculates the correction amount obtained by multiplying the correction amount of the weight obtained by the smoothing differential value calculating means by the variable correction coefficient to the gradient difference at the k-th iteration, or performs the smoothing at the k-th iteration and the (k-1) -th iteration. Means for not calculating the correction amount when the multiplication result of the generalized derivative is a positive value,
The correction coefficient increasing / decreasing means decreases the correction coefficient when the result of multiplying the smoothed derivative at the k-th iteration and the smoothed derivative at the (k-1) -th iteration is a positive value. 3. The global accelerated learning device for a neural network model according to claim 2, further comprising means for increasing the number of learning operations.
JP14433197A 1997-06-02 1997-06-02 Globally accelerated learning method for neural network model and its device Expired - Fee Related JP3597341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14433197A JP3597341B2 (en) 1997-06-02 1997-06-02 Globally accelerated learning method for neural network model and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14433197A JP3597341B2 (en) 1997-06-02 1997-06-02 Globally accelerated learning method for neural network model and its device

Publications (2)

Publication Number Publication Date
JPH10334070A JPH10334070A (en) 1998-12-18
JP3597341B2 true JP3597341B2 (en) 2004-12-08

Family

ID=15359633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14433197A Expired - Fee Related JP3597341B2 (en) 1997-06-02 1997-06-02 Globally accelerated learning method for neural network model and its device

Country Status (1)

Country Link
JP (1) JP3597341B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038216A (en) * 2003-07-16 2005-02-10 Shinka System Sogo Kenkyusho:Kk Parameter adjustment device
JP5715004B2 (en) * 2011-08-11 2015-05-07 株式会社神戸製鋼所 Optimal solution search device
CN104036320B (en) * 2014-05-30 2017-02-08 国家电网公司 Dynamic economical dispatch method for microgrid system on the basis of improved particle swarm optimization
KR102606825B1 (en) 2017-09-13 2023-11-27 삼성전자주식회사 Neural network system reshaping neural network model, Application processor having the same and Operating method of neural network system
CN119048284B (en) * 2024-10-30 2025-02-11 中交一公局电气化工程有限公司 Temporary electricity safety management method and system based on intelligent power supply

Also Published As

Publication number Publication date
JPH10334070A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
CN100437396C (en) PID parameter adjustment equipment
KR102811260B1 (en) System and method to provide balanced pruning of weights of a deep neuaral network
CN109190233B (en) A structure topology optimization method
CN110501906B (en) Mutual coupling fractional order chaotic electromechanical transducer acceleration self-adaptive fuzzy control method
Baker A learning-boosted quasi-newton method for ac optimal power flow
CN109086936A (en) A kind of production system resource allocation method, device and the equipment in intelligence workshop
Li et al. Identification of nonlinear process described by neural fuzzy Hammerstein-Wiener model using multi-signal processing
CN117114144A (en) Artificial intelligence-based prediction method and system for rice salt-alkali tolerance
JP3597341B2 (en) Globally accelerated learning method for neural network model and its device
Kajiwara et al. Experimental verification of a real-time tuning method of a model-based controller by perturbations to its poles
CN115229798A (en) A force-impedance control method combining feedforward compensation and variable damping modeling
CN109062040A (en) Predictive PID method based on the optimization of system nesting
CN117975135A (en) Image classification method based on deep learning PID optimizer
Liu et al. A combined CKF-PSR method for random noise compensation of vibratory gyroscopes
CN108181809B (en) Parameter self-tuning method based on systematic error for MISO compact model-free controller
CN112036088A (en) A Superheated Steam Temperature Prediction Method Based on Multi-Innovation Stochastic Gradient Optimization
CN105224770B (en) High speed light loading mechanism nonlinear dynamic system structural topological optimization method
JP3276035B2 (en) A sequential accelerated learning method for neural network models
Su et al. Processing element architecture design for deep reinforcement learning with flexible block floating point exploiting signal statistics
Sharma et al. Multi-time scale smoothed functional with Nesterov’s acceleration
JPH0554014A (en) Learning device for neural network
JP2674167B2 (en) Process control method using neural network model
Hao et al. Neural network-enhanced $ hr $-adaptive finite element algorithm for parabolic equations
Tang et al. Research on the application of machine learning algorithms based on BP neural networks in the field of machine vision
JPH10334071A (en) Method and device for parallel generalized learning for neural circuit network model

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees