[go: up one dir, main page]

JP2000511778A - 家畜群の身体的状態をモニターするためのシステムとその方法 - Google Patents

家畜群の身体的状態をモニターするためのシステムとその方法

Info

Publication number
JP2000511778A
JP2000511778A JP10501090A JP50109098A JP2000511778A JP 2000511778 A JP2000511778 A JP 2000511778A JP 10501090 A JP10501090 A JP 10501090A JP 50109098 A JP50109098 A JP 50109098A JP 2000511778 A JP2000511778 A JP 2000511778A
Authority
JP
Japan
Prior art keywords
value
animal
measured
conductivity
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10501090A
Other languages
English (en)
Other versions
JP2000511778A5 (ja
JP3856476B2 (ja
Inventor
モル、ルドルフス、マリア ダ
キーン、アルベルタス
Original Assignee
アルファ ラヴァル アーグリ アクチエボラゲット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8166239&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2000511778(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by アルファ ラヴァル アーグリ アクチエボラゲット filed Critical アルファ ラヴァル アーグリ アクチエボラゲット
Publication of JP2000511778A publication Critical patent/JP2000511778A/ja
Publication of JP2000511778A5 publication Critical patent/JP2000511778A5/ja
Application granted granted Critical
Publication of JP3856476B2 publication Critical patent/JP3856476B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

(57)【要約】 家畜の群れの身体的状態をモニターするためのシステムとその方法において、時系列モデルにしたがって予測された値とこれに対応する測定された値との誤差が、各動物に対する予測における信頼値帯域を個別的に決定するために用いられる。動物が発熱しているかまたは病気にかかっているかの可能性に関する予測値と測定値の誤差の有意性が自動的に各動物に対して個別に評価される。異なる情況および性質に対しても専用の信頼値帯域を決定する必要はない。時系列モデルをより良く適合させることによって自動的に、信頼値帯域の幅が狭められる。

Description

【発明の詳細な説明】 家畜群の身体的状態をモニターするためのシステムとその方法 技術分野 本発明は家畜群の身体的状態を自動的にモニターするためのシステムとその装 置に関する。家畜群の身体的状態の自動的モニターは、発熱しているかまたは病 気にかかっているらしい動物を適宜な時に識別することによって、生産性の増大 に寄与する。特に酪農場においては、群れの大きさが益々増大しそして自動搾乳 システムが普及した結果、酪農家が視覚的な観察によりこのような動物を識別す るのは困難でありまた厄介でもあるからである。 背景技術 『酪農科学ジャーナル、73;539−54B号』におけるデライカー他著の 『時系列分析を用いたホルスタイン牛の1日当たりの乳収量模擬実験』には、家 畜群の身体的状態を自動的にモニターするための実験的方法が示されているが、 それには、個々の識別された各動物より得られた1つの性質の値を一定の間隔で 測定する段階と、この個々の識別された各動物における測定された性質の測定値 にしたがって測定データを格納する段階と、この個々の識別された各動物に関す る格納された測定データからこの個々の識別された各動物に関するこの性質の次 回測定値の予測値を決定する段階と、測定された性質の値とこの値の予測値との 誤差が予め定められたレベルを越えた場合に応じて注意信号を生成する段階とが 含まれる。 この実験的方法において、測定される性質は乳の収量である。 こうした測定を実施するために、自動的乳牛識別・乳収量記録システムが用い られた。 観察期間の後に、それぞれが一般的に未経産雌牛または経産雌牛における泌乳 期の特定期間に適用される幾つかのパラメータセットと共に各搾乳ごとの乳収量 または連続する3回の搾乳を1セットする乳収量を予測するために、時系列モデ ルが定式化された。 上述の方法の欠点は、各乳牛ごとに適宜なパラメータセットを選択しなければ ならないという点がわずらわしいことである。これはまた、誤差を生む原因にな りかねない。更に、こうして決定されたパラメータが、他の種類の雌牛の群れや 、他の動物(例えば、山羊)の群れにさえも適用でき、また異なる気候や異なる 種類の飼料で飼われている群れにも適用できるとは、とても思われない。 本発明の要約 本発明の目的は、デライカーその他によって提案されたモデルよりも普遍的に 適用することができる、動物の群れの身体的状態を自動的にモニターするための 信頼性の高いシステムとその方法とを供することである。 本発明にしたがえば、この目的は請求の範囲第1項に記載されているシステム と、第5項に記載されている方法を供することによって達成される。 本発明による方法そして、作動中では本発明によるシステムにおいては、牛乳 の分泌(以下泌乳と称す)期間中、個々の識別された各動物に対する予測値とこ れに対応する測定値とに応じて誤差データが格納され、そして誤差の分布の特徴 を表すこの誤差データから、個々の識別された各動物に関しそしてこの同じ泌乳 期における予測に関する信頼区間が決定され、この方法は自動的に、各泌乳期中 に収集されたデータから個々に各動物に関する予測値と測定値との誤差の有意性 を評価するからである。この信頼区間は個々の各測定および個々の各動物に対し て自動的に決定することができ、したがって様々な泌乳期に対して、様々な動物 の種類に対してそしてまた測定される様々な性質に対してそれぞれ異なる信頼値 帯域を入力する必要はない。更に、このような信頼値帯域を得るために別の調査 を行う必要もない。 誤差の有意性は個別的に各動物について評価されるので、時系列モデルのパラ メータを選択する際に誤差による信頼できない予測値においては、たとえ適用さ れたとしても、その悪影響は小さくなる。個々の各動物およびモニターされた各 変数について、信頼値帯域の幅は、時系列モデルの適合性の経験的に見出された 正確度にオンラインで自動的に調整され、そしてこの予測値の信頼性を指示する ために個別的にその信号を送ることができる。 測定される性質は例えば以下のような幾つかの性質、すなわち乳収量、乳温度 、乳の伝導率、動物の活動性および少なくとも1種類の飼料の摂取量のいずれか 1つとすることができる。 本発明による方法は予防的なものであり、したがって病気になっていそうな個 々の動物をより容易にそしてより高い信頼度で識別することができるという点に おいて生産性を向上させる効果がある。先ず、獣医の診断を受けるべき動物が早 く識別できればできるほど、病気回復の機会が増し動物への悪影響を回避でき、 そして伝染病が群れに蔓延することを妨げることが可能になる。次に、身体的状 態が悪い動物はそのために病気になり易く、または既に病気であっても、より病 状が悪化し易い。こうした動物が早く識別できればできるほど、その動物の身体 的状態を改善しそしてこの識別された動物が病気になったりあるいは別の病気に かかったりするのを防止する措置を早急にこうじることが可能になる。 生産性の向上効果はまた、より早く発情期を検知し、その結果出産間隔を短縮 することが可能になることによっても達成できる。 本発明によるこの方法の特定の1実施様態によれば、幾つかの異なる乳頭(動 物が雌牛ならば乳房区)から得られた乳の伝導率の予測値における誤差間の相互 依存性の特徴を示すめに誤差データが用いられる。したがって、この依存性に関 するデータは、乳頭のいずれか1つから得られる乳の伝導率の予測値における誤 差の有意性を評価するためにも用いられる。 本発明をもう1つの特定の1実施様態によれば、泌乳期中に収集された誤差デ ータもまた、この同じ泌乳期中に個別的に測定される各動物についての測定値の 予測値を予告する時系列モデルのパラメータを予想するために用いられる。この ようにして、個々の各動物に対して時系列モデルは、泌乳期が進むにしたがって その個々の動物の各性質の時間的変化の諸特性に最適に適合するように、自動的 に調整される。 本発明の特定の特徴および利点は、添付の請求の範囲と、以下の図面を参照し ながら下記になされる詳細な説明とに示されている。 図面の簡単な説明 図1は、本発明の1実施例によるシステムの概略図であり、そして 図2は、本発明による方法の1実施様態の流れ図である。 本発明の幾つかの実施様態 図1および2によって表されているシステムと方法とは、本発明の最も好まし い実施様態を示している。以後、この方法とこのシステムは雌牛の群れをモニタ ーするという文脈で記述されるが、原則として本発明は、少なくとも個々の各動 物の1つの性質が一定の間隔で測定されるという条件の下で、他の動物をモニタ ーするためにも用いることが可能である。 図1に示されているシステムは、1頭ずつ個々の乳牛を搾乳するための搾乳ス タンド1と一体になっている。この搾乳スタンドには更に、乳牛から乳を搾り取 るために乳牛に連結される、4個の吸引カップ2〜5を備えた搾乳装置が含まれ ている。乳導管5〜8はその上流端において吸引カップ2〜5に連結されそして その下流端において伝導率センサ9〜12に連結されている。この伝導率センサ 9〜12は伝導率測定ユニット13の一部である。この伝導率測定ユニット13 において、乳導管5〜8は伝導率センサ9〜12から下流では、乳収量を測定す るための流量計15を通る1本の乳導管14に合流する。 吸引カップ5と伝導率測定ユニット13との間において、温度測定に対する周 囲温度の影響を低くするために、乳導管の1本8が、吸引カップ5のすぐ隣に取 り付けられている温度センサ16を通過している。 搾乳スタンドには更に、搾乳された各乳牛に1回分の濃厚飼料を供給するため の給餌装置17が備えられている。その代わりに、給餌装置が搾乳エリアの外に 位置する給餌ステーションに設置されていてもよい。給餌装置17は、飼料が予 め定められた1回分だけ消費されるまで乳牛が食べるにままに、飼料を供給する ようになっている。この給餌装置17にはその外、各乳牛に供給される飼料の量 をモニターするためのセンサ18が含まれている。1頭の乳牛が給餌装置を離れ るとき、もし1回分の飼料が全て消費されていなければ、1回分の各飼料の食べ 残し重量が計算される。 群れの各乳牛は、当該の乳牛の活動パターンに関連する値またはこのパターン に一致する値を記録する活動メータ(図示されていない)を設置される。この活 動メータからの数値を読み取るために、搾乳スタンドは、搾乳されているか、ま たは搾乳される予定であるか、または既に搾乳された各乳牛の活動メータより記 録された数値を読み取るための活動メータ読取り装置19を備えている。 群れの各乳牛は更に、識別タッグ(図示されていない)を備えられている。搾 乳スタンド1には、搾乳されているか、または搾乳される予定であるか、または 既に搾乳された各乳牛の識別タッグを読み取るように設計されている乳牛識別機 構20が備えられている。動物識別システムと動物の活動をモニターするための システムは市販されており、したがって当文書ではこれ以上の説明はされない。 伝導率測定ユニット13、流量計15、温度センサ16および乳牛識別機構2 0はそれぞれ、各乳牛に関する測定データを処理するための中央データ処理機構 21に接続されている。このデータ処理機構21はディスプレー22に接続され ている。ディスプレー22に加えてまたはこれの代わりに、音響警報を発する装 置を設置することもできる。このような装置は、ネットワーク(例えば、電話回 線)でデータ処理機構に専用接続されるか、または遠隔制御される。専門家は、 このデータ処理機構に必要な周辺機器も装備されていることを評価するであろう 。並列接続の形態でなされているが、センサおよび読取り装置15、16、18 、19、20とデータ処理機構21との間の伝達機構もまた、有線または無線の バス構造の形態で実現されており、この構造では各ステーションは個別のアドレ スを有する。 データ処理機構21は、個々の識別された各動物に関する測定された性質にし たがって測定データを格納するように、そしてこの個々の識別された各動物に関 する格納されたデータからこの個々の識別された各動物の性質の次回測定値の予 測値を決定するように、プログラムされている。 更にこのデータ処理機構21は、個々の識別された各動物に対する予測値と測 定値とにしたがって誤差データを格納するように、個々の識別された各動物に関 する予測誤差の分布の特徴を表すデータを決定するように、測定値の予測におけ る誤差の分布の特徴を表すこのデータから個々の識別された各動物についての予 測に関する信頼値帯域を決定するように、そして、測定された性質の値とこの値 についての予測値との誤差が信頼値帯域外にあるならば、選択された注意信号を 発する発信装置22を活動させるように、プログラムされている。 作動中において、本発明は図2に示されている流れ図のように、以下の説明に したがって実施される。この流れ図にしたがったアルゴリズムは、それぞれの搾 乳ごとに繰り返されることが好ましい。 個々の各乳牛の搾乳ごとに、段階23に示されているように、識別タッグが読 み取られ、それぞれの乳牛を識別する。 次に、段階24に示されているように、乳収量の値、乳温度、各乳房区から得 られた乳の伝導率、活動メータの記録された値(搾乳時または他の時に一定の間 隔で読み取ることができる)、そして食べられたまたは食べ残された濃厚飼料の 量が測定される。これらの測定は、各搾乳ごとにそして個々の識別された各動物 に対して、すなわち一定の間隔で行われる。測定された値は、段階25に示され ているように、データ処理機構21によって読み取られる。 