[go: up one dir, main page]

JP3352701B2 - 制御方法とその装置 - Google Patents

制御方法とその装置

Info

Publication number
JP3352701B2
JP3352701B2 JP53559498A JP53559498A JP3352701B2 JP 3352701 B2 JP3352701 B2 JP 3352701B2 JP 53559498 A JP53559498 A JP 53559498A JP 53559498 A JP53559498 A JP 53559498A JP 3352701 B2 JP3352701 B2 JP 3352701B2
Authority
JP
Japan
Prior art keywords
value
control
integer
sgn
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP53559498A
Other languages
English (en)
Other versions
JPWO1999046647A1 (ja
Inventor
剛彦 二木
弘男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adtex Inc
Original Assignee
Adtex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adtex Inc filed Critical Adtex Inc
Priority claimed from PCT/JP1998/002968 external-priority patent/WO1999046647A1/ja
Publication of JPWO1999046647A1 publication Critical patent/JPWO1999046647A1/ja
Application granted granted Critical
Publication of JP3352701B2 publication Critical patent/JP3352701B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】 技術分野 目標値,操作値,制御値及び可知的外乱の設定値と測
定値より応答関数を用いて直接操作値を算出するデジタ
ル予測制御で、操作値の設定可能な水準数が少ない為に
分解能が不十分な操作手段を用いた場合に、制御値の脈
動(リップル)を抑え、制御値を目標値に一致させる値
として求めた操作値を修正することで恒常的な偏りをな
くす方法を提供します。
背景技術 制御装置は、目標値S,制御値R及び外乱値(A,B:用い
ない場合もある)を入力し、これらと操作値Cとを用い
て記憶装置をもつ演算装置でSとRとを一致させるCを
求めて、その結果Cを出力します。
実際の制御では、観測や設定によって得られる入力値
を、前処理してから制御の演算をし、得られた数値を後
処理してから出力します。
前処理の例として、熱電対の起電力を温度に換算する,
電圧値や電流値を電力値に換算する,信号/雑音比を大
きくするために統計処理をする等があります。
後処理の例として、計算結果の電力値を交流の位相値に
換算する,実数値を四捨五入して整数値にする等があり
ます。
本発明に関わる後処理を除いて、この前処理や後処理
は、慣例に従い制御の演算で用いる値を入出力すると言
う表現で、換算値の入出力をも意味することにします。
最近では、より精密で高速な制御を実現するために、
従来のPID制御で代表される古典制御に代り、近代制御
も用いられています。
近代制御では、応答関数を求め、応答関数によって予測
される制御値を目標値に一致/接近させる操作値を算出
します。
この予測や算出の計算は、演算装置(コンピュータ)
の発達に伴い離散(デジタル)数を取り扱うようになり
ました。
デジタル化により設定可能な操作値(水準)も有限個に
なります。
操作値が0と1しかないON/OFF制御は、設定値が2水準
の操作手段です。制御周期が10秒の制御系で、整数単位
の秒数だけONさせる操作方法は11水準の操作手段です。
操作値をこのいずれかの水準に固定すると、制御値もこ
の水準によって決まる値(到達値)に到達します。到達
値数と設定水準数とは等しくなります。最小の設定値に
対応する到達値が、一つの限界値であり、最大の設定値
に対応する到達値が他の限界値です。この両限界値の間
が制御可能範囲です。制御可能範囲を設定水準数で除し
た値が、制御値の分解能です。
便宜上、この操作水準や到達値を一続きの整数値で表し
ます。
分解能を23.4とすれば、23.4を単位とした整数で表現し
ます。操作対象が高温、不安定、発泡する、扱える材質
に制限があるなどで十分な設定水準数を持つ操作手段
(分解能が高い操作手段)が不可能に近いか、高価で使
用できない場合も少なくありません。操作値を算出する
のに制御値や目標値だけでなく可知的外乱が過去の操作
値も用いる近代制御理論では、観測が可能(可観測)
か、制御が可能(可制御)かと言う視点で議論します。
そして、分解能が低い操作手段による、分解能以上の制
御は、可制御でないとされ、処方箋がありませんでし
た。
次に伝達方程式で予測される制御値を目標値に一致/
接近させる方法を説明しますが、従来の技術に限定すれ
ば、本質的に、測定値や設定値の分解能が高い場合の処
方箋です。
制御には、開始時点がありますし、適当な近似の範囲
では無限の過去にまで言及する必要がありません。そこ
で、過去から現在を通り未来に続く両無限数列として、
次のA)B)のみ(左正則的数列:以後単に数列と言
う)を考えます。
A)自身は0ではないが、その項よりも過去側がすべて
0になる項(初項と言い、その項番号を初位と言う)が
ある数列(左正則数列) B)すべての項が0である数列(0で表す) 自身は0ではないが、その項よりも未来側がすべて0に
なる項(終項と言い、その項番号を終位と言う)がある
数列を有限数列と言います。
初項から終項迄の項の数を項数(=終位−初位+1)と
言います。
加法(+),減法(−),乗法(・),除法(/)を定
義します。
a+b=b+a≡{an+bn} a−b≡{an−bn} (初位、終位をS,Eを付して表す) a・b=b・a={cn}≡{…,0,ccS=aS+bS=aaSbbS,…, cn=aaSbn-aS+aaS+1bn-aS-1+…+an-bSbbS,…} a/b={cn}≡{…,0,ccS=aS−bS=aaS/bbS, caS-bS+1=(aaS+1−bbS+1caS-bS)/bbS,…, caS-bS+m=(aaS+m−bbS+1caS-bS+m-1−…−bbS+mcaS-bS)/bbS,…} 乗法は畳み込みで定義され、除法はこれを初項側から解
いたものです。第0項以外がすべて0となる数列k=
{…,0,0,0,k0=k,0,0,0,…}を第0項の数値(スカラ
ー)と同一視し、その数値kで数列を表します。数列0
もこの例ですが、1は、第0項が1で他のすべての項が
0の数列を表します。0と1はそれぞれ加法と乗法の単
位元になります。
a+0=a a・1=a この同一視により、スカラー積が乗法で定義されます。
k・a={k・an} 正負の累乗を乗法と除法の繰り返しで実数と同じように
定義します。
a0≡1 ak+1≡a・ak ak-1≡ak/a ただし、a≠0 数列演算は、0による除算ができず、分配法則、結合法
則、加乗法の交換法則を満たし、普通の代数式の計算と
同じように計算できます。
また、a・b=0であれば、a=0又はb=0が成り立
ちます。
普通の代数式同様に、乗法記号・が省略されることがあ
ります。
第1項が1で他のすべての項が0の数列をΛで表しま
す。
Λのm乗は第m項だけが1で他の項は0となります。
Λの逆数1/Λ=Λ-1が、Z変換のZ演算子と同じ作用を
します。
初項が1の数列Δ≡1−Λ,Σ=Δ-1と任意の数列aと
の積が、aの差分,和分になります。
Δ={…,0,0,Δ=1,−1,0,0,…} Σ={…,0,0,Σ=1,1,1…} Δ・a={an−an-1} Σ・a={aaS+aaS+1+…+an} (aSはaの初位) 次に、数列を用いて、伝達方程式を表現します。
伝達方程式は、原因(操作値c,外乱a,b等)と結果(制
御値r)とを関係づける方程式です。何の変化もないこ
とを0で表現するために、原因や結果は、各時点毎の差
分(変化量)を表すものとします。
a={…,a-1,a0,a1,…},b={…,b-1,b0,b1,…}, c={…,c-1,c0,c1,…},r={…,r-1,r0,r1,…}, (外乱は2個と限らないが、便宜上2個として説明しま
す。操作値や制御値が複数の場合もありますが簡単のた
め1個ずつで説明します) 伝達方程式の線形性と重ね合わせの原理を仮定します。
原因a,b,cが第n時点に起こした変化an,bn,bnがi時点
後にhi・an,gi・bn,fi・cn,の効果を引き起こせば、第
m時点で起こる変化rmが、rm=h1・am-1+h2・am-2+…
+g1・bm-1+g2・bm-2+…+f1・cm-1+f2・cm-2+…と
なります。この式で、第2項目は、2時点前に起きたa
の変化(am-2)の2時点後の効果(h2)が第m時点→rm
で実現することを表します。
このh,g,fのように変化量で表した原因と結果を結ぶ数
列を(パルス)応答関数と言います。
結果は原因より遅れるので、応答関数の初位が1以上に
なります。
f={…,0,f1,f2,f3,…} g={…,0,g1,g2,g3,…} h={…,0,h1,h2,h3,…} この伝達方程式を数列を使って表すと、次のようになり
ます。
r=f・c+g・b+h・a (第1式) この第1式は、直観的にわかりやすい形をしています
が、応答関数が有限数列でないので、制御が進むにつれ
て、どんどん過去に遡った計算が必要になります。(a,
b,cの初位をaS,bS,cSとする) rm=f1・cm-1+f2・cm-2+…+fm-CS・cCS +g1・bm-1+g2・bm-2+…+gm-bS・bbS +h1・am-1+h2・am-2+…+hm-aS・aaS そこで、エネルギー定理「有限のエネルギーでは、有限
の仕事しかできない。即ち、原因の効果はやがて減衰し
て変化が止む。」を使います。例えば、100Wの電熱器の
入電が1秒前か2秒前かで温度の違いがあっても、一時
間前と十時間前との違いを測定することはできません。
この定理を使って、初位が1以上の有限数列d',f',g',
h'(終位をdE,fE,gE,hEとする)で応答関数f,g,hを次式
で近似します。
f=f'/(1−d'),g=g'/(1−d'),h=h'/(1−d') (換算式) 応答関数は一定時間経過後指数関数的に減少して0に近
づきますので、fE,gE,hEが十分大きければ、d'の終位dE
を1にできます。
これらの有限数列を使うと、伝達方程式が次式になりま
す。
r=f'・c+g'・b+h'・a+d'・r (第2式) d',f',g',h'が応答関数としての条件(初位1以上)を
満たしているので、この方程式を、外部原因c,b,aが結
果でもある原因(内部原因)rに変化すると解釈するこ
とができます。
内部原因は、外部原因を溜め込む作用で、記憶,蓄積,
慣性,共鳴、裾引き等の現象の原因として知られていま
す。
内部原因による効果を、記憶効果と呼ぶことにします。
すると、d'は記憶効果の応答関数、f',g',h'は記憶効果
を考慮した応答関数と考えることができます。
Xについての次の方程式の根を記憶効果d'と極と言いま
す。
XdE−d'1・XdE-1−d'2・XdE-2−…−d'dE=0 記憶効果の極は、制御系の減衰状態を表します。
発振しない制御系では記憶効果の極が正で1未満になり
ます。
d',f',g',h';f,g,hは、パルス応答関数になっていま
す。
この第2式の応答関数は有限数列なので、常に一定の時
点数だけの過去値を用いて計算できます。第2式の第n
項は次のようになっています。
rn=f'1・cn-1+…+f'fE・cn-fE +g'1・bn-1+…+g'gE・bn-gE +h'1・an-1+…+h'hE・an-hE +d'1・rn-1+…+d'dE・rn-dE 応答関数d',f',g',h'をこの方程式に基づいた、最小自
乗法,有限同定法,逐次同定法などにより求めます。
高橋安人著 システムと制御 上、下 岩波書店 19
78年 応答関数f,g,hは、d',f',g',h'と換算式とを用いて算出
します。
伝達関数(応答関数)を用いて、予測される制御値を
目標値sに一致又は接近させる操作値を決定する方法は
次の通りです。
パルス応答関数の和分はステップ応答関数になり、原因
や結果の変化(差分)の和分が実値(測定や設定の生の
値)になります。
パルス応答関数と原因や結果の変化を英小文字で、ステ
ップ応答関数と原因や結果の実値を英大文字で表すこと
にします。
(例) R≡Σ・r r=Δ・R=R−Λ・R R=Λ・R+r F≡Σ・f=Σ・f'/(1−d') Λ・Rは、Rよりも1時点前の数列を意味します。
目標値や制御値を差分で表現するより、実値(差分の和
分)で表現したほうが分かりやすいので、第1式,第2
式を書き換えます。
R=F・c+G・b+H・a (第3式) R=(Λ+d'・Δ)・R+f'・c+g'・b+h'・a (第4式) 通常、制御周期毎に、現時点を表すパラメータmを1つ
大きくするか、現地点を第0項に固定して原因と結果の
数列を1項ずつずらします。
第m項でも良いのですが、以後、現時点を第0項で表わ
します。
cを前時点を最後に今後変化させない(無操作)時の操
作値(現在と未来は0),Rを現在迄の測定値と無操作時
の予測を表す制御値、c'を現在以降の操作値(過去は
0),R'をcに続いてc'を実施した場合の制御値(過去
と現在は測定値,未来は予測値)とします。
すると、第4式で無操作時の予測値Rが、第1時点より
必要な時点迄、逐次計算できます。
外乱値には、測定できる外乱であれば、過去値や現在値
が、計画的に引き起こされる外乱であれば過去値,現在
値,未来値(計画値)を利用することができます。第4
式でこの可知的外乱の効果が除去できます。
PID制御では、このような可知的外乱の除去(フィード
フォワード)は難しく、多くの試行錯誤を必要としまし
た。
必要な時点は、有限整定法やプログラム整定法では第fE
+dE時点迄で、最適制御法では最適条件の選択に依存し
ます。
有操作時は、第3式でR→R',c→c+c'として第5式を
得ます。
R'=F・(c+c')+G・b+H・a R'=R+F・c' F・c'=R'−R (第5式) 整定時点nでは、有操作時の予測値R'が目標値Sに等し
くなります。
Fn・c'0+…+Fn-CE・c'CE=Sn−Rn (F・c')=(S−R) (n=整定時点) (第6式) 有限整定法は、目標値Sが現時点以降不変とする方法
で、プログラム整定法は、変化を認める方法です。(こ
の両法を多点整定法と言う) 制御値c'を求めるのに、多点整定法では、第6式を未知
数c'の連立一次方程式と見、最適制御法では、第6式を
最小自乗法(最適条件と考える重みと整定時点とを選択
する)の観測方程式と見ます。
言い換えれば、制御値と目標値とを、多点整定法では一
致させ、最適制御法では接近させています。
制御値を目標値に一致/接近させることを整定すると言
い、一致したことを整定したと言います。
これらの方法の変形も当然考えられます。
第6式で、F・c'の左辺の第fE+dE時点以降が、第fE時
点〜第fE+dE時点の左辺と一次従属になっています。
この結果、連立一次方程式として操作値を求める方法で
は、第fE+dE時点以前のデータを用いることになりま
す。
それで、通常、多点整定法で、整定時点を第fE時点〜第
fE+dE時点に選び、操作値c'の終項をdEにして方程式と
未知数との数を一致させます。
第6式を元に、操作値c'を求めたら、直近の操作値C0
C-1+c'0として出力し、次の制御周期に移ります。
発明の開示 低分解能(少水準数)の操作手段を選択する場合に
は、目標値を挟む水準(両側水準)間を往復することに
よって生じる制御値の脈動(リップル)はある程度止む
を得ないが、制御値の時間的平均値が恒常的な差(偏
り)を生じることは、避けなければなりません。
Aの温度を制御したい場合に、Aに供給する冷却媒体の
出口温度を制御する場合のように、間接的な制御をする
場合には、偏りは大きな問題ですが、脈動は小さな問題
に過ぎないのが普通です。この場合には、脈動の許容値
が大きくなります。
有限整定法によって整定(制御値が目標値に一致するこ
と)していく様子を、a=0,b=0;dE=1,fE=1とした
場合をFIG.1,2に示します。FIG.1は出力値COを四捨五入
しただけの場合です。
目標値が、水準nと水準n+1との間に設定されたとき
に水準n−1〜n+1の間の各点a〜gから、制御によ
ってどのように変化するかを示しています。このよう
に、操作値を整数化しただけでは、どの点から開始して
も、恒常的な偏りζを生じます。
この例では、各到達水準±0.5(1−d'1)の間に目標値
があると恒常的な偏りを生じます。d'1=0.5とすると全
設定範囲の50%にもなります。
通常、操作値のステップ応答関数F=Σ・fは、単純増
加関数になり、|S−R|<0.5・FfEが不感帯(偏りを
生じる目標値の範囲)になります。
これでは、目標値として小数点以下の部分が意味を持ち
ません。
このように、低い分解能の操作手段に単に整数化して出
力したのでは、高い精度が望めません。
この問題を以下のようにして解決します。
まず、近代制御法の常套手段ですが、制御周期tで予測
測定で操作値を適当に変化させ、応答関数d',f'を求め
ます。可知的外乱の応答関数g',h'も知るには、その変
化もあるようにしなければなりません。操作値について
は完全な操作値の変化幅でのパルス的変化または階段的
変化が試行されます。この様子を観察し、例えば最小自
乗法で応答関数を求めます。この応答関数を利用して、
次の手段で脈動を所望値以下にします。絶対値が最小の
記憶効果の極をd″、許容できるリップルの大きさを
ε、 Y=log(1−ε)/log(|d″|) とするとき、新しい制御周期をY・t以下の値(X・
t)に選びます。
d″が0.8〜0.98であれば、制御周期をあまり短くせず
に、リップルを我慢するのも選択の一つです。
このようにして選んだ制御周期での応答関数を、拡張Z
変換法を応用して計算するか、再度応答関数を測定し
て、応答関数の初期値にします。
この応答関数の初期値を用いて、制御を開始します。
拡張Z変換法の応用としては、次の方法を用いることが
できます。
記憶効果の極をda,db,…,dzとするとき、変更後の周期
でのd'を d'=1−(1−da XΛ)・(1−db XΛ)…(1−dz XΛ) とします。
f',g',h'については、Σ・f',Σ・g',Σ・h'のグラフ
(FIG.3)を描き、滑らかな曲線で近似した後、新しい
制御周期(1X,2X,…)に対応する時点での値を読みとり
ます。
他の方法を用いて応答関数を変換しても結構です。
しかし、このような変換は目安にとどめ、再測定するの
が確実です。
このような制御周期を選ぶことにより、制御値の脈動
(リップル)が所望値以下になります。ただし、どの図
も脈動を見やすくするために、制御周期としてやや不適
な場合を示しています。
次いで、本番で好みの同定法(有限同定法,最小自乗
法,逐次同定法,…)で応答関数を修正します。
適時、不揮発記憶に記録し、次回の制御開始時の初期値
として使えるようにしておくと、学習効果が生じ、次回
はより良い状態で制御を開始することができます。
また、好みの制御方法(有限整定法,プログラム整定
法,最適制御法,‥‥)で、直近の操作値C0を求めま
す。
この操作値C0=C-1+c'0を整数化して出力する前に、
前時点までの操作値を整数化C-1したときの端数を積分
(累積加算)した積算値δ δ=k・δ+C-2+c'-1−C-1 0<k≦1 左辺のδは現時点での値、右辺のδは前時点での値。
と直近の操作値の符号sgn(c'0) sgn(x)はxの正,0,負で−1,0,1の値を採る関数、 sgn(0)の値を+1又は−1とすることもできる。
との一次式で表される補正値η η=p・δ+q・sgn(c'0) 0≦p,q p+2・q≦1 補正値ηが非負係数p,qの一次式で表されるηの単純
増加関数であれば、その機能は等価なものになる。
を加えた数値C0+η=C-1+c'0+ηを整数化して出力し
ます。
C0=Int(C-1+c'0+η) Int(x)はxを整数化する関数で、四捨五入を用い
る。
p≠0にすると、整数化の関数として、四捨五入,切
り捨て,切り上げ等のどのような関数でもほぼ等価な手
段になります。
整数化の端数の積分δと直近の操作値の符号sgn(c'0
は、PID制御の積分項と比例項と同様の作用で両側水準
間の遷移を促します。
この結果、操作値が両側水準間を遷移し、制御値が目標
値の上下を脈動し、制御値の時間的な平均値が目標値に
一致するようになります。
FIG.2に、FIG.1の条件でこの遷移をさせた場合を示しま
す。一巡伝達で積分項が位相を回転させることで、比例
項はゲインを大きくすることで発振原因を作りますの
で、p+2・q≦1の範囲の非負数p,qを選びます。
1以下の正数kは、1未満にすることで、位相の回転を
減らせます。
微小発振程度か、発振が起きなければ、kを1にしても
結構です。
両側水準以外への遷移になる場合には、補正の必要があ
りません。
補正をしない場合は、 C0=Int(C-1+c'0) となります。
操作値の変化C0−C-1の絶対値が2以上になる場合に
は、両側水準以外への遷移です。
これを判断基準とすることもできます。
雑音がある場合には、補正がなくとも両側水準への遷移
が発生します。しかし、この雑音による遷移だけでは、
少し長い時間幅で平均した値の変動(ユラギ)が大きく
なります。
小さめの値のp,qを用いることで、このユラギを小さく
できます。
直近の操作値C0を出力することで、この制御周期を終了
し、制御周期の更新手続きをし、次の制御周期(時点)
に移ります。
なお、操作値を観測している場合には、設定した操作値
と異なった数値が観測される場合があります。
この場合には、測定された値を採用します。
この場合、前周期(前時点)での操作値C-1が、整数値
であるとは限らなくなります。
この場合、誤差の積分を測定したC-1で訂正します。
δ=k・δ+C-2+c'-1−C-1 0<k≦1 図面の簡単な説明 FIG.1は、操作値を整数化しただけで、分解能の低い操
作手段に出力した場合のグラフです。
a〜gのいずれからも、目標値Sと恒常的な差ζを生じ
ます。
n−1,n,n+1は制御水準、0〜7は制御時点を表しま
す FIG.2は、本発明による操作状態を表すグラフです。
a〜gのいずれからの変化も、目標値Sを挟んだ脈動を
繰り返します。
n−1,n,n+1は制御水準、0〜7は制御時点を表しま
す FIG.3は、制御周期を変更する時の、グラフを用いた応
答関数の修正方法を示します。
FIG.4は、応答関数の終位を判断するグラフを表しま
す。
発明を実施する場合の最良の形態 制御の実態は様々であり、常に最良の形態というもの
はありません。そこで、dE=1とでき、予知できる外乱
が1つある場合を説明します。予め、制御周期tで、伝
達方程式d',f',g'の概形を求めます。
dE=1の場合、d″=d'1=daが唯一の極になります。
特殊な場合を除くと、d″が1以上になる場合は制御周
期が短かすぎる場合であり、負になる場合は測定時間が
短すぎる場合です。
正常な場合には、1未満の正数となります。
どうしても、このようにならなければ、1<dEにせざる
を得ません。
許容リップルをεとするとき、本番の制御周期Tを T≦t・log(1−ε)/log(d″)にします。
FIG.3のようにf',g'を滑らかな曲線で近似し、周期Tで
の値を読み取り、f'n=0,g'm=0とみなしてよい項番号
n,mを求め、このn,mをf',g'の終位にします。
ピーク値の1/5以下になれば、終位にしても実用上の差
し支えはほとんどありません。
したがって、FIG.4のような例では、終位を4にしま
す。
ここでは、説明の都合上f',g'の終位を2,3とします。
新しい制御周期で、再度応答関数を測定して、本番の初
期値にします。
好みの同定法(有限同定法,最小自乗法,逐次同定法,
‥‥)で応答関数を修正し、適時、不揮発記憶に記録
し、次回の制御開始時の初期値として使えるようにして
おきます。
d',f',g'を換算して、f,g,Fを求めておきます。
また、好みの制御方法(有限整定法,プログラム整定
法,最適制御法,‥‥)で、直近の操作値C0を求めま
す。
有限整定法を選択したとすれば、 r0=R0−R1 R1=R0+d'1・r0+f'2・c-1+f'3・c-2+g'1・b0+g'2・b-1+g'3・b-2 R2=R1+d'1・(R1−R0)+f'3・c-1+g'1・b1+g'2・b0+g'3・b-1 R3=R2+d'1・(R2−R1)+g'1・b2+g'2・b1+g'3・b0 により、無操作時のR1〜R4を推測し、連立方程式 F2・c'0+F1・c'1=S2−R2 F3・c'0+F2・c'1=S3−R3 を解いて、c'0={F2(S2−R2)−F1(S3−R3)}/{F
2 2−F1F3}を求めます。
補正方法として、積分のみを利用することにします。す
なわち、 CC=C-1+c'0 C0=Int(CC) C0<C-1−1またはC-1+1<C0であれば、η=0 しからざれば、C0=Int(CC+η) η=k・η+CC−C
0 で修正、更新して、C0を出力し、次周期の操作値C-1←C
0にします。
kは、k=1,k=0.9,…と少しずつ減らして様子を見ま
す。
改善が認められなければk=1とし、改善が認められれ
ば、最適値と思われる値にします。
このように、制御周期の選択と、操作値を修正すると
いう簡単な方法で安価な、場合によっては故障しにくく
確実な手段である、設定水準数の少ない操作手段を用い
て、精度の高い制御が可能になります。
冷媒を使った温度制御に応用して、冷媒供給を開時間
を制御するだけで従来のインバータとパルス弁を用いた
以上の精度が実現しました。
冷媒用の制御弁は、流量を制御する部分で発泡し、流量
にヒステリシスが現れ、再現性が悪いのが普通です。粗
い時間制御の開閉弁で勝るとも劣らない制御が実現でき
たことは、部品の経済性とともに大きな価値がありま
す。
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−128401(JP,A) 特開 平2−249001(JP,A) 特開 平4−64107(JP,A) 計測自動制御学会「自動制御ハンドブ ック(基礎偏)」,日本,オーム社, 1983年10月30日,P.73−75 (58)調査した分野(Int.Cl.7,DB名) G05B 13/02 - 13/04 G05B 21/02

