JP2007017163A - Evaluation method for granular products - Google Patents
Evaluation method for granular products Download PDFInfo
- Publication number
- JP2007017163A JP2007017163A JP2005195827A JP2005195827A JP2007017163A JP 2007017163 A JP2007017163 A JP 2007017163A JP 2005195827 A JP2005195827 A JP 2005195827A JP 2005195827 A JP2005195827 A JP 2005195827A JP 2007017163 A JP2007017163 A JP 2007017163A
- Authority
- JP
- Japan
- Prior art keywords
- area
- grain
- abnormal
- normal
- total area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
【課題】概ね一定の大きさの粒状製品が概ね等間隔に配置されている粒状製品の大きさの均一性と個数を全体の傾向として評価する方法を提供する。
【解決手段】粒状製品を撮像して得られる濃淡画像を所定の閾値により二値化し、抽出した粒領域にラベリング処理を行い、各粒領域の面積を求め、予め設定した第1の面積閾値に満たない面積をもつ粒領域をノイズとして評価対象から除外し、第1の面積閾値以上で第2の面積閾値未満の面積をもつ粒領域を正常粒領域として抽出し、その数および正常粒領域の面積の総和を求め、第2の面積閾値以上の面積をもつ粒領域を異常粒領域として抽出し、その数および異常粒領域の面積の総和を求め、正常粒数、正常粒総面積、異常粒数および異常粒総面積について基準値と比較し、正常粒数または正常粒総面積が基準値に満たない場合、あるいは異常粒数異常粒総面積が基準値を超える場合に当該粒状製品の品質が不均一であると判定する。
【選択図】図1
The present invention provides a method for evaluating the uniformity and the number of granular products in which granular products having a substantially constant size are arranged at approximately equal intervals as an overall tendency.
A gray-scale image obtained by imaging a granular product is binarized with a predetermined threshold value, a labeling process is performed on the extracted grain region, an area of each grain region is obtained, and a first area threshold value set in advance is obtained. Grain regions having less than the area are excluded from the evaluation target as noise, and the grain regions having an area that is greater than or equal to the first area threshold and less than the second area threshold are extracted as normal grain regions. Obtain the total area, extract the grain regions with an area equal to or larger than the second area threshold as abnormal grain regions, find the number and the sum of the areas of the abnormal grain regions, and calculate the number of normal grains, normal grain total area, abnormal grains When the number of normal grains or the total area of normal grains is less than the standard value, or the abnormal grain total area exceeds the standard value, the quality of the granular product is Judged to be non-uniform.
[Selection] Figure 1
Description
本発明は、概ね一定の大きさの粒状製品が概ね等間隔に配置されている粒状製品の大きさの均一性の評価方法に関する。 The present invention relates to a method for evaluating the uniformity of the size of granular products in which granular products having a substantially constant size are arranged at approximately equal intervals.
概ね一定の大きさの粒状製品の個々の大きさを計測する場合においては、従来は、粒状製品が多数撮像された画像を所定の閾値で二値化することによって背景と粒状製品とを識別し、得られた二値画像に対してラベリング処理を行い、個々の粒状製品の特徴量(面積、外接長方形の辺長など)を画像解析によって求め、各特長量の値が予め設定された許容範囲内にあるか否かに基づいて粒状製品の良否を判定する手法がよく用いられる。ラベリングとは、二値画像中の連結する明領域または暗領域を1つの塊として取り扱い個々の連結領域にラベル(連番)を付与する一般的な手法である。 In the case of measuring individual sizes of a granular product having a substantially constant size, conventionally, the background and the granular product are distinguished by binarizing an image in which a large number of granular products are captured with a predetermined threshold value. Then, the obtained binary image is subjected to labeling processing, and the feature amount (area, side length of circumscribed rectangle, etc.) of each granular product is obtained by image analysis, and the tolerance value for each feature amount is set in advance. Often used is a method for determining the quality of a granular product based on whether or not it is in the container. Labeling is a general method for treating bright regions or dark regions to be connected in a binary image as one block and assigning labels (serial numbers) to individual connected regions.
概ね一定の大きさの粒状製品の個数をカウントする場合においては、従来は、粒状製品が多数撮像された画像を適当な閾値によって二値化することにより背景と粒状製品とを識別し、得られた二値画像に対してラベリング処理を行い、ラベルの数が予め設定された許容範囲内にあるか否かに基づいて粒状製品の個数をカウントする手法がよく用いられる。 In the case of counting the number of granular products having a substantially constant size, conventionally, it is obtained by discriminating between the background and the granular product by binarizing an image in which a large number of granular products are imaged with an appropriate threshold value. In many cases, a labeling process is performed on the binary image and the number of granular products is counted based on whether or not the number of labels is within a preset allowable range.