測定される次回の各値に対する予測値を決定し、そして以前の予測値の誤差分 布の特徴を表す状況データが、より早期の測定値および予測値に基づいて、また は値およびパラメータの初期セットとして泌乳期の最初の搾乳時に、個々の識別 された各動物にごとにデータ処理機構21の記憶装置に格納されている。段階2 5において、識別されたそれぞれの乳牛のこうした状況がデータ処理機構21に より読み取られる。 段階26によって示されているように、読み取られた状況データより、段階2 4によって測定される値の予測がなされる。更に誤差データーより早期の予測値 と測定値の分散または共分散の形態で入手できる−に基づいて、段階27に示さ れているように、予測値と測定値との各セットについて分散−共分散行列が決定 される。こうした誤差標準化データによって現行の予測値と測定値との誤差を標 準化することができる。 飼料の摂取については異なるアプローチが好ましく、食べ残しはほとんどゼロ に等しくそして時々より多くなる。実験によって得られたデータによれば、継続 的な食べ残しは独立しており、そして個々の各動物における濃厚飼料の1回分の 食べ残しの百分率に関してはそれぞれ独自の確率分布が存在することが、示唆さ れており、それは以下のように定義されることが好ましい。すなわち、 p0=P(食べ残し=0%) p1=P(0%<食べ残し<10%) p2=P(10%<食べ残し<30%) p3=P(30%<食べ残し<50%) p4=P(50%<食べ残し<100%) この分布は濃縮飼料消費の様々な水準の確率pconcを計算するために用いるこ とができる。確率pconcが低ければ、注意信号が発せられるか、または少なくと も特殊な状態が発見される助けになる。様々な範囲の食べ残し量の確率の乳牛依 存分布は、下記に説明されるカルマンフィルタ計算法を用いて、各乳牛の食べ残 しを測定するように適合されている。 異なる搾乳(例えば、朝方とタ方の搾乳)間の構造的な相違を除去する目的で 、計算は毎回、2回以上の継続的搾乳の組み合わされた予測値と組み合わされた 測定値に基づいてなされることが好ましい。 標準化データは全ての予測値の誤差に関して決定されているので、信頼値帯域 の幅が感度と特定性との所望の平衡にしたがって正確に決定されることが可能で ある、単一の信頼値帯域内とそして組み合わされた幾つかの信頼値帯域内に、予 測値と測定値との誤差が収まっているかどうかを決定することができる。もし少 なくとも測定値の1つが信頼値帯域外にあれば、あるいは1頭の動物が特定の状 態にある徴候を示す複数誤差の組合せが生じれば、段階28において注意信号が 出されなければならないと決定される。 少なくとも1つの測定値が1つの信頼値帯域外にあれば、標準化の後には、− そして健康な状態にありかつ発熱していない動物に対する誤差は正規分布を示す 見なして、−と予め定められた幾つかの信頼値帯域外にあれば、単一の誤差に基 づき注意信号が発せられることが好ましい。少なくとも1つの測定値が信頼値帯 域の95%の外にあれば、“*”マークを乳牛の識別コードに付けることができ 、少なくとも1つの測定値が信頼値帯域の99%の外にあれば、“**”マーク を乳牛の識別コードに付け、少なくとも1つの測定値が信頼値帯域の99.99 %の外にあれば、“***”マークを乳牛の識別コードに付けることができる。 それに基づいて注意信号が発せられる値と、そして予測された値に対する偏差と は表示されるか、および/またはプリントアウトされる。 活動がかなり激しくそして活動と収量とそして温度の組合せが、1つの信頼値 帯域外になっていれば、発熱の可能性を(例えば、“h”,“hh”および“h hh”という形態で)示す、誤差の組合せに基づく注意信号が発せられることが 好ましい。伝導率の誤差がかなり大きく、また伝導率と収量とそして温度の組合 せが1つの信頼値帯域外になっていれば、乳腺炎の可能性を(例えば、“m”, “mm”または“mmm”という形態で)示す注意信号が発せられることが、好 ましい。収量と温度とそして活動が組み合わされた誤差が信頼値帯域外になって おりかつ濃縮飼料の摂取量が正常な情況下で低い確率を有する水準にあれば、他 の病気の可能性を(例えば、“i”,“ii”および“iii”という形態で) 示す注意信号が発せられることが好ましい。 注意信号が発せられると決定されれば、段階29において、それぞれの乳牛の 識別データに関連して選択された注意信号を表示するようにディスプレー22は 制御される。 注意信号が発せられた後、それに基づいて予測がなされるモデルは当該の牛に ついては、特にこの注意信号によってよりより広い複数の信頼値帯域の1つの外 にある数値が測定されていることが示されている場合には、もはや信頼性が失わ れている。したがって、段階30においては、収集されたデータに基づく乳牛の モニタリングは原則として、当該の動物に関する注意信号に応じて、または当該 の動物に関するある信頼水準を越えているという注意信号に応じて中止される。 注意信号または予め定められた信頼水準を越えたという注意信号を発しないと 決定されれば、当該の個々の乳牛の状況データは、以下の3セットのデータ、す なわち、最新の測定値、最新の予測値、そして予測値とこれに対応する測定値と の最新の誤差のうちのいずれか2つを用いて、更新される。流れ図においては、 これは段階31に記載されている。 注意信号が発せられた後に、農場主または獣医によって、その注意信号が誤っ ていたことが明らかにされるならば、その測定値は予測値に置き換えられること が好ましく、そうして検査されたこの動物のモニタリングは、以前に収集された データと最新の測定値セットの代わりに入力されたデータとに基づいて、継続す ることができる。このようにして、段階30は、擬陽性信号として無効にするこ とができる。更に、例えば50℃以上の乳温度のようなあり得ない測定結果は自 動的に無視され、そして予測値に置き換えられるが、ある測定値がとばされてい ることを示す警告信号が表示されるかまたはプリントアウトされる。