[go: up one dir, main page]

JP2007531929A - フレキシブルプロセスオプティマイザ - Google Patents

フレキシブルプロセスオプティマイザ Download PDF

Info

Publication number
JP2007531929A
JP2007531929A JP2006551112A JP2006551112A JP2007531929A JP 2007531929 A JP2007531929 A JP 2007531929A JP 2006551112 A JP2006551112 A JP 2006551112A JP 2006551112 A JP2006551112 A JP 2006551112A JP 2007531929 A JP2007531929 A JP 2007531929A
Authority
JP
Japan
Prior art keywords
sensor
module
data
processing device
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006551112A
Other languages
English (en)
Inventor
バテジャ,チャンダー,ピー.
バテジャ,ラジブ,ケー.
Original Assignee
エイエヌアール,エル.ピー.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイエヌアール,エル.ピー. filed Critical エイエヌアール,エル.ピー.
Publication of JP2007531929A publication Critical patent/JP2007531929A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B51/00Arrangements for automatic control of a series of individual steps in grinding a workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles
    • G07C3/005Registering or indicating the condition or the working of machines or other apparatus, other than vehicles during manufacturing process
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles
    • G07C3/14Quality control systems
    • G07C3/146Quality control systems during manufacturing process

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Quality & Reliability (AREA)
  • General Factory Administration (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Programmable Controllers (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

【課題】
【解決手段】 製造プロセスの効率を改善するための様々なパラメータを記録し分析するためのフレキシブルプロセスオプティマイザ。このフレキシブルプロセスオプティマイザは、製造機械に装填されている様々なトランスから信号を得て調整する。質的及び量的なデータ分析にもかかわらず、改良が認識される必要がある製造プロセスの特定の態様が認識される。質的な評価は、センサデータによって取り出される製造サイクルの存在、欠如あるいはある特徴の期間を見ている。データの量的な評価は、あるデータの属性のコンピュータ化を含む。有用なデータの転移とデータ分析ツールを提供することによって、改良された効率を提供するために製造プロセスのパラメータに必要な調整がなされる。変更の結果は、フレキシブルプロセスオプティマイザを用いて、即座に認証できる。
【選択図】 図1