また、二値画像をラベリングし、ラベリングされた各領域内の白画素と黒画素の数をカウントし、白画素の数に基づいてパターンが異物かどうかを判定し、白および/または黒画素を基準画素数で除算することにより粒が単独で存在しているかどうかを判定して、粒状製品の個数判定精度を向上させる方法が知られている(特許文献1参照。)。 It also labels the binary image, counts the number of white and black pixels in each labeled area, determines whether the pattern is a foreign object based on the number of white pixels, and determines white and / or black pixels. There is known a method of determining whether or not a grain is present by dividing by the reference pixel number and improving the precision of determining the number of granular products (see Patent Document 1).
しかしながら、大型の造粒機等により粒状製品を製造する場合などに、粒の大きさの全体的な傾向や粒数の概ね数に基づいて品質を管理する必要がある。このような場合、個々の粒の大きさや粒数を正確に計測するのではなく、正常な粒の概ね数、異常な大きさの粒の概ね数や全体粒数の概ね数等を把握しなければならない。
本発明の目的は、概ね一定の大きさの粒状製品が概ね等間隔に配置されている粒状製品の大きさの均一性を、全体の傾向として評価する方法を提供することである。 An object of the present invention is to provide a method for evaluating the uniformity of the size of a granular product in which granular products having a substantially constant size are arranged at approximately equal intervals as an overall tendency.
本発明者はかかる課題を解決するために、粒状製品の大きさの均一性を評価する方法について鋭意検討した結果、粒状製品を撮像して得られる濃淡画像を二値化し、二値化処理して抽出した粒領域にラベリング処理を行い、ラベリングした各粒領域の面積を求め、面積閾値を設定して粒領域のノイズを除去、正常粒領域の抽出および正常粒数カウント、正常粒領域の面積の総和を求め、異常粒領域の抽出および異常粒数カウントを行い、および異常粒領域の面積の総和を求め、正常粒数、正常粒総面積、異常粒数または異常粒総面積について予め設定した基準値に満たない場合、当該粒状製品の大きさが不均一であると判定することによって、粒状製品の大きさの均一性を、全体の傾向として評価できることを見出し、本発明に至った。 In order to solve such a problem, the present inventor has intensively studied a method for evaluating the uniformity of the size of the granular product. As a result, the grayscale image obtained by imaging the granular product is binarized and binarized. The extracted grain area is labeled, the area of each labeled grain area is calculated, the area threshold is set to remove the noise in the grain area, the normal grain area is extracted and the number of normal grains is counted, the area of the normal grain area The total number of abnormal grains is extracted and the number of abnormal grains is counted. The total sum of the areas of abnormal grains is obtained, and the number of normal grains, the total area of normal grains, the number of abnormal grains, or the total area of abnormal grains is preset. When it was less than the reference value, it was found that the size of the granular product was determined to be non-uniform so that the uniformity of the size of the granular product could be evaluated as an overall trend, leading to the present invention.
すなわち本発明は、概ね一定の大きさの粒状製品が概ね等間隔に配置されている粒状製品の大きさの均一性を評価する方法であって、(1)粒状製品を撮像して濃淡画像を生成する撮像工程と、(2)濃淡画像を所定の閾値により二値化する二値化工程と、(3)二値化処理によって抽出された粒領域にラベリング処理を行うラベリング工程と、(4)ラベリングされた各粒領域の面積を求める面積算出工程と、(5)予め設定した第1の面積閾値に満たない面積をもつ粒領域をノイズとして評価対象から除外するノイズ除去工程と、(6)第1の面積閾値以上で第2の面積閾値未満の面積をもつ粒領域を正常粒領域として抽出し、その数をカウントする正常粒数カウント工程と、(7)正常粒領域の面積の総和を求める正常粒総面積算出工程と、(8)第2の面積閾値以上の面積をもつ粒領域を異常粒領域として抽出し、その数をカウントする異常粒数カウント工程と、(9)異常粒領域の面積の総和を求める異常粒総面積算出工程と、(10)正常粒数、正常粒総面積、異常粒数および異常粒総面積のそれぞれについて予め設定した基準値と比較し、正常粒数が基準値に満たない場合、正常粒総面積が基準値に満たない場合、異常粒数が基準値を超える場合または異常粒総面積が基準値を超える場合に、当該粒状製品の大きさが不均一であると判定する均一性評価工程と、を備えることを特徴とする粒状製品の均一性の評価方法である。 That is, the present invention is a method for evaluating the uniformity of the size of a granular product in which granular products having a substantially constant size are arranged at approximately equal intervals. (1) A grayscale image is obtained by imaging the granular product. An imaging process to be generated; (2) a binarization process for binarizing a grayscale image with a predetermined threshold; (3) a labeling process for performing a labeling process on a grain region extracted by the binarization process; ) An area calculating step for obtaining an area of each labeled grain region; (5) a noise removing step for excluding a grain region having an area less than a preset first area threshold from noise as an evaluation target; ) Extracting a grain region having an area that is greater than or equal to the first area threshold and less than the second area threshold as a normal grain region, and counting the number of normal grains, and (7) the total area of the normal grain regions Normal grain total area calculation step to obtain (8 Extracting a grain region having an area equal to or larger than the second area threshold as an abnormal grain region and counting the number thereof, and (9) calculating an abnormal grain total area calculating a sum of the areas of the abnormal grain regions. And (10) when compared with the reference values set in advance for the number of normal grains, the total area of normal grains, the number of abnormal grains and the total area of abnormal grains, and if the number of normal grains is less than the standard value, A uniformity evaluation step for determining that the size of the granular product is non-uniform when the number of abnormal grains exceeds the reference value or the abnormal grain total area exceeds the reference value, It is the evaluation method of the uniformity of the granular product characterized by providing.