したがって 、測定機構の誤作動の可能性を示す警告信号もまた同時に得られる。予測値に基 づく更新の代わりに、有効な測定結果が得られない性質に関する状況を更新する 段階をとばすことも可能である。 搾乳スタンド1には、複数の吸引カップ2〜5と乳導管5〜8が含まれており 、この管の各々は吸引カップ2〜5の1つと接続されそしてそれぞれの乳導管5 〜8を通過する乳の伝導率を測定するための測定センサ9〜12が設置されてい るので、各乳房区から得られる乳の伝導率を個別に測定することができる。更に 、データ処理機構21は、予測された伝導率の値と上記測定センサ2〜5の1つ によって測定された伝導率の値との誤差がしきい値を越えている場合には、注意 信号を発するように、プログラムされている。このようにして、一般的には乳腺 炎の高い可能性を示し、通常は同時に1、2か所の乳房区に起こる伝導率の増大 を非常に高い感度と特定性をもって指示することができる。 どの乳房区よりの乳の伝導率予測における誤差のしきい値も明確に、全ての乳 房区の対応する予測の平均誤差に関連していることが好ましい。もし全ての乳房 区より得られた乳の伝導率が予測よりも高ければ、乳腺炎は全ての乳房区で同時 に発生することは稀であるので、この偏差はこの病気以外の因子によって引き起 こされたと見なした方がいい。したがって、もしそれに対して注意信号が発せら れるいずれか1つの乳房区に関するしきい値が、予測伝導率よりも高い他の乳房 区から得られた乳の測定伝導率に応じてより高くなるならば、より高い感度と特 定性が得られる。 どの程度まで、様々な乳房区から得られる乳の伝導率が個々の各動物について 互いに依存しているかを考慮すれば、このモニタリング方法の感度と特定性は更 に増大させることができる。異なる乳房区からの乳の伝導率の値どうしの依存性 が、各動物に関して当該のそれぞれの動物の伝導率の測定値から個別的に決定さ れ、そしてしきい値に対する平均誤差の影響が、個々の識別された各動物につい て決定された異なる乳房区からの乳の伝導率の値どうしの依存性に明確に関連し ていることによって、こうしたモニタリング方法の感度と特定性の増大が達成さ れることが好ましい。このようにして、異なる乳房区から得られた乳の伝導率の 値の挙動が比較的に独立している個々の乳牛については、伝導率の予測値におけ る平均誤差は、異なる乳房区から得られた乳の伝導率の値の変化が密接に関連性 のある挙動を示す個々の乳牛に比較して、どの1つの伝導率の値に対してもしき い値の水準により小さな影響しか与えない。 正常な情況では、乳収量、伝導率、乳温度および活動性の測定値は、時間とと もに徐々に変化する、すなのち各性質の継続的観察は互いに独立しているわけで はない。したがって、予測は、発熱していない健康な乳牛に有効であると見なさ れている時系列モデルを用いてなされることが好ましく、過度に大きな偏差は、 この仮定がもはや有効でないことを示しており、その場合このモデルを利用して いるモニタリングは上述のように原則として停止される。 様々な性質に関する適宜な時系列モデルは、実験データを図表にし、自己相関 のコレログラムを調べ、適宜なARIMAを選択し、そして選択されたモデルを 適合させることによって、確立することができる。 更に、時系列モデルのパラメータは、各泌乳期が進行するにしたがって個々の 乳牛について推測された値とこれに対応する測定値との誤差より個別的に各乳牛 に対して推定されることが好ましい。このようにして時系列モデルが得られ、こ のモデルは自動的にそれぞれの乳牛の諸特性(例えば、測定された性質における 多かれ少なかれ不規則な変化)と、観測の時間的変化の諸特性に影響を与える他 の情況とに適用される。したがって、例えば、搾乳日数、乳牛の種類、気候、飼 料、搾乳習慣、様々な種類の乳牛(未経産雌牛または経産牛)などを考慮するこ とのような様々な情況下で時系列モデルの最善のパラメータの設定を確立するの に、いかなる実験も必要としない。他の利点は、誤ったパラメータ値をうっかり 設定する危険が避けられることと、この方法は一般的に扱い易いことと、そして 個々の乳牛どうしの相違と各乳牛の継続的泌乳期の違いを考慮に入れていること である。時系列モデルのパラメータのオンライン推定もまた、もし信頼値帯域が 個々の各動物に関して個別的に決定されていなければ、時系列モデルを個々の各 動物に自動的に適合させるという点において、優れている。 時系列モデルのパラメータは、次回の測定に対する推測値を決定する状態ベク トルを含むカルマンフィルタ法を用いて推定されることが好ましいが、この状態 ベクトルには時系列モデルのパラメータが含まれている。 カルマンフィルタは、オンラインであるシステムの状態を推定する方法である 。状態とは、当該システムの将来の挙動を決定する数量である。推定は、新しい 情報を用いることによって新たな観察がなされる度に改善される。最初に、一般 的な説明がなされ、そして次に、本発明によるこの方法における2つのアプリケ ーションが説明される。すなわち、この状態には(1)時系列モデルにおけるパ ラメータと(2)計算された濃厚飼料の食べ残しの百分率の確率分布とが含まれ る。 カルマンフィルタを適用するために、このシステムは以下の形態、すなわち ― 観察方程式:yt=ctt+vt (1)とそして、 ― システム方程式:xt+Att-1+wt (2)という状態空間方程式によっ て記述される。 これらの方程式において、xtは状態ベクトルであり、ytは観察ベクトル、ct とAtはシステム行列、vtはランダム観察誤差、そしてwtはランダムシステム 誤差である。観察方程式は測定と状態との関係を記述するものであるが、この状 態自体は一般的には直接的に測定できるものではない。