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】R;S;C;A,Bをそれぞれ制御値;目標値;操
    作値及び2種類の可知的外乱を表す数列とし、R;S;C;A,
    Bの差分を表す数列をそれぞれr;s;c;a,bとするとき、 rが初位が1以上の有限数列f',g',h',d'(終位をそれ
    ぞれfE,gE,hE,dEとする)を用いて r={rn}=d'・r+f'・c+g'・b+h'・a ={d'1・rn-1+…+d'dE・rn-dE+f'1・cn-1+…+f'fE・cn-fE +g'1・bn-1+…+g'gE・bn-gE+h'1・an-1+…+h'hE・an-hE} で表される制御系において、操作値cを前時点での出力
    値に固定した(現時点を第0項で表すと、cn≧0
    0)と仮定し、 可知的外乱a,bに過去,現在,未来の利用可能なデータ
    を用いて、 R={Rn}=(Λ+d'・Δ)・R+f'・c+g'・b+h'・a ={Rn-1+d'1・rn-1+…+d'dE・rn-dE+f'1・cn-1+…+f'fE・cn-fE +g'1・bn-1+…+g'gE・bn-gE+h'1・an-1+…+h'hE・an-hE} で未来の制御値(Rn>0)を予測し、 f=f'/(1−d')={fn=f'n−d'1fn-1−d'2fn-2−…−d'dEfn-dE} F=Σf={Fn=f1+f2+…+fn} で算出されるステップ応答関数Fを用いて、 整定時点nで条件(c'n=0〜dEの連立一次方程式) (F・c')=Fn-dEc'dE+Fn+1-dEc'dE-1+…+Fnc'0 =Sn−Rn n=fE〜fE+dE, c'n>dE=0 を満たすc'を求め、 操作値C0=C-1+c'0を設定な可能値にして(整数化と言
    う)出力する制御方法で、操作値を設定可能な値に保持
    した場合に到達する値の分解能が所望するよりも大きい
    場合において、 リップルを抑えるために、 制御周期tで予め同定したd'={d'n}の項より作られ
    る方程式 XdE−d'1・XdE-1−d'2・XdE-2−…−d'dE=0 の解(極)の絶対値が最小のものd″、 許容できるリップルの大きさをεとするとき、 Y=log(1−ε)/(log(|d″|) を算出し、制御周期TをY・t以下の値にし、制御周期
    Tにおけるf',g',h',d'を同定して直して、f,Fを再計算
    し、 制御値の偏りを是正するために、 各制御周期毎に操作値C0=C-1+c'0を整数化して出力す
    る前に、 前時点までの操作値を整数化C-1したときの端数を累積
    加算した値δと δ=k・δ+C-2+c'-1−C-1 0<k≦1 左辺のδは現時点での値、右辺のδは前時点での値直近
    の操作値の符号sgn(c'0)との sgn(x)はxの正,0,負で−1,0,1の値を採る関数、 sgn(0)の値を+1又は−1とすることもできる。 一次式で表される補正値ηを η=p・δ+q・sng(c'0) 0≦p,q p+2・q≦
    1 加えた数値C0+η=C-1+c'0+ηを C0=Int(C-1+c'0+η) Int(x)はxを整数化する
    関数 整数化して出力することを特徴とする制御方法。
  2. 【請求項2】R;S;C;A,Bをそれぞれ制御値;目標値;操
    作値及び2種類の可知的外乱を表す数列とし、R;S;C;A,
    Bの差分を表す数列をそれぞれr;s;c;a,bとするとき、 rが初位が1以上の有限数列f',g',h',d'(終位をそれ
    ぞれfE,gE,hE,dEとし、かつ、dE=1とする)を用いて r={rn}=d'・r+f'・c+g'・b+h'・a ={d'1・rn-1+f'1・cn-1+…+f'fE・cn-fE +g'1・bn-1+…+g'gE・bn-gE+h'1・an-1+…+h'hE・an-hE} で表される制御系において、操作値cを前時点での出力
    値に固定した(現時点を第0項で表すと、cn≧0
    0)と仮定し、 可知的外乱a,bに過去,現在,未来の利用可能なデータ
    を用いて、 R={Rn}=(Λ+d'・Δ)・R+f'・c+g'・b+h'・a ={Rn-1+d'1・rn-1+f'1・cn-1+…+f'fE・cn-fE +g'1・bn-1+…+g'gE・bn-gE+h'1・an-1+…+h'hE・an-hE} で未来の制御値(Rn>0)を予測し、 f=f'/(1−d')={fn=f'n−d'1fn-1} F=Σf={Fn=f1+f2+…+fn} で算出されるステップ応答関数Fを用いて、 整定時点nで条件(c'n=0,1の連立一次方程式) (F・c')fE=FfE-1c'1+FfEc'0=SfE−RfE (F・c')fE+1=FfEc'1+FfE+1c'0=SfE+1−RfE+1 を満たす c'0={FfE(SfE−RfE)−FfE-1(SfE+1−RfE+1)}/(FfE 2−FfE-1FfE+1) を計算し、 操作値C0=C-1+c'0を設定な可能値にして(整数化と言
    う)出力する制御方法で、操作値を設定可能な値に保持
    した場合に到達する値の分解能が所望するよりも大きい
    場合において、 リップルを抑える為に、 制御周期tで予め同定したd'={dn<1=0,d1,d
    n>1=0}と 許容できるリップルの大きさをεとより、 Y=log(1−ε)/log(|d1|) を算出し、制御周期TをY・t以下の値にし、制御周期
    Tにおけるf',g',h',d'を同定し直し、f,Fを再計算し、 制御値の偏りを是正するために、 各制御周期毎に操作値C0=C-1+c'0を整数化して出力す
    る前に、 前時点までの操作値を整数化C-1したときの端数を累積
    加算した値δと δ=k・δ+C-2+c'-1−C-1 0<k≦1 左辺のδは現時点での値、右辺のδは前時点での値 直近の操作値の符号sgn(c'0)との sgn(x)はxの正,0,負で−1,0,1の値を採る関数、 sgn(0)の値を+1又は−1とすることもできる。 一次式で表される補正値ηを η=p・δ+q・sgn(c'0) 0≦p,q p+2・q≦
    1 加えた数値C0+η=C-1+c'0+ηを C0=Int(C-1+c'0+η) Int(x)はxを整数化する
    関数 整数化して出力することを特徴とする制御方法。
JP53559498A 1998-03-09 1998-07-01 制御方法とその装置 Expired - Lifetime JP3352701B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP98/00959 1998-03-09
JP9800959 1998-03-09
PCT/JP1998/002968 WO1999046647A1 (fr) 1998-03-09 1998-07-01 Appareil et procede de regulation

Publications (2)

Publication Number Publication Date
JPWO1999046647A1 JPWO1999046647A1 (ja) 2000-06-13
JP3352701B2 true JP3352701B2 (ja) 2002-12-03

Family

ID=14207727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53559498A Expired - Lifetime JP3352701B2 (ja) 1998-03-09 1998-07-01 制御方法とその装置

Country Status (2)

Country Link
JP (1) JP3352701B2 (ja)
AU (1) AU7936298A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119087794B (zh) * 2024-05-21 2025-11-18 中国人民解放军国防科技大学 一种闭环极点可调的最少拍无纹波数字控制器设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
計測自動制御学会「自動制御ハンドブック(基礎偏)」,日本,オーム社,1983年10月30日,P.73−75

Also Published As

Publication number Publication date
AU7936298A (en) 1999-09-27

Similar Documents

Publication Publication Date Title
Foley et al. A comparison of PID controller tuning methods
US7653445B2 (en) Apparatus and method for model-based control
EP3320411B1 (en) Temperature control method and apparatus
Nath et al. Review on IMC-based PID controller design approach with experimental validations
JPS61243505A (ja) 離散時間制御装置
Zou et al. Design of fractional order predictive functional control for fractional industrial processes
US20250348046A1 (en) Adaptive engine for tracking and regulation control using a control law selector and combiner
US11747773B2 (en) Sequential deterministic optimization based control system and method
CN101317141A (zh) 用于工厂控制系统的随需自动调谐器
JP3352701B2 (ja) 制御方法とその装置
JP6901037B1 (ja) 制御装置、制御方法及びプログラム
JP4865627B2 (ja) バッテリ残存容量推定方法、バッテリ残存容量推定装置及びバッテリ電源システム
JP2023028327A (ja) 制御装置、制御方法、及びプログラム
Alkhafaji et al. A novel PID robotic for speed controller using optimization based tune technique
Stellato et al. Real-time FPGA implementation of direct MPC for power electronics
JP2020021411A (ja) 制御装置、制御方法及びプログラム
WO1999046647A1 (fr) Appareil et procede de regulation
JPWO1999046647A1 (ja) 制御方法とその装置
Rogers Building a benchtop PID controller
Babu et al. Enhanced Control Performance for Higher Order SISO Delayed Time Processes
Mercurio et al. A conjugate unscented transform-based scheme for optimal control with terminal state constraints
JP7780164B1 (ja) 制御器の最適化方法
US20170235320A1 (en) Device for controlling a current in a load having an unknown current-vs.-voltage characteristic
JPS63111504A (ja) 離散時間制御装置
JPWO1999057616A1 (ja) 制御方法とその装置

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term