本発明の方法によれば、所定の範囲の面積値をもつ正常粒の個数およびその総面積、および所定の値を超える面積値をもつ異常粒の個数およびその総面積を特徴量として、正常粒については予め設定した基準値に満たない場合に、異常粒については予め設定した基準値を超える場合に、当該粒状製品の大きさが不均一であると判断するので、粒全体の大きさの傾向に基づいて均一性を判断することができる。 According to the method of the present invention, the number of normal grains having an area value in a predetermined range and the total area thereof, and the number of abnormal grains having an area value exceeding the predetermined value and the total area thereof as feature quantities are used as normal grains. When the pre-set reference value is not satisfied, and when the pre-set reference value is exceeded for abnormal particles, it is determined that the size of the granular product is non-uniform. The uniformity can be determined based on the above.
また、本発明は、所定の範囲の面積値をもつ正常粒の総面積が予め設定した基準値に満たない場合に当該粒状製品の大きさが不均一であると判断されるので、撮像範囲内の粒の数が異常に減少した場合にもこれを検出することができる。 Further, the present invention determines that the size of the granular product is non-uniform when the total area of normal grains having an area value in a predetermined range is less than a preset reference value. This can also be detected when the number of grains decreases abnormally.
さらに、本発明は、所定の値を超える面積値をもつ異常粒の総面積が予め設定した基準値を超える場合に当該粒状製品の大きさが不均一であると判断されるので、非常に大きな粒が1個発生した場合でも、また、所定の値をわずかに超える程度の異常粒が多数発生した場合でも、不均一と判定することができる。 Furthermore, the present invention determines that the size of the granular product is non-uniform when the total area of abnormal grains having an area value exceeding a predetermined value exceeds a preset reference value. Even when one grain is generated or when many abnormal grains slightly exceeding a predetermined value are generated, it can be determined as non-uniform.
図1は、本発明の粒状製品の均一性評価方法の一実施形態を示す。ベルト型造粒機の造粒ベルト1の上面に、粒状製品2は、概ね等間隔に配置されて粒を形成し、搬送される。粒状製品2は、造粒ベルト1の上方に設置されたカメラ3により撮像され、画像データが画像解析装置4へ送信される。
FIG. 1 shows an embodiment of the method for evaluating the uniformity of a granular product according to the present invention. On the upper surface of the
図2は、画像解析装置4において実施される画像解析の手順を示す。ステップs0から手順を開始し、ステップs1(撮像)では、例えば画像キャプチャボード等を使用して1フレーム分の画像を入力する。入力された画像は、通常、1画素あたり8ビット(256階調)の濃淡画像データとして画像解析装置4のメモリに格納される。
ステップs2(二値化)では、入力された濃淡画像に対して所定の閾値を用いて二値化処理を行う。例えば、閾値未満の濃度値をもつ画素を暗(濃度値=0)、閾値以上の濃度値をもつ画素を明(濃度値=1)とする。本実施形態では暗領域が粒領域である。ここで用いる閾値としては、予め固定値を入力してもよいし、各種の閾値決定アルゴリズムを用いて動的に決定してもよい。
FIG. 2 shows an image analysis procedure performed in the
In step s2 (binarization), binarization processing is performed on the input grayscale image using a predetermined threshold value. For example, a pixel having a density value less than the threshold is dark (density value = 0), and a pixel having a density value greater than or equal to the threshold is bright (density value = 1). In this embodiment, the dark area is a grain area. As the threshold used here, a fixed value may be input in advance, or may be dynamically determined using various threshold determination algorithms.
ステップs3(ラベリング)では、二値化処理によって抽出された粒領域にラベリング処理を行う。ラベリングとは、二値画像中の連結する明領域または暗領域を1つの塊として取り扱い個々の連結領域にラベル(連番)を付与することである。本実施形態では暗領域が粒領域であるので、暗領域に対してラベリングを行う。
ステップs4(面積算出)では、ラベリングした各粒領域の画素数から面積を求める。
ステップs5(ノイズ除去)では、粒領域面積が予め設定した第1の面積閾値に満たない領域をノイズと判断して以後の処理対象から除外する。
In step s3 (labeling), a labeling process is performed on the grain region extracted by the binarization process. Labeling is to treat light areas or dark areas to be connected in a binary image as one block and to give labels (serial numbers) to individual connection areas. In the present embodiment, since the dark region is a grain region, labeling is performed on the dark region.