システム方程式は継続的 観察における状態どうしの関係を記述するものである。vtの分布はN(0,Vt )であり、そしてwtの分布はN(0,Wt)である。 観察tにおける状態xtの推定値は観察ytからyt-1までで得られた測定値を 用いて得られる。カルマンフィルタは各セットの観察ごとに状態の新しい推定値 と、そしてその外にこの推定値に関する分散−共分散行列とを提供する。 また特に、このカルマンフィルタは2段階推定手続きである。第1の段階では 、状態の推定値と分散−共分散行列が以前の状態に基づいて計算される。第2の 段階では、この推定値は、1セットの観察ytと(1セットの観察期間中に得ら れた値と推定値との差を表す)推定誤差etとにしたがって更新される。この更 新推定値は、次のセットの観察と共に用いられる。 カルマンフィルタはxtの最小平均平方一次推定値を与える。更に、推定値誤 差etの分散−共分散行列−この行列に基づき上述の標準化が実行されるも計算 することができる。 時系列モデルと共にカルマンフィルタを従来通りに使用する際には、状態は測 定変数からなることになろう。本発明の好ましい実施態様にしたがえば、乳牛の 変数の時系列モデルのパラメータを推定するためにカルマンフィルタが用いられ る。カルマンフィルタは各搾乳後ごとに状態の新しい推定値を与えるが、これは 時系列モデルのパラメータの新たな推定値である。これらのパラメータの新たな 推定値によって、新しい測定値が予測され、その結果、それぞれの情況に最も適 合していると思われる時系列モデルのパラメータを予め選択する必要なしに、か つ高い信頼度をもって、基準から逸脱した測定値の信号を送ることができる。推 定された状態の分散−共分散行列は更に、上述のように、推測値と測定値との誤 差を互いに関係づけるために用いられる。 カルマンフィルタの計算方法はまた、予め定められた濃厚飼料消費水準の確率 分布を濃厚飼料の消費水準に適合させるためにも用いられる。これを達成させる ために、状態空間方程式(1)および(2)に関する説明が用いられる。この場 合、以下のような定義が適用される。すなわち 〔式3〕 ベクトルxtは再び状態(ここでは、確率分布)を定義し、そしてベクトルyt は以下のように定義されたriを備えた1セットの観察によって定義される。す なわち、 − 食べ残し=0%ならば、 r0=1、i=0ならば、ri=0 − 0%>食べ残し>10%ならば、 r1=1、i=0ならば、ri=0 − 10%>食べ残し>30%ならば、 r2=1、i=2ならば、ri=0 − 30%>食べ残し>50%ならば、 r3=1、i=3ならば、ri=0 − 50%>食べ残し>100%ならば、 r4=1、i=4ならば、ri=0 行列AtとCtは、識別行列I、vt=Iとwt=0.01Iに等しい。 これらの定義によって、推定誤差は以下の通りである。すなわち 〔式4〕 tの成分は、ri=1のとき正であり、ri=0のとき負である。 カルマンフィルタの計算技術に関する更なる詳細についていは、A.C.ラー ベイ著の『推定構造の時系列モデルとカルマンフィルタ』ケンブリッジ大学出版 、ケンブリッジUK、1989年と、P.J.バリソンおよびC.F.スティー ブンズ著の『ベイスの予測』英国統計協会、38号、頁205〜247、197 6年に言及されれている。 本発明の現在のところ最も好ましい実施様態にしたがったモニタリング方法と システムとは、実験によって試験済みである。その結果によると、以下に示され ている表に記載されているように(*の数は上述の信頼値帯域に対応する)、微 同調なしに既に非常に良好な感度と良好な特定性が得られている。 表1 発熱期間を除く537件 および41803回の搾乳に基づく熱に対する感度と特定性 注意 感度 特定性 * 94.2% 94.5% ** 86.5% 96.9% *** 82.5% 96.9% 表2 病気に対する感度(乳腺炎を除く)と、病気の期間を除く263件および40 286回の搾乳に基づく検知モデルの特定性 注意 感度 特定性 * 99.6% 96.0% ** 90.5% 93,5% *** 76.8% 96.7% 表3 4つの異なる乳腺炎の種類に対する感度と乳腺炎に関する特定性 注意 感度 感度 感度 感度 特定性 臨床 準臨床 潜在的 分泌 乳腺炎 乳腺炎 乳腺炎 障害 (52件)(21件)(35件)(36件) * 96% 100% 89% 97% 95.3%**90% 76% 5 7% 86% 98.2%***65% 57% 37% 67% 99.4% 参照番号 1. 搾乳スタンド 17.給餌装置 18.センサ 19.活動メータ読取り装置 20.乳牛識別機構 21.データ処理機構 22.ディスプレー(発信装置) 23.動物を識別する 24.測定する 25.状態を読み取る、測定された値を読み取る 26.推測値を計算する 27.誤差の標準化を計算する 28.注意指示を決定する 29.注意信号を発する 30.動物のモニタリングを停止する 31.状態を更新する
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),OA(BF,BJ,CF ,CG,CI,CM,GA,GN,ML,MR,NE, SN,TD,TG),AP(KE,LS,MW,SD,S Z,UG),EA(AM,AZ,BY,KG,KZ,MD ,RU,TJ,TM),AL,AM,AT,AU,AZ ,BB,BG,BR,BY,CA,CH,CN,CZ, DE,DK,EE,ES,FI,GB,GE,HU,I L,IS,JP,KE,KG,KP,KR,KZ,LK ,LR,LS,LT,LU,LV,MD,MG,MK, MN,MW,MX,NO,NZ,PL,PT,RO,R U,SD,SE,SG,SI,SK,TJ,TM,TR ,TT,UA,UG,US,UZ,VN