Description

関連出願
適用なし
連邦政府による研究又は開発に関する記載
適用なし
発明の背景
1. 発明の属する技術分野
本発明は、製造プロセスをモニタし、制御する装置に関する。特に、本発明は、製造プロセスに関するデータを取得して分析する製造機械に連結された装置であって、該製造機械を調整して製造プロセスの効率を改善する装置に関する。
2. 関連技術の説明
個別部品の製造あるいは連続的な製品に用いられるほとんどの工業プロセスは、製造効率あるいは生産性と同様に、最終製品の品質に影響する多数の変数を含んでいる。連続的生産システムの一例は、ある成分、厚さ、および顧客の仕様にあったその他の特性をもつロール紙を製造する製紙システムである。個別部品製造システムの一例は、自動車のカムシャフト、クランクシャフト、あるいはその他の部品を作る精密研磨機械である。競合的環境の中で、生産性と同様に製品の品質を最大にするには、生産システムをある程度制御する必要がある。これは、一般的には、キープロセスパラメータのリアルタイムでのデータの助けを借りてのみ可能であり、製品の品質は、製造装置に組み込まれたセンサを用いて取得されたものである。製造装置は、数値制御されたレートでスライド板とスピンドルを動かすのに必要な部品を有しているか、あるいはある温度を維持するための炉の制御を行うことがあるが、システムの動作に関する情報を提供するセンサは、常に入手できるものではなく、追加しなくてはならないことがあった。製造機械の制御性と組み合わせたリアルタイムでの処理データの有用性は、制御戦略の決定と、所定の製造条件セットの下に効果的なプロセスコントロールを行うのに最適な方法論を必要とする。問題を更に複雑にするために、各部品の入荷ストックあるいはツールの瞬間的鋭利さといった、ある種の条件が動的に可変であり、したがって、一般的に知られていない。
過去に、プロセスを完全な自動制御に向けたいくつかの試みがなされた。しかしながら、これは、製造機械と、実際のツールの鋭利さと共にスピンドルの剛性に関するリアルタイムでの情報を得るために、製造機械の計測を必要とする。典型的な従来技術は、以下の特許のデバイスである。
特許番号 発明者 発効日
4,855,925 Bhateja 1989年8月8日
4,570,389 Leitch, et al. 1986年2月18日
4,590,573 Hahn 1986年5月20日
6,098,452 Enomoto 2000年8月8日
6,128,547 Tomoeda, et al. 2000年10月3日
6,234,869 Kobayashi, et al. 2001年5月22日
Leitch, et al.は、ホイールを分解することなく常にホイールの鋭利さを維持するための自動適用システムを記載している。Hahnは、スピンドルの偏差を考慮して、研磨中にホールを丸くするコンピュータ制御技術を開示している。EnomotoとTomoedaの発明は、研磨中に測定ヘッドを用いて最終ワークピース径を自動的に制御するようにしたものである。Kobayashiは、ゲージヘッドを用いて研磨ワークピースの径を測定し、研磨中のサイズの一部に現れる突然の変化、あるいは変化の欠落について述べている。
上記の発明は、一般的に、特定の、予め決まっているワークピースの属性に基づいて、研磨動作を自動的に制御する試みに関するものである。しかしながら、これらの従来技術の特許のうちのいずれもが、ワークピースの品質属性とシステム生産性に関する広い基準に基づいて研磨プロセスをいかに最適化して制御するかについて開示していないばかりでなく、特定のプロセスあるいはユーザの要望に応じて最適基準を変更するフレキシビリティを提供するものでもない。最後に、従来技術の制御システムは、センサとゲージヘッドの付いた計測機械を必要とし、従って、必要な計装を欠いている現在の一般的な研磨機には適用できない。
発明の概要
製造プロセスの様々なパラメータを記録して、このパラメータから得た情報を分析して製造プロセスの効率を改善する装置が示され、述べられている。フレキシブルなプロセスオプティマイザは、データ取得能力とデータ分析ツールを組み合わせて、製造プロセス中に機械がどのように動作するかおよびどの領域が改善を必要とするかを視覚化する能力をユーザに提供する。フレキシブルプロセスオプティマイザは、製造機械に搭載されたセンサからデータを得て、このセンサのデータをディスプレイにプロットして、製造プロセス内で実際に何が生じているかをユーザが詳細に見られるようにする。このフレキシブルプロセスオプティマイザによって、ユーザは測定レンジと、フルスケールと、プロセスをモニタするのに使用されている全センサのその他の特徴を完全に制御することができる。質的なセンサデータの表示から、ユーザは時間ドメインと周波数ドメイン中のプロセス特性を分析して、製造プロセス中の非効率性にスポットを当てることができる。製造プロセス中の非効率性を同定することによって、プロセスパラメータを調整して、この非効率性を低減あるいは除去し、製造動作の効率を直接的に改善することができる。更に、ユーザは、このプロセスデータから特定の量的パラメータを計算することができる。これらの特定の値を分析することは、プロセス能力をその他の同様にシステムと比較するために計量することを助け、このプロセスが製造プロセスの物理的な制限を確実に越えないようにする。質的なデータと量的なデータを有することで、製造システムの挙動を詳細に測定し、様々な製造動作の性能レベルを比較することができる。
発明の詳細な説明
製造プロセスの様々なパラメータを記録し、このパラメータから得た情報を分析して製造プロセスの効率を改善する装置、あるいはフレキシブルプロセスオプティマイザ100が、添付図面に示されており、ここで説明されている。フレキシブルプロセスオプティマイザ100は、データ収集能力をデータ分析ツールと組み合わせて、製造プロセス中に機械がどのような挙動をするか、およびどの領域を改善することができるかを視覚化する能力をユーザに提供する。
図1は、本発明のフレキシブルプロセスオプティマイザ100の環境を示す。フレキシブルプロセスオプティマイザ100は、インターフェースモジュール102と、システムとアプリケーションソフトウエアを稼動する処理デバイス104の、二つの主な構成部品を具える。図に示す実施例では、フレキシブルプロセスオプティマイザ100は、システムソフトウエアを稼動するパーソナルコンピュータに取り付けたインターフェースモジュール102と共に示されているが、当業者は、このインターフェースモジュールと処理デバイスを一体化して単一のユニットにできることを認識するであろう。フレキシブルプロセスオプティマイザ100は、製造機械106に装着したセンサからデータを収集し、このセンサデータをディスプレイ上にプロットして、これによってユーザが製造プロセス内部で何が生じたかを詳細に見ることができるようにしている。フレキシブルプロセスオプティマイザ100によって、ユーザはプロセスをモニタするのに使用されている全センサのレンジ、フルスケール、およびその他の特徴を制御することができる。図に示す実施例では、製造機械106は、ワークピース110を取り付け、取り外すように構成された研磨ホイール108付の研磨機である。この研磨ホイール108は、一般的に、ワークピース110の中へ、およびワークピース110の外へ、ライン112に平行なラインに沿って移動する。ワークピース110は、通常、ライン114に平行なラインに沿って研磨ホイール108に対して移動する。質的センサデータの表示から、ユーザは、処理特性を分析して製造プロセス中の非効率性にスポットをあてることができる。処理プロセス中の非効率性を同定することによって、処理変数を調整して、この非効率性を低減あるいは除去し、これによって製造動作の質と生産性を直接的に改善することができる。更に、ユーザは、処理データから特定の量的値を計算することができる。これらの特定のパラメータ値を分析することは、処理能力と製造システムの物理的な制限の計量を助ける。質的なデータと量的なデータを有することは、製造システムの挙動を詳細に測定し、様々な製造動作の性能レベルを比較することができる。この情報を用いて、バランスの取れた制御戦略を展開し、実装することができる。
図2は、本発明のフレキシブルプロセスオプティマイザ100のブロック図である。フレキシブルプロセスオプティマイザ100は、ターゲット機械216に取り付けたトランスあるいはプローブを介して様々なパラメータをモニタする複数のモジュール回路202を有する。モジュール回路202の出力は、適当な信号調整回路204によって調整される。プロセッサインターフェース206は、フレキシブルプロセスオプティマイザ100を、外付けのパーソナルコンピュータなどの処理デバイス208に接続する。一実施例では、プロセッサインターフェース206は、限定するものではないが、PCMCIA、PCI、シリアル、パラレル、IEEE1394、およびUSBを含む、当業者に公知のインターフェースポートを具えている。処理デバイスに接続されているのは、ディスプレイデバイス210とストレージデバイス212である。ディスプレイデバイス210は、生データと処理データのいずれか、あるいは双方を表示するのに使用される。ディスプレイデバイス210は、また、ユーザインターフェースを提供して、製造システム、所望のセンサレンジ、所望のディスプレイ、所望の処理コントロール制限、及びその他の設定情報についてのユーザ特有の情報を入力させる。ストレージデバイス212は、生データと処理データのいずれか、あるいは双方を保存する。最後に、機械インターフェース214は、ターゲット機械216のコントローラと直接通信を行う。機械インターフェース214を介して、フレキシブルプロセスオプティマイザ100は、現コントローラの設定を読み取る。設定情報は、処理サイクル中に測定した値と組み合わされて、処理がコントローラの設定にどのように対応しているかをユーザが見ることができる。フレキシブルプロセスオプティマイザ100を介して、ユーザは、コントローラの設定を調整し、処理を最適にし、機械インターフェース214がターゲット機械216内のコントローラの設定を調整する。当業者は、処理デバイスが本発明の範囲と精神から離れることなく、フレキシブルプロセスオプティマイザと一体化できることを認識するであろう。
図3は、フレキシブルプロセスオプティマイザの主回路300の一実施例をより詳細に示す図である。主回路300は電源302を具える。一の実施例では、電源302は、ユニバーサル入力(90から260ボルト)スイッチモードの電源であり、+3.3、+5、+12、−12、+15および−15ボルトの直流出力を提供している。デジタル回路の電源には3.3ボルトと5ボルトの出力が通常用いられ、アナログ回路の電源には12ボルトと15ボルトの出力が通常用いられる。当業者は、必要に応じて電源302によってその他の電圧を供給できることを認識するであろう。主回路300のデジタルインターフェース回路304は、パーソナルコンピュータのアナログ−デジタルコンバータ(ADC)カードとフレキシブルプロセスオプティマイザ100の間のインターフェースを取る。フレキシブルプロセスオプティマイザのソフトウエアによって発生する特定のコードが、この回路で復号化される。デジタルインターフェース回路304によって内部バスも生じる。主回路300は、様々なモジュール回路を接続して、フレキシブルプロセスオプティマイザ100をカスタマイズできる複数のモジュールスロット306を具える。モジュールスロット306に接続されたモジュールセットは、フレキシブルプロセスオプティマイザ100のコンフィギュレーションを決定し、システムソフトウエアと関連して、フレキシブルプロセスオプティマイザ100のアプリケーションを固定する。
主回路300は、取り付けたモジュールの様々なパラメータを調整するためのコントロールをいくつか有する。ゲインコントロール回路308は、入力信号にゲインを適用するために個々のモジュールによって要求される制御信号を発生する。ゲインコントロール回路308は、多段ゲインコントロールでゲインを粗又は密にコントロールしたり、一またはそれ以上の単一段ゲインコントロールで同じ効果を達成することができる。オフセットコントロール回路310は、入力信号にオフセットを提供するための個々のモジュールによって要求される制御信号を発生する。オフセットコントロール回路310は、多段オフセットコントロールで、オフセットを粗又は密にコントロールしたり、一またはそれ以上の単一段のオフセットコントロールで同じ効果を達成することができる。主回路は更に、個々のモジュールにおけるモード、フィルタ、LVDT励起、粗ゲイン情報をラッチするのに必要な制御信号を発生するモジュールラッチコントロール回路312を具えている。当業者は、様々な制御を複製して、所望の数のユニークな制御を提供できることを理解するであろう。複製によって、例えばゲインやオフセットを別々のモジュールにわたって個々に制御することができ、または単一のモジュールについて複数のラッチ制御を行う複数のユニークな信号の生成が可能である。
デジタル−アナログコンバータ(DAC)回路314は、所望の解像度で取り付けたモジュール用の診断用電圧を発生する。DAC314は、システムソフトウエアの制御の下に有効な数ミリボルト級の精度で調整することができる適宜の診断用電圧を発生する。診断用電圧は、システムソフトウエアの制御の下に様々なセンサのキャリブレーションにも使用される。システムソフトウエアの制御の下、モジュール回路と様々なセンサのキャリブレーション用に標準的な+5ボルトまたは+10ボルトの基準316が含まれている。発光ダイオード(LED)ドライバ回路318は、フレキシブルプロセスオプティマイザ100内に存在する様々なモジュールの存在及び/又は状況を表示する複数のLEDを発光させる。
図4は、本発明のフレキシブルプロセスオプティマイザ100に使用するリニア可変差動トランス(LVDT)、4ないし20ミリアンペアの電流ループ、直流電圧センサ、あるいは差動電圧センサなどの、センサ406からの入力を受けるように構成した汎用目的のモジュール回路400の一実施例を示す図である。入力のタイプは、システムソフトウエアから選択される。様々な交流タイプのLVDTsからの入力を直接受け取るために、LVDT励起および復調回路402がモジュール400内に組み込まれている。LVDT励起及び復調回路402は、LVDT一次側コイル用に必要な交流励起電圧と周波数を発生する。この励起電圧と周波数は、システムソフトウエアの制御の下に変化する。LVDT励起及び復調回路402は、また、LVDTの変位に応じた直流電圧を発生する。その他の入力は、4ないし20ミリアンペアで、様々な電圧の信号を直流電圧に変換する入力調整回路404から受信される。入力調整回路404は、前置増幅段を具えており、センサの出力になんらかの負荷がかかることを防止している。当業者は、本発明の範囲と精神から離れることなく上述した全入力より小さい入力を受信するようにモジュールを変形できることを認識するであろう。例えば、モジュールは、LVDT励起回路と対応する入力回路構成なしで構成することができるし、あるいは、代替的に、モジュールは、差動入力あるいは電流ループからの入力を受け取る入力回路構成なしで構成することができる。
モジュール400は、モジュールスロット300内で受信するように構成したモジュールコネクタ426を介して、フレキシブルプロセスオプティマイザ200への、およびフレキシブルプロセスオプティマイザ200からの信号を転送する。第1のラッチ408は、LVDT励起電圧の値と、DC、差動、その他といった選択された入力のタイプを保持する。第2のラッチ410は、フィルタの値を保持する。このラッチは、フィルタの予想値の一つを保持する。当業者は、本発明の範囲および精神から離れることなく、メモリなどのその他のデバイスをフィルタ値、あるいはその他の値を保持するのに使用できることを認識するであろう。スイッチ回路412は、システムソフトウエアの制御の下で、直流、LVDT、+5V基準電圧、その他などの入力のうちの一つを選択する。スイッチ回路412は、また、主回路300を介して入力信号が調整モジュールハードウエアを通過させる通過特性を提供するアナログスイッチを具えている。この特性は、接続した入力のいずれかを、二つの隣接するモジュールのハードウエアを介して二つの異なるレンジへキャリブレートできるようにして、入力データを取得して、見ることができ、二つの別のチャネルに保存することができる。ハードウエア増幅器とフィルタ414は、センサ出力に適用したローパスアナログまたはデジタルフィルタを用いて実装される。システムソフトウエアの制御下で選択することができる複数の異なる時定数がある。DAC粗オフセット制御回路416は、システムソフトウエアの制御下で粗オフセット電圧を生成する。一の実施例では、最大オフセット電圧が、数ミリボルトのステップで約10Vである。DAC密オフセット制御回路418は、システムソフトウエアの制御下で密オフセット電圧を発生する。一の実施例では、最大オフセット電圧は、フラクショナルミリボルトのステップで数ミリボルトの電圧である。2段粗ゲイン増幅器420は、システムソフトウエアの制御下にある。一の実施例では、2段粗ゲイン増幅器420が、特別な低ノイズの増幅器を用いて実装されており、1ないし約10,000のレンジで精密なゲイン段階を提供している。第3のラッチ422は、システムソフトウエアの制御下で粗ゲイン値を保持する。密ゲイン増幅器424は、ゲインが約1ないし約10のレンジの入力を増幅する。密ゲイン増幅器424のゲインレンジは、例えば、0と10の間で最大10,000ゲインインクリメントを提供する、複数ステップに分割されており、システムソフトウエアを介して選択される。
図5は、本発明のフレキシブルプロセスオプティマイザ100に使用する振動モジュール回路500のブロック図である。一の実施例では、圧電振動センサ518を4つまで振動モジュール回路500に連結することができる。センサの電力はモジュール回路500を介してベース電流から供給されるので、センサ518用の外部電源は不要である。振動モジュール回路500は、モジュールスロット306内で受信されるように構成されたモジュールコネクタ520を介してフレキシブルプロセスオプティマイザ100へのおよびフレキシブルプロセスオプティマイザ100からの信号を転送する。圧電振動センサ518は、定電流電源502が必要である。図に示す実施例においては2段回路である多段粗ゲイン回路504が、各振動センサ入力に設けられている。システムソフトウエアは、1から約1,000のレンジにおけるステップで、各多段粗ゲイン回路504のゲインを制御する。第1及び第2の振動センサ入力について、第1の粗ラッチ回路506は、粗ゲイン増幅器のゲイン値を保持する。フィルタラッチ508は、関連するハードウエアの増幅器とフィルタ510のフィルタ段を保持する。各ハードウエアの増幅器とフィルタ510は、システムソフトウエアを介して制御される複数の異なる時定数のうちの一つを伴うローパスフィルタ回路である。このローパスフィルタは、多段粗ゲイン回路504を介して増幅した後のセンサ信号に適用される。第3及び第4の振動センサ入力は、図5に示すように同時にあるいは別々に操作される。第2の粗ラッチ512は、第3及び第4の振動センサに関連する粗ゲイン増幅器504のゲイン値を保持する。図に示す実施例には、第3及び第4の振動センサ入力に関連するハードウエアフィルタはないが、当業者は、あらゆるあるいは全てのセンサ入力が、本発明の範囲と精神から外れることなく、アナログまたはデジタルフィルタを具えていても良いことを認識するであろう。
システムソフトウエアの制御の下、スイッチングラッチ514は、モジュールとコネクタ識別子、診断電圧、他などのスイッチ回路516の状態を保持し、これによって、スイッチ回路516の出力を制御する。スイッチ回路516は、スイッチングラッチ514内に保存されている値に基づいて信号を切り替える。スイッチ回路516は、選択された信号をモジュールのアナログおよびデジタル出力に送信する。
図6は、本発明のフレキシブルプロセスオプティマイザ100に使用する電力モジュール回路600のブロック図である。電力モジュール回路600は、モジュールスロット306内で受信されるように構成されたモジュールコネクタ618を介してフレキシブルプロセスオプティマイザ100へのおよびフレキシブルプロセスオプティマイザ100からの信号を転送する。センサレンジ検出及びレンジ設定回路602は、Monitech Systems社で製造されたセンサなどの、電力センサ616とインターフェースをとって、電力センサ616のレンジを読み取る。センサレンジ検出及びレンジ設定回路602は、システムソフトウエアによって制御された電力センサ616のレンジを変更する能力を提供する。電力モジュール回路600は、また、システムソフトウエアの制御下にある、電力センサ616のレンジ値を保持するセンサラッチ604を具える。スイッチングラッチ606は、システムソフトウエアからのコマンドを保持してモジュール識別子、診断電圧、基準電圧、その他を選択する。スイッチ回路608は、スイッチングラッチ606に保持されている値に基づいて信号を切り替えて、モジュール識別子、診断電圧、あるいは基準電圧を電力モジュール回路600のアナログ出力に送信する。システムソフトウエアによって制御されているフィルタラッチ610は、ハードウエアフィルタのステップ値を保持する。ハードウエアのフィルタおよび増幅器612は、システムソフトウエアを介して制御される複数の異なる時定数のうちの一つを有するローパスフィルタである。このローパスフィルタは、増幅器の出力の後のセンサ信号に適用される。バッファ増幅器614は、出力段で信号をバッファする。
当業者は、本発明の範囲と精神から離れることなく、入手可能な値の数と、入手可能な段の数と、ステップサイズ、調整レンジ、および最大値が、ハードウエアの構成部品に基づいて変化し、様々なモジュール回路の仕様が変わることを認識するであろう。
フレキシブルプロセスオプティマイザ100によって、既存の機械のユーザはセンサを備え付けることなくキーデータを得て、製造環境内の機械に主な変更を加えることなく動作のゲインコントロールを行うことができる。フレキシブルプロセスオプティマイザ100は、バランスが取れて、使い易い制御戦略を提供して、特定の製造動作におけるユーザの特別な要求に合わせてコントロールを調整するパワーをユーザに提供する。バランスのとれた制御戦略は、ユーザが特に興味のある複数の出力パラメータを制御することによって定義される。
フレキシブルプロセスオプティマイザ100の一のアプリケーションは、精密な製造研削機をモニタし、制御している。典型的な製造研削動作は、移動部材を搬送するスライド板によって回転研削ホイールを、回転ワークピースへ(あるいは逆に)送り込むステップからなる。ワークピースの直径が所望のサイズに達し、表面の仕上げが行われるまで、ワークピースと研削ホイールが相互作用している間、所定のレートでワークピースから材料が除去される。移動可能な部材の切り込み、すなわち、研削ホイールの送りは、製造サイクル中に可変送りレートで注意深く制御されており、所望の材料を除去し、受け入れ可能なサイクル時間内にワークピース表面を仕上げる研削圧力を提供する。送りレートは機械の能力と使用する研削ホイールに依存する。一の実施例では、フレキシブルプロセスオプティマイザ100は、センサ信号を取り出して、必要な信号調整を行い、視覚ディスプレイ上にデータを表示する。ユーザは、視覚ディスプレイを分析して、製造研削機械の動作に手動で制御調整を行う。別の実施例では、より多くのセンサ、データ分析特性、および制御ラインが製造研削システムのハードウエアとCNC制御にインターフェースをとって、製造プロセスを制御できるようにしている。所望のプロセス制御は、機械の送りレートと、ホイールの仕上げ条件とホイールの仕上げ周波数に加えて切り替えポイントを変更することによって行われる。このプロセス中に、実際の最終サイズ、テーパ、丸みなどの仕上げをした研削部品の品質データが、品質検査および報告の目的で保存される。
製造研削において、量的パラメータの例に、研削ホイールのハングリネスが含まれることがある。これは、ワークピースから材料を除去する能力である。ハングリネスは、通常は測定されることはないが、製造研削動作の不十分さと制御の欠如の主な原因である。本来は、効果的なプロセス制御に必要なキープロセスパラメータは、モニタされている工業的プロセスに依存する。個別部品の研削および機械加工業の他に、製紙およびパルププロセス、食物プロセス、製薬プロセス、塗料および化学プロセスなど、産業界における連続プロセスは、製品の品質と同様にシステムの生産性を決める、混合密度、温度、湿度、その他の多数の特別なパラメータを有する。
本発明を説明するために、精密研削を用いると、典型的には、機械をモニタするのに使用する3つのセンサがある。これらのセンサは、研削ホイールの電力消費を測定するパワーセンサと、研削ホイール(またはワークピース)のスライドを測定する切込みセンサと、実際の研削動作中にワークピースの瞬間的な直径を測定するゲージヘッドセンサを具える。研削ホイールのパワー消費量は、プロセス出力と考えられ、切り込みは、プロセス入力と考えられ、直径は、システムの出力を表す製品品質属性と考えられる。フレキシブルプロセスオプティマイザ100によってこれらの3つの測定を記録し、表示して、ユーザは十分な情報を得て最適戦略を決定し、研削機械に必要な調整を行って、実際に研削プロセスの効率を改善する。
製造研削システムにおけるプロセスのバランスの取れた最適化と制御のための対象となるその他のパラメータには、研削部品の端と端のテーパ、全研削サイクル時間、および研削サイクルの特定の段階間の所定の処理パラメータのその他の特徴がある。このような特徴の一つは、研削パワーである。研削パワーが高くあるいは低く保たれ、ある期間所定のレベルに維持されるかどうかは、最終部品のサイズ(製造過程にあるサイズ制御ゲージの分解能内の)と、部品表面の粗さ、丸みおよびテーパに影響する。所定の製造機械で研削した製品の品質が、研削ホイールと器具の状態と、入荷部分の品質によって変化し、これらも、製造サイクル時間に有意に影響するとの事実からユーザが規定することができるフレキシブルプロセスオプティマイザの必要性が生じている。
精密製造研削機械へのフレキシブルプロセスオプティマイザの進歩したアプリケーションでは、複数のセンサが使用されている。基本センサには、機械のスライド移動をモニタするパルスエンコーダあるいはLVDTプローブ、研削ホイールとワークピースの回転速度を追跡するスピードセンサ、ホイール、ワークピース、あるいはロータリーホイール仕上げデバイスのワット数の消費を測定する電力センサ、および部品サイズおよびジオメトリ(テーパまたは丸み)センサがある。しかしながら、冷媒流量、圧力、あるいは温度などを測定するセンサなど、さらに多くのセンサを使用して、機械の動作をモニタするようにしても良い。本発明のフレキシブルプロセスオプティマイザ100は、交換可能なモジュール回路を介して、プロセスの可変性を生じさせるあるいは検出する変数のほとんどを測定するように構成することができる。プロセスデータのモニタに加えて、フレキシブルプロセスオプティマイザ100は、実際の研削動作中に選択した機械の位置における振動を測定することもできる。このような情報は、一般的に、機械のスピンドルの状態と、貧弱な製品の品質の劣化を引き起こすその他の構造的ピースに関係し、プロセスの変化を捉えるように設計された典型的なより遅いスロープロセスデータより高速のデータレートで取り出される。
図7は、システムソフトウエアを稼動している処理デバイスを介して制御されている、フレキシブルプロセスオプティマイザ100の主な機能のフローチャートを示す図である。第1の主機能は、フレキシブルプロセスオプティマイザ700の自動初期化であり、インストールされたモジュール回路702の自動検出と、インストールされたモジュール回路704の自動コンフィギュレーションおよびキャリブレーションを含む。第2の主機能は、データの取得710であり、製造機械712へ取り付けたセンサの読み取りと、入力信号714の調整を含む。第3の主機能は、取得したデータ720の評価であり、処理データ722の表示と、調整した処理データ724に基づくプロセス効率の評価を含む。最後の主機能は、製造プロセス730の効率を改善するための製造機械のパラメータを調整する制御信号の発生であり、機械プロセス732を調整するための制御信号の発生と、制御信号734を用いた製造機械の再コンフィギュレーションを含む。
図8は、初期化機能700のより詳細なフローチャートである。まず、システムソフトウエアは、フレキシブルプロセスオプティマイザ100に問い合わせをして、インストールされているモジュール回路を同定する(800)。システムソフトウエアは、自動的に主回路と、インストールしたモジュール回路に対して診断テストを行い(802)、ハードウエアの適正な動作を認証する。主回路あるいはインストールしたモジュール回路のいずれかがテストに合格しなった場合(804)、ユーザに失敗が通知される(806)。次いで、適正に機能しているモジュール回路のほとんどが、システムソフトウエアによって自動的にキャリブレートされる(808)。
図9は、データ取得機能710のより詳細なフローチャートである。システムソフトウエアは、様々なセンサを始動する(900)。製造機械から、様々なセンサが製造プロセスに関連する信号を収集する(902)。データ取得プロセスがモニタされて、コントローラ、モニタユニット、あるいはモジュール回路の故障、あるいはセンサの断線など、データ取得における問題を同定する(904)。データ取得傷害が発生した場合は、ユーザに通知される(906)。取得したデータは、分析用に調整される(908)。最後に、調整されたデータが、分析用に保存される(910)。当業者は、分析がリアルタイムで生じ、それだけで一時的ストレージを当てにするか、あるいはデータを、後の分析あるいは履歴の目的で不揮発性のストレージ媒体に保存するようにしても良いことを認識するであろう。システムソフトウエアの制御の下、フレキシブルプロセスオプティマイザ100は、スケジュールされたデータストレージ間隔で、取り付けられていないものを稼動することができる。データの保存は、ユーザによって構成された所定のイベントの発生によってトリガすることもできる。
図10は、データ分析機能720の詳細なフローチャートである。取得され調整されたデータは、ユーザによる評価のために視覚的に表示される(1000)。視覚ディスプレイから、ユーザは製造プロセスを評価して、手動で製造プロセスを調整する、あるいは製造プロセスがフレキシブルプロセスオプティマイザ100の制御下で効率的に稼動していることを認証することができる。ユーザは、データ1002の表示の上に制御を行う。ユーザの制御下にある様々なパラメータのいくつかには、表示ウインドのスケールと時間ベースが含まれる。いずれかのデータ入力にオフセットを適用して、そのデータ入力をデータ表示ウインドの所望の位置におくことができる。センサ入力の極性は、より容易な表示とより意味のある分析のために、システムソフトウエアによって反転することができる。システムソフトウエアは、また、ノイズのある入力またはノイズのある保存データに可変フィルタを適用することによって、電子ノイズを除去する能力を提供する。また、システムソフトウエアによって、ユーザは、処理データの改善した評価のために複数のスケールと時間ベースで、同時に同じセンサからデータを見ることができる。また、システムソフトウエアによってユーザは、センサを単一のモジュールスロット306に接続して、二つの隣接するモジュールを介して同じセンサデータを見ることができる。モジュールのゲインとオフセットは、別々に制御されるので、同じセンサデータを二つの異なるゲイン及び/又はオフセットで見ることができる。処理データのスクリーン上の位置は、システムソフトウエアを介して提供される自動オフセット除去機能によって可変である。最後に、フレキシブルプロセスオプティマイザ100の信号調整電子部品がより広いレンジのセンサのキャリブレーションと、より小さいレンジでの実際の動作を可能にする。この技術を用いると、データの取得中はオフスケールのように見えるが、保存されたデータは、復活する際に再配置することができる。このことは、フレキシブルプロセスオプティマイザが高い解像度で、より広い効率レンジで、長時間にわたって、製造システムの無人プロセスモニタリングのためにデータを捕捉することが可能となる。データ分析ツールを用いて、製造プロセスにおける非効率性が同定される(1004)。このプロセスデータは、統計的分析、発見的データ分析、パターンマッチング、特別なアルゴリズムの適用を含む当業者に公知の様々なデータ分析技術を用いて分析される。
図11は、モジュール検出機能800のより詳細なフローチャートである。モジュール検出機能800は、粗ゲインと密ゲインを1に設定することによって(1100)、および粗オフセットと密オフセットをゼロに設定することによって(1102)、ハードウエアを始動する。次いで、モジュール検出機能800は、ハードウエアのフィルタを不能にして、生入力を読めるようにする(1104)。モジュール検出機能800は、モジュールからモジュール同定電圧を読み出す(1106)。モジュール同定電圧は、特定のモジュールに対する特別な電圧である。モジュールの同定は、モジュールからのモジュール同定電圧の読みをルックアップテーブル中で検索することによって行われる1108。モジュール検出機能800は、取り付けたモジュール全て同定されるまで繰り返される。当業者は、様々なモジュール回路に識別子を、この識別子を用いてフレキシブルプロセスオプティマイザ100にどの交換可能なモジュール回路を取り付けるのかを決定するためのその他の構成と方法を認識するであろう。
図12は、ハードウエア診断機能802のより詳細なフローチャートである。ハードウエア診断機能802は、粗ゲインと密ゲインを1に設定すること(1200)及び、粗オフセットと密オフセットをゼロに設定すること(1202)によってハードウエアを始動する。次いで、ハードウエア診断機能802は、ハードウエアフィルタの接続を切って、生の入力を読めるようにする(1204)。ハードウエア診断機能802は、モジュールから基準電圧を読み取る(1206)。固定基準電圧は、そのモジュールのベース入力電圧である。この基準電圧の読みは、モジュール回路を作っている部品の許容差に基づいて変化する。基準電圧は、理想モジュール回路から読まれる理想電圧と比較される。一般的に、基準電圧が理想電圧に近く、ハードウエア診断機能802は、基準電圧が理想電圧と同じになるまで密ゲインを調整する(1208)。基準電圧が理想電圧と同じになるように密ゲイン制御を調整することができれば(1210)、ハードウエアは、診断チェックをパスして、密ゲインの値が1のゲインファクタとして保存されたと考えられる(1212)。さもなければ、ユーザにハードウエアの診断の失敗が通知され(1214)、モニタプロセスを終了するなど、その他の適宜の動作が行われる。ハードウエア診断機能802を繰り返して、取り付けた各モジュールの正しい動作を認証する。
図13は、キャリブレーション機能808の副機能である、直流入力キャリブレーション機能1300のより詳細なフローチャートである。直流入力キャリブレーション機能1300は、粗ゲインと密ゲインを1に設定すること(1302)及び、粗オフセットと密オフセットをゼロに設定すること1304によってハードウエアを始動する。直流入力キャリブレーション機能1300は、モジュールから基準電圧を読み取る(1306)。この基準電圧を、直流入力の入力レンジを表す既知の電圧レンジと比較する(1308)。この基準電圧が既知の電圧レンジ1310内にあれば、ハードウエアが適正にキャリブレートされていると考えられる。さもなければ、ユーザにハードウエアのキャリブレーションの失敗が通知され(1312)、モニタプロセスを終了するなど、その他の適宜の動作が行われる。直流入力キャリブレーション機能1300を繰り返して、直流入力を用いて取り付けた各モジュールのキャリブレーションを認証する。
図14は、キャリブレーション機能808の副機能である、差動入力キャリブレーション機能1400のより詳細なフローチャートである。差動入力キャリブレーション機能1400は、コンフィギュレーションファイルから最小センサ電圧を読み取る(1402)。主回路は、この最小センサ電圧1404を発生して、差動入力キャリブレーション機能1400が、粗オフセットと密オフセットをゼロにして最小センサ電圧を調整する(1406)。ゼロになった最小センサ電圧1406を用いて、差動入力キャリブレーション機能1400は、差動電圧を計算し(1408)、主回路によってこの差動電圧を発生する(1410)。次いで、モジュール回路のゲインが、差動電圧が既知の基準電圧と同じになるまで調整される(1412)。このゲインコントロールが、差動電圧が基準電圧と同じになるように調整できれば、ハードウエアが適正にキャリブレートされていると考えられる(1414)。さもなければ、ユーザにハードウエアのキャリブレーションの失敗が通知され(1416)、モニタプロセスを終了するなど、その他の適宜の動作が行われる。差動入力キャリブレーション機能1400を繰り返して、差動入力を用いて取り付けた各モジュールの正しい動作を認証する。
図15は、キャリブレーション機能808の副機能である、4−20ミリアンペアの電流入力キャリブレーション機能1500のより詳細なフローチャートである。4−20ミリアンペアの電流入力キャリブレーション機能1500は、入力電流を読み取って、この入力電流を電圧に変換し(1502)、この最小センサ電圧に等しいオフセットを適用して、これをゼロにする(1504)。次いで、4−20ミリアンペアの電流入力キャリブレーション機能1500が、オフセットと電圧の差を計算し(1506)、主回路によって差動電圧が発生する(1508)。次いで、この差動電圧が既知の基準電圧と同じになるまでモジュール回路のゲインを調整する(1510)。このゲインコントロールが、差動電圧が基準電圧と同じになるように調整できれば(1512)、ハードウエアが適正にキャリブレートされていると考えられる。さもなければ、ユーザにハードウエアのキャリブレーションの失敗が通知され(1514)、モニタプロセスを終了するなど、その他の適宜の動作が行われる。4−20ミリアンペアの電流入力キャリブレーション機能1500を繰り返して、4−20ミリアンペアの電流入力を用いて取り付けた各モジュールの正しい動作を認証する。
全ての入力のうち、LVDT入力は、コンフィギュレーションが最も難しい。フレキシブルプロセスオプティマイザ100のシステムソフトウエアは、LVDTコンフィギュレーションとキャリブレーションを非常に簡単にする。図18は、LDVT入力のキャリブレーション機能のフローチャートである。まず、キャリブレーションルーチンが開始する。このルーチンは、長さ単位でのLVDT移動の最大値である最大スケールと、電圧単位でのLVDT移動の最大値であるキャリブレートしたフルスケールを含む(1800)、ユーザの入力スケール情報を具える。フレキシブルプロセスオプティマイザ100は、次いで、ゲインを1に設定し、オフセットをゼロにする(1802)。フレキシブルプロセスオプティマイザ100からの指示が、プランジャの変動の全レンジにわたってLVDTを移動させることをユーザに要求する(1804)。システムソフトウエアは、LVDTによって生じる最小電圧と最大電圧とを記録して、電圧データを迅速に分析して、LVDTのリニア領域を同定する(1806)。フレキシブルプロセスオプティマイザ100からのもう一つの指示は、リニア領域内のLDVTのレストポイントを位置決めするようユーザに要求する(1808)。リニア領域内で動作するLDVTを用いて、LDVT入力についてのオフセットとゲインが最適化される(1810)。これは、オフセットを調整してLDVT出力値がレストポイントでゼロになって現れることを含む。LDVTが最大変動限度に変動したときに既知の基準値になるようにゲインを調整する。LDVT出力電圧が最大変動限度で基準電圧1812と同じになるようにゲインコントロールが調節できるのであれば、LDVTハードウエアが正しくキャリブレートされていると考えられる。さもなければ、ユーザにハードウエアのキャリブレーションの失敗1814が通知され、モニタプロセスを終了するなど、その他の適宜の動作が行われる。
フレキシブルプロセスオプティマイザ100は、特別な製造プロセスの設定の結果を観察する能力をユーザに提供する。フレキシブルプロセスオプティマイザ100の出力から、ユーザは、製造プロセスの効率の改善に必要な変更を決定することができる。次いでユーザは、所定の特別な機械、ゲージおよびシステムコントロールの設定の変更を、製造機械のコントローラを介して行う。フレキシブルプロセスオプティマイザ100によって、ユーザはその変更が所望の結果を生み出したことを直ちに認識することができる。最良のプロセス改善戦略は、フレキシブルプロセスオプティマイザ100を介して得られるプロセスセンサのデータと製品品質データに基づいてユーザによって決定される。これは、ユーザが、モニタされている特定の製造プロセスについてのユーザに重要な基準に基づいて選択する。研削システムの例を再び参照すると、このような条件は、研削ホイールの鋭利さ、構成部品についての入荷ストック量の変化、および磨耗による機械部品のなんらかの弱点を含むことができる。これらの状態は、従来の制御システムにおいて容易に把握することはできない。しかしながら、本発明のフレキシブルプロセスオプティマイザ100を介して、ユーザは、これらの状態およびその他の状態を見て、対処する能力が与えられる。
精密部品製造用の製造研削システムにおけるプロセス改良あるいは最適化の一例を詳細に述べる。しかしながら、当業者は、フレキシブルプロセスオプティマイザ100があらゆる個別部品の製造あるいは連続的なプロセス工業の操作に同じアプローチを適用できることを認識するであろう。図16の研削プロセスサイクルのデータを参照すると、研削する部分に切り込む研削ホイール用の4つの送りレートFR、FR、FR、FRを有するホイール−ワークピース切り込み1600が示されている。変化点B、C、D、E、F、Gは、切り込みレートが調整される製造サイクル内の回数を表す。全切り込み移動距離は、ワークピースに最初に接触した時点Bの研削ホイールの位置と、スパークアウト期間の開始時点Fにおける研削ホイールの位置との差である。当業者は、切り込みカーブ1600を見ることで、製造サイクルを視覚化できる。変化点AおよびB間の移動は、実際の研削が行われる前の急速なアプローチ切り込みレートを表している。第1の切り込みレートFR(変化点BからC)は、粗(速い)研削切り込みレートを表している。第2の切り込みレートFR(変化点CからD)は、中間の研削切り込みレートを表す。第3の切り込みレートFR(変化点DからE)は、密研削切り込みレートを表している。第4の切り込みレートFR(変化点EからF)は、仕上げ研削切り込みレートを表している。変化ポイントFおよびG間のスパークアウト期間には、更なる切り込みはない。研削ホイールの引き込みは、変化点GおよびHの間に生じる。
時間軸上では、切り込み開始点Aとホイールの引き込みの終了点H間の時間は、ホイールとワークピースが互いに係合するようにプログラムされているときの活性研削サイクルの全期間を表す。この全期間は、負荷のない部分と負荷部分、研削するための正確な位置決めが要求されるホイールあるいはワークピースのあらゆる割り出し、製造におけるホイールの整列あるいはホイールが実際にその部分に接触していない場合のその他の同様の操作、あるいはその他の動作の完了を待つといった、完全な製造サイクルのその他の構成要素を含まない。機械の設定と動作の制御は、典型的には、切り込みレートFR、FR、FR、FRの設定と、研削が行われた後のホイールの引き込みへの迅速な前進からの全ての変化点B、C、D、E、F、Gを含む。図16は、また研削ホイールスピンドルの電力消費1602と、電力センサから得られるこれらの様々な研削切り込みレート間のワークピースの瞬間的なサイズを示す(1604)。このサイズは、研削サイクル中にワークピース上に位置している製造過程にあるゲージヘッドから得られる。
フレキシブルプロセスオプティマイザ100は、製造中に連続して部品が研削されるときの研削サイクルの連続的な流れを表示して、ユーザが単一の研削サイクルの特徴だけでなく、切り込みレートや、変化点、様々な切り込みレートにおける電力レベルや、製造過程中のゲージデータからのサイズ発生曲線のパターンなど重要な特徴について、あらゆるサイクルからサイクルへの変化スポットも見ることができるようにしている。フレキシブルプロセスオプティマイザ100は、従って、多数の製造プロセスパラメータをモニタし、サイクルパターンとワークピースからワークピースへのサイクルパターンの一貫性を最適化するための変更を行う能力をユーザに与える。
システムソフトウエアは、分析に必要であり、製造プロセスを最適化するのに必要なフレキシビリティをユーザに与える多くの機能と特徴を提供する。これらの特徴は、一般的に、ユーザをプロセスの分析に集中させ、フレキシブルプロセスオプティマイザ100の性能と価値を強化する能力をユーザに与えるフレキシブルプロセスオプティマイザ100のコンフィギュレーション可能性と使用可能性に関連する。このような特徴は、ライブデータを取得する間、あるいはすでに保存されたデータを見直す間に所定のパラメータの値を計算して、プロセスを改良しようとする試みがなされているときに一般的には入手できない有益な情報をユーザに提供する能力を含んでいる。
一つの特徴は、データ取得中にユーザが選択可能な休止である。データ取得中の休止を含むことは、メモリを節約し、データファイルのサイズを低減し、取得動作中にユーザにフレキシビリティを提供する。ユーザは、データ取得休止の発生と期間は、ライブデータの取得中と呼び出し中の両方で、データスクリーンウインド上で見ることができる。どのデータスクリーン上でも複数のデータ取得休止が可能である。
製造プロセスを視覚的に分析するのに用いるデータディスプレイスクリーンは、データの全景を表示するように設計されている。長期ベースで使用する場合、拡大したビューイング領域によってユーザは現在のプロセスサイクルと以前のプロセスサイクルの両方のデータを見て即時比較することができる。
データスクリーンによって、ユーザは視覚ディスプレイの仮想非制限的制御が可能である。ユーザは、入力データスケールを自由に変更し、いずれの入力に対してもデータを隠し、データウインド内のデータプロットラインの色を変え、データスクリーン上のどこかに入力データを位置させるためにユーザが選択した量のオフセットを適用し、入力データを逆にして、見られているデータ中の所望しない周波数や高調波を除去するためにフィルタにかけることができる。
システムソフトウエアによって、ユーザはデータ取得プロセスの間いずれの時点でも所定の有益なパラメータの瞬間的な値を得ることができる。入手可能な瞬間的な値のいくつかは、データの勾配、データの平均値、所定の時間ピリオドにわたる曲線の下の「面積」および、データの最大値または最小値、およびユーザが決定した基準に対するデータの相対値を含む。全ての瞬間的な値は、時間とともに作表されており、所望であれば保存することができる。更に、システムソフトウエアは、ユーザが選択したインターバルで自動的に瞬間的な値を計算することができる。
システムソフトウエアは、ユーザに、現在のデータ取得中にあるいはすでに保存したデータから得たデータに重ね書きをする能力を提供する。この重ね書きを行うのに使用されるデータは、ユーザが望む場合は、未調整であるもの、拡張されたもの、あるいは圧縮されたものであっても良い。保存された重ね書きを、データ取得中のバックグラウンドとして用いることもでき、あるいは、比較分析および質的な分析の目的で、呼び戻したデータの上に重ねることもできる。重ね書きの視覚的な表示は調整可能であり、データプロットの色の変更、データを再度位置決めするオフセットの適用、重ね書き中のデータの全スケールレンジを変更するフレキシビリティをユーザに提供している。
モニタされたプロセス中で文書化の重要性を認識して、システムソフトウエアはデータ取得中およびデータ呼び出し中にデータのいずれかのスクリーンを捕捉する能力を有している。各ケースにおいて、ユーザはデータの視覚的表示を調整し、スクリーン画像を捕捉し、このスクリーン画像をJPEG、TIFFなどの共通の画像ファイルフォーマットに保存することができる。
プロセスのモニタ中に、大量のデータが共通して取得される。しかしながら、全てのデータがプロセス効率の評価に有益なわけではない。システムソフトウエアは、取得したデータを全部保存させる代わりに、取得したデータの興味のある部分だけを保存するフレキシビリティをユーザに提供する。各データスクリーンは、独自のスクリーン番号で同定されており、ユーザは、そのスクリーン番号の範囲を入力して保存することができる。代替的に、ユーザは、いずれかの取得したデータスクリーンにカーソルを動かして、保存すべき特定のデータを同定することができる。
システムソフトウエアは、ツールの磨耗や、熱膨張、あるいは機械部材の経時的縮小などのゆっくりした条件の変化から生じるデータの逐次の変化(すなわち、ドリフト)を追跡する能力を具えている。同様に、システムソフトウエアは、データのスケール及び/又はオフセットの急激な変化を検出することができる。これは、サイズの意図的な補償ステップ、あるいはスティックのスリップによるランダムな機械スライド配置ミスなどの、瞬間的なイベントを同定するのに有益である。ユーザが指定した期間にわたってのゆっくりしたあるいは急速な不連続的なステップの変化によるこのような蓄積した全体のオフセットは、容易に入手可能でありユーザが見ることができる。
派生したデータファイルを抽出するユーザの能力は、システムソフトウエアのもう一つの機能である。ユーザは、以前に保存したデータファイルのターゲットプロセスを呼び出して、実際に興味のあるデータセクションを同定し、保存されたデータファイルの全機能を保持しながら新規の派生データファイルとしてそれを保存する能力を有する。
システムソフトウエアによって、ユーザはまた、特に興味のある所定のセンサ入力を選択し、ユーザが規定した視覚的表示を用いて別のウインドでそれを見ることができる。例えば、ユーザは、プロットの色や、オフセット、および選択した入力のスケールを選択することができる。ユーザは、また、この別のウインド内のあらゆる入力を表示したり、隠したりする選択を行うことができる。
システムソフトウエアを介して、フレキシプロセスオプティマイザ100は、入手可能なモジュール回路から所望するとおりに入力をイネーブルにしたり、ディスエーブルにするように構成することができる。入力データの視覚的表示は、カスタマ化が可能であり、ユーザがデータ識別ラベルと様々な入力に対するユーザのノートとコメントを含む、別の関連する情報を入力できるようにしている。ユーザは、センサの容量内で、いずれのセンサ入力についても所望のフルスケールレンジを入力することができる。カスタマイズ化およびコンフィギュレーション情報はデータファイル内に保存され、必要に応じて編集することができる。
フレキシブルプロセスオプティマイザ100は、プロセスデータをモニタすると同時に振動データをモニタする能力を有する。振動データは、主プロセスデータに比べて比較的高速である。振動データは、典型的には、数キロヘルツ周辺の周波数で生じ、通常、しばしば数分の一秒より短い期間で回収される。比較によれば、典型的な個別部品製造の処理サイクルは数秒、あるいは数分で終わり、従って、比較的遅いデータ取得スピードが必要である。システムソフトウエアは、機械のスピンドル、スライド板、およびその他の部品における振動を捕捉する必要性が変わることがある、あるいは、ある処理サイクルの時期の特別な興味であることを認識している。従って、システムソフトウエアによって、ユーザは、要求があり次第または遅いプロセスデータを伴って連続的に、振動データの捕捉が可能である。二つのデータタイプは、ユーザの最良で別々のデータファイルに保存されるか、単一のデータファイル内に一緒になっている。処理サイクルにおける振動データが取得された時間に関する情報もデータファイルに保存される。
上述したとおり、システムソフトウエアによって、特定の製造プロセスに対して特別なコンピュータ処理をしたプロセスパラメータのプロットを容易にして、フレキシブルプロセスオプティマイザ100を最も特別なアプリケーション用にカスタマイズすることができる。多数のパラメータをプロットする能力は、プロセスと、製造システムの容量と制限を全体的にエンジニアリング分析するときに必要であり、ユーザは、機械のセットアップ、プロセスの変更の効果を容易に視覚化することができる。このことは、プロセスの改善、あるいはあらゆる現在の操作の最適化にきわめて重大である。
製造研削システムの例では、コンピュータで計算したプロセスパラメータがサイクル時間の分析、サイクルからサイクルへの一貫性、およびホイールのハングリネスを含んでいる。サイクル時間の分析機能は、完全なプロセスサイクルの個々の構成要素に使用した時間の詳細なブレークダウンを実行する。プロセスサイクルは、通常、様々な段階と、これらの段階の間に行われるイベントに関連する構成要素からなる。例えば、研削サイクルにおいてスライド板を急速に移動させて、研削準備ができている部分にアプローチすること、あるいはこのサイクルの最後に研削したワークピースから研削ホイールを最終的にはずすことが含まれる。サイクル時間の分析機能を通じて、オペレータは、全体の製造効率を評価し、サイクルの各ステージで費やされた全サイクル時間に対するパーセンテージを決定することができる。一の動作からのサイクル時間分析データを他の同様の動作と比較することによって、ユーザは、製造システムを評価し、修理人として調べることができる能力を有する。更に、ユーザは、ピースからピースへのサイクル時間の一貫性を評価するのに有用なツールを有している。
様々なサイクル時間における一貫性に加えて、システムソフトウエアは、サイクルからサイクルへの一貫性機能を通じて製造システムの動作の変化をチェックするツールを提供する。この動作の変化には、入ってくる部品についてのストックの変化、機械の切り込みスライドの誤切り込み、サイズコントロールゲージの不適正な設定、および一部から材料を除去するためのホイールの能力の変更が含まれる。このような変化は、プロセスサイクルの間に様々なセンサについてのデータ曲線の形に区別される特徴あるいは変化として現れる。サイクルからサイクルの一貫性の分析は、特定のプロセスサイクルに関連する複数のキーパラメータの量的な分析を実行する。研削システムの例に関して言えば、関連するパラメータには:スパークアウト時間、全サイクル時間、スパークアウト電力、最大研削電力、曲線下の総面積、明らかな(全)ストックの除去、および切り込み曲線の勾配、が含まれる。
フレキシブルプロセスオプティマイザ100に固有のフレキシビリティイによって、システムソフトウエアは、常に時間が変化し、リアルタイムで制御することが容易でないシステム性能を決定し、制限することもある特定のパラメータを計算して、保存することができる。製造研削プロセスの例に戻ると、このような特定パラメータの一つは、研削ホイールのハングリネスであり、これは、ワークピースから材料を除去する研削ホイールの能力を表す。研削ホイールハングリネスは、研削ホイールのサービスの長さ、ホイールの組み込み、あるいは研削の仕上げと研削ホイールと研削されるワークピースの相対的な固さ、によって連続的に変化する。
研削ホイールハングリネス機能は、パワーセンサ入力から得た電力消費データと、切り込みレートデータあるいはスライド位置勾配データから研削ホイールの現ハングリネス値を引き出す。図17は、図16のサイクルデータについて単位幅あたりの材料除去率対単位幅当たりの電力をチャートした研削ホイールハングリネスの典型的なグラフを示す。ポイントP、P、およびPは、図16における切り込みレートFR、FR、FRの間の安定状態の電力値を表し、Pは、サイクルの開始時点と終焉時点におけるアイドル電力を示す。プロットは通常直線的であり、研削電力キロワット当たりの容積測定の材料除去率を表すこのラインの勾配が、研削ホイールハングリネス(H)として引用される。研削中にホイールが各ワークピースに係合すると、ワークピースが徐々に鈍くなり、鋭利さのロスがコンピュータで計算したハングリネスのパラメータに反映される。研削ホイールのハングリネスを追跡することによって、仕上げを通してホイールがどのように、いつ再鋭利化を必要としているかを含む、キーサイクルのセットアップパラメータを決定する量的基準をユーザに提供する。
製造精密研削システムが本発明を説明するのに使用されているが、フレキシブルプロセスオプティマイザ100は、様々な工業のほとんどの製造操作に適応することができる。製品の研削のような個別部品製造に加えて、本発明のフレキシブルプロセスオプティマイザ100からの受益があるその他の業界には、製紙およびパルプ製造、食物及び薬剤プロセス、石油化学プロセス、およびその他の多くのものがある。視覚ディスプレイと、使用されている生産条件の下でシステムの動作を反映するリアルタイムでのプロセスセンサデータのいくつかの量的な分析に基づくユーザのプロセス最適化戦略を構成する能力によって、生産性および製造品質の双方を、バランスの取れた態様で、所望の制御が実際になされていることを確認する瞬間的なフィードバックを伴って、最適化する。プロセスを最適化するのに実際行われる変更は、機械によるCNCシステムの設定、あるいは手動による機械上での調整を容易に行うことができる。
上述の記載から、当業者は、製造機械のモニタリングデバイスと方法が、データを表示でき、展開を分析し、フレキシブルプロセスオプティマイザのディスプレイ上で認証可能なフレキシブル処理最適化法の即時の実行を展開して実行するための、製造機械のモニタリングデバイスおよび方法に関する。フレキシブルプロセスオプティマイザによって、ユーザは、この目的のための機械のうち装着されたセンサによって表したときに、製造システムの観察された現実の動作に基づいて、プロセス制御戦略を変更することができる。
本発明を、いくつかの実施例の記載によって説明してきたし、図に示す実施例を詳細に説明してきたが、出願人の意図は、この詳細に限定されるものではなく、また請求の範囲の範囲を限定するものではない。更なる利点と変形が当業者に容易にわかる。従って、より広い特徴の本発明は、特定の詳細、代表的な装置及び方法、および図に示して説明した例に限定されるものではない。従って、出願人の一般的な発明概念の精神または範囲から外れることなく、このような詳細から出発するべきである。
本発明の上述の特徴は、以下に述べる発明の詳細な説明を図面と共に読むことによってより明確に理解されるであろう。
図1は、製造環境にある本発明のフレキシブルプロセスオプティマイザを示す図である。 図2は、フレキシブルプロセスオプティマイザのブロック図である。 図3は、フレキシブルプロセスオプティマイザの主回路のブロック図である。 図4は、フレキシブルプロセスオプティマイザと共に使用する一般目的のモジュール回路のブロック図である。 図5は、フレキシブルプロセスオプティマイザと共に使用する振動モジュール回路のブロック図である。 図6は、フレキシブルプロセスオプティマイザと共に使用する電源モジュール回路のブロック図である。 図7は、フレキシブルプロセスオプティマイザの主な機能のフローチャートである。 図8は、フレキシブルプロセスオプティマイザの初期設定機能のフローチャートである。 図9は、フレキシブルプロセスオプティマイザのデータ取得機能のフローチャートである。 図10は、フレキシブルプロセスオプティマイザのデータ分析機能のフローチャートである。 図11は、本発明のフレキシブルプロセスオプティマイザのモジュール検出機能のフローチャートである。 図12は、フレキシブルプロセスオプティマイザのハードウエア診断機能のフローチャートである。 図13は、フレキシブルプロセスオプティマイザの直流入力用キャリブレーション機能のフローチャートである。 図14は、フレキシブルプロセスオプティマイザの差動入力用キャリブレーション機能のフローチャートである。 図15は、フレキシブルプロセスオプティマイザの4−20ミリアンペアの入力用のキャリブレーション機能のフローチャートである。 図16は、製造研磨プロセスの一サイクルについての切り込み、部品サイズ、および電力のグラフを示す図である。 図17は、ホイールハングリネスパラメータのグラフを示す図である。 図18は、リニア変動差動トランス入力用のキャリブレーション機能を示すフロー図である。

Claims (17)

  1. 製造機械で実行される製造プロセスをモニタする装置において、当該装置が:
    複数のセンサモジュールであって、当該複数のセンサモジュールの各々が、リニア可変差動トランスと、電流ループと、直流電圧センサと、差動電圧センサと、圧電振動センサと、電力センサからなる群から選択されたセンサからの入力を受信して、前記複数のセンサモジュールの各々が前記入力を調整する信号調整回路を具える、複数のセンサモジュールと;
    各々が前記複数のセンサモジュールの一つを受けるように構成されている複数のモジュールスロットと;
    製造プロセスをモニタする方法を実行する処理デバイスであって、当該方法が:
    a)前記複数のモジュールスロットの各々に組み入れたセンサモジュールを同定するステップと;
    b)前記複数のモジュールスロットの各々に組み入れたセンサモジュールをキャリブレーションするステップと;
    c)前記複数のモジュールスロットのうちの選択されたスロットに組み入れたセンサモジュールからデータストリームを取得するステップと;
    d)このデータストリームを処理するステップと;
    e)このデータストリームの視覚的表示を生成するステップと;
    を具えるデバイスと;
    前記複数のモジュールスロットと前記処理デバイス間を通信するインターフェース回路であって、アナログ信号をデジタル信号に、およびデジタル信号をアナログ信号に変換するインターフェースデバイスと;
    前記処理デバイスと通信するディスプレイデバイスであって、前記視覚的表示を人間が読み取ることができるフォーマットで表示するディスプレイデバイスと;
    前記処理デバイスに応答して通信し、前記複数のセンサモジュールの各々にある前記信号調整回路と通信するゲイン制御回路であって、前記複数のモジュールスロットのうちの選択されたスロットにインストールされたセンサモジュールからの前記データストリームを増幅するゲイン制御回路と;
    前記処理デバイスに応答して通信し、前記複数のセンサモジュールの各々の前記信号調整回路と通信するオフセット制御回路であって、前記複数のモジュールスロットのうちの選択されたスロットにインストールされたセンサモジュールからのデータストリームに直流電圧オフセットを適用するオフセット制御回路と;
    前記処理デバイスに応答して通信し、前記複数のセンサモジュールの各々における前記信号調整回路と通信するラッチ制御回路であって、前記複数のモジュールスロットの選択されたスロットにインストールされたセンサモジュールからのデータストリームの値を保持するラッチ制御回路と;
    前記処理デバイスと通信する入力デバイスであって、ユーザからのコマンドを受けて、これによってユーザが前記処理デバイスを制御できる入力デバイスと;
    前記処理デバイスと通信するストレージデバイスであって、後の呼び出し用に前記データを保存するストレージデバイスと;
    を具えることを特徴とする装置。
  2. 請求項1に記載の装置が更に、前記処理デバイスと通信する機械インターフェースと、様々な処理パラメータを制御する前記製造機械の制御回路とを具え、前記処理デバイスが前記入力デバイスからのコマンドを受けて、前記機械インターフェースを介して転送される制御信号を発生し、これによって、ユーザが製造機械のさまざまな処理パラメータを調整できるようにしたことを特徴とする装置。
  3. 請求項1に記載の装置が更に、前記複数のモジュールスロットと通信するスイッチ回路を具え、当該スイッチ回路が、前記複数のセンサモジュールの一つからの入力を第1の信号と第2の信号に分けるように構成されており、前記スイッチ回路が前記第2の信号を前記複数のセンサモジュールの別のモジュールに送り、前記第1の信号及び第2の信号が別々に処理されることを特徴とする装置。
  4. 請求項1に記載の装置において、前記信号調整電子機器が、前記センサに関連する第1のキャリブレーションレンジと、前記センサに関連する第2のキャリブレーションレンジを有し、前記第1のキャリブレーションレンジが前記第2のキャリブレーション値より広く、前記第1のキャリブレーション値が、データの取得に用いられ、前記第2のキャリブレーション値がデータディスプレイ用に使用されることを特徴とする装置。
  5. 請求項1に記載の装置において、前記複数のセンサモジュールの一つが、リニア可変差動トランスに取り付けられており、前記複数のセンサモジュールのうちの一つをキャリブレーションするステップが:
    f)前記リニア可変差動トランスの入力に関するスケール情報を受け取るステップと;
    g)ゲインを初期値に設定するステップと;
    h)オフセットを初期値に設定するステップと;
    i)前記リニア可変差動トランスの完全な移動レンジがトラバースされたときに生成された最小電圧を記録するステップと;
    j)リニア可変差動トランスの完全な移動レンジがトラバースされたときに生成された最大電圧を記録するステップと;
    k)前記リニア可変差動トランスの動作のリニア領域を同定するステップと;
    l)前記リニア領域内で前記リニア可変差動トランスが作動する間に前記オフセットを調整するステップと;
    m)前記リニア可変差動トランスが、前記完全移動レンジ内の望ましい最大位置で動作する間に、前記ゲインを調整するステップと;
    を具えることを特徴とする装置。
  6. 製造機械で実行される製造プロセスをモニタする装置において、前記装置が:
    複数のモジュールスロットであって、当該複数のモジュールスロットの各々が、一のセンサモジュールを受信するように構成された複数のモジュールスロットと;
    製造プロセスをモニタする方法を実行する処理デバイスであって、当該方法が:
    a)前記複数のモジュールスロットの各々にインストールセンサモジュールを同定するステップと;
    b)前記複数のモジュールスロットの各々にインストールセンサモジュールをキャリブレーションするステップと;
    c)前記複数のモジュールスロットの選択されたスロットにインストールセンサモジュールからデータストリームを取得するステップと;
    d)このデータストリームを処理するステップと;
    e)このデータストリームの視覚的表示を生成するステップと;
    を具えるデバイスと;
    前記複数のモジュールスロットと前記処理デバイス間を通信するインターフェース回路であって、アナログ信号をデジタル信号に、およびデジタル信号をアナログ信号に変換するインターフェースデバイスと;
    前記処理デバイスと通信するディスプレイデバイスであって、前記視覚的表示を人間が読み取ることができるフォーマットで表示するディスプレイデバイスと;
    前記処理デバイスと通信する入力デバイスであって、ユーザからのコマンドを受けて、これによってユーザが前記処理デバイスを制御できる入力デバイスと;
    を具えることを特徴とする装置。
  7. 請求項5に記載の装置が更に、前記複数のモジュールスロットと通信するスイッチ回路を具え、当該スイッチ回路が、前記複数のセンサモジュールの一つからの入力を第1の信号と第2の信号に分けるように構成されており、前記スイッチ回路が前記第2の信号を前記複数のセンサモジュールの別のモジュールに送り、前記第1の信号及び第2の信号が別々に処理されることを特徴とする装置。
  8. 請求項1に記載の装置が更に、前記モジュールスロットにインストールされた複数のセンサモジュールを具え、当該複数のセンサモジュールの各々が、リニア可変差動トランスと、電流ループと、直流電圧センサと、差動電圧センサと、圧電振動センサと、電力センサからなる群から選択されたセンサからの入力を受信して、前記複数のセンサモジュールの各々が信号調整回路を具えることを特徴とする装置。
  9. 請求項7に記載の装置が更に、前記複数のセンサモジュールの各々の前記信号調整回路に通信し、前記処理デバイスに応答するゲイン制御回路であって、前記複数のモジュールスロットの選択されたスロットにインストールされたセンサモジュールからの前記データストリームを増幅するゲイン制御回路を具えることを特徴とする装置。
  10. 請求項1に記載の装置において、前記信号調整電子機器が、前記センサに関連する第1のキャリブレーションレンジと、前記センサに関連する第2のキャリブレーションレンジを有し、前記第1のキャリブレーションレンジが前記第2のキャリブレーション値より広く、前記第1のキャリブレーション値が、データの取得に用いられ、前記第2のキャリブレーション値がデータの表示に使用されることを特徴とする装置。
  11. 請求項1に記載の装置が更に、前記複数のセンサモジュールの各々の前記信号調整回路と通信し、前記処理デバイスに応答するオフセット制御回路であって、前記複数のモジュールスロットの選択されたスロットにインストールされたセンサモジュールからのデータストリームに直流電圧オフセットを適用するオフセット制御回路を具えることを特徴とする装置。
  12. 請求項1に記載の装置が更に、前記複数のセンサモジュールの各々における前記信号調整回路と通信し、前記処理デバイスに応答するラッチ制御回路であって、前記複数のモジュールスロットの選択されたスロットにインストールされたセンサモジュールからのデータストリームの値を保持するラッチ制御回路を具えることを特徴とする装置。
  13. 請求項1に記載の装置が更に、ユーザが前記処理デバイスの制御を行うことができるようにする入力デバイスを具えることを特徴とする装置。
  14. 請求項1に記載の装置が更に、前記処理デバイスと通信する機械インターフェースと、様々な処理パラメータを制御する前記製造機械の制御回路とを具え、前記処理デバイスが前記入力デバイスからのコマンドを受けて、前記機械インターフェースを介して転送される制御信号を発生し、これによって、ユーザが製造機械のさまざまな処理パラメータを調整できるようにしたことを特徴とする装置。
  15. 製造機械の効率をモニタする装置において、当該装置が:
    前記モジュール回路と通信するセンサであって、前記センサモジュールが製造機械とインターフェースを取り、前記製造機械からのデータを測定するセンサと;
    前記センサと通信するインターフェース回路と;
    製造プロセスの効率を改善する方法を実行する処理デバイスであって、当該方法が:
    a)前記センサを同定するステップと;
    b)前記センサをキャリブレーションするステップと;
    c)前記センサからデータを取得するステップと;
    d)このデータから視覚的表示を生成するステップと;
    を具える処理デバイスと;
    前記処理デバイスと通信するディスプレイデバイスであって、前記視覚的表示を人間が読み取ることができるフォーマットで表示するディスプレイデバイスと;
    前記処理デバイスと通信する入力デバイスであって、ユーザからのコマンドを受けて、これによってユーザが前記処理デバイスを制御できる入力デバイスと;
    前記処理デバイスと通信するストレージデバイスであって、後の呼び出し用に前記データを保存するストレージデバイスと;
    を具えることを特徴とする装置。
  16. 製造プロセスをモニタする方法において、当該方法が:
    a)ハードウエアモニタデバイスにインストールされたセンサモジュールを同定するステップと;
    b)前記ハードウエアモニタデバイスにインストールしたセンサモジュールをキャリブレーションするステップと;
    c)前記センサモジュールからデータを取得するステップと;
    d)前記センサモジュールから取得したデータを処理するステップと;
    e)前記センサモジュールから取得したデータから視覚的表示を生成するステップと;
    を具えることを特徴とする方法。
  17. 請求項15に記載の装置において、前記リニア可変差動トランスがセンサとして使用されており、前記センサモジュールをキャリブレーションするステップとが:
    f)リニア可変差動トランスの入力に関するスケール情報を受け取るステップと;
    g)ゲインを初期値に設定するステップと;
    h)オフセットを初期値に設定するステップと;
    i)前記リニア可変差動トランスの完全な移動レンジがトラバースされたときに生成された最大電圧を記録するステップと;
    j)リニア可変差動トランスの完全な移動レンジがトラバースされたときに生成された最大電圧を記録するステップと;
    k)前記リニア可変差動トランスの動作のリニア領域を同定するステップと;
    l)前記リニア領域内で前記リニア可変差動トランスが動作する間に前記オフセットを調整するステップと;
    m)前記リニア可変差動トランスが、完全移動レンジ内の望ましい最大位置で動作する間に、前記ゲインを調整するステップと;
    を具えることを特徴とする装置。
JP2006551112A 2004-01-26 2005-01-06 フレキシブルプロセスオプティマイザ Pending JP2007531929A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/764,615 US7246023B2 (en) 2004-01-26 2004-01-26 Flexible process optimizer
PCT/US2005/000345 WO2005072465A2 (en) 2004-01-26 2005-01-06 Flexible process optimizer

Publications (1)

Publication Number Publication Date
JP2007531929A true JP2007531929A (ja) 2007-11-08

Family

ID=34795303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006551112A Pending JP2007531929A (ja) 2004-01-26 2005-01-06 フレキシブルプロセスオプティマイザ

Country Status (7)

Country Link
US (4) US7246023B2 (ja)
EP (1) EP1763655A4 (ja)
JP (1) JP2007531929A (ja)
CN (1) CN101069064B (ja)
AU (2) AU2005208001B2 (ja)
CA (1) CA2554355C (ja)
WO (1) WO2005072465A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018904A (ja) * 2012-07-17 2014-02-03 Disco Abrasive Syst Ltd 加工装置のサポートシステム
CN105229627A (zh) * 2013-02-05 2016-01-06 横河电机美洲有限公司 用于确定产品流或处理流的属性的系统、方法和设备

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7304586B2 (en) 2004-10-20 2007-12-04 Electro Industries / Gauge Tech On-line web accessed energy meter
US9080894B2 (en) 2004-10-20 2015-07-14 Electro Industries/Gauge Tech Intelligent electronic device for receiving and sending data at high speeds over a network
US7747733B2 (en) 2004-10-25 2010-06-29 Electro Industries/Gauge Tech Power meter having multiple ethernet ports
US8160824B2 (en) 2005-01-27 2012-04-17 Electro Industries/Gauge Tech Intelligent electronic device with enhanced power quality monitoring and communication capabilities
US8190381B2 (en) 2005-01-27 2012-05-29 Electro Industries/Gauge Tech Intelligent electronic device with enhanced power quality monitoring and communications capabilities
US8620608B2 (en) 2005-01-27 2013-12-31 Electro Industries/Gauge Tech Intelligent electronic device and method thereof
US8930153B2 (en) 2005-01-27 2015-01-06 Electro Industries/Gauge Tech Metering device with control functionality and method thereof
US7996171B2 (en) * 2005-01-27 2011-08-09 Electro Industries/Gauge Tech Intelligent electronic device with broad-range high accuracy
US20080007555A1 (en) * 2006-07-10 2008-01-10 Vrba Joseph A Dynamic plot on plot displays
KR20090054461A (ko) * 2006-09-05 2009-05-29 썬넨프러덕츠캄파니 게이지 시스템을 기계 제어 장치 내에 완전 통합함으로써 기계 가공 파라미터들을 자동으로 제어하기 위한 제어 장치
EP1916670A3 (en) * 2006-10-27 2009-11-25 Acreo AB Patterning PEDOT:PSS layer by controlled electrochemical reaction
US7920976B2 (en) 2007-03-27 2011-04-05 Electro Industries / Gauge Tech. Averaging in an intelligent electronic device
US9989618B2 (en) 2007-04-03 2018-06-05 Electro Industries/Gaugetech Intelligent electronic device with constant calibration capabilities for high accuracy measurements
US10845399B2 (en) 2007-04-03 2020-11-24 Electro Industries/Gaugetech System and method for performing data transfers in an intelligent electronic device
US11307227B2 (en) 2007-04-03 2022-04-19 Electro Industries/Gauge Tech High speed digital transient waveform detection system and method for use in an intelligent electronic device
US20130275066A1 (en) 2007-04-03 2013-10-17 Electro Industries/Gaugetech Digital power metering system
WO2009007960A2 (en) * 2007-07-10 2009-01-15 Emerald Information Systems Ltd. Managing and controlling remote production machines
US7551026B2 (en) * 2007-07-31 2009-06-23 Broadcom Corporation Method and system for polar modulation with discontinuous phase for RF transmitters with power control
DE102007039020B4 (de) * 2007-08-17 2019-10-31 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung und/oder Optimierung von Prozessabläufen einer Steuerung einer Maschine
US12061218B2 (en) 2008-03-13 2024-08-13 Ei Electronics Llc System and method for multi-rate concurrent waveform capture and storage for power quality metering
US20110295647A1 (en) * 2008-12-05 2011-12-01 Hisaya Ishibashi Manufacturing plan drawing-up system and method
US9659269B2 (en) * 2009-03-27 2017-05-23 Mark Lamoncha System and method for increasing employee productivity
US8558408B2 (en) 2010-09-29 2013-10-15 General Electric Company System and method for providing redundant power to a device
CN102069451A (zh) * 2010-11-03 2011-05-25 广州遂联自动化设备有限公司 一种用在抛磨设备上的电流智能补偿控制方法
US20120156963A1 (en) * 2010-12-20 2012-06-21 Caterpillar Inc. Method of Monitoring Gear Grinding Operations
US10063397B1 (en) * 2010-12-22 2018-08-28 Integrated Device Technology, Inc. Method and apparatus for novel adaptive equalization technique for serializer/deserializer links
US8278779B2 (en) 2011-02-07 2012-10-02 General Electric Company System and method for providing redundant power to a device
US9180559B2 (en) * 2012-08-16 2015-11-10 Nsk Americas, Inc. Apparatus and method for measuring bearing dimension
US20140067321A1 (en) * 2012-09-06 2014-03-06 Schmitt Industries, Inc. Systems and methods for monitoring machining of a workpiece
WO2014051665A1 (en) 2012-09-26 2014-04-03 United Technologies Corporation Method of modifying gear profiles
RU2529172C1 (ru) * 2013-04-16 2014-09-27 Государственное научное учреждение Всероссийский научно-исследовательский институт мясной промышленности им. В.М. Горбатова Российской академии сельскохозяйственных наук Система автоматического управления процессом измельчения пищевых продуктов, замороженных в виде блоков
CN103760819B (zh) * 2013-12-30 2016-05-18 杭州电子科技大学 一种超声切割声主轴状态监测系统及方法
GB2554630A (en) * 2014-08-01 2018-04-11 Chargepoint Tech Limited Configurable monitoring system and method
SE542094C2 (sv) * 2014-10-21 2020-02-25 Scanmaskin Sverige Ab Förfarande för att åstadkomma effektiv och kostnadsbesparande slipning av golv och dylikt
CN108367407B (zh) * 2015-12-11 2020-10-23 株式会社牧野铣床制作所 机床
US10913071B2 (en) 2016-03-09 2021-02-09 Pearson Incorporated Scalper apparatus and processing system
CN106054831A (zh) * 2016-06-06 2016-10-26 佛山市智人机器人有限公司 基于形状多变工件的自适应自动化加工方法及系统
SE541649C2 (en) 2016-06-14 2019-11-19 Husqvarna Ab Floor grinding machine and method of operating floor grinding machine
US10322487B1 (en) 2016-07-15 2019-06-18 Pearson Incorporated Roller mill grinding apparatus with regenerative capability
DE102017110950B4 (de) * 2017-05-19 2022-12-22 Karl Heesemann Maschinenfabrik Gmbh & Co. Kg Schleifmaschine zum Schleifen einer Oberfläche eines Objektes
US10807098B1 (en) 2017-07-26 2020-10-20 Pearson Incorporated Systems and methods for step grinding
US11325133B1 (en) 2018-07-26 2022-05-10 Pearson Incorporated Systems and methods for monitoring the roll diameter and shock loads in a milling apparatus
US10751722B1 (en) 2018-10-24 2020-08-25 Pearson Incorporated System for processing cannabis crop materials
US10785906B2 (en) 2019-02-19 2020-09-29 Pearson Incorporated Plant processing system
TWI739569B (zh) * 2019-09-06 2021-09-11 明達醫學科技股份有限公司 眼鏡鏡片加工裝置之校正方法
US10757860B1 (en) 2019-10-31 2020-09-01 Hemp Processing Solutions, LLC Stripper apparatus crop harvesting system
US10933424B1 (en) 2019-12-11 2021-03-02 Pearson Incorporated Grinding roll improvements
CN110849256A (zh) * 2019-12-11 2020-02-28 河北赛高波特流体控制有限公司 一种活塞杆行程实时检测装置
CN110977720B (zh) * 2019-12-27 2021-06-22 台州市圣西亚金刚石设备有限公司 砂轮磨削装置
CN111353690B (zh) * 2020-02-18 2023-04-18 广东工业大学 一种区块链使能的生产调度边缘计算方法
EP3889708A1 (de) * 2020-03-31 2021-10-06 Siemens Aktiengesellschaft Optimierung von zerspanungsvorgängen auf werkzeugmaschinen
US12174596B2 (en) * 2020-04-22 2024-12-24 Industrial Technology Research Institute Grinding and polishing simulation method and system and grinding and polishing process transferring method
CN113255991B (zh) * 2021-05-21 2024-02-02 长沙理工大学 有载调压变压器优化配置方法、电子设备和可读存储介质
CN114473870B (zh) * 2022-03-11 2023-02-28 新代科技(苏州)有限公司 磨床监测系统及监测方法
CN115256048B (zh) * 2022-08-10 2024-10-01 九江金铖科技有限公司 一种具有多位置检测功能的高安全性机械振动测量装置
CN116804863B (zh) * 2023-05-30 2024-01-30 苏州贝茵科技股份有限公司 一种自由切换输出功能的方法及控制器装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304201A (ja) * 2001-04-05 2002-10-18 Mitsubishi Electric Corp センサ処理ユニット、コントローラ、センサおよびセンサ処理システム
JP2002340505A (ja) * 2001-05-21 2002-11-27 Mitsutoyo Corp 差動トランスの信号処理装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1398851A (en) * 1971-11-09 1975-06-25 Giddings & Lewis Adaptive control of a machine tool
USRE31450E (en) * 1977-07-25 1983-11-29 Micro Motion, Inc. Method and structure for flow measurement
US4590573A (en) * 1982-09-17 1986-05-20 Robert Hahn Computer-controlled grinding machine
US4510565A (en) * 1982-09-20 1985-04-09 Allen-Bradley Company Programmable controller with intelligent positioning I/O modules
US4570389A (en) * 1984-01-30 1986-02-18 The Warner & Swasey Company Method of adaptive grinding
US4855925A (en) * 1987-04-14 1989-08-08 Bhateja Chander P Monitoring apparatus
US4876664A (en) 1987-08-26 1989-10-24 Allen-Bradley Company, Inc. Programmable controller with a dual intermodule message system
US5248248A (en) * 1989-11-13 1993-09-28 Adly Tarek A Machine for making concrete pipes
US5470218A (en) * 1993-07-07 1995-11-28 Wheaton Inc. Graphical interface driven injection blow molding apparatus
CN1112248A (zh) * 1994-05-16 1995-11-22 南京理工大学 挤压粉碎机智能监控装置
US5524362A (en) * 1994-06-03 1996-06-11 Speed Queen Company Apparatus and method of using wire harness to select controller mode
US5491418A (en) * 1994-10-27 1996-02-13 General Motors Corporation Automotive diagnostic communications interface
US5689447A (en) * 1995-12-01 1997-11-18 Control Gaging, Inc. Temperature-compensated, self-calibrating, contact-type gaging system and method for calibrating the same
GB9615511D0 (en) * 1996-07-24 1996-09-04 Western Atlas Uk Ltd Improvements relating to grinding methods and apparatus
US6113461A (en) * 1996-09-30 2000-09-05 Ntn Corporation Grinding method utilizing grinding sharpness of grinding element
JP3143894B2 (ja) * 1996-10-07 2001-03-07 株式会社コンドウ 定寸装置
JP3478370B2 (ja) * 1997-06-17 2003-12-15 株式会社東京精密 自動定寸装置
CN1086234C (zh) * 1997-07-29 2002-06-12 林恒延 一种应用控制图原理进行质量控制的通用监控仪
JPH11179656A (ja) * 1997-10-17 1999-07-06 Tokyo Seimitsu Co Ltd 粗さ・真円度測定機能を有する自動定寸装置
US6362768B1 (en) * 1999-08-09 2002-03-26 Honeywell International Inc. Architecture for an input and output device capable of handling various signal characteristics
US6640166B2 (en) * 2000-10-17 2003-10-28 Spx Corporation Diagnostic tool graphical display apparatus and method
CN2464745Y (zh) * 2000-10-20 2001-12-12 中国科学院长春光学精密机械与物理研究所 精密电铸仪的电控装置
CN2539984Y (zh) * 2002-03-28 2003-03-12 深圳职业技术学院 数控加工实时监控装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304201A (ja) * 2001-04-05 2002-10-18 Mitsubishi Electric Corp センサ処理ユニット、コントローラ、センサおよびセンサ処理システム
JP2002340505A (ja) * 2001-05-21 2002-11-27 Mitsutoyo Corp 差動トランスの信号処理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018904A (ja) * 2012-07-17 2014-02-03 Disco Abrasive Syst Ltd 加工装置のサポートシステム
CN105229627A (zh) * 2013-02-05 2016-01-06 横河电机美洲有限公司 用于确定产品流或处理流的属性的系统、方法和设备
JP2016507113A (ja) * 2013-02-05 2016-03-07 ヨコガワ・コーポレーション・オブ・アメリカ 製品またはプロセス流の特性を判定するためのシステム、方法、および装置
US10175661B2 (en) 2013-02-05 2019-01-08 Yokogawa Corporation Of America System, method and apparatus for determining properties of product or process streams

Also Published As

Publication number Publication date
WO2005072465A3 (en) 2007-05-18
AU2005208001B2 (en) 2010-12-23
US7457715B1 (en) 2008-11-25
US7756684B2 (en) 2010-07-13
US20050165585A1 (en) 2005-07-28
CA2554355C (en) 2012-04-24
US20080275660A1 (en) 2008-11-06
EP1763655A4 (en) 2010-03-03
US7246023B2 (en) 2007-07-17
CN101069064B (zh) 2011-04-20
AU2011201191A1 (en) 2011-04-07
US20070203671A1 (en) 2007-08-30
WO2005072465A2 (en) 2005-08-11
AU2011201191B2 (en) 2011-10-06
AU2005208001A1 (en) 2005-08-11
CN101069064A (zh) 2007-11-07
EP1763655A2 (en) 2007-03-21
CA2554355A1 (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP2007531929A (ja) フレキシブルプロセスオプティマイザ
Tansel et al. Micro-end-milling—I. Wear and breakage
CN108620949B (zh) 刀具磨耗监测与预测方法
DE69804982T2 (de) Vorrichtung und verfahren zum empfehlen von dynamisch bevorzugten bearbeitungsgeschwindigkeiten
US5044125A (en) Method and apparatus for controlling grinding processes
Segreto et al. Machine learning for in-process end-point detection in robot-assisted polishing using multiple sensor monitoring
JP2006519709A (ja) 機械加工用ダイナミクス計器
JP7380107B2 (ja) 品質予測システム
TW202333011A (zh) 監測工具機的狀態之方法
Kannan et al. Multi-sensor data analytics for grinding wheel redress life estimation-an approach towards Industry 4.0
CN119855669A (zh) 用于监控机床中的加工过程的方法以及监控设备和用于其的计算机程序
US11226613B2 (en) Anomaly detection device, anomaly detection server and anomaly detection method
JP3478370B2 (ja) 自動定寸装置
US5025594A (en) Method and apparatus for controlling grinding processes
JP6871218B2 (ja) 加工情報記録装置、加工情報記録方法及びプログラム
Vairamuthu et al. Performance enhancement of cylindrical grinding process with a portable diagnostic system
EP0356663B1 (en) A grinding machine, and method and apparatus for controlling a grinding process
Denkena et al. Condition monitoring of grinding wheels: Potential of internal control signals
Pilný et al. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing
CN106066631B (zh) 数值控制装置
JP7576594B2 (ja) 切削システム及び切削方法
Jessel et al. The capability of Acoustic Emission features to monitor diamond-coated burr grinding wear and effectiveness
Lin et al. Roughness Measurement of Polished Beech Wood by a Robotic Arm with a Laser Rangefinder
JPH09295256A (ja) コイルスプリング端面研削システム
Kwon et al. In-process and post-process quantification of machining accuracy in circular CNC milling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104