In step s4 (area calculation), the area is obtained from the number of pixels in each labeled grain region.
In step s5 (noise removal), a region in which the grain region area does not satisfy the preset first area threshold is determined as noise and is excluded from subsequent processing targets.
ステップs6(正常粒数カウント)では、粒領域面積が第1の面積閾値以上でかつ第2の面積閾値未満である領域を正常粒領域として抽出し、その数をカウントする。
ステップs7(正常粒総面積算出)では、ステップs6で抽出された正常粒領域の総面積を算出する。
ステップs8(異常粒数カウント)では、領域面積が第2の面積閾値以上であるラベルを異常粒領域として抽出し、その数をカウントする。
ステップs9(異常粒総面積算出)では、ステップs8で抽出された異常粒領域の総面積を算出する。
In step s6 (normal grain count), areas where the grain area is not less than the first area threshold and less than the second area threshold are extracted as normal grain areas, and the number is counted.
In step s7 (calculate normal grain total area), the total area of the normal grain region extracted in step s6 is calculated.
In step s8 (abnormal grain count), labels whose area is equal to or larger than the second area threshold are extracted as abnormal grain areas, and the number is counted.
In step s9 (abnormal grain total area calculation), the total area of the abnormal grain region extracted in step s8 is calculated.
ステップs10(均一性評価)では、正常粒数、正常粒総面積、異常粒数および異常粒総面積のそれぞれについて予め設定した基準値と比較し、正常粒数が基準値に満たない場合、正常粒総面積が基準値に満たない場合、異常粒数が基準値を超える場合または異常粒総面積が基準値を超える場合に、当該粒状製品の大きさが不均一であると判定する。
以上の処理を連続して実行した後、ステップs11のエンド状態に移行し、待機状態を維持し、予め設定した計測間隔(単位:ミリ秒)に基づいて次回の計測時刻に達した時点でステップs0へ移行する。
In step s10 (uniformity evaluation), each of the number of normal grains, normal grain total area, abnormal grain number, and abnormal grain total area is compared with a preset reference value. If the normal grain number is less than the reference value, normal When the total grain area is less than the reference value, when the number of abnormal grains exceeds the reference value, or when the total abnormal grain area exceeds the reference value, it is determined that the size of the granular product is non-uniform.
After executing the above processing continuously, the process shifts to the end state of step s11, maintains the standby state, and steps when the next measurement time is reached based on a preset measurement interval (unit: millisecond). Move to s0.
図2のステップs2において、原画像中に照明むらなどに起因する濃淡むらが含まれる場合、二値化処理に先立って適当なシェーディング補正処理を行うと効果的な場合がある。シェーディング補正とは、例えば多数の画像の加算平均等により背景の濃淡むらのみの画像を作成しておき、毎回の計測時に入力された原画像から差し引くことにより濃淡むらを除去する手法であり、一般的な画像処理手法である。 In step s2 of FIG. 2, when the original image includes shading unevenness due to illumination unevenness or the like, it may be effective to perform appropriate shading correction processing prior to binarization processing. Shading correction is a technique that removes shading unevenness by creating an image with only shading of the background by, for example, averaging the number of images, and subtracting it from the original image input at each measurement. This is a typical image processing technique.
図2のステップs3において、粒領域の内部に空洞が生じる、あるいは粒と粒とが近接しているために画像上で擬似的に連結してしまう、等の画像処理上の問題が生じることがある。このような場合には画像の膨張・収縮処理を施すことにより空洞を埋めたり、擬似的に連結した粒領域を切り離したりすることができる。膨張・収縮とは、例えば、明画素の周囲8画素を強制的に明とする(明画素の膨張)などの処理であり、一般的な画像処理手法である。 In step s3 of FIG. 2, there may be a problem in image processing such as a void is generated inside the grain region, or because the grains are close to each other, they are pseudo-connected on the image. is there. In such a case, the cavity can be filled or the pseudo-connected grain regions can be separated by applying an image expansion / contraction process. The expansion / contraction is, for example, a process of forcibly brightening 8 pixels around a bright pixel (expansion of a bright pixel), and is a general image processing technique.
図3はカメラ3で撮像され画像解析装置4へ入力された原画像の一例およびその原画像を二値化した画像を示している。図3の例では、画素毎にその画素を中心として15画素×15画素の局所領域の平均値を求め、その値をその画素に対する閾値として二値化を行った。この方法では、画像の周囲7画素の領域では15画素×15画素の局所領域を得ることができない。このため画像の周囲7画素の領域は、二値化処理の後、無効領域として評価対象から除外する。図3の二値化画像では無効領域を黒で表示した。これ以降の図では無効領域は表示しない。ここで示した二値化方法は一例であり、対象とする画像の背景やコントラストに応じて、適当な二値化方法を選択することができる。
FIG. 3 shows an example of an original image captured by the
次に、二値化処理によって抽出した粒領域にラベリング処理を行う。本実施形態では黒領域をラベリング対象として、全ての粒領域に連番を付与する。さらに、ラベリングした各粒領域の面積を求める。 Next, a labeling process is performed on the grain region extracted by the binarization process. In this embodiment, a black area is a labeling target, and serial numbers are assigned to all grain areas. Furthermore, the area of each labeled grain region is determined.
表1に、ノイズ除去工程以降で使用する第1の面積閾値、第2の面積閾値、正常粒数の基準値、正常粒総面積の基準値、異常粒数の基準値および異常粒総面積の基準値の例を示す。なお、基準値は、150画素×150画素の評価範囲に対するものである。 Table 1 shows the first area threshold value, second area threshold value, normal grain number reference value, normal grain total area reference value, abnormal grain number reference value, and abnormal grain total area used after the noise removal step. An example of a reference value is shown. The reference value is for an evaluation range of 150 pixels × 150 pixels.
本実施形態において、ノイズ除去工程では、上記の第1の面積閾値に満たない面積をもつ粒領域をノイズとして評価対象から除外する。
正常粒数カウント工程では、全粒領域のうち上記の第1の面積閾値以上で第2の面積閾値未満の面積をもつ粒領域を正常粒領域として抽出しその数をカウントする。正常粒総面積算出工程では、正常粒領域の面積の総和を求める。
異常粒数カウント工程では、上記第2の面積閾値以上の面積をもつ粒領域を異常粒領域として抽出しその数をカウントする。異常粒総面積算出工程では、異常粒領域の面積の総和を求める。
In the present embodiment, in the noise removal step, a grain region having an area less than the first area threshold is excluded from the evaluation target as noise.
In the normal grain number counting step, a grain area having an area that is equal to or larger than the first area threshold and less than the second area threshold is extracted as a normal grain area, and the number is counted. In the normal grain total area calculating step, the total area of the normal grain regions is obtained.
In the abnormal particle number counting step, a particle region having an area equal to or larger than the second area threshold is extracted as an abnormal particle region, and the number is counted. In the abnormal grain total area calculating step, the total area of the abnormal grain regions is obtained.
均一性評価工程では、正常粒数、正常粒総面積、異常粒数および異常粒総面積のそれぞれについて上記の基準値と比較し、正常粒数が基準値に満たない場合、正常粒総面積が基準値に満たない場合、異常粒数が基準値を超える場合または異常粒総面積が基準値を超える場合に当該粒状製品の大きさが不均一であると判定する。判定結果は画像解析装置4のモニタ画面に表示してもよいし、必要に応じて外部機器でディジタル信号等を出力してもよい。
In the uniformity evaluation process, the number of normal grains, the total area of normal grains, the number of abnormal grains, and the total area of abnormal grains are compared with the above reference values. If the number of normal grains is less than the standard value, the total area of normal grains is When the reference value is not satisfied, the size of the granular product is determined to be non-uniform when the number of abnormal particles exceeds the reference value or the total area of abnormal particles exceeds the reference value. The determination result may be displayed on the monitor screen of the
図4から図8は、他の例における、二値化画像および正常粒数、正常粒総面積、異常粒数、異常粒総面積を示したものである。
図4の例は、全ての項目について正常と判定される例であり、図5〜図8の例は、いずれかの項目を満たさないため、不均一であると判定された例である。図5は正常粒数が65個であり、表1に示した正常粒数基準値70個に満たない。図6は正常粒数は72個であり基準値の70個を満たしているが、個々の粒の面積が全体的に小さいため正常粒総面積の値が3493画素となっており、正常粒総面積の基準値5000画素を満たしていない。図7はいくつかの粒が連結したような異常粒がいくつか見られ、異常粒数が7個となっており、異常粒数の基準値5個を超えている。図8は非常に多数の粒が連結したような領域が1箇所見られる。このため、異常粒数は1個であり基準値5個を超えてはいないが、異常粒総面積が8717画素となっており、異常粒総面積の基準値3500画素を超えている。また同時に正常粒数がこれに対応して減少している。
4 to 8 show a binarized image, the number of normal grains, the total area of normal grains, the number of abnormal grains, and the total area of abnormal grains in other examples.
The example in FIG. 4 is an example in which all items are determined to be normal, and the examples in FIGS. 5 to 8 are examples in which any item is not satisfied and thus determined to be non-uniform. In FIG. 5, the number of normal grains is 65, which is less than the normal grain number reference value 70 shown in Table 1. In FIG. 6, the number of normal grains is 72 and satisfies the reference value of 70. However, since the area of each individual grain is small as a whole, the value of the total area of normal grains is 3493 pixels. The area reference value of 5000 pixels is not satisfied. In FIG. 7, some abnormal grains in which several grains are connected are seen, the number of abnormal grains is 7, which exceeds the reference value of the number of abnormal grains. FIG. 8 shows one region where a large number of grains are connected. For this reason, the number of abnormal grains is one and does not exceed the reference value of 5, but the abnormal grain total area is 8717 pixels, which exceeds the reference value of the abnormal grain total area of 3500 pixels. At the same time, the number of normal grains is correspondingly reduced.
1 造粒ベルト
2 粒状製品
3 カメラ
4 画像解析装置
DESCRIPTION OF
Claims (1)
(1)粒状製品を撮像して濃淡画像を生成する撮像工程と、
(2)濃淡画像を所定の閾値により二値化する二値化工程と、
(3)二値化処理によって抽出された粒領域にラベリング処理を行うラベリング工程と、
(4)ラベリングされた各粒領域の面積を求める面積算出工程と、
(5)予め設定した第1の面積閾値に満たない面積をもつ粒領域をノイズとして評価対象から除外するノイズ除去工程と、
(6)第1の面積閾値以上で第2の面積閾値未満の面積をもつ粒領域を正常粒領域として抽出し、その数をカウントする正常粒数カウント工程と、
(7)正常粒領域の面積の総和を求める正常粒総面積算出工程と、
(8)第2の面積閾値以上の面積をもつ粒領域を異常粒領域として抽出し、その数をカウントする異常粒数カウント工程と、
(9)異常粒領域の面積の総和を求める異常粒総面積算出工程と、
(10)正常粒数、正常粒総面積、異常粒数および異常粒総面積のそれぞれについて予め設定した基準値と比較し、正常粒数が基準値に満たない場合、正常粒総面積が基準値に満たない場合、異常粒数が基準値を超える場合または異常粒総面積が基準値を超える場合に、当該粒状製品の大きさが不均一であると判定する均一性評価工程と、を備えることを特徴とする粒状製品の均一性の評価方法。
A method for evaluating the uniformity of the size of granular products in which granular products having a substantially constant size are arranged at approximately equal intervals,
(1) An imaging process for imaging a granular product to generate a grayscale image;
(2) a binarization step for binarizing the grayscale image with a predetermined threshold;
(3) a labeling process for performing a labeling process on the grain region extracted by the binarization process;
(4) an area calculation step for obtaining the area of each labeled grain region;
(5) a noise removing step of excluding, as noise, a grain region having an area less than a preset first area threshold value from the evaluation target;
(6) Normal grain number counting step of extracting a grain region having an area which is equal to or larger than the first area threshold and less than the second area threshold as a normal grain region,
(7) a normal grain total area calculating step for obtaining a total area of normal grain regions;
(8) An abnormal particle number counting step of extracting a particle region having an area equal to or larger than the second area threshold as an abnormal particle region and counting the number thereof,
(9) An abnormal grain total area calculating step for obtaining a total area of abnormal grain regions;
(10) Compared to the preset reference values for the number of normal grains, normal grain total area, abnormal grain count, and abnormal grain total area, and the normal grain total area is the reference value when the normal grain count is less than the standard value A uniformity evaluation step for determining that the size of the granular product is non-uniform when the number of abnormal grains exceeds the reference value or the total area of abnormal grains exceeds the reference value. A method for evaluating the uniformity of granular products.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005195827A JP2007017163A (en) | 2005-07-05 | 2005-07-05 | Evaluation method for granular products |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005195827A JP2007017163A (en) | 2005-07-05 | 2005-07-05 | Evaluation method for granular products |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2007017163A true JP2007017163A (en) | 2007-01-25 |
Family
ID=37754465
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2005195827A Pending JP2007017163A (en) | 2005-07-05 | 2005-07-05 | Evaluation method for granular products |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2007017163A (en) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011501205A (en) * | 2007-10-29 | 2011-01-06 | シリコン・バイオシステムズ・ソシエタ・ペル・アチオニ | Method and apparatus for identifying and manipulating particles |
| JP2011034391A (en) * | 2009-08-03 | 2011-02-17 | Ihi Corp | Method of dividing texture regions with different granularities |
| CN102749046A (en) * | 2012-07-23 | 2012-10-24 | 中国地质大学(武汉) | Method for measuring shearing area of rock structral plane in direct shear test |
| US8641880B2 (en) | 2005-07-19 | 2014-02-04 | Silicon Biosystems S.P.A. | Method and apparatus for the manipulation and/or the detection of particles |
| US8679315B2 (en) | 2005-10-26 | 2014-03-25 | Silicon Biosystems S.P.A. | Method and apparatus for characterizing and counting particles, in particular, biological particles |
| US8679856B2 (en) | 2006-03-27 | 2014-03-25 | Silicon Biosystems S.P.A. | Method and apparatus for the processing and/or analysis and/or selection of particles, in particular biological particles |
| US8685217B2 (en) | 2004-07-07 | 2014-04-01 | Silicon Biosystems S.P.A. | Method and apparatus for the separation and quantification of particles |
| US9192943B2 (en) | 2009-03-17 | 2015-11-24 | Silicon Biosystems S.P.A. | Microfluidic device for isolation of cells |
| US9950322B2 (en) | 2010-12-22 | 2018-04-24 | Menarini Silicon Biosystems S.P.A. | Microfluidic device for the manipulation of particles |
| US10234447B2 (en) | 2008-11-04 | 2019-03-19 | Menarini Silicon Biosystems S.P.A. | Method for identification, selection and analysis of tumour cells |
| US10376878B2 (en) | 2011-12-28 | 2019-08-13 | Menarini Silicon Biosystems S.P.A. | Devices, apparatus, kit and method for treating a biological sample |
| CN111895916A (en) * | 2020-07-14 | 2020-11-06 | 华南农业大学 | Rice spike length measuring device and measuring method |
| US10895575B2 (en) | 2008-11-04 | 2021-01-19 | Menarini Silicon Biosystems S.P.A. | Method for identification, selection and analysis of tumour cells |
| JP2021099257A (en) * | 2019-12-23 | 2021-07-01 | 大同特殊鋼株式会社 | Material evaluation method |
| CN117137166A (en) * | 2023-08-10 | 2023-12-01 | 浙江中烟工业有限责任公司 | Layer uniformity detection device and detection method in blending process based on line laser scanning |
| US11921028B2 (en) | 2011-10-28 | 2024-03-05 | Menarini Silicon Biosystems S.P.A. | Method and device for optical analysis of particles at low temperatures |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6279330A (en) * | 1985-10-01 | 1987-04-11 | Hitachi Ltd | Flock image recognition device |
| JPS63208740A (en) * | 1987-02-25 | 1988-08-30 | Osaka Gas Co Ltd | Measuring instrument for particle size distribution for lump body |
| JPH0735696A (en) * | 1993-07-23 | 1995-02-07 | Sharp Corp | Particle aggregation detection and removal device |
| WO2000014511A1 (en) * | 1998-09-07 | 2000-03-16 | Yamatake Corporation | Grain size distribution measuring device |
| JP2000171410A (en) * | 1998-12-04 | 2000-06-23 | Ckd Corp | PTP sheet appearance inspection device and PTP packaging machine |
-
2005
- 2005-07-05 JP JP2005195827A patent/JP2007017163A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6279330A (en) * | 1985-10-01 | 1987-04-11 | Hitachi Ltd | Flock image recognition device |
| JPS63208740A (en) * | 1987-02-25 | 1988-08-30 | Osaka Gas Co Ltd | Measuring instrument for particle size distribution for lump body |
| JPH0735696A (en) * | 1993-07-23 | 1995-02-07 | Sharp Corp | Particle aggregation detection and removal device |
| WO2000014511A1 (en) * | 1998-09-07 | 2000-03-16 | Yamatake Corporation | Grain size distribution measuring device |
| JP2000171410A (en) * | 1998-12-04 | 2000-06-23 | Ckd Corp | PTP sheet appearance inspection device and PTP packaging machine |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8685217B2 (en) | 2004-07-07 | 2014-04-01 | Silicon Biosystems S.P.A. | Method and apparatus for the separation and quantification of particles |
| US9719960B2 (en) | 2005-07-19 | 2017-08-01 | Menarini Silicon Biosystems S.P.A. | Method and apparatus for the manipulation and/or the detection of particles |
| US8641880B2 (en) | 2005-07-19 | 2014-02-04 | Silicon Biosystems S.P.A. | Method and apparatus for the manipulation and/or the detection of particles |
| US8679315B2 (en) | 2005-10-26 | 2014-03-25 | Silicon Biosystems S.P.A. | Method and apparatus for characterizing and counting particles, in particular, biological particles |
| US8992754B2 (en) | 2005-10-26 | 2015-03-31 | Silicon Biosystems S.P.A. | Method and apparatus for the characterizing and counting particles, in particular, biological particles |
| US8679856B2 (en) | 2006-03-27 | 2014-03-25 | Silicon Biosystems S.P.A. | Method and apparatus for the processing and/or analysis and/or selection of particles, in particular biological particles |
| US10092904B2 (en) | 2006-03-27 | 2018-10-09 | Menarini Silicon Biosystems S.P.A. | Method and apparatus for the processing and/or analysis and/or selection of particles, in particular biological particles |
| US9581528B2 (en) | 2006-03-27 | 2017-02-28 | Menarini Silicon Biosystems S.P.A. | Method and apparatus for the processing and/or analysis and/or selection of particles, in particular, biological particles |
| JP2011501205A (en) * | 2007-10-29 | 2011-01-06 | シリコン・バイオシステムズ・ソシエタ・ペル・アチオニ | Method and apparatus for identifying and manipulating particles |
| US10648897B2 (en) | 2007-10-29 | 2020-05-12 | Menarini Silicon Biosystems S.P.A. | Method and apparatus for the identification and handling of particles |
| US9310287B2 (en) | 2007-10-29 | 2016-04-12 | Silicon Biosystems S.P.A. | Method and apparatus for the identification and handling of particles |
| US10895575B2 (en) | 2008-11-04 | 2021-01-19 | Menarini Silicon Biosystems S.P.A. | Method for identification, selection and analysis of tumour cells |
| US10234447B2 (en) | 2008-11-04 | 2019-03-19 | Menarini Silicon Biosystems S.P.A. | Method for identification, selection and analysis of tumour cells |
| US12153040B2 (en) | 2008-11-04 | 2024-11-26 | Menarini Silicon Biosystems S.P.A. | Method for identification, selection and analysis of tumour cells |
| US9192943B2 (en) | 2009-03-17 | 2015-11-24 | Silicon Biosystems S.P.A. | Microfluidic device for isolation of cells |
| JP2011034391A (en) * | 2009-08-03 | 2011-02-17 | Ihi Corp | Method of dividing texture regions with different granularities |
| US9950322B2 (en) | 2010-12-22 | 2018-04-24 | Menarini Silicon Biosystems S.P.A. | Microfluidic device for the manipulation of particles |
| US11921028B2 (en) | 2011-10-28 | 2024-03-05 | Menarini Silicon Biosystems S.P.A. | Method and device for optical analysis of particles at low temperatures |
| US10376878B2 (en) | 2011-12-28 | 2019-08-13 | Menarini Silicon Biosystems S.P.A. | Devices, apparatus, kit and method for treating a biological sample |
| CN102749046A (en) * | 2012-07-23 | 2012-10-24 | 中国地质大学(武汉) | Method for measuring shearing area of rock structral plane in direct shear test |
| JP2021099257A (en) * | 2019-12-23 | 2021-07-01 | 大同特殊鋼株式会社 | Material evaluation method |
| JP7363462B2 (en) | 2019-12-23 | 2023-10-18 | 大同特殊鋼株式会社 | Material evaluation method |
| CN111895916B (en) * | 2020-07-14 | 2021-09-24 | 华南农业大学 | Rice ear length measuring device and measuring method |
| CN111895916A (en) * | 2020-07-14 | 2020-11-06 | 华南农业大学 | Rice spike length measuring device and measuring method |
| CN117137166A (en) * | 2023-08-10 | 2023-12-01 | 浙江中烟工业有限责任公司 | Layer uniformity detection device and detection method in blending process based on line laser scanning |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2007017163A (en) | Evaluation method for granular products | |
| CN101464418A (en) | Flaw detection method and apparatus | |
| JP3533722B2 (en) | Failure inspection method and device | |
| JP2001184510A (en) | Defect detection method | |
| CN1898555B (en) | Substrate inspection device | |
| JP5214290B2 (en) | X-ray foreign matter inspection apparatus and method for food | |
| KR20010098460A (en) | Appearance inspection method and appearance inspection apparatus having high inspection processing speed | |
| JP4272438B2 (en) | Shading correction method in surface defect inspection apparatus | |
| KR101993654B1 (en) | Inspecting apparatus mura of display panel and method thereof | |
| JP3836988B2 (en) | Pattern inspection method and pattern inspection apparatus | |
| JP4135367B2 (en) | Defect detection method | |
| CN101675457B (en) | X-ray imaging | |
| JP3870208B2 (en) | Image processing method and inspection apparatus | |
| JP4084257B2 (en) | Printed circuit board inspection equipment | |
| JP2004286708A (en) | Defect detection apparatus, method, and program | |
| JP5328196B2 (en) | X-ray inspection system | |
| JP2001239221A (en) | Image forming device and assorting/classifying/judging device used for assorting of agricultural product | |
| JP2756738B2 (en) | Apparatus for visual inspection of semiconductor devices | |
| JP5402182B2 (en) | Appearance inspection method and appearance inspection apparatus | |
| JP3308888B2 (en) | Surface defect inspection method and surface defect inspection device | |
| JP4741289B2 (en) | Image processing apparatus and image processing method | |
| JP4121628B2 (en) | Screen inspection method and apparatus | |
| JP2564737B2 (en) | Automatic magnetic particle flaw detector | |
| JP2002259971A (en) | Image density unevenness detection method and inspection apparatus | |
| JP2017166860A (en) | Powder removal condition measuring apparatus and method of measuring powder removal condition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20080131 |
|
| RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20080514 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080619 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101116 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101118 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110329 |