Claims (1)

  1. 【特許請求の範囲】 1.家畜の群れの身体的状態をモニターするためのシステムにおいて、該シス テムは 群れの個々の識別された1頭の動物に関連する少なくとも1つの性質の値を測定 するための測定装置(15、16、18、19、20)と、 前記群れの個々の動物を識別するための識別機構(20)と、 前記測定装置(15、16、18、19、20)および前記識別機構(20)に 機能的に接続されているデータ処理機構(21)と、そして 前記データ処理機構(21)に接続されている注意信号を発するための発信装置 (22)とから成り、 前記データ処理機構は、 ― 個々の識別された各動物に関連する前記少なくとも1つの性質の以前に測定 された値と予測された値とにしたがって測定データと誤差データとを収集するよ うに、 ― 前記個々の識別された各動物に関連する前記格納された測定データと誤差デ ータとから前記個々の識別された各動物に関する前記少なくとも1つの性質の少 なくとも1つの次回に測定されるデータに関する予測値を決定し、 ― 前記誤差データから個々の識別された各動物に関する予測値に関する信頼値 帯域を決定し、 ― 個々の識別された各動物から一定の間隔で少なくとも1つの性質の値を測定 し、 ― 測定された値をこれに対応する予測値と信頼値帯域とに比較し、そして ― 前記少なくとも1つの測定された性質の値と前記信頼値帯域外の該値に関す る予測値との誤差に応じて注意信号を発するために発信装置(22)を活動化さ せるように、 プログラムされている家畜の群れの身体的状態をモニターするためのシステム。 2.前記測定装置には個々の識別された1頭の動物から得られる乳の伝導率を 測定するための伝導率測定ユニットが含まれ、前記データ処理機構(21)は、 前記伝動率測定ユニット(13)によって測定された伝導率の値と予測値との誤 差がしきい値を越えていれば、注意信号を発するようにプログラムされている請 求の範囲第1項記載のシステム。 3.前記システムには更に、個々の1頭の動物を搾乳するための搾乳スタンド (1)が含まれており、該搾乳スタンド(1)は複数の吸引カップ(2〜5)と そして、それぞれ該吸引カップ(2〜5)に接続されている複数の乳導管(5〜 8)とを有し、前記伝導率測定ユニット(13)には、各吸引カップを介して得 られる乳の伝導率を測定するためにそれぞれの乳導管(5〜8)を通過する乳の 伝導率を測定するためのセンサ(9〜12)が含まれている該システムにおいて 、前記測定センサのいずれか1つによって測定された伝導率の値と予測された伝 導率の値との誤差がしきい値を越えていれば、前記データ処理機構(21)は注 意信号を発するようにプログラムされている請求の範囲第2項記載のシステム。 4.更に、個々の識別された各動物による少なくとも1種類の飼料の摂取量を 測定するための測定センサ(18)が含まれており、個々の識別された1頭の動 物による前記種類の飼料の測定された摂取量が予め定められた確率水準に達して いないならば、前記データ処理機構(21)は、個々の識別された各動物のため に、測定された飼料摂取量から非時間依存確率分布を決定し、かつ注意信号を発 するように、プログラムされている前記請求項のいずれか1項に記載のシステム 。 5.家畜の群れの身体的状態をモニターするための方法において、該方法は以 下の段階すなわち、 個々の識別された各動物に関する少なくとも1つの測定された性質の以前に測定 された値と予測された値とにしたがった測定データと誤差データとを収集する段 階(段階31)と、 個々の識別された各動物から前記少なくとも1つの性質の値を一定の時間間隔で 測定する段階(段階24)と、 前記個々の識別された動物に関する前記収集された測定データから前記個々の識 別された動物についての少なくとも1つの性質の少なくとも1つの次回に測定さ れる値に関する少なくとも1つの予測値を決定する段階(段階26)と 前記誤差データから個々の識別された各動物に関する前記予測値に関する信頼値 帯域を決定する段階(段階27)と、 測定された値をこれに対応する予測値と信頼値帯域とに比較する段階(段階28 )と、そして 前記少なくとも1つの測定された性質の値と前記信頼値帯域によって決定された 予め定められた水準に関する予測値との誤差に応じて注意信号を発する段階(段 階29) とを含む家畜の群れの身体的状態をモニターするための方法。 6.測定された性質には個々の識別された各動物から得られた乳の伝導率が含 まれ、いずれかの個々の識別された動物に関する予測された伝導率の値と測定さ れた伝導率の値との誤差が該個々の識別された動物に対して個別的に決定されて いるしきい値を越えていれば、注意信号が発せられる請求の範囲第5項記載の方 法。 7.前記伝導率は各乳頭から得られた乳に対して個別的に測定され、そしてい ずれかの乳頭より得られた乳の予測された伝導率の値と測定された伝導率の値と の誤差が該個々の識別された動物に対して個別的に決定されているしきい値を越 えていれば、注意信号が発せられる請求の範囲第6項記載の方法。 8.いずれかの乳頭より得られた乳の伝導率の予測における誤差の前記しきい 値は全ての乳頭の対応する予測値の平均誤差に明確に関連している請求の範囲第 7項記載の方法。 9.異なる乳頭から得られた伝導率の値どうしの依存性は各動物に関して個々 の該動物の測定された伝導率の値から個別的に決定され、そして個々の識別され た各動物について、前記しきい値に対する平均誤差の影響は該個々の識別された 動物に関して決定された異なる乳頭から得られた乳の伝導率の値どうしの依存性 に明確に関連している請求の範囲第8項記載の方法。 10.前記予測は時系列モデルを用いてなされ、そして各動物に対する時系列 モデルのパラメータは該個々の動物について推測された値とこれに対応する測定 された値との誤差から、個別的に推定される前記請求項第6項から第9項までの いずれか1項に記載の方法。 11.次回の測定の予測値を決定する状態ベクトルを含むカルマンフィルタを 用いて前記パラメータが推定され、時系列モデルのパラメータは前記状態ベクト ルに含まれている請求の範囲第10項記載の方法。 12.各測定中において少なくとも2つの性質の値が測定され、予測の誤差は 前記誤差データを用いて標準化され、そしてもし結合され標準化された誤差が予 め定められた信頼値帯域外にあるならば、注意信号が発せられる前記請求項の第 6項から第11項までのいずれか1項に記載の方法。 13.個々の識別された各動物に対して非時間依存確率分布が測定された飼料 摂取量から決定され、そして個々の1頭の動物による前記種類の飼料の測定され た摂取量が予め定められた確率水準より下にあれば、注意信号もまた発せられる 前記請求項第6項から第12項までのいずれか1項に記載の方法。
JP50109098A 1996-06-14 1996-06-14 家畜群の身体的状態をモニターするためのシステムとその方法 Expired - Fee Related JP3856476B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP1996/002604 WO1997047187A1 (en) 1996-06-14 1996-06-14 A system and a method for monitoring the physical condition of a herd of livestock

Publications (3)

Publication Number Publication Date
JP2000511778A true JP2000511778A (ja) 2000-09-12
JP2000511778A5 JP2000511778A5 (ja) 2004-08-19
JP3856476B2 JP3856476B2 (ja) 2006-12-13

Family

ID=8166239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50109098A Expired - Fee Related JP3856476B2 (ja) 1996-06-14 1996-06-14 家畜群の身体的状態をモニターするためのシステムとその方法

Country Status (6)

Country Link
US (1) US6405672B1 (ja)
EP (1) EP0903980B1 (ja)
JP (1) JP3856476B2 (ja)
AU (1) AU6224596A (ja)
DE (1) DE69610998T2 (ja)
WO (1) WO1997047187A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051000A (ja) * 2004-08-16 2006-02-23 Fujitsu Ltd 産卵量による死亡率自動推定方法
JP2010528600A (ja) * 2007-06-03 2010-08-26 マースランド エヌ・ヴィ 乳畜のグループを管理するための方法及び装置並びにそのためのコンピュータプログラム
JP2012205555A (ja) * 2011-03-30 2012-10-25 National Agriculture & Food Research Organization 乳牛の健康状態管理方法及び管理システム

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE284610T1 (de) 1999-09-02 2005-01-15 Kristoffer Larsen Innovation A Verfahren zur steuerung der aufzucht von freilaufenden tieren
NL1015120C2 (nl) 2000-05-04 2001-11-06 Inst Voor Milieu En Agritechni Werkwijze voor het vaststellen van de fysieke toestand van een zoogdier, door middel van vage logica.
SE0002082D0 (sv) * 2000-06-05 2000-06-05 Delaval Holding Ab Notification method and system
CA2440635C (en) * 2001-03-07 2008-12-30 Lattec I/S System for optimising the production performance of a milk producing animal herd
NL1019059C2 (nl) * 2001-09-28 2003-04-02 Lely Entpr Ag Inrichting en werkwijze voor het melken van melkdieren.
NL1019060C2 (nl) * 2001-09-28 2003-04-02 Lely Entpr Ag Inrichting en werkwijze voor het melken van een melkdier.
NL1019062C2 (nl) 2001-09-28 2003-04-02 Lely Entpr Ag Inrichting voor het melken van dieren.
NL1019061C2 (nl) * 2001-09-28 2003-04-02 Lely Entpr Ag Werkwijze voor het verzamelen van meetgegevens tijdens het automatisch melken van een dier.
US7302349B2 (en) * 2002-08-16 2007-11-27 Lattec I/S System and a method for observing and predicting a physiological state of an animal
GB0318733D0 (en) * 2003-08-11 2003-09-10 Icerobotics Ltd Improvements in or relating to milking machines
WO2005020674A1 (en) * 2003-08-29 2005-03-10 David Eric Akerman Milk sampling and testing
NZ551182A (en) * 2004-04-13 2009-09-25 Sheep Crc Ltd Integrated animal management system and method
SE528838C2 (sv) 2005-04-29 2007-02-27 Delaval Holding Ab Detekteringsmetod jämte -arrangemang för mjölkboskap
DE102005031425A1 (de) 2005-07-04 2007-01-11 Westfaliasurge Gmbh Verfahren und Vorrichtung zum Management von milchgebenden Tieren
GB2451413B (en) * 2006-05-10 2011-10-26 Say Systems Ltd Animal monitoring system
US7699024B2 (en) * 2006-09-20 2010-04-20 Rysewyk Terry P Milk temperature monitor with ambient temperature compensation
SE531678C2 (sv) * 2006-11-30 2009-06-30 Delaval Holding Ab Metod för att detektera mastit hos mjölkdjur, ett mjölkningssystem och en datorprogramprodukt
GB0716333D0 (en) * 2007-08-22 2007-10-03 White Spark Holdings Ltd Method and apparatus for the automatic grading of condition of livestock
US9162249B2 (en) * 2008-10-01 2015-10-20 Panasonic Intellectual Property Management Co., Ltd. Paste dispenser for applying paste containing fillers using nozzle with pin and application method using the same
AU2009347606A1 (en) * 2009-06-09 2011-12-08 Tartu Ulikool (University Of Tartu) Method for the detection of mastitis and milk quality, and mastitis sensor
NL1037157C2 (nl) * 2009-07-29 2011-02-02 Lely Patent Nv Genereren van een attentiewaarde in een geautomatiseerde melkinrichting.
US9357749B2 (en) 2010-01-29 2016-06-07 Gea Houle Inc. Rotary milking station, kit for assembling the same, and methods of assembling and operating associated thereto
US8972308B2 (en) * 2011-10-31 2015-03-03 Hewlett-Packard Development Company, L.P. Combining multivariate time-series prediction with motif discovery
SE538015C2 (sv) 2012-11-01 2016-02-09 Delaval Holding Ab Metod, datorprogram och datorprogramprodukt för att styra mjölkningen medelst en mjölkningsanordning, samt ettmjölkningsarrangemang
US20140261189A1 (en) * 2013-03-15 2014-09-18 Mitchell Barry Chait Automated monitoring of compliance in an egg farm based on egg counts
US10375933B2 (en) * 2014-12-12 2019-08-13 A&D Company, Limited Animal behavior monitoring system
CN116439158B (zh) * 2023-06-20 2023-09-12 厦门农芯数字科技有限公司 基于红外识别的母猪查情方法、系统、设备及存储介质
CN119067471A (zh) * 2024-08-14 2024-12-03 一牧科技(北京)有限公司 一种牧场牛群结构的预测方法、系统、设备及存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568788A (en) * 1990-02-27 1996-10-29 C. Van Der Lely N.V. Implement for and a method of milking animals automatically
US5152246A (en) 1990-06-30 1992-10-06 Arion Machinery Co., Ltd. Method of monitoring milking
US5351644B1 (en) 1993-02-25 2000-04-18 Cornell Res Foundation Inc Method of bovine herd management
NL9300443A (nl) * 1993-03-11 1994-10-03 Prolion Bv Werkwijze en inrichting voor het bewaken van dierfuncties.
NL9302154A (nl) * 1993-12-10 1995-07-03 Nedap Nv Informatiesysteem voor de melkveehouderij.
NL9401801A (nl) * 1994-08-23 1996-04-01 Maasland Nv Constructie met een inrichting voor het melken van dieren.
NL1002471C2 (nl) * 1996-02-28 1997-08-29 Maasland Nv Werkwijze voor het verzorgen, in het bijzonder het voeren, van dieren.
US5996529A (en) * 1998-01-13 1999-12-07 Dairy Creations, Inc. Milk metering and cow ID system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051000A (ja) * 2004-08-16 2006-02-23 Fujitsu Ltd 産卵量による死亡率自動推定方法
JP2010528600A (ja) * 2007-06-03 2010-08-26 マースランド エヌ・ヴィ 乳畜のグループを管理するための方法及び装置並びにそのためのコンピュータプログラム
JP2012205555A (ja) * 2011-03-30 2012-10-25 National Agriculture & Food Research Organization 乳牛の健康状態管理方法及び管理システム

Also Published As

Publication number Publication date
WO1997047187A1 (en) 1997-12-18
US6405672B1 (en) 2002-06-18
AU6224596A (en) 1998-01-07
DE69610998D1 (de) 2000-12-21
EP0903980A1 (en) 1999-03-31
DE69610998T2 (de) 2001-05-31
EP0903980B1 (en) 2000-11-15
JP3856476B2 (ja) 2006-12-13

Similar Documents

Publication Publication Date Title
JP2000511778A (ja) 家畜群の身体的状態をモニターするためのシステムとその方法
US10761107B2 (en) Apparatus and method for detecting disease in dairy animals
EP1520471B1 (en) A device for monitoring an animal
US12405152B2 (en) Weight determination of an animal based on 3D imaging
EP0824309B2 (en) A method of treating animals, in particular feeding same
CA2692699C (en) Method for detecting oestrus behaviour of a milking animal
WO2016059626A1 (en) A method and device for remote monitoring of animals
NL2012893B1 (nl) Werkwijze en systeem voor het beheren van melkdieren.
JP4229757B2 (ja) 乳牛の発情発見方法及び装置
US8671883B2 (en) Milking method and apparatus
US8919283B2 (en) Device, method and computer program product for milking animals
JP7080390B1 (ja) 飲水状況特定装置、飲水状況特定プログラム及び記憶媒体
EP3478055A1 (en) Monitoring device and method performed thereby for determining whether an animal is properly fed
WO2019117707A1 (en) Dairy animal monitoring system with stress reduction means
CN117281062A (zh) 一种用于畜牧的奶牛挤奶用安全管控系统
De Mol et al. Detection model for oestrus and mastitis in cows milked in an automatic milking system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050126

A72 Notification of change in name of applicant

Free format text: JAPANESE INTERMEDIATE CODE: A721

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050921

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20051031

A313 Final decision of rejection without a dissenting response from the applicant

Free format text: JAPANESE INTERMEDIATE CODE: A313

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees