[go: up one dir, main page]

HK1234870B - Methods and apparatus to compensate impression data for misattribution and/or non-coverage by a database proprietor - Google Patents

Methods and apparatus to compensate impression data for misattribution and/or non-coverage by a database proprietor

Info

Publication number
HK1234870B
HK1234870B HK17108306.3A HK17108306A HK1234870B HK 1234870 B HK1234870 B HK 1234870B HK 17108306 A HK17108306 A HK 17108306A HK 1234870 B HK1234870 B HK 1234870B
Authority
HK
Hong Kong
Prior art keywords
media
impression
type
probability
impressions
Prior art date
Application number
HK17108306.3A
Other languages
Chinese (zh)
Other versions
HK1234870A1 (en
Inventor
库马尔.纳加拉贾.拉奥
罗天珏
艾伯特.罗纳德.佩雷兹
斯蒂芬.S.贝尔
张米米
詹妮弗.哈斯凯尔
大卫.黄
Original Assignee
尼尔森(美国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尼尔森(美国)有限公司 filed Critical 尼尔森(美国)有限公司
Publication of HK1234870A1 publication Critical patent/HK1234870A1/en
Publication of HK1234870B publication Critical patent/HK1234870B/en

Links

Description

通过数据库所有者针对错误认定和/或未覆盖补偿印象数据 的方法和装置Method and apparatus for compensating database owners for misidentification and/or non-coverage of impression data

本专利要求2014年3月13日递交的序列号为61/952,726的美国临时专利申请、2014年4月14日递交的序列号为61/979,391的美国临时专利申请、2014年4月30日递交的序列号为61/986,784的美国临时专利申请、2014年5月9日递交的序列号为61/991,286的美国临时专利申请、2014年6月19日递交的序列号为62/014,659的美国临时专利申请、2014年7月11日递交的序列号为62/023,675的美国临时专利申请、以及2014年7月29日递交的序列号为62/030,571的美国临时专利申请的优先权。序列号为61/952,726的美国临时专利申请、序列号为61/979,391的美国临时专利申请、序列号为61/986,784的美国临时专利申请、序列号为61/991,286的美国临时专利申请、序列号为62/014,659的美国临时专利申请、序列号为62/023,675的美国临时专利申请、以及序列号为62/030,571的美国临时专利申请的全部内容通过引用并入在本文中。This patent claims priority to U.S. Provisional Patent Application Serial No. 61/952,726 filed on March 13, 2014, U.S. Provisional Patent Application Serial No. 61/979,391 filed on April 14, 2014, U.S. Provisional Patent Application Serial No. 61/986,784 filed on April 30, 2014, U.S. Provisional Patent Application Serial No. 61/991,286 filed on May 9, 2014, U.S. Provisional Patent Application Serial No. 62/014,659 filed on June 19, 2014, U.S. Provisional Patent Application Serial No. 62/023,675 filed on July 11, 2014, and U.S. Provisional Patent Application Serial No. 62/030,571 filed on July 29, 2014. The entire contents of U.S. Provisional Patent Application Serial No. 61/952,726, U.S. Provisional Patent Application Serial No. 61/979,391, U.S. Provisional Patent Application Serial No. 61/986,784, U.S. Provisional Patent Application Serial No. 61/991,286, U.S. Provisional Patent Application Serial No. 62/014,659, U.S. Provisional Patent Application Serial No. 62/023,675, and U.S. Provisional Patent Application Serial No. 62/030,571 are incorporated herein by reference.

技术领域Technical Field

本发明总体涉及监控媒体,更具体地涉及通过数据库所有者针对错误认定和/或未覆盖补偿印象数据的方法和装置。The present invention relates generally to monitoring media and, more particularly, to methods and apparatus for compensating impression data by database owners for misidentification and/or non-coverage.

背景技术Background Art

传统地,受众测量实体基于注册的小组成员确定对于媒体节目的受众参与度。即,受众测量实体将同意被监控的人登记到小组中。然后受众测量实体监控那些小组成员以确定暴露于那些小组成员的媒体(例如,电视节目或广播节目、电影、DVD、广告等)。采用该方式,受众测量实体可以基于收集的媒体测量数据确定对于不同媒体的曝光测量。Traditionally, audience measurement entities determine audience engagement with media programs based on registered panelists. Specifically, the audience measurement entity enrolls individuals who have consented to be monitored into a panel. The audience measurement entity then monitors those panelists to determine the media (e.g., television or radio programs, movies, DVDs, advertisements, etc.) to which those panelists were exposed. In this manner, the audience measurement entity can determine exposure measurements for different media based on the collected media measurement data.

用于监控用户对因特网资源(诸如网页、广告和/或其它媒体)的访问的技术多年来已经显著进化。一些现有系统主要通过服务器日志来执行这类监控。特别地,因特网上的实体服务媒体可以使用这类现有系统来在其服务器处记录针对其媒体所接收的请求的数量。The technology for monitoring user access to Internet resources (such as web pages, advertisements, and/or other media) has evolved significantly over the years. Some existing systems primarily perform this type of monitoring through server logs. In particular, an entity serving media on the Internet may use such existing systems to record the number of requests received for its media at its server.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1示出收集在移动设备处呈现的媒体的印象以及从分布式数据库所有者收集用户信息用于与收集的印象相关联的示例性系统。FIG. 1 illustrates an exemplary system for collecting impressions of media presented at a mobile device and collecting user information from a distributed database owner for association with the collected impressions.

图2为示例性印象数据补偿器,该示例性印象数据补偿器可以被实施在图1的示例性受众测量服务器中以针对与源于数据库所有者的印象收集技术的错误认定和未覆盖有关的不准确而补偿印象数据。2 is an example impression data compensator that may be implemented in the example audience measurement server of FIG. 1 to compensate impression data for inaccuracies related to misidentification and non-coverage resulting from the database owner's impression collection techniques.

图3A至图3C共同地示出示例性数据流,该示例性数据流可由图2的示例性印象数据补偿器执行以针对与源于数据库所有者的印象收集技术的错误认定和未覆盖有关的不准确而补偿印象数据。3A-3C collectively illustrate an exemplary data flow that may be executed by the exemplary impression data compensator of FIG. 2 to compensate impression data for inaccuracies related to misidentification and non-coverage resulting from the database owner's impression collection techniques.

图4为表示示例性机器可读指令的流程图,该示例性机器可读指令可被执行以实施图2的示例性印象数据补偿器,以针对与源于数据库所有者的印象收集技术的错误认定和未覆盖有关的不准确而补偿印象数据。4 is a flow diagram representative of example machine-readable instructions that may be executed to implement the example impression data compensator of FIG. 2 to compensate impression data for inaccuracies related to misidentification and non-coverage resulting from a database owner's impression collection techniques.

图5为表示示例性机器可读指令的流程图,该示例性机器可读指令可被执行以实施图2的示例性印象数据补偿器,以计算错误认定校准矩阵和/或共同查看矩阵。5 is a flow diagram representative of example machine readable instructions that may be executed to implement the example impression data compensator of FIG. 2 to calculate a misidentification calibration matrix and/or a co-viewing matrix.

图6为表示示例性机器可读指令的流程图,该示例性机器可读指令可被执行以实施图2的示例性印象数据补偿器,以针对多对人口统计组确定错误认定的概率。6 is a flow chart representative of example machine readable instructions that may be executed to implement the example impression data compensator of FIG. 2 to determine the probability of a false positive for multiple pairs of demographic groups.

图7为表示示例性机器可读指令的流程图,该示例性机器可读指令可被执行以实施图2的示例性印象数据补偿器,以生成错误认定校准矩阵和/或共同查看矩阵。7 is a flow diagram representative of example machine readable instructions that may be executed to implement the example impression data compensator of FIG. 2 to generate a misidentification calibration matrix and/or a co-viewing matrix.

图8为示例性机器可读指令的流程图,该示例性机器可读指令可被执行以实施图2的示例性印象数据补偿器,以生成共同查看矩阵。8 is a flow diagram of example machine readable instructions that may be executed to implement the example impression data compensator of FIG. 2 to generate a co-viewing matrix.

图9为表示示例性机器可读指令的流程图,该示例性机器可读指令可被执行以实施图2的示例性印象数据补偿器,以生成与未被数据库所有者覆盖的媒体受众相关联的α因子。9 is a flow diagram representative of example machine-readable instructions that may be executed to implement the example impression data compensator of FIG. 2 to generate an alpha factor associated with a media audience not covered by a database owner.

图10为表示示例性机器可读指令的流程图,该示例性机器可读指令可被执行以实施图2的示例性印象数据补偿器,以基于错误认定校准矩阵调整印象。10 is a flow diagram representative of example machine readable instructions that may be executed to implement the example impression data compensator of FIG. 2 to adjust impressions based on a misidentification calibration matrix.

图11为表示示例性机器可读指令的流程图,该示例性机器可读指令可被执行以实施图2的示例性印象数据补偿器,以基于数据库所有者的印象收集技术所对应的未覆盖因子调整印象。11 is a flow diagram representative of example machine readable instructions that may be executed to implement the example impression data compensator of FIG. 2 to adjust impressions based on an uncoverage factor corresponding to a database owner's impression collection technique.

图12为表示示例性机器可读指令的流程图,该示例性机器可读指令可被执行以实施图2的示例性印象数据补偿器,以计算与未被数据库所有者覆盖的媒体受众相关联的人口统计资料(或未覆盖因子)。12 is a flow diagram representative of example machine-readable instructions that may be executed to implement the example impression data compensator of FIG. 2 to calculate demographics (or non-coverage factors) associated with media audiences not covered by a database owner.

图13为表示示例性机器可读指令的流程图,该示例性机器可读指令可被执行以实施图2的示例性印象数据补偿器,以基于用于数据库所有者的未覆盖因子调整印象和/或独特受众。13 is a flow diagram representative of example machine readable instructions that may be executed to implement the example impression data compensator of FIG. 2 to adjust impressions and/or unique audiences based on an uncovered factor for a database owner.

图14示出根据本发明的教导构造成确定用于收集的媒体印象数据的类型的示例性系统。14 illustrates an exemplary system configured to determine the type of media impression data to collect in accordance with the teachings of the present invention.

图15示出图14的确定用于收集的媒体印象数据的类型的类型预测器的示例。FIG. 15 illustrates an example of the type predictor of FIG. 14 that determines a type for collected media impression data.

图16示出图15的对待由图15的类型分析器用来预测类型的收集的媒体印象数据进行分类的数据分类器的示例。16 illustrates an example of the data classifier of FIG. 15 for classifying collected media impression data to be used by the genre analyzer of FIG. 15 to predict genre.

图17示出绘制由图14和图15的类型预测器使用的示例性白天部分和示例性白天类别的示例性图表。17 shows an example graph plotting example daytime portions and example daytime categories used by the type predictors of FIGS. 14 and 15 .

图18示出图14的可用于构造类型模型的类型建模器的示例。FIG. 18 illustrates an example of the type modeler of FIG. 14 that may be used to construct a type model.

图19为表示示例性机器可读指令的流程图,该示例性机器可读指令可被执行以实施图14和图18的示例性类型建模器,以构造类型模型。19 is a flow diagram representative of example machine readable instructions that may be executed to implement the example type modeler of FIGS. 14 and 18 to construct a type model.

图20为表示示例性机器可读指令的流程图,该示例性机器可读指令可被执行以实施图14和图15的示例性类型预测器,以为收集的媒体印象数据分配类型。20 is a flow diagram representative of example machine readable instructions that may be executed to implement the example type predictor of FIGS. 14 and 15 to assign types to collected media impression data.

图21为示例性处理器平台,该示例性处理器平台可用于执行图4至图13的示例性指令以实施本文中所公开的示例性装置和系统。FIG. 21 illustrates an exemplary processor platform that may be used to execute the exemplary instructions of FIG. 4 through FIG. 13 to implement the exemplary apparatus and systems disclosed herein.

图22为另一示例性处理器平台,该另一示例性处理器平台可用于执行图19和/或图20的示例性指令以实施本文中所公开的示例性装置和系统。FIG. 22 illustrates another exemplary processor platform that may be used to execute the exemplary instructions of FIG. 19 and/or FIG. 20 to implement the exemplary apparatus and systems disclosed herein.

具体实施方式DETAILED DESCRIPTION

用于监控用户对因特网资源(诸如网页、广告和/或其它媒体)的访问的技术多年来已经显著进化。在过去一度是主要通过服务器日志来完成这类监控。特别地,因特网上的实体服务媒体会在其服务器处记录针对其媒体所接收的请求的数量。出于几个原因,使因特网使用研究基于服务器日志是有问题的。例如,可以直接或借助僵尸程序篡改服务器日志,该僵尸程序重复地向服务器请求媒体以提高所请求的媒体所对应的服务器日志计数。第二,媒体有时被检索一次,被本地缓存,然后从本地缓存重复地观看,而在重复观看时不涉及服务器。服务器日志无法跟踪这些对缓存媒体的观看,这是因为重现本地缓存媒体不需要再向服务器请求该媒体。因此,服务器日志易受过量计数错误和缺量计数错误二者影响。The technology used to monitor user access to Internet resources (such as web pages, advertisements, and/or other media) has evolved significantly over the years. At one time, such monitoring was primarily accomplished through server logs. In particular, entities serving media on the Internet would record at their servers the number of requests received for their media. Basing Internet usage studies on server logs is problematic for several reasons. For example, server logs can be tampered with directly or with the help of bots that repeatedly request media from the server to increase the server log count of the requested media. Second, media is sometimes retrieved once, cached locally, and then viewed repeatedly from the local cache without involving the server in the repeated viewings. Server logs cannot track these views of cached media because reproducing the locally cached media does not require further requests to the server for the media. Consequently, server logs are susceptible to both overcounting and undercounting errors.

在Blumenau的美国专利6,108,637中公开的发明从根本上改变了执行因特网监控的方式且克服了上文描述的服务器侧日志监控技术的限制。例如,Blumenau公开了一种技术,其中待跟踪的因特网媒体被标记有信标指令。特别地,监控指令与待跟踪的媒体的超文本置标语言(HTML)相关联。当客户端请求媒体时,该媒体和信标指令均被下载到客户端。因此无论何时从服务器或从缓存访问媒体时都执行信标指令。The invention disclosed in Blumenau's U.S. Patent 6,108,637 fundamentally changes the way Internet monitoring is performed and overcomes the limitations of the server-side log monitoring techniques described above. For example, Blumenau discloses a technique in which Internet media to be tracked is tagged with beacon instructions. Specifically, the monitoring instructions are associated with the Hypertext Markup Language (HTML) of the media to be tracked. When a client requests the media, the media and the beacon instructions are both downloaded to the client. Thus, the beacon instructions are executed whenever the media is accessed from the server or from a cache.

信标指令引起监控待从客户端发送的、反应关于对媒体的访问的信息的数据,该客户端将媒体下载到监控实体。通常,监控实体为受众测量实体(AME)(例如,对测量或跟踪广告、媒体、和/或任何其它媒体的受众接触率感兴趣的任何实体),该AME不将媒体提供给客户端且为用于提供准确使用情况统计信息的可信第三方(例如,尼尔森有限公司)。有利地,因为信标指令与媒体相关联且无论何时访问媒体都被客户端浏览器执行,所以不管客户端是否为AME的小组成员,监控信息都被提供给AME。The beacon instructions cause monitoring data reflecting information about access to the media to be sent from the client that downloaded the media to a monitoring entity. Typically, the monitoring entity is an Audience Measurement Entity (AME) (e.g., any entity interested in measuring or tracking audience reach for advertising, media, and/or any other media) that does not provide the media to the client and is a trusted third party (e.g., Nielsen Inc.) used to provide accurate usage statistics. Advantageously, because the beacon instructions are associated with the media and are executed by the client browser whenever the media is accessed, monitoring information is provided to the AME regardless of whether the client is a panel member of the AME.

然而,有用的是将人口统计资料和/或其它用户信息链接到监控信息。为了解决该问题,AME建立已经同意提供其人口统计信息以及让其因特网浏览活动被监控的用户小组。当个人加入该小组时,他们将关于其身份和人口统计资料(例如,性别、种族、收入、家庭住址、职业等)的详细信息提供给AME。AME在小组成员计算机上设置网络跟踪器,该网络跟踪器使AME能够识别小组成员(无论该小组成员何时访问标记的媒体),因此将监控信息发送到AME。However, it would be useful to link demographics and/or other user information to monitoring information. To address this problem, AME creates groups of users who have agreed to provide their demographic information and have their Internet browsing activity monitored. When individuals join the group, they provide AME with detailed information about their identity and demographics (e.g., gender, race, income, home address, occupation, etc.). AME sets up a cookie on the group member's computer that enables AME to identify the group member whenever the group member accesses tagged media, thereby sending monitoring information to AME.

由于从标记页面提供监控信息的大部分客户端不是小组成员,从而对于AME来说是未知的,因此需要使用统计方法以将基于针对小组成员收集的数据的人口统计信息归因于更大人口量的提供用于标记媒体的数据的用户。然而,相比于用户的总人口,AME的小组规格很小。因此,呈现出关于如何提高小组规格同时保证小组的人口统计数据准确的问题。Because most clients providing monitoring information from tagged pages are not panel members and are therefore unknown to AME, statistical methods are needed to attribute demographic information based on data collected for panel members to the larger population of users providing data for tagging media. However, compared to the total user population, the panel size of AME is small. Therefore, the problem arises of how to increase the panel size while ensuring accurate panel demographic data.

具有许多运行在因特网上的数据库所有者。这些数据库所有者向大量订阅者提供服务(例如,社交网络服务、电子邮件服务、媒体访问服务等)。作为提供这类服务的交换,订阅者向所有者注册。作为该注册的一部分,订阅者提供详细的人口统计信息。这类数据库所有者的示例包括社交网络供应商,诸如Facebook、Myspace、Twitter等。这些数据库所有者在其订阅者的计算机上设置网络跟踪器,以使数据库所有者能够在注册用户访问其网站时认出这类注册用户。There are many database owners operating on the Internet. These database owners provide services (e.g., social networking services, email services, media access services, etc.) to a large number of subscribers. In exchange for providing such services, subscribers register with the owner. As part of this registration, subscribers provide detailed demographic information. Examples of such database owners include social networking providers such as Facebook, Myspace, Twitter, etc. These database owners place cookies on the computers of their subscribers, enabling the database owners to recognize registered users when they visit their website.

本文中所公开的示例可以用于使用用户信息来确定媒体印象、广告印象、媒体接触率、和/或广告接触率,该用户信息在因特网上被分布在不同的数据库(例如,不同的网站拥有者、服务供应商等)上。本文中所公开的示例性方法、装置和制品不仅实现了因特网媒体接触率与用户信息的准确相关,而且还有效地将超出参与受众测量实体和/或收视评级实体的小组的人员的小组规格和组成扩展到在其它因特网数据库中注册的人员,该其它因特网数据库诸如无线服务运营商、移动软件/服务供应商、社交媒介网站(例如Facebook、Twitter、Google等)、和/或任何其它因特网网站,诸如Yahoo!、MSN、Apple iTunes、Experian等的数据库。该扩展有效地利用AME的媒体印象跟踪能力以及对非AME实体(诸如社交媒体和其它网站)的数据库的使用以创建庞大的、人口统计准确的小组,其形成对因特网媒体(诸如广告和/或节目)的接触率的准确的、可靠的测量。这类媒体的示例包括网站、在网站上呈现的图像、和/或可借助计算设备访问的流媒体(Amazon Video、Netflix、Hulu等)。The examples disclosed herein can be used to determine media impressions, ad impressions, media exposure, and/or ad exposure using user information that is distributed across different databases on the Internet (e.g., different website owners, service providers, etc.). The example methods, apparatus, and articles of manufacture disclosed herein not only accurately correlate Internet media exposure with user information, but also effectively expand the panel size and composition beyond the panel of participating audience measurement entities and/or ratings entities to include persons registered in other Internet databases, such as those of wireless service operators, mobile software/service providers, social media websites (e.g., Facebook, Twitter, Google, etc.), and/or any other Internet website, such as Yahoo!, MSN, Apple iTunes, Experian, etc. This expansion effectively leverages AME's media impression tracking capabilities and the use of databases of non-AME entities (such as social media and other websites) to create a large, demographically accurate panel that forms an accurate and reliable measurement of exposure to Internet media (such as advertisements and/or programs). Examples of such media include websites, images presented on websites, and/or streaming media accessible via a computing device (Amazon Video, Netflix, Hulu, etc.).

传统地,AME(本文中也称为“收视评级实体”)基于注册的小组成员确定用于广告和媒体节目的人口统计范围。即,AME将同意被监控的人登记到小组中。在登记期间,AME从登记人员接收人口统计信息,从而可以制定出对那些小组成员的广告/媒体接触率和不同的人口统计市场之间的后续相关性。不像AME单独地依赖于它们自身的小组成员数据来收集基于人口统计资料的受众测量的传统技术,本文中所公开的示例性方法、装置和/或制品使AME能够与其它实体共享人口统计信息,该其它实体基于用户注册模型而运行。如在本文中所使用的,用户注册模型为用户通过创建账户且提供关于其自身的与人口统计有关的信息来订阅那些实体的服务的模型。与数据库所有者的注册用户相关联的人口统计信息的共享使AME能够利用来自外部源(例如,数据库所有者)的基本上可靠的人口统计信息扩展或补充其小组数据,因此扩展了其基于人口统计资料的受众测量的覆盖范围、准确率和/或完整性。这类访问也使AME能够监控另外不会加入AME小组的人员。具有标识一组个体的人口统计资料的数据库的任何实体可以与AME合作。这类实体可以被称为“数据库所有者”且包括诸如无线服务运营商、移动软件/服务供应商、社交媒介网站(例如Facebook、Twitter、Google等)和/或任何其它因特网网站(诸如Yahoo!、MSN、Apple iTunes、Experian等)的实体,该实体收集可作为服务的交换的用户的人口统计数据。Traditionally, AMEs (also referred to herein as "rating entities") determine demographic coverage for advertising and media programming based on registered panelists. That is, AMEs enroll individuals who consent to being monitored into a panel. During enrollment, AMEs receive demographic information from enrollees, enabling subsequent correlations between advertising/media exposure to those panelists and different demographic markets. Unlike conventional techniques in which AMEs rely solely on their own panelist data to gather demographic-based audience measurement, the exemplary methods, apparatus, and/or articles of manufacture disclosed herein enable AMEs to share demographic information with other entities that operate based on a user registration model. As used herein, a user registration model is one in which users subscribe to the services of those entities by creating an account and providing demographic-related information about themselves. Sharing demographic information associated with a database owner's registered users enables AMEs to expand or supplement their panel data with substantially reliable demographic information from external sources (e.g., the database owner), thereby expanding the coverage, accuracy, and/or completeness of their demographic-based audience measurement. This access also enables AMEs to monitor individuals who would not otherwise join an AME panel. Any entity that has a database that identifies demographic data of a group of individuals can partner with AME. Such entities may be referred to as "database owners" and include entities such as wireless service carriers, mobile software/service providers, social media sites (e.g., Facebook, Twitter, Google, etc.), and/or any other Internet site (such as Yahoo!, MSN, Apple iTunes, Experian, etc.) that collects demographic data on users in exchange for services.

本文中所公开的示例可以由AME(例如,对测量或跟踪广告、内容、和/或任何其它媒体的受众接触率感兴趣的任何实体)与任何数量的数据库所有者合作来实现,该数据库所有者诸如开发在线媒体接触率度量的在线网络服务供应商。这类数据库所有者/在线网络服务供应商可以是无线服务运营商、移动软件/服务供应商、社交网站(例如Facebook、Twitter、MySpace等)、多服务站点(例如Yahoo!、Google、Experian等)、在线零售商站点(例如Amazon.com、Buy.com等)、和/或保持用户注册记录的任何其它网络服务站点。The examples disclosed herein can be implemented by AME (e.g., any entity interested in measuring or tracking audience reach for advertisements, content, and/or any other media) in collaboration with any number of database owners, such as online web service providers that develop online media reach metrics. Such database owners/online web service providers can be wireless service carriers, mobile software/service providers, social networking sites (e.g., Facebook, Twitter, MySpace, etc.), multi-service sites (e.g., Yahoo!, Google, Experian, etc.), online retailer sites (e.g., Amazon.com, Buy.com, etc.), and/or any other web service sites that maintain user registration records.

来自异构数据源的人口统计信息(例如,来自受众测量实体的小组的高质量人口统计信息和/或网络服务供应商的注册用户数据)的使用提高了用于在线广告活动和线下广告活动二者的度量的上报效率。本文中所公开的示例性技术使用在线注册数据来识别用户的人口统计资料、和/或其它用户信息,以及使用服务器印象计数和/或其它技术来跟踪由那些用户引起的印象的量。在线网络服务供应商(诸如无线服务运营商、移动软件/服务供应商、社交网站(例如Facebook、Twitter、MySpace等)、多服务站点(例如Yahoo!、Google、Experian等)、在线零售商站点(例如Amazon.com、Buy.com等))(在本文中统称为和单独称为在线数据库所有者)保持借助用户注册过程收集的详细的人口统计信息(例如年龄、性别、地理位置、种族、收入水平、教育水平、宗教信仰等)。印象对应于已经接触对应媒体和/或广告的家庭或个人。因此,印象表示已经接触广告或媒体或一组广告或媒体的家庭或个人。在因特网广告中,印象的量或印象计数为广告或广告活动已被网络人群访问的总次数(例如,包括如通过例如弹出窗口拦截器而减少的和/或通过例如从本地高速缓存的检索而增多的访问的次数)。The use of demographic information from heterogeneous data sources (e.g., high-quality demographic information from a panel of audience measurement entities and/or registered user data from network service providers) improves the efficiency of reporting metrics for both online and offline advertising campaigns. The exemplary techniques disclosed herein use online registration data to identify user demographics and/or other user information, and use server impression counting and/or other techniques to track the number of impressions generated by those users. Online network service providers (such as wireless service operators, mobile software/service providers, social networking sites (e.g., Facebook, Twitter, MySpace, etc.), multi-service sites (e.g., Yahoo!, Google, Experian, etc.), online retailer sites (e.g., Amazon.com, Buy.com, etc.)) (collectively and individually referred to herein as online database owners) maintain detailed demographic information (e.g., age, gender, geographic location, race, income level, education level, religious affiliation, etc.) collected through the user registration process. An impression corresponds to a household or individual that has been exposed to the corresponding media and/or advertisement. Thus, an impression represents a household or individual that has been exposed to an advertisement or media or a group of advertisements or media. In Internet advertising, the number of impressions or impression count is the total number of times an advertisement or advertising campaign has been visited by network users (e.g., including visits reduced by, for example, pop-up blockers and/or augmented by, for example, retrieval from a local cache).

本文中所公开的示例调整从一个或多个客户端设备和一个或多个数据库所有者获得的印象信息,以提高对应于记录的印象的人口统计资料的准确度。当使用数据库所有者数据来提供用于印象的人口统计信息时,从一个或多个客户端设备和一个或多个数据库所有者获得的受众人口统计资料和/或印象信息可以由于误差而出现偏差,该误差包括:1)源自设备共享的错误认定误差,和/或2)数据库所有者未覆盖误差。在一些情况下,这两个不同的偏差源出现以形成类似的误差因子,但实际上是不同的偏差。本文中所公开的示例生成校准因子并将校准因子应用于受众数据以校正这些误差。Examples disclosed herein adjust impression information obtained from one or more client devices and one or more database owners to improve the accuracy of demographic data corresponding to recorded impressions. When using database owner data to provide demographic information for impressions, audience demographics and/or impression information obtained from one or more client devices and one or more database owners can be skewed due to errors, including: 1) misidentification errors due to device sharing, and/or 2) database owner non-coverage errors. In some cases, these two different sources of bias appear to result in similar error factors, but are actually different biases. Examples disclosed herein generate calibration factors and apply the calibration factors to audience data to correct for these errors.

错误认定误差指的是在实际上当属于第二人口统计组的第二人为媒体印象针对其发生的人时将属于第一人口统计组的第一人认为是与设备上的媒体印象相关联的人的情况下发生的测量偏差。在这类情况的一些示例中,在家庭的多个人之间共享移动设备。初始地,家庭中的第一人使用移动设备访问与数据库所有者相关联的网站(例如,借助移动设备的网络浏览器、借助安装在移动设备上的应用程序等),以及数据库所有者可以基于第一人进行的访问(例如登录事件)将第一人识别成与移动设备相关联。随后,第一人停止使用该设备但在设备上不退出数据库所有者系统,和/或第二人不登录到数据库所有者系统,以允许数据库所有者将第二人识别成不同于第一人的用户。因此,当第二人开始使用同一移动设备访问媒体时,数据库所有者继续(在该情况下,错误地)将移动设备(例如媒体印象)的使用识别成与第一人相关联。因此,应当归属于第二人和第二人口统计组的印象被错误地归属于第一人和第一人口统计组。大规模错误认定误差的效果可以通过错误地表示媒体印象在大量受众之间的人口统计分布且因此歪曲针对广告和/或其它媒体所收集的印象的受众人口统计而创建测量偏差误差,该广告和/或其它媒体的接触率由受众测量实体监控。Misidentification error refers to a measurement bias that occurs when a first person belonging to a first demographic group is considered to be the person associated with a media impression on a device when, in fact, a second person belonging to a second demographic group is the person for whom the media impression occurred. In some examples of such situations, a mobile device is shared among multiple people in a household. Initially, a first person in the household uses the mobile device to access a website associated with a database owner (e.g., via the mobile device's web browser, via an application installed on the mobile device, etc.), and the database owner may identify the first person as associated with the mobile device based on the access performed by the first person (e.g., a login event). Subsequently, the first person stops using the device but does not log out of the database owner's system, and/or the second person does not log into the database owner's system, allowing the database owner to identify the second person as a different user than the first person. Consequently, when the second person begins accessing media using the same mobile device, the database owner continues (in this case, incorrectly) to identify the use of the mobile device (e.g., media impression) as associated with the first person. Consequently, impressions that should be attributed to the second person and the second demographic group are incorrectly attributed to the first person and the first demographic group. The effect of large-scale misidentification errors can create measurement bias errors by misrepresenting the demographic distribution of media impressions among a large audience and thereby distorting the audience demographics of impressions collected for advertisements and/or other media whose exposure is monitored by the audience measurement entity.

所公开的示例的示例性技术优势Exemplary Technical Advantages of the Disclosed Examples

校正错误认定误差的现有技术包括通过比较下列项确定调整因子:A)为了使用安装在客户端计算机处的小组成员计量软件计算会话所收集的人口统计信息,B)使用来自数据库所有者的基于网络跟踪器的印象确定的、用于同一计算会话的人口统计信息。在2013年1月31日递交的序列号为13/756,493的美国专利申请中公开了这类技术的示例。序列号为13/756,493的美国专利申请的全部内容通过引用并入在本文中。在序列号为13/756,493的美国专利申请中公开的示例依赖于本地安装在客户端计算机处的小组成员计量软件来准确地识别登记在受众测量实体的小组中的小组成员。在序列号为13/756,493的美国专利申请中公开的示例也依赖于网络跟踪器或类网络跟踪器的数据来确定调整因子。这类技术不适合于校正设备上的错误认定误差,该设备未安装小组成员计量软件和/或不提供可用作客户端设备标识符的网络跟踪器,诸如一些移动设备(例如iOS设备)。换言之,现有技术依赖于本地安装的小组成员计量软件和网络跟踪器来生成错误认定调整因子。在不具有这类本地安装的小组成员计量软件和/或不具有这类网络跟踪器的情况下,现有技术将不能成功地生成错误认定调整因子。Existing techniques for correcting false positives include determining an adjustment factor by comparing: A) demographic information collected for a computation session using panelist metering software installed on the client computer, and B) demographic information determined for the same computation session using cookie-based impressions from the database owner. Examples of such techniques are disclosed in U.S. patent application Ser. No. 13/756,493, filed on January 31, 2013. The entire contents of U.S. patent application Ser. No. 13/756,493 are incorporated herein by reference. The examples disclosed in U.S. patent application Ser. No. 13/756,493 rely on panelist metering software installed locally on the client computer to accurately identify panelists registered with a panel of an audience measurement entity. The examples disclosed in U.S. patent application Ser. No. 13/756,493 also rely on cookie or cookie-like data to determine the adjustment factor. Such techniques are not suitable for correcting false positives on devices that do not have panelist metering software installed and/or do not provide a cookie that can be used as a client device identifier, such as some mobile devices (e.g., iOS devices). In other words, the prior art relies on locally installed panelist metering software and cookies to generate the misidentification adjustment factor. Without such locally installed panelist metering software and/or without such cookies, the prior art would not be able to successfully generate the misidentification adjustment factor.

相比于现有的系统和方法,本文中所公开的示例基于对随机选择的人员和/或家庭所进行的调查的响应而使用错误认定校正矩阵生成错误认定因子,以及不依赖于网络跟踪器或使用网络跟踪器来生成错误认定校正因子和/或错误认定校正矩阵。如在本文中所使用的,如参考一个人所使用的术语“数据库所有者注册状态”指的是这个人是否向一个或多个特定的数据库所有者进行注册。依赖于本地安装的小组成员计量软件来收集数据库所有者注册状态(例如,各个家庭成员是否向特定的数据库所有者进行注册)以及收集家庭成员进行的媒体访问数据的现有技术可能无法准确地校正用于错误认定偏差误差和/或未覆盖偏差误差的印象信息,上述误差针对发生在不受小组成员计量软件监控的设备类型上的印象。本文中所公开的示例生成错误认定校正因子而不依赖于本地安装在客户端计算机处的小组成员计量软件来收集数据库所有者注册状态数据。本文中所公开的示例还生成错误认定校正因子而不依赖于这类本地安装的小组成员计量软件来收集关于家庭成员的媒体访问的数据。因此,本文中所公开的示例确定用于任何设备类型的错误认定校正因子,包括这样的设备类型:按照该设备类型,数据库所有者注册状态数据、数据库所有者登录数据和/或关于家庭成员的媒体访问的数据不使用本地安装的小组成员计量软件来收集(和/或是不可收集的)。这类设备在本文中被称为“非本地计量设备”。Compared to existing systems and methods, the examples disclosed herein generate misidentification factors using a misidentification correction matrix based on responses to surveys conducted on randomly selected persons and/or households, and do not rely on or use web trackers to generate the misidentification correction factors and/or misidentification correction matrices. As used herein, the term "database owner registration status" as used with reference to a person refers to whether the person is registered with one or more specific database owners. Existing techniques that rely on locally installed panelist metering software to collect database owner registration status (e.g., whether each family member is registered with a specific database owner) and to collect media access data performed by family members may not accurately correct impression information for misidentification bias error and/or non-coverage bias error, which are errors for impressions that occur on device types that are not monitored by the panelist metering software. The examples disclosed herein generate misidentification correction factors without relying on panelist metering software installed locally at a client computer to collect database owner registration status data. The examples disclosed herein also generate misidentification correction factors without relying on such locally installed panelist metering software to collect data about the media access of family members. Thus, the examples disclosed herein determine misidentification correction factors for any device type, including device types for which database owner registration status data, database owner login data, and/or data regarding family member media access is not collected (and/or is not collectable) using locally installed panelist metering software. Such devices are referred to herein as "non-locally metered devices."

在一些这类公开的示例中,以不同于现有技术的方式来不同地收集和使用小组成员数据。在这类示例中,采用小组成员数据来调整错误认定校正因子以更准确地确定人口统计组中的人员一起生活的发生率。如在本文中所使用的,“人口统计组中的人员一起生活的发生率”指的是发生第一人口统计组中的人员与第二人口统计组中的人员一起生活的相对频率(例如,与人口统计组B中的某人一起生活的人口统计组A中的人员的百分比)。然而,仍生成收集的印象所对应的聚合受众分布,而不参考小组成员数据。在本文中所公开的示例中,小组成员数据仅用于调整所生成的聚合受众分布。调整的聚合受众分布用于生成和/或调整错误认定校正因子。例如,可用于调整人口统计组中的人员一起生活的发生率的小组成员数据可以包括与第二人口统计组(例如,与第一人口统计组相同的人口统计组或不同的人口统计组)中的人员一起生活的第一人口统计组中的人员的相应数目。在一些示例中,用于调整人口统计组中的人员一起生活的发生率的小组成员数据不指示小组成员是否为数据库所有者的注册用户(例如不包括网络跟踪器)且不包括指示使用计算设备的媒体访问的信息。In some of these disclosed examples, panelist data is collected and used differently than in the prior art. In such examples, panelist data is used to adjust the misidentification correction factor to more accurately determine the incidence of people in demographic groups living together. As used herein, the "incidence of people in demographic groups living together" refers to the relative frequency with which people in a first demographic group live with people in a second demographic group (e.g., the percentage of people in demographic group A who live with someone in demographic group B). However, an aggregated audience distribution corresponding to the collected impressions is still generated without reference to the panelist data. In the examples disclosed herein, the panelist data is used only to adjust the generated aggregated audience distribution. The adjusted aggregated audience distribution is used to generate and/or adjust the misidentification correction factor. For example, panelist data that can be used to adjust the incidence of people in demographic groups living together can include the corresponding number of people in the first demographic group who live with people in the second demographic group (e.g., the same demographic group as the first demographic group or a different demographic group). In some examples, panelist data used to adjust the incidence of people in demographic groups living together does not indicate whether the panelist is a registered user of the database owner (e.g., does not include cookies) and does not include information indicating media access using a computing device.

所公开的示例通过确定如下事件的概率来确定错误认定的概率:当数据库所有者将人口统计组(i)中的人员识别为媒体的观看者时,人口统计组(j)中的人员为媒体的实际观看者。在一些示例中,错误认定的概率通过重新分布受众和/或与使用调查校准数据源的家庭相关联地观察到的印象来计算。在这类示例中,调查校准数据源用于针对用于过采样和/或欠采样的多个家庭而聚合和调整重新分布的受众和/或印象。在一些这类示例中,形成的概率被归一化以反映对于由数据库所有者所观察到的且与人口统计组相关联的每个印象的错误认定的概率。The disclosed examples determine the probability of misidentification by determining the probability that, when a database owner identifies a person in demographic group (i) as a viewer of the media, a person in demographic group (j) is the actual viewer of the media. In some examples, the probability of misidentification is calculated by redistributing the audience and/or impressions observed in association with households using a survey calibration data source. In such examples, the survey calibration data source is used to aggregate and adjust the redistributed audience and/or impressions for multiple households for oversampling and/or undersampling. In some such examples, the resulting probabilities are normalized to reflect the probability of misidentification for each impression observed by the database owner and associated with the demographic group.

其它所公开的示例由于设备共享而将错误认定的概率确定成三个单独概率的组合:a)生活在同一家庭中的概率,b)访问该家庭中的移动设备(任何类型)的概率,以及c)针对特定内容类型而共享移动设备的概率。在本文中所公开的示例将形成的错误认定的概率应用于印象数据,作为补偿在由收集的印象数据所表示的独特受众中的误差的因子。在一些示例中,提供这类误差补偿涉及构造错误认定校正矩阵以反映被数据库所有者识别成与第一人口统计组相关联的印象实际上应当与第二人口统计组相关联的概率。Other disclosed examples determine the probability of misidentification due to device sharing as a combination of three separate probabilities: a) the probability of living in the same household, b) the probability of having access to a mobile device (of any type) in the household, and c) the probability of sharing a mobile device for a particular content type. Examples disclosed herein apply the resulting probability of misidentification to impression data as a factor to compensate for errors in the unique audience represented by the collected impression data. In some examples, providing such error compensation involves constructing a misidentification correction matrix to reflect the probability that an impression identified by the database owner as associated with a first demographic group should actually be associated with a second demographic group.

如在本文中使用的,未覆盖误差被限定成指的是由于数据库所有者无法识别一部分使用移动设备观看媒体的受众(例如其人口统计资料)而发生的测量偏差。在一些实例中,当从移动设备向数据库所有者发送请求时,如在上文公开的示例中那样,数据库所有者无法将请求中的数据与人员匹配。数据库所有者无法识别与给定印象相关联的人员可能由于如下原因而发生:1)访问引起印象的媒体的人员还未将其自身信息提供给数据库所有者(例如,该人员未向数据库所有者(例如Facebook)注册,从而在数据库所有者处不具有该人员的记录,该人员所对应的注册资料不完整,该人员所对应的注册资料已经被标记为怀疑可能含有不准确信息等),2)该人员向数据库所有者注册,但未使用其上发生印象的特定移动设备访问数据库所有者(例如,仅从计算机和/或不同于与当前请求相关联的移动设备的其它移动设备访问数据库所有者,和/或对于该人员的用户标识符在其上发生印象的移动设备上不可用),和/或3)该人员向数据库所有者注册,且使用其上发生印象的移动设备访问(例如,该人员之前已经从移动设备登录到数据库所有者中)数据库所有者,但采取了阻止数据库所有者将移动设备与该人员相关联的其它主动或被动测量(例如阻断或删除网络跟踪器)。在一些示例中,对于人员的用户标识符在其上发生印象的移动设备上不可用,原因是该移动设备和/或该移动设备上的应用程序/软件不是基于网络跟踪器的设备和/或应用程序。As used herein, non-coverage error is defined as measurement bias that occurs because the database owner is unable to identify a portion of the audience (e.g., their demographics) who use mobile devices to view media. In some instances, when a request is sent from a mobile device to the database owner, as in the examples disclosed above, the database owner is unable to match the data in the request to a person. The database owner may not be able to identify the person associated with a given impression because: 1) the person accessing the media that gave rise to the impression has not provided information about themselves to the database owner (e.g., the person is not registered with the database owner (e.g., Facebook) and therefore has no record of the person with the database owner, the registration profile for the person is incomplete, the registration profile for the person has been flagged as suspected of containing inaccurate information, etc.), 2) the person is registered with the database owner but does not access the database owner using the specific mobile device on which the impression occurred (e.g., the database owner is accessed only from a computer and/or a mobile device other than the mobile device associated with the current request, and/or a user identifier for the person is not available on the mobile device on which the impression occurred), and/or 3) the person is registered with the database owner and accesses the database owner using the mobile device on which the impression occurred (e.g., the person has previously logged into the database owner from the mobile device), but has taken other active or passive measures (e.g., blocking or deleting cookies) that prevent the database owner from associating the mobile device with the person. In some examples, a user identifier for a person is not available on the mobile device on which the impression occurred because the mobile device and/or application/software on the mobile device is not a cookie-based device and/or application.

在本文中所公开的示例生成用于媒体类别和/或移动设备类型的不同组合的设备共享矩阵和/或未覆盖因子。媒体类别(可针对其生成单独的设备共享矩阵和/或未覆盖因子)的示例包括广告、儿童节目、喜剧、戏剧、故事片、信息和/或新闻节目、体育运动、综艺(例如,游戏节目、真人秀、脱口秀)和/或其它类别。设备类型(可针对其生成单独的设备共享矩阵和/或未覆盖因子)的示例包括智能手机(例如,iPhone、基于安卓操作系统的智能手机、黑莓智能手机、基于Windows Mobile的智能手机等)、平板电脑(例如,iPad、基于安卓操作系统的平板电脑等)、便携式媒体播放器(例如,iPod等)、和/或其它设备类型。这类设备类型可以是基于网络跟踪器的设备(例如,运行基于网络跟踪器的应用程序/软件的设备)和/或不基于网络跟踪器的设备(例如,运行不采用网络跟踪器的应用程序/软件的设备,诸如苹果iOS设备)。The examples disclosed herein generate device sharing matrices and/or non-coverage factors for different combinations of media categories and/or mobile device types. Examples of media categories (for which separate device sharing matrices and/or non-coverage factors may be generated) include advertising, children's programming, comedies, dramas, feature films, information and/or news programming, sports, variety shows (e.g., game shows, reality shows, talk shows), and/or other categories. Examples of device types (for which separate device sharing matrices and/or non-coverage factors may be generated) include smartphones (e.g., iPhones, smartphones based on the Android operating system, Blackberry smartphones, smartphones based on Windows Mobile, etc.), tablets (e.g., iPads, tablets based on the Android operating system, etc.), portable media players (e.g., iPods, etc.), and/or other device types. Such device types may be cookie-based devices (e.g., devices running cookie-based applications/software) and/or non-cookie-based devices (e.g., devices running applications/software that do not employ cookies, such as Apple iOS devices).

所公开的用于针对错误认定和/或未覆盖误差补偿印象信息的示例性方法和装置解决了准确地确定与媒体的印象相关联的人口统计资料的技术问题,该媒体的印象借助诸如互联网的网络来传送和监控。使用这类计算设备来收集在计算设备处发生的媒体印象和指示媒体印象发生的数据。这类数据的校准可以包括收集、处理、和/或分析成百上千、上百万、或更多印象。因此,这类大量数据的校准和/或校正呈现出巨大的技术挑战。所公开的示例可以被应用于借助计算设备收集的一组媒体印象,从而以高效且及时的方式产生对于巨大量的媒体印象(例如每周100,000个印象)的准确人口统计信息。这在受众测量的技术领域中提供了显著改进。The disclosed exemplary methods and apparatus for compensating impression information for misidentification and/or non-coverage errors solve the technical problem of accurately determining demographic information associated with media impressions that are transmitted and monitored via a network such as the Internet. Such computing devices are used to collect media impressions that occur at the computing device and data indicating the occurrence of media impressions. Calibration of such data can include collecting, processing, and/or analyzing hundreds, thousands, millions, or more impressions. Therefore, calibration and/or correction of such large amounts of data presents a significant technical challenge. The disclosed examples can be applied to a set of media impressions collected via a computing device to generate accurate demographic information for a large number of media impressions (e.g., 100,000 impressions per week) in an efficient and timely manner. This provides a significant improvement in the technical field of audience measurement.

在本文中所公开的示例可以与由尼尔森有限公司(美国)开发的在线活动评级(OCR)系统一起使用。OCR系统是用于收集和分析大量数据的有效系统。OCR系统不需要小组成员软件来获得待处理的数据。在本文中所公开的技术能够生成调整因子而不需要引入小组成员软件。这降低了所需的软件的量且消除了对终端用户计算机的需求。这些是降低计算资源的开销和使用的技术优势。在本文中所公开的技术还用于有效地校准OCR自动系统以校正可出现在其操作中的错误认定误差。因此,所公开的技术解决了校准OCR系统以准确地反映真实世界情况的技术问题,因此,通过消除对于分布在整个系统上的小组成员软件的需求来实现校准。The examples disclosed herein can be used with an online activity rating (OCR) system developed by Nielsen Inc. (USA). The OCR system is an efficient system for collecting and analyzing large amounts of data. The OCR system does not require panelist software to obtain the data to be processed. The technology disclosed herein is able to generate adjustment factors without the need to introduce panelist software. This reduces the amount of software required and eliminates the need for end-user computers. These are technical advantages that reduce the cost and use of computing resources. The technology disclosed herein is also used to effectively calibrate OCR automatic systems to correct misidentification errors that may occur in their operation. Therefore, the disclosed technology solves the technical problem of calibrating OCR systems to accurately reflect real-world conditions, and therefore, calibration is achieved by eliminating the need for panelist software distributed throughout the system.

所公开的示例性方法包括:在第一因特网域从第一类型的计算设备接收第一请求。在示例性方法中,第一请求指示在计算设备处对媒体的访问。示例性方法还包括:发送对于人口统计信息的请求,该人口统计信息对应于在第一因特网域从第一类型的计算设备接收的多个请求。所述多个请求包括第一请求。示例性方法还包括:获得发生在第一类型的计算设备上的媒体印象的计数,媒体印象的第一部分对应于数据库所有者可识别其人口统计信息的人员,且媒体印象的第二部分对应于数据库所有者不可用其人口统计信息的人员;以及基于在第一类型的计算设备上访问媒体印象所对应的媒体的第一概率且基于在第二类型的计算设备上访问媒体的第二概率,确定用于媒体印象的第二部分的人口统计信息。The disclosed exemplary method includes: receiving a first request from a first type of computing device at a first Internet domain. In the exemplary method, the first request indicates access to media at the computing device. The exemplary method also includes: sending a request for demographic information, the demographic information corresponding to a plurality of requests received from the first type of computing device at the first Internet domain. The plurality of requests includes the first request. The exemplary method also includes: obtaining a count of media impressions that occurred on the first type of computing device, a first portion of the media impressions corresponding to persons whose demographic information is identifiable by a database owner and a second portion of the media impressions corresponding to persons whose demographic information is not available to the database owner; and determining demographic information for the second portion of the media impressions based on a first probability that the media corresponding to the media impression was accessed on the first type of computing device and based on a second probability that the media was accessed on the second type of computing device.

在一些示例性方法中,确定人口统计信息包括将第一概率与第二概率的比率乘以归属于第一人口统计组的媒体印象的数目。在一些示例性方法中,第一概率为第一人口统计组中的人员在第一类型的计算设备上访问媒体的概率,且第二概率为第一人口统计组中的人员在第二类型的计算设备上访问媒体的概率。一些示例性方法还包括:调整媒体印象以对于将媒体印象的子集不正确地归属于第二人口统计组中的第二人员进行补偿,从被调整以补偿不正确归属的媒体印象的子集确定归属于第一人口统计组的媒体印象的数目。In some exemplary methods, determining the demographic information includes multiplying a ratio of a first probability to a second probability by the number of media impressions attributed to a first demographic group. In some exemplary methods, the first probability is a probability that a person in the first demographic group accesses the media on a first type of computing device, and the second probability is a probability that a person in the first demographic group accesses the media on a second type of computing device. Some exemplary methods further include adjusting the media impressions to compensate for incorrectly attributing a subset of the media impressions to a second person in a second demographic group, and determining the number of media impressions attributed to the first demographic group from the subset of media impressions adjusted to compensate for the incorrectly attributed media impressions.

在一些示例性方法中,第一类型的计算设备包括移动设备,第二类型的计算设备包括电视。在一些示例性方法中,第一类型的计算设备包括以下项中的至少一者:智能手机、平板电脑、或便携式媒体播放器。在一些示例性方法中,第一概率和第二概率对应于媒体的媒体类别。在一些示例性方法中,媒体类别为喜剧、戏剧、政治、现实或组合媒体类别中的至少一者。In some exemplary methods, the first type of computing device includes a mobile device and the second type of computing device includes a television. In some exemplary methods, the first type of computing device includes at least one of the following: a smartphone, a tablet computer, or a portable media player. In some exemplary methods, the first probability and the second probability correspond to a media category of the media. In some exemplary methods, the media category is at least one of comedy, drama, politics, reality, or a combination of media categories.

一些示例性方法还包括:在确定人口统计信息之前,针对以下情况调整媒体印象:媒体印象中的媒体印象正被不正确地归属于未引起该媒体印象的人员。一些示例性方法还包括:基于对人员调查的调查响应计算第一概率和第二概率,计算第一概率包括从调查响应确定与人口统计组、媒体类别、计算设备的类型、或地理区域中的至少一者相关联的权重,该权重指示在感兴趣的设备类型上访问与媒体印象相关联的媒体的对应概率。Some example methods further include, before determining the demographic information, adjusting the media impression for a situation in which the media impression is incorrectly attributed to a person who did not cause the media impression. Some example methods further include calculating a first probability and a second probability based on survey responses to a survey of the person, calculating the first probability comprising determining, from the survey responses, a weight associated with at least one of a demographic group, a media category, a type of computing device, or a geographic region, the weight indicating a corresponding probability of accessing the media associated with the media impression on the device type of interest.

在一些示例性方法中,调查的是随机小组或由受众测量实体维持的受众成员的小组中的至少一者。在一些示例性方法中,确定用于该媒体印象的该部分的人口统计信息包括:确定归属于人员所对应的不同人口统计组的媒体印象的比例,以及将所述媒体印象的比例缩放至该媒体印象的该部分。In some exemplary methods, the survey is conducted on at least one of a random panel or a panel of audience members maintained by an audience measurement entity. In some exemplary methods, determining demographic information for the portion of the media impression includes determining proportions of media impressions attributed to different demographic groups corresponding to the person, and scaling the proportions of the media impressions to the portion of the media impression.

一些示例性方法还包括:将指令提供给发行者,其中指令将由发行者提供给计算设备。当被计算设备执行时,由发行者提供的指令引起计算设备发送第一请求。一些示例性方法还包括:通过不与个体在线用户关于其在线媒体访问活动进行通信以及通过不向在线用户请求调查响应以确定在第一类型的计算设备上访问媒体印象所对应的媒体的第一概率或确定在第二类型的计算设备上访问媒体的第二概率,来节省计算机处理资源。一些示例性方法还包括:通过不与个体在线用户关于其在线媒体访问活动进行通信以及通过不向在线用户请求调查响应以确定在第一类型的计算设备上访问媒体印象所对应的媒体的第一概率或确定在第二类型的计算设备上访问媒体的第二概率,来节省网络通信带宽。Some exemplary methods also include providing instructions to an issuer, wherein the instructions are to be provided by the issuer to a computing device. When executed by the computing device, the instructions provided by the issuer cause the computing device to send a first request. Some exemplary methods also include saving computer processing resources by not communicating with individual online users about their online media access activities and by not requesting survey responses from online users to determine a first probability of accessing media corresponding to a media impression on a first type of computing device or to determine a second probability of accessing the media on a second type of computing device. Some exemplary methods also include saving network communication bandwidth by not communicating with individual online users about their online media access activities and by not requesting survey responses from online users to determine a first probability of accessing media corresponding to a media impression on a first type of computing device or to determine a second probability of accessing the media on a second type of computing device.

所公开的示例性装置包括印象收集器,该印象收集器用于在第一因特网域从计算设备接收第一请求以及发送对于人口统计信息的请求,该人口统计信息对应于在第一因特网域从第一类型的计算设备接收的多个请求,所述多个请求包括第一请求。在所公开的示例性装置中,第一请求指示在计算设备处对媒体的访问。所公开的示例性装置还包括印象信息收集器,该印象信息收集器用于访问发生在第一类型的计算设备上的媒体印象的计数,媒体印象的第一部分对应于数据库所有者可识别其人口统计信息的人员,且媒体印象的第二部分对应于数据库所有者不可用其人口统计信息的人员。所公开的示例性装置还包括未覆盖检测器,该未覆盖检测器用于基于在第一类型的计算设备上访问媒体印象所对应的媒体的第一概率且基于在第二类型的计算设备上访问媒体的第二概率来确定用于媒体印象的所述部分的人口统计信息,印象信息收集器或未覆盖检测器中的至少一者由逻辑电路来实现。The disclosed exemplary apparatus includes an impression collector configured to receive a first request from a computing device at a first internet domain and to send a request for demographic information corresponding to a plurality of requests received at the first internet domain from computing devices of a first type, the plurality of requests including the first request. In the disclosed exemplary apparatus, the first request indicates access to media at the computing device. The disclosed exemplary apparatus also includes an impression information collector configured to access counts of media impressions occurring on computing devices of the first type, a first portion of the media impressions corresponding to persons whose demographic information is identifiable by a database owner, and a second portion of the media impressions corresponding to persons whose demographic information is not available to the database owner. The disclosed exemplary apparatus also includes an uncovered detector configured to determine demographic information for the portion of the media impressions based on a first probability of accessing the media corresponding to the media impression on the computing device of the first type and a second probability of accessing the media on the computing device of the second type, at least one of the impression information collector or the uncovered detector being implemented by logic circuitry.

一些示例性装置还包括未覆盖计算器,该未覆盖计算器用于将第一概率与第二概率的比率乘以归属于第一人口统计组的媒体印象的数目。在一些示例性装置中,第一概率为第一人口统计组中的人员在第一类型的计算设备上访问媒体的概率,且第二概率为第一人口统计组中的人员在第二类型的计算设备上访问媒体的概率。Some example apparatuses further include an uncovered calculator configured to multiply a ratio of the first probability to the second probability by the number of media impressions attributed to the first demographic group. In some example apparatuses, the first probability is a probability that a person in the first demographic group accesses the media on a first type of computing device, and the second probability is a probability that a person in the first demographic group accesses the media on a second type of computing device.

一些示例性装置还包括错误认定校正器,该错误认定校正器用于调整媒体印象以对于将媒体印象的子集不正确地归属于第二人口统计组中的第二人员进行补偿,从被调整以补偿不正确归属的媒体印象的子集确定归属于第一人口统计组的媒体印象的数目。在一些示例性装置中,第一类型的计算设备包括移动设备,第二类型的计算设备包括电视。在一些示例性装置中,第一类型的计算设备包括以下项中的至少一者:智能手机、平板电脑、或便携式媒体播放器。在一些示例性装置中,未覆盖计算器用于基于对人员调查的调查响应计算第一概率和第二概率,且未覆盖计算器用于通过从调查响应确定与人口统计组、媒体类别、计算设备的类型、或地理区域中的至少一者相关联的权重来计算第一概率,该权重指示在感兴趣的设备类型上访问与媒体印象相关联的媒体的对应概率。Some exemplary apparatuses further include a misattribution corrector for adjusting media impressions to compensate for incorrectly attributing a subset of media impressions to a second person in a second demographic group, determining a number of media impressions attributed to the first demographic group from the subset of media impressions adjusted to compensate for the incorrect attribution. In some exemplary apparatuses, the first type of computing device comprises a mobile device and the second type of computing device comprises a television. In some exemplary apparatuses, the first type of computing device comprises at least one of the following: a smartphone, a tablet computer, or a portable media player. In some exemplary apparatuses, the non-coverage calculator is for calculating the first probability and the second probability based on survey responses to a survey of persons, and the non-coverage calculator is for calculating the first probability by determining, from the survey responses, a weight associated with at least one of a demographic group, a media category, a type of computing device, or a geographic region, the weight indicating a corresponding probability of accessing the media associated with the media impression on the device type of interest.

在一些示例性装置中,调查的是随机小组或由受众测量实体维持的受众成员的小组中的至少一者。在一些示例性装置中,第一概率和第二概率对应于媒体的媒体类别。在一些示例性装置中,媒体类别为喜剧、戏剧、政治、现实或组合媒体类别中的至少一者。在一些示例性装置中,未覆盖校正器用于通过确定归属于人员所对应的不同人口统计组的媒体印象的比例、以及将所述媒体印象的比例缩放至该媒体印象的该部分,来确定用于该媒体印象的该部分的人口统计信息。In some exemplary arrangements, the survey is conducted on at least one of a random panel or a panel of audience members maintained by an audience measurement entity. In some exemplary arrangements, the first probability and the second probability correspond to a media category of the media. In some exemplary arrangements, the media category is at least one of comedy, drama, politics, reality, or a combination of media categories. In some exemplary arrangements, the uncovering corrector is configured to determine demographic information for the portion of the media impression by determining a proportion of the media impression that is attributed to different demographic groups corresponding to the person, and scaling the proportion of the media impression to the portion of the media impression.

附加公开的示例性方法包括:在第一因特网域从第一类型的计算设备接收第一请求以及发送对于人口统计信息的请求,该人口统计信息对应于在第一因特网域从第一类型的计算设备接收的多个请求,所述多个请求包括第一请求。在所公开的示例性方法中,第一请求指示在计算设备处对媒体的访问。所公开的示例性方法还包括:生成聚合受众分布,该聚合受众分布包括与第二家庭的第二受众分布聚合的第一家庭的第一受众分布,基于第一家庭的调查响应,该第一受众分布包括第一家庭的第一家庭成员在向数据库所有者注册的第一家庭成员的人口统计组中的分布,该第一受众分布基于第一家庭成员对第一媒体的访问;将聚合受众分布归一化以生成错误认定校正矩阵,该错误认定校正矩阵包括如下事件的概率:当数据库所有者确定媒体的印象对应于第二人口统计组中的人员时,该印象归属于第一人口统计组;以及通过使用错误认定校正矩阵将印象从第二人口统计组重新分配给第一人口统计组,来补偿印象中的错误认定误差。An additional disclosed exemplary method includes receiving a first request from a computing device of a first type at a first internet domain and sending a request for demographic information corresponding to a plurality of requests received from the computing device of the first type at the first internet domain, the plurality of requests including the first request. In the disclosed exemplary method, the first request indicates access to media at the computing device. The disclosed exemplary method also includes generating an aggregated audience distribution comprising a first audience distribution for a first household aggregated with a second audience distribution for a second household based on survey responses of the first household, the first audience distribution comprising a distribution of first family members of the first household across demographic groups of the first family members registered with a database owner, the first audience distribution based on access to first media by the first family members; normalizing the aggregated audience distribution to generate a false positive correction matrix comprising a probability of attributing an impression of the media to the first demographic group when the database owner determines that the impression corresponds to a person in the second demographic group; and compensating for false positive errors in the impression by reallocating the impression from the second demographic group to the first demographic group using the false positive correction matrix.

一些示例性方法还包括:生成校正指标以针对与调查校准数据源相关联的过采样或欠采样中的至少一者校正聚合受众分布,该调查校准数据源指示第一家庭成员对媒体的访问以及第一家庭成员向数据库所有者的注册状态。在一些示例性方法中,校正指标基于第一人口统计组中的第一人员与第二人口统计组中的第二人员一起生活的第二概率。在一些示例性方法中,生成校正指标包括:基于第一调查校准数据确定第一人员对的第一数量,其表示第一人员对中包括一起生活的第一人口统计组中的第一人员与第二人口统计组中的第二人员的第一人员对;基于第二调查校准数据确定第二人员对的第二数量,其表示第二人员对中包括一起生活的第一人口统计组中的第三人员与第二人口统计组中的第四人员的第二人员对,该第二调查校准数据比第一调查校准数据具有更高的准确度;以及确定第一数量与第二数量的比率。Some exemplary methods also include: generating a correction metric to correct the aggregate audience distribution for at least one of oversampling or undersampling associated with a survey calibration data source that indicates access to media by a first family member and a registration status of the first family member with a database owner. In some exemplary methods, the correction metric is based on a second probability that a first person in a first demographic group lives with a second person in a second demographic group. In some exemplary methods, generating the correction metric includes: determining a first number of first person pairs based on the first survey calibration data, representing first person pairs in the first person pair including a first person in the first demographic group and a second person in the second demographic group living together; determining a second number of second person pairs based on the second survey calibration data, representing second person pairs in the second person pair including a third person in the first demographic group and a fourth person in the second demographic group living together, the second survey calibration data having a higher accuracy than the first survey calibration data; and determining a ratio of the first number to the second number.

在一些示例性方法中,针对每个第一人口统计组,聚合受众分布描述第二人口统计组中的将被归属于该第一人口统计组的人员的数目,并且将聚合受众分布归一化包括缩放第二人口统计组中的人员的数目,使得对于第二人口统计组的人员的总数为指定值。一些示例性方法还包括:确定用于第一家庭的共享模式,该共享模式指示第一家庭成员中访问媒体类别的第一家庭成员以及第一家庭成员中不访问媒体类别的其他第一家庭成员;以及基于用于媒体类别的共享模式确定用于第一家庭中的第一家庭成员的设备共享概率的概率密度函数,该概率密度函数指示第一家庭成员访问媒体类别中的媒体的对应概率,第一受众分布基于设备共享概率。In some exemplary methods, for each first demographic group, the aggregate audience distribution describes the number of persons in the second demographic group who would be attributed to the first demographic group, and normalizing the aggregate audience distribution includes scaling the number of persons in the second demographic group so that the total number of persons for the second demographic group is a specified value. Some exemplary methods also include: determining a sharing pattern for the first household, the sharing pattern indicating first members of the first household who access the media category and other members of the first household who do not access the media category; and determining a probability density function of device sharing probabilities for first members of the first household in the first household based on the sharing pattern for the media category, the probability density function indicating a corresponding probability that the first member of the household accesses media in the media category, the first audience distribution being based on the device sharing probabilities.

一些示例性方法还包括:当第一家庭具有第一家庭成员中的处于同一第二人口统计组中的两个或更多个注册的第一家庭成员时,聚合用于第一家庭成员的设备共享概率。一些示例性方法还包括:通过将部分数目分布到人口统计组中生成第一受众分布,该部分数目总数达第一家庭成员中向数据库所有者注册的那些第一家庭成员的计数。在一些示例性方法中,生成第一受众分布不使用网络跟踪器。在一些示例性方法中,生成第一受众分布和生成聚合受众分布不使用计量软件来收集家庭成员向数据库所有者的注册状态或收集媒体访问数据。在一些示例性方法中,重新分配印象包括确定错误认定校正矩阵和印象矩阵的乘积,印象矩阵指示由数据库所有者确定的对应于各自人口统计组的印象的数目。在一些示例性方法中,重新分配印象导致印象的总数目与印象矩阵中的印象的总数目相同。Some exemplary methods further include aggregating the device sharing probabilities for the first family members when the first household has two or more registered first family members of the first family members who are in the same second demographic group. Some exemplary methods further include generating a first audience distribution by distributing a portion of the numbers into the demographic groups, the portion of the numbers totaling a count of those first family members of the first family members that are registered with the database owner. In some exemplary methods, generating the first audience distribution does not use a cookie. In some exemplary methods, generating the first audience distribution and generating the aggregated audience distribution does not use metering software to collect the registration status of the family members with the database owner or to collect media access data. In some exemplary methods, reallocating impressions includes determining the product of an error correction matrix and an impression matrix, the impression matrix indicating the number of impressions corresponding to the respective demographic groups determined by the database owner. In some exemplary methods, reallocating the impressions results in a total number of impressions being the same as the total number of impressions in the impression matrix.

一些示例性方法还包括:将指令提供给发行者,该指令将由发行者提供给计算设备,以及当被计算设备执行时引起计算设备发送第一请求。一些示例性方法还包括:通过不与个体在线用户关于其在线媒体访问活动进行通信以及通过不向在线用户请求调查响应以生成聚合受众分布,来节省计算机处理资源。一些示例性方法还包括:通过不与个体在线用户关于其在线媒体访问活动进行通信以及通过不向在线用户请求调查响应以生成聚合受众分布,来节省网络通信带宽。Some example methods also include providing instructions to an issuer, which are provided by the issuer to a computing device and, when executed by the computing device, cause the computing device to send a first request. Some example methods also include conserving computer processing resources by not communicating with individual online users about their online media access activities and not requesting survey responses from online users to generate an aggregate audience distribution. Some example methods also include conserving network communication bandwidth by not communicating with individual online users about their online media access activities and not requesting survey responses from online users to generate an aggregate audience distribution.

附加公开的示例性装置包括印象收集器,该印象收集器用于在第一因特网域从第一类型的计算设备接收第一请求以及发送对于人口统计信息的请求,该人口统计信息对应于在第一因特网域从第一类型的计算设备接收的多个请求,所述多个请求包括第一请求。在所公开的示例性装置中,第一请求指示在计算设备处对媒体的访问。所公开的示例性装置还包括聚合分布生成器,该聚合分布生成器用于生成聚合受众分布,该聚合受众分布包括与第二家庭的第二受众分布聚合的第一家庭的第一受众分布,基于第一家庭的调查响应,该第一受众分布包括第一家庭的第一家庭成员在向数据库所有者注册的第一家庭成员的人口统计组中的分布,该第一受众分布基于第一家庭成员对第一媒体的访问。示例性装置还包括矩阵归一化器,该矩阵归一化器用于将聚合受众分布归一化以生成错误认定校正矩阵,该错误认定校正矩阵包括如下事件的概率:当数据库所有者确定媒体的印象对应于第二人口统计组中的人员时,该印象归属于第一人口统计组。所公开的示例性装置还包括错误认定校正器,该错误认定校正器用于通过使用错误认定校正矩阵将印象从第二人口统计组重新分配给第一人口统计组,来补偿印象中的错误认定误差,聚合分布生成器、矩阵归一化器、或错误认定校正器中的至少一者由逻辑电路来实现。An additional disclosed exemplary apparatus includes an impression collector configured to receive a first request from a computing device of a first type at a first internet domain and to send a request for demographic information corresponding to a plurality of requests received from the computing device of the first type at the first internet domain, the plurality of requests including the first request. In the disclosed exemplary apparatus, the first request indicates access to media at the computing device. The disclosed exemplary apparatus also includes an aggregated distribution generator configured to generate an aggregated audience distribution comprising a first audience distribution for a first household aggregated with a second audience distribution for a second household, based on survey responses from the first household, the first audience distribution comprising a distribution of first family members of the first household across demographic groups of the first family members registered with a database owner, the first audience distribution based on access to the first media by the first family members. The exemplary apparatus also includes a matrix normalizer configured to normalize the aggregated audience distribution to generate a false positive correction matrix comprising a probability that an impression of the media is attributed to a person in the first demographic group when the database owner determines that the impression corresponds to a person in the second demographic group. The disclosed exemplary apparatus also includes a misidentification corrector for compensating for misidentification errors in impressions by reallocating impressions from the second demographic group to the first demographic group using a misidentification correction matrix, at least one of the aggregate distribution generator, the matrix normalizer, or the misidentification corrector being implemented by logic circuitry.

一些示例性装置还包括矩阵校正器,该矩阵校正器用于生成校正指标以针对与调查校准数据源相关联的过采样或欠采样中的至少一者校正聚合受众分布,该调查校准数据源指示第一家庭成员对媒体的访问以及第一家庭成员向数据库所有者的注册状态。在一些示例性装置中,校正指标基于第一人口统计组中的第一人员与第二人口统计组中的第二人员一起生活的第二概率。在一些示例性装置中,矩阵校正器用于通过如下方式生成校正指标:基于第一调查校准数据确定第一人员对的第一数量,即,相应地包括一起生活的第一人口统计组中的第一人员与第二人口统计组中的第二人员的所述第一人员对的数量;基于第二调查校准数据确定第二人员对的第二数量,即,相应地包括一起生活的第一人口统计组中的第三人员与第二人口统计组中的第四人员的所述第二人员对的数量,该第二调查校准数据比第一调查校准数据具有更高的准确度;以及确定第一数量与第二数量的比率。Some exemplary devices also include a matrix corrector for generating a correction metric to correct the aggregate audience distribution for at least one of oversampling or undersampling associated with a survey calibration data source indicating access to media by a first family member and a registration status of the first family member with a database owner. In some exemplary devices, the correction metric is based on a second probability that a first person in a first demographic group lives with a second person in a second demographic group. In some exemplary devices, the matrix corrector is configured to generate the correction metric by: determining a first number of first person pairs based on first survey calibration data, i.e., the number of first person pairs that respectively include a first person in the first demographic group and a second person in the second demographic group living together; determining a second number of second person pairs based on second survey calibration data, i.e., the number of second person pairs that respectively include a third person in the first demographic group and a fourth person in the second demographic group living together, the second survey calibration data having a higher accuracy than the first survey calibration data; and determining a ratio of the first number to the second number.

在一些示例性装置中,针对每个第一人口统计组,聚合受众分布描述第二人口统计组中的将被归属于第一人口统计组的人员的数目,并且矩阵归一化器用于通过缩放第二人口统计组中的人员的相应数目使得对于第二人口统计组的人员的数目为指定值而将聚合受众分布归一化。In some exemplary apparatuses, for each first demographic group, an aggregate audience distribution describes the number of persons in a second demographic group that would be attributed to the first demographic group, and a matrix normalizer is used to normalize the aggregate audience distribution by scaling the corresponding number of persons in the second demographic group so that the number of persons for the second demographic group is a specified value.

一些示例性装置还包括家庭分布生成器,该家庭分布生成器用于:确定用于第一家庭的共享模式,该共享模式指示第一家庭成员中访问媒体类别的第一家庭成员以及第一家庭成员中不访问媒体类别的第一家庭成员;以及基于用于媒体类别的共享模式确定用于第一家庭中的第一家庭成员的设备共享概率的概率密度函数,该概率密度函数指示第一家庭成员访问媒体类别中的媒体的对应概率,第一受众分布基于设备共享概率。Some exemplary devices also include a household distribution generator for: determining a sharing pattern for a first household, the sharing pattern indicating first household members among the first household members who access a media category and first household members among the first household members who do not access the media category; and determining a probability density function of device sharing probabilities for first household members in the first household based on the sharing pattern for the media category, the probability density function indicating corresponding probabilities of first household members accessing media in the media category, the first audience distribution being based on the device sharing probabilities.

在一些示例性装置中,聚合分布生成器用于:当第一家庭具有第一家庭成员中的处于同一第二人口统计组中的两个或更多个注册的第一家庭成员时,聚合用于第一家庭成员的设备共享概率。一些示例性装置还包括家庭分布生成器,该家庭分布生成器用于通过将部分数目分布到人口统计组中生成第一受众分布,该部分数目总数达第一家庭成员中向数据库所有者注册的那些第一家庭成员的计数。在一些示例性装置中,错误认定校正器用于通过确定错误认定校正矩阵和印象矩阵的乘积来重新分配印象,印象矩阵指示由数据库所有者确定的对应于各自人口统计组的印象的数目。在一些示例性装置中,错误认定校正器用于重新分配印象使得重新分配的印象的总数目为与印象矩阵中的印象的总数目相同的印象总数目。In some exemplary apparatuses, an aggregate distribution generator is configured to aggregate device sharing probabilities for first family members when the first household has two or more registered first family members of the first family members who are in the same second demographic group. Some exemplary apparatuses also include a household distribution generator configured to generate a first audience distribution by distributing portion numbers into demographic groups, the portion numbers totaling a count of those first family members of the first family members that are registered with a database owner. In some exemplary apparatuses, a false positive corrector is configured to reallocate impressions by determining the product of a false positive correction matrix and an impression matrix, the impression matrix indicating the number of impressions corresponding to the respective demographic groups as determined by the database owner. In some exemplary apparatuses, the false positive corrector is configured to reallocate impressions such that the total number of reallocated impressions is the same total number of impressions as the total number of impressions in the impression matrix.

附加公开的示例性方法包括:在第一因特网域从第一类型的计算设备接收第一请求以及发送对于人口统计信息的请求,该人口统计信息对应于在第一因特网域从第一类型的计算设备接收的多个请求,所述多个请求包括第一请求。在所公开的示例性方法中,第一请求指示在计算设备处对媒体的访问。所公开的示例性方法还包括:生成聚合受众分布,该聚合受众分布包括与第二家庭的第二受众分布聚合的第一家庭的第一受众分布,该第一受众分布包括第一家庭的第一家庭成员在向数据库所有者注册的那些第一家庭成员的人口统计组中的分布,该第一受众分布基于第一家庭成员对第一媒体的访问,该聚合受众分布在不使用网络跟踪器的情况下生成;将聚合受众分布归一化以生成错误认定校正矩阵,该错误认定校正矩阵包括如下事件的概率:当数据库所有者确定媒体的印象对应于第二人口统计组中的人员时,该印象归属于第一人口统计组;以及通过使用错误认定校正矩阵将印象从第二人口统计组重新分配给第一人口统计组,来补偿印象中的错误认定误差,印象指示在移动设备上访问的媒体。An additional disclosed exemplary method includes receiving a first request from a computing device of a first type at a first internet domain and sending a request for demographic information corresponding to a plurality of requests received from the computing device of the first type at the first internet domain, the plurality of requests including the first request. In the disclosed exemplary method, the first request indicates access to media at the computing device. The disclosed exemplary method also includes generating an aggregated audience distribution comprising a first audience distribution for a first household aggregated with a second audience distribution for a second household, the first audience distribution comprising a distribution of first family members of the first household across a demographic group of those first family members registered with a database owner, the first audience distribution based on access to first media by the first family members, the aggregated audience distribution generated without using cookies; normalizing the aggregated audience distribution to generate a false positive correction matrix comprising a probability of attributing an impression of the media to the first demographic group when the database owner determines that the impression corresponds to a person in the second demographic group; and compensating for false positive errors in an impression by reallocating the impression from the second demographic group to the first demographic group using the false positive correction matrix, the impression indicating media accessed on a mobile device.

一些示例性方法还包括:生成校正指标以针对与调查校准数据源相关联的过采样或欠采样中的至少一者校正聚合受众分布,该调查校准数据源指示第一家庭成员对媒体的访问以及第一家庭成员向数据库所有者的注册状态。在一些示例性方法中,校正指标基于第一人口统计组中的第一人员与第二人口统计组中的第二人员一起生活的第二概率。在一些示例性方法中,生成校正指标包括:基于第一调查校准数据确定第一人员对的第一数量,其表示包括一起生活的第一人口统计组中的第一人员与第二人口统计组中的第二人员的所述第一人员对的数量;基于第二调查校准数据确定第二人员对的第二数量,其表示包括一起生活的第一人口统计组中的第三人员与第二人口统计组中的第四人员的所述第二人员对的数量,该第二调查校准数据比第一调查校准数据具有更高的准确度;以及确定第一数量与第二数量的比率。Some exemplary methods also include: generating a correction metric to correct the aggregate audience distribution for at least one of oversampling or undersampling associated with a survey calibration data source that indicates access to media by a first family member and a registration status of the first family member with a database owner. In some exemplary methods, the correction metric is based on a second probability that a first person in a first demographic group lives with a second person in a second demographic group. In some exemplary methods, generating the correction metric includes: determining a first number of first person pairs based on the first survey calibration data, representing the number of first person pairs that include a first person in the first demographic group and a second person in the second demographic group living together; determining a second number of second person pairs based on second survey calibration data, representing the number of second person pairs that include a third person in the first demographic group and a fourth person in the second demographic group living together, the second survey calibration data having a higher accuracy than the first survey calibration data; and determining a ratio of the first number to the second number.

在一些示例性方法中,针对每个第一人口统计组,聚合受众分布描述第二人口统计组中的将被归属于第一人口统计组的人员的数目,并且将聚合受众分布归一化包括缩放第二人口统计组中的人员的数目,使得对于第二人口统计组的人员的数目为指定值。一些示例性方法还包括:确定用于第一家庭的共享模式,该共享模式指示第一家庭成员中访问媒体类别的第一家庭成员以及第一家庭成员中不访问媒体类别的其他第一家庭成员;以及基于用于媒体类别的共享模式确定用于第一家庭中的第一家庭成员的设备共享概率的概率密度函数,该概率密度函数指示第一家庭成员访问媒体类别中的媒体的对应概率,第一受众分布基于设备共享概率。In some exemplary methods, for each first demographic group, the aggregate audience distribution describes the number of persons in the second demographic group that would be classified as belonging to the first demographic group, and normalizing the aggregate audience distribution includes scaling the number of persons in the second demographic group so that the number of persons for the second demographic group is a specified value. Some exemplary methods also include: determining a sharing pattern for the first household, the sharing pattern indicating first members of the first household who access the media category and other members of the first household who do not access the media category; and determining a probability density function of device sharing probabilities for first members of the first household in the first household based on the sharing pattern for the media category, the probability density function indicating a corresponding probability that the first member of the household accesses media in the media category, the first audience distribution being based on the device sharing probabilities.

一些示例性方法还包括:当第一家庭具有第一家庭成员中的处于同一第二人口统计组中的两个或更多个注册的第一家庭成员时,聚合用于第一家庭成员的设备共享概率。一些示例性方法还包括:通过将部分数目分布到人口统计组中生成第一受众分布,该部分数目总数达第一家庭成员中向数据库所有者注册的那些第一家庭成员的计数。在一些示例性方法中,生成第一受众分布不使用网络跟踪器。在一些示例性方法中,生成第一受众分布和生成聚合受众分布不使用计量软件来收集家庭成员向数据库所有者的注册状态或收集媒体访问数据。在一些示例性方法中,重新分配印象包括确定错误认定校正矩阵和印象矩阵的乘积,印象矩阵指示由数据库所有者确定的对应于各自人口统计组的印象的数目。在一些示例性方法中,重新分配印象导致印象的总数目与印象矩阵中的印象的总数目相同。Some exemplary methods further include aggregating the device sharing probabilities for the first family members when the first household has two or more registered first family members of the first family members who are in the same second demographic group. Some exemplary methods further include generating a first audience distribution by distributing a portion of the numbers into the demographic groups, the portion of the numbers totaling a count of those first family members of the first family members that are registered with the database owner. In some exemplary methods, generating the first audience distribution does not use a cookie. In some exemplary methods, generating the first audience distribution and generating the aggregated audience distribution does not use metering software to collect the registration status of the family members with the database owner or to collect media access data. In some exemplary methods, reallocating impressions includes determining the product of an error correction matrix and an impression matrix, the impression matrix indicating the number of impressions corresponding to the respective demographic groups determined by the database owner. In some exemplary methods, reallocating the impressions results in a total number of impressions being the same as the total number of impressions in the impression matrix.

一些示例性方法还包括:将指令提供给发行者,该指令将由发行者提供给计算设备,以及当被计算设备执行时引起计算设备发送第一请求。一些示例性方法还包括:通过不与个体在线用户关于其在线媒体访问活动进行通信以及通过不向在线用户请求调查响应以生成聚合受众分布,来节省计算机处理资源。一些示例性方法还包括:通过不与个体在线用户关于其在线媒体访问活动进行通信以及通过不向在线用户请求调查响应以生成聚合受众分布,来节省网络通信带宽。Some example methods also include providing instructions to an issuer, which are provided by the issuer to a computing device and, when executed by the computing device, cause the computing device to send a first request. Some example methods also include conserving computer processing resources by not communicating with individual online users about their online media access activities and not requesting survey responses from online users to generate an aggregate audience distribution. Some example methods also include conserving network communication bandwidth by not communicating with individual online users about their online media access activities and not requesting survey responses from online users to generate an aggregate audience distribution.

附加公开的示例性装置包括印象收集器,该印象收集器用于在第一因特网域从第一类型的计算设备接收第一请求以及发送对于人口统计信息的请求,该人口统计信息对应于在第一因特网域从第一类型的计算设备接收的多个请求,所述多个请求包括第一请求。在所公开的示例性装置中,第一请求指示在计算设备处对媒体的访问。所公开的示例性装置还包括聚合分布生成器,该聚合分布生成器用于生成聚合受众分布,该聚合受众分布包括与第二家庭的第二受众分布聚合的第一家庭的第一受众分布,该第一受众分布包括第一家庭的第一家庭成员在向数据库所有者注册的那些第一家庭成员的人口统计组中的分布,该聚合分布生成器在不使用网络跟踪器的情况下生成聚合受众分布,以及该第一受众分布基于第一家庭成员对第一媒体的访问。示例性装置还包括矩阵归一化器,该矩阵归一化器用于将聚合受众分布归一化以生成错误认定校正矩阵,该错误认定校正矩阵包括如下事件的概率:当数据库所有者确定媒体的印象对应于第二人口统计组中的人员时,该印象归属于第一人口统计组。示例性装置还包括错误认定校正器,该错误认定校正器用于通过使用错误认定校正矩阵将印象重新分配给第一人口统计组,来补偿印象中的错误认定误差,印象指示在移动设备上访问的媒体。聚合分布生成器、矩阵归一化器、或错误认定校正器中的至少一者由逻辑电路来实现。An additional disclosed exemplary apparatus includes an impression collector for receiving a first request from a first type of computing device at a first Internet domain and sending a request for demographic information, the demographic information corresponding to a plurality of requests received from the first type of computing device at the first Internet domain, the plurality of requests including the first request. In the disclosed exemplary apparatus, the first request indicates access to media at the computing device. The disclosed exemplary apparatus also includes an aggregated distribution generator for generating an aggregated audience distribution, the aggregated audience distribution including a first audience distribution for a first household aggregated with a second audience distribution for a second household, the first audience distribution including a distribution of first family members of the first household across demographic groups of those first family members registered with a database owner, the aggregated distribution generator generating the aggregated audience distribution without using web trackers, and the first audience distribution based on access to the first media by the first family member. The exemplary apparatus also includes a matrix normalizer configured to normalize the aggregated audience distribution to generate a misidentification correction matrix, the misidentification correction matrix including probabilities of attributing an impression of media to a first demographic group when a database owner determines that the impression corresponds to a person in a second demographic group. The exemplary apparatus also includes a misidentification corrector configured to compensate for misidentification errors in an impression by reallocating the impression to the first demographic group using the misidentification correction matrix, the impression indicating media accessed on a mobile device. At least one of the aggregated distribution generator, the matrix normalizer, or the misidentification corrector is implemented by logic circuitry.

一些示例性装置还包括矩阵校正器,该矩阵校正器用于生成校正指标以针对与调查校准数据源相关联的过采样或欠采样中的至少一者校正聚合受众分布,该调查校准数据源指示第一家庭成员对媒体的访问以及第一家庭成员向数据库所有者的注册状态。在一些示例性装置中,校正指标基于第一人口统计组中的第一人员与第二人口统计组中的第二人员一起生活的第二概率。在一些示例性装置中,矩阵校正器用于通过如下方式生成校正指标:基于第一调查校准数据确定第一人员对的第一数量,即,相应地包括一起生活的第一人口统计组中的第一人员与第二人口统计组中的第二人员的所述第一人员对的数量;基于第二调查校准数据确定第二人员对的第二数量,即,相应地包括一起生活的第一人口统计组中的第三人员与第二人口统计组中的第四人员的所述第二人员对的数量,该第二调查校准数据比第一调查校准数据具有更高的准确度;以及确定第一数量与第二数量的比率。Some exemplary devices also include a matrix corrector for generating a correction metric to correct the aggregate audience distribution for at least one of oversampling or undersampling associated with a survey calibration data source indicating access to media by a first family member and a registration status of the first family member with a database owner. In some exemplary devices, the correction metric is based on a second probability that a first person in a first demographic group lives with a second person in a second demographic group. In some exemplary devices, the matrix corrector is configured to generate the correction metric by: determining a first number of first person pairs based on first survey calibration data, i.e., the number of first person pairs that respectively include a first person in the first demographic group and a second person in the second demographic group living together; determining a second number of second person pairs based on second survey calibration data, i.e., the number of second person pairs that respectively include a third person in the first demographic group and a fourth person in the second demographic group living together, the second survey calibration data having a higher accuracy than the first survey calibration data; and determining a ratio of the first number to the second number.

在一些示例性装置中,针对每个第一人口统计组,聚合受众分布描述第二人口统计组中的将被归属于第一人口统计组的人员的数目,并且矩阵归一化器用于通过缩放第二人口统计组中的人员的数目使得对于第二人口统计组的人员的数目为指定值而将聚合受众分布归一化。In some exemplary apparatuses, for each first demographic group, an aggregate audience distribution describes the number of persons in a second demographic group that would be attributed to the first demographic group, and a matrix normalizer is used to normalize the aggregate audience distribution by scaling the number of persons in the second demographic group so that the number of persons for the second demographic group is a specified value.

一些示例性装置还包括家庭分布生成器,该家庭分布生成器用于:确定用于第一家庭的共享模式,该共享模式指示第一家庭成员中访问媒体类别的第一家庭成员以及第一家庭成员中不访问媒体类别的其他第一家庭成员;以及基于用于媒体类别的共享模式确定用于第一家庭中的第一家庭成员的设备共享概率的概率密度函数,该概率密度函数指示第一家庭成员访问媒体类别中的媒体的对应概率,第一受众分布基于设备共享概率。Some exemplary devices also include a household distribution generator for: determining a sharing pattern for a first household, the sharing pattern indicating first household members among the first household members who access a media category and other first household members among the first household members who do not access the media category; and determining a probability density function of device sharing probability for first household members in the first household based on the sharing pattern for the media category, the probability density function indicating corresponding probabilities of first household members accessing media in the media category, the first audience distribution being based on the device sharing probability.

在一些示例性装置中,聚合分布生成器用于:当第一家庭具有第一家庭成员中的处于同一第二人口统计组中的两个或更多个注册的第一家庭成员时,聚合用于第一家庭成员的设备共享概率。一些示例性装置还包括家庭分布生成器,该家庭分布生成器用于通过将部分数目分布到人口统计组中生成第一受众分布,该部分数目总数达第一家庭成员中向数据库所有者注册的那些第一家庭成员的计数。在一些示例性装置中,错误认定校正器用于通过确定错误认定校正矩阵和印象矩阵的乘积来重新分配印象,印象矩阵指示由数据库所有者确定的对应于各自人口统计组的印象的数目。在一些示例性装置中,错误认定校正器用于重新分配印象使得重新分配的印象的总数目为与印象矩阵中的印象的总数目相同的印象总数目。In some exemplary apparatuses, an aggregate distribution generator is configured to aggregate device sharing probabilities for first family members when the first household has two or more registered first family members of the first family members who are in the same second demographic group. Some exemplary apparatuses also include a household distribution generator configured to generate a first audience distribution by distributing portion numbers into demographic groups, the portion numbers totaling a count of those first family members of the first family members that are registered with a database owner. In some exemplary apparatuses, a false positive corrector is configured to reallocate impressions by determining the product of a false positive correction matrix and an impression matrix, the impression matrix indicating the number of impressions corresponding to the respective demographic groups as determined by the database owner. In some exemplary apparatuses, the false positive corrector is configured to reallocate impressions such that the total number of reallocated impressions is the same total number of impressions as the total number of impressions in the impression matrix.

附加公开的示例性方法包括:从第一类型的计算设备收集媒体印象;向数据库所有者请求用于媒体印象的人口统计信息,媒体印象的第一部分对应于数据库所有者存储其人口统计信息的人员,且媒体印象的第二部分对应于数据库所有者不可用其人口统计信息的人员;从数据库所有者接收媒体印象的第一部分所对应的人口统计信息;使用处理器确定媒体印象的第二部分中的媒体印象的数目;以及基于在第一类型的计算设备上访问媒体印象所对应的媒体的第一概率且基于在第二类型的设备上访问媒体的第二概率,使用处理器确定用于媒体印象的第二部分的人口统计信息。An additional disclosed exemplary method includes: collecting media impressions from a first type of computing device; requesting demographic information for the media impressions from a database owner, a first portion of the media impressions corresponding to persons for whom the database owner stores demographic information, and a second portion of the media impressions corresponding to persons for whom the database owner does not have demographic information available; receiving demographic information corresponding to the first portion of the media impressions from the database owner; determining, using a processor, a number of media impressions in the second portion of the media impressions; and determining, using the processor, demographic information for the second portion of the media impressions based on a first probability of accessing media corresponding to the media impressions on the first type of computing device and based on a second probability of accessing the media on a second type of device.

附加公开的示例性方法包括:在第一因特网域从第一类型的计算设备接收第一请求以及在第一因特网域从该计算设备接收第二请求,第一请求指示在计算设备处对媒体的访问,第二请求指示在计算设备处对媒体的持续时间单元的访问。示例性方法还包括:发送对于人口统计信息的请求,该人口统计信息对应于在第一因特网域从第一类型的计算设备接收的多个请求,所述多个请求包括第二请求。所公开示例性方法还包括:获得发生在第一类型的计算设备上的持续时间单元的计数,持续时间单元的第一部分对应于数据库所有者可识别其人口统计信息的人员,且持续时间单元的第二部分对应于数据库所有者不可用其人口统计信息的人员;以及基于在第一类型的计算设备上访问持续时间单元所对应的媒体的第一概率且基于在第二类型的计算设备上访问媒体的第二概率,确定用于持续时间单元的第二部分的人口统计信息。An additional disclosed exemplary method includes: receiving a first request from a first type of computing device at a first Internet domain and receiving a second request from the computing device at the first Internet domain, the first request indicating access to media at the computing device, the second request indicating access to duration units of the media at the computing device. The exemplary method also includes: sending a request for demographic information corresponding to a plurality of requests received from the first type of computing device at the first Internet domain, the plurality of requests including the second request. The disclosed exemplary method also includes: obtaining a count of duration units that occurred on the first type of computing device, a first portion of the duration units corresponding to persons whose demographic information is identifiable by a database owner, and a second portion of the duration units corresponding to persons whose demographic information is not available to the database owner; and determining demographic information for the second portion of the duration units based on a first probability of accessing the media corresponding to the duration units on the first type of computing device and based on a second probability of accessing the media on the second type of computing device.

附加公开的示例性装置包括印象收集器。在所公开的示例性装置中,该印象收集器用于在第一因特网域从第一类型的计算设备接收第一请求,第一请求指示在计算设备处对媒体的访问。在所公开的示例性装置中,该印象收集器还用于在第一因特网域从该计算设备接收第二请求,第二请求指示在计算设备处对媒体的持续时间单元的访问。在所公开的示例性装置中,印象收集器还用于发送对于人口统计信息的请求,该人口统计信息对应于在第一因特网域从第一类型的计算设备接收的多个请求,所述多个请求包括第二请求。所公开的示例性装置还包括印象信息收集器,该印象信息收集器用于访问发生在第一类型的计算设备上的持续时间单元的计数,持续时间单元的第一部分对应于数据库所有者可识别其人口统计信息的人员,且持续时间单元的第二部分对应于数据库所有者不可用其人口统计信息的人员。所公开的示例性装置还包括未覆盖校正器,该未覆盖校正器用于基于在第一类型的计算设备上访问持续时间单元所对应的媒体的第一概率且基于在第二类型的计算设备上访问媒体的第二概率确定用于持续时间单元的第二部分的人口统计信息,印象信息收集器或未覆盖校正器中的至少一者由逻辑电路来实现。An additional disclosed exemplary apparatus includes an impression collector. In the disclosed exemplary apparatus, the impression collector is configured to receive a first request from a computing device of a first type at a first Internet domain, the first request indicating access to media at the computing device. In the disclosed exemplary apparatus, the impression collector is further configured to receive a second request from the computing device at the first Internet domain, the second request indicating access to duration units of media at the computing device. In the disclosed exemplary apparatus, the impression collector is further configured to send a request for demographic information corresponding to a plurality of requests received from the computing device of the first type at the first Internet domain, the plurality of requests including the second request. The disclosed exemplary apparatus also includes an impression information collector configured to access a count of duration units occurring on the computing device of the first type, a first portion of the duration units corresponding to persons for whom demographic information is identifiable by a database owner, and a second portion of the duration units corresponding to persons for whom demographic information is not available to the database owner. The disclosed exemplary apparatus also includes an uncovered corrector for determining demographic information for a second portion of the duration unit based on a first probability of accessing the media corresponding to the duration unit on a first type of computing device and based on a second probability of accessing the media on a second type of computing device, at least one of the impression information collector or the uncovered corrector being implemented by a logic circuit.

尽管参考补偿或调整从移动设备获得的印象信息来描述在本文中所公开的示例,但是这些示例也适用于非移动设备,诸如台式电脑、电视、视频游戏机、机顶盒和/或其它设备。Although the examples disclosed herein are described with reference to compensating or adjusting impression information obtained from mobile devices, these examples are also applicable to non-mobile devices, such as desktop computers, televisions, video game consoles, set-top boxes, and/or other devices.

印象和人口统计信息收集Impression and demographic information collection

图1示出了从分布式数据库所有者104a、104b收集用于与在客户端设备106处呈现的媒体的印象相关联的用户信息(例如用户信息102a、102b)的示例性系统100。在图示示例中,用户信息102a、102b或用户数据包括如下项中的一者或多者:人口统计数据,购买数据,和/或指示关于借助因特网访问的信息的用户活动、行为和/或偏好的其它数据,购买,在电子设备上访问的媒体,用户访问的物理位置(例如零售或商业机构、餐厅、场馆等)等。结合移动设备描述本文中所公开的示例,该移动设备可以为移动电话、移动通信设备、平板电脑、游戏设备、便携式媒体呈现设备等。然而,可以结合非移动设备实现本文中所公开的示例,该非移动设备诸如因特网设施、智能电视、因特网终端、计算机、或能够呈现借助网络通信接收的媒体的任何其它设备。FIG1 illustrates an exemplary system 100 for collecting user information (e.g., user information 102a, 102b) from distributed database owners 104a, 104b for use in association with an impression of media presented at a client device 106. In the illustrated example, user information 102a, 102b, or user data, includes one or more of the following: demographic data, purchase data, and/or other data indicating user activity, behavior, and/or preferences regarding information accessed via the Internet, purchases, media accessed on electronic devices, physical locations visited by users (e.g., retail or commercial establishments, restaurants, venues, etc.). The examples disclosed herein are described in conjunction with mobile devices, which may be mobile phones, mobile communication devices, tablet computers, gaming devices, portable media presentation devices, etc. However, the examples disclosed herein may be implemented in conjunction with non-mobile devices, such as Internet appliances, smart televisions, Internet terminals, computers, or any other device capable of presenting media received via network communications.

在图1的图示示例中,为了跟踪客户端设备106上的媒体印象,受众测量实体(AME)108与应用程序发行者110合作或协作来在客户端设备106上下载和安装数据收集器112。图示示例的应用程序发行者110可以是开发应用程序并将应用程序分布到移动设备的软件应用程序开发商,和/或从软件应用程序开发商接收应用程序并将应用程序分布到移动设备的经销商。数据收集器112可以被包括在加载到客户端设备106上的其它软件中,诸如操作系统114、应用程序(或app)116、网络浏览器117、和/或任何其它软件。图1的示例性客户端设备106为非本地计量的设备。即,客户端设备106不支持和/或未设置有计量软件(例如由AME 108提供的计量软件)。In the illustrated example of FIG1 , to track media impressions on a client device 106 , an audience measurement entity (AME) 108 cooperates or collaborates with an application publisher 110 to download and install a data collector 112 on the client device 106 . The application publisher 110 of the illustrated example can be a software application developer that develops and distributes applications to mobile devices, and/or a distributor that receives applications from a software application developer and distributes them to mobile devices. The data collector 112 can be included in other software loaded onto the client device 106 , such as an operating system 114 , an application (or app) 116 , a web browser 117 , and/or any other software. The exemplary client device 106 of FIG1 is a non-natively metered device. That is, the client device 106 does not support and/or is not provided with metering software (e.g., metering software provided by AME 108 ).

示例性软件114-117中的任一者可以呈现从媒体发行者120接收的媒体118。该媒体118可以为广告、视频、音频、文本、图形、网页、新闻、教育媒体、娱乐媒体、或任何其它类型的媒体。在图示示例中,在媒体118中提供媒体ID 122以实现标识媒体118,从而当媒体118被呈现在客户端设备106或由AME 108监控的任何其它设备上时,AME 108可以相信媒体118具有媒体印象。Any of the exemplary software 114-117 can present media 118 received from a media publisher 120. The media 118 can be an advertisement, video, audio, text, graphics, a web page, news, educational media, entertainment media, or any other type of media. In the illustrated example, a media ID 122 is provided in the media 118 to identify the media 118 so that when the media 118 is presented on the client device 106 or any other device monitored by the AME 108, the AME 108 can trust that the media 118 has a media impression.

图示示例的数据收集器112包括指令(例如Java、Java脚本、或任何其它计算机语言或脚本),该指令在被客户端设备106执行时使客户端设备106收集由应用程序116和/或客户端设备106呈现的媒体118的媒体ID 122,以及收集存储在客户端设备106中的一个或多个设备/用户标识符124。图示示例的一个或多个设备/用户标识符124包括可被合作数据库所有者104a-b中对应的数据库所有者用来识别客户端设备106的一个或多个用户以及用来定位该一个或多个用户所对应的用户信息102a-b的标识符。例如,一个或多个设备/用户标识符124可以包括软件标识符(例如,国际移动设备标识(IMEI)、移动设备标识符(MEID)、媒体访问控制(MAC)地址等)、应用程序存储标识符(例如,谷歌安卓ID、苹果ID、亚马逊ID等)、开源的唯一设备标识符(OpenUDID)、开敞设备识别号(ODIN)、登录标识符(例如用户名)、电子邮箱地址、用户代理数据(例如应用程序类型、操作系统、软件供应商、软件版本等)、第三方服务标识符(例如广告服务标识符、设备使用分析服务标识符、人口统计资料收集服务标识符)、网络存储数据、文档对象模型(DOM)存储数据、本地共享的对象(也称为“Flash Cookies”)等。在一些示例中,可以使用更少或更多的设备/用户标识符124。此外,尽管在图1中仅示出两个合作数据库所有者104a-b,但是AME 108可以与任何数目的合作数据库所有者合作来收集分布的用户信息(例如用户信息102a-b)。The data collector 112 of the illustrated example includes instructions (e.g., Java, Java script, or any other computer language or script) that, when executed by the client device 106, causes the client device 106 to collect media IDs 122 of media 118 presented by the application 116 and/or the client device 106, and to collect one or more device/user identifiers 124 stored on the client device 106. The one or more device/user identifiers 124 of the illustrated example include identifiers that can be used by corresponding ones of the collaborating database owners 104a-b to identify one or more users of the client device 106 and to locate user information 102a-b corresponding to the one or more users. For example, the one or more device/user identifiers 124 may include software identifiers (e.g., International Mobile Equipment Identity (IMEI), Mobile Equipment Identifier (MEID), Media Access Control (MAC) address, etc.), application storage identifiers (e.g., Google Android ID, Apple ID, Amazon ID, etc.), Open Unique Device Identifier (OpenUDID), Open Device Identification Number (ODIN), login identifiers (e.g., username), email address, user agent data (e.g., application type, operating system, software vendor, software version, etc.), third-party service identifiers (e.g., advertising service identifier, device usage analysis service identifier, demographic profile collection service identifier), network storage data, Document Object Model (DOM) storage data, locally shared objects (also known as "Flash Cookies"), etc. In some examples, fewer or more device/user identifiers 124 may be used. Furthermore, although only two cooperating database owners 104a-b are shown in FIG1 , AME 108 may collaborate with any number of cooperating database owners to collect distributed user information (e.g., user information 102a-b).

在一些示例中,客户端设备106可以不允许访问存储在客户端设备106中的识别信息。对于这类实例,所公开的示例使AME 108能够将AME提供的标识符(例如由AME 108管理和跟踪的标识符)存储在客户端设备106中以跟踪客户端设备106上的媒体印象。例如,AME108可以提供数据收集器112中的指令以将AME提供的标识符设置在可被应用程序116访问和/或分配给应用程序116的存储空间中,并且数据收集器112使用标识符作为设备/用户标识符124。在这类示例中,由数据收集器112设置的AME提供的标识符存留在存储空间中,甚至在应用程序116和数据收集器112不运行时。采用该方式,相同的AME提供的标识符可以在延长的持续时间内保持与客户端设备106相关联。在数据收集器112设置客户端设备106中的标识符的一些示例中,AME 108可以征募客户端设备106的用户作为小组成员,以及可以存储在小组成员注册过程期间从用户收集的和/或通过借助客户端设备106和/或由用户使用且由AME 108监控的任何其它设备监控用户活动/行为而收集的用户信息。采用该方式,AME 108可以使用户的用户信息(来自被AME 108存储的小组成员数据)与归属于客户端设备106上的用户的媒体印象相关联。In some examples, the client device 106 may not allow access to identifying information stored on the client device 106. For such instances, the disclosed examples enable the AME 108 to store an AME-provided identifier (e.g., an identifier managed and tracked by the AME 108) on the client device 106 to track media impressions on the client device 106. For example, the AME 108 may provide instructions in the data collector 112 to set the AME-provided identifier in a storage space accessible to and/or allocated to the application 116, and the data collector 112 uses the identifier as the device/user identifier 124. In such examples, the AME-provided identifier set by the data collector 112 persists in the storage space even when the application 116 and the data collector 112 are not running. In this manner, the same AME-provided identifier can remain associated with the client device 106 for an extended period of time. In some examples where the data collector 112 sets an identifier in the client device 106, the AME 108 may recruit the user of the client device 106 as a panelist and may store user information collected from the user during the panelist registration process and/or collected by monitoring user activity/behavior via the client device 106 and/or any other device used by the user and monitored by the AME 108. In this manner, the AME 108 may associate the user information of the user (from the panelist data stored by the AME 108) with media impressions attributed to the user on the client device 106.

在图示示例中,数据收集器112将媒体ID 122和一个或多个设备/用户标识符124作为收集的数据126发送到应用程序发行者110。可替选地,数据收集器112可以配置成将收集的数据126发送到另一收集实体(除应用程序发行者110外),该另一收集实体已经被AME108签约或与AME 108合作以从移动设备(例如客户端设备106)收集媒体ID(例如媒体ID122)和设备/用户标识符(例如一个或多个设备/用户标识符124)。在图示示例中,应用程序发行者110(或收集实体)将媒体ID 122和一个或多个设备/用户标识符124作为印象数据130发送到AME 108处的印象收集器132。图示示例的印象数据130可以包括一个媒体ID 122和一个或多个设备/用户标识符124以上报媒体118的单个印象,或该印象数据130可以基于从客户端设备106和/或其它移动设备接收的收集的数据(例如收集的数据126)的多个实例而包括多个媒体ID 122和一个或多个设备/用户标识符124以上报媒体的多个印象。In the illustrated example, the data collector 112 sends the media ID 122 and one or more device/user identifiers 124 to the application publisher 110 as collected data 126. Alternatively, the data collector 112 can be configured to send the collected data 126 to another collection entity (other than the application publisher 110) that has been contracted by or is partnering with AME 108 to collect media IDs (e.g., media ID 122) and device/user identifiers (e.g., one or more device/user identifiers 124) from mobile devices (e.g., client devices 106). In the illustrated example, the application publisher 110 (or collecting entity) sends the media ID 122 and one or more device/user identifiers 124 as impression data 130 to an impression collector 132 at AME 108. The impression data 130 of the illustrated example may include one media ID 122 and one or more device/user identifiers 124 for a single impression of the reported media 118, or the impression data 130 may include multiple media IDs 122 and one or more device/user identifiers 124 for multiple impressions of the reported media based on multiple instances of collected data (e.g., collected data 126) received from the client device 106 and/or other mobile devices.

在图示示例中,印象收集器132将印象数据130存储在AME媒体印象存储器134(例如数据库或其它数据结构)中。随后,AME 108将一个或多个设备/用户标识符124发送到对应的合作数据库所有者(例如合作数据库所有者104a-b)以从合作数据库所有者104a-b接收一个或多个设备/用户标识符124所对应的用户信息(例如用户信息102a-b),从而AME108可以将用户信息与在移动设备(例如客户端设备106)处呈现的媒体(媒体118)的对应媒体印象相关联。In the illustrated example, the impression collector 132 stores the impression data 130 in an AME media impression storage 134 (e.g., a database or other data structure). Subsequently, the AME 108 sends the one or more device/user identifiers 124 to corresponding collaborative database owners (e.g., collaborative database owners 104a-b) to receive user information (e.g., user information 102a-b) corresponding to the one or more device/user identifiers 124 from the collaborative database owners 104a-b, so that the AME 108 can associate the user information with the corresponding media impression of the media (media 118) presented at the mobile device (e.g., client device 106).

在一些示例中,为了保护客户端设备106的用户的隐私,在将媒体标识符122和/或一个或多个设备/用户标识符124发送到AME 108和/或合作数据库所有者104a-b之前,加密媒体标识符122和/或一个或多个设备/用户标识符124。在其它示例中,不加密媒体标识符122和/或一个或多个设备/用户标识符124。In some examples, to protect the privacy of the user of the client device 106, the media identifier 122 and/or the one or more device/user identifiers 124 are encrypted before being sent to the AME 108 and/or the collaborating database owners 104a-b. In other examples, the media identifier 122 and/or the one or more device/user identifiers 124 are not encrypted.

在AME 108接收一个或多个设备/用户标识符124之后,AME 108将设备/用户标识符日志136a-b发送到对应的合作数据库所有者(例如合作数据库所有者104a-b)。在一些示例中,设备/用户标识符日志136a-b中的每一者可以包括单个设备/用户标识符,或设备/用户标识符日志136a-b中的每一者可以包括随时间从一个或多个移动设备接收的多个聚合设备/用户标识符。在接收设备/用户标识符日志136a-b之后,合作数据库所有者104a-b中的每一者在各自的日志136a-b中查找其对应于设备/用户标识符124的用户。采用该方式,合作数据库所有者104a-b中的每一者收集在设备/用户标识符日志136a-b中识别的用户所对应的用户信息102a-b,用以发送到AME 108。例如,如果合作数据库所有者104a为无线服务供应商且设备/用户标识符日志136a包括可由无线服务供应商识别的IMEI码,则无线服务供应商访问其订阅者记录以找到具有匹配在设备/用户标识符日志136a中接收的IMEI码的IMEI码的用户。当用户被识别时,无线服务供应商将用户的用户信息拷贝到用户信息102a用以传送到AME 108。After the AME 108 receives one or more device/user identifiers 124, the AME 108 sends a device/user identifier log 136a-b to a corresponding collaborative database owner (e.g., collaborative database owners 104a-b). In some examples, each of the device/user identifier logs 136a-b may include a single device/user identifier, or each of the device/user identifier logs 136a-b may include multiple aggregated device/user identifiers received over time from one or more mobile devices. After receiving the device/user identifier logs 136a-b, each of the collaborative database owners 104a-b looks up the user corresponding to the device/user identifier 124 in its respective log 136a-b. In this manner, each of the collaborative database owners 104a-b collects user information 102a-b corresponding to the user identified in the device/user identifier log 136a-b for transmission to the AME 108. For example, if the partner database owner 104a is a wireless service provider and the device/user identifier log 136a includes an IMEI code that can be recognized by the wireless service provider, the wireless service provider accesses its subscriber records to find a user with an IMEI code that matches the IMEI code received in the device/user identifier log 136a. When the user is identified, the wireless service provider copies the user's user information to the user information 102a for transmission to the AME 108.

在一些其它示例中,数据收集器112配置成从客户端设备106收集一个或多个设备/用户标识符124。示例性数据收集器112在收集的数据126中将一个或多个设备/用户标识符124发送到应用程序发行者110,以及示例性数据收集器112还将一个或多个设备/用户标识符124发送到媒体发行者120。在这类其它示例中,数据收集器112不从客户端设备106处的媒体118收集媒体ID 122,因为数据收集器112不在图1的示例性系统100中。代替地,将媒体118发行给客户端设备106的媒体发行者120从其发行的媒体118检索媒体ID 122。媒体发行者120然后将媒体ID 122关联到从在客户端设备106中执行的数据收集器112接收的一个或多个设备/用户标识符124,并将收集的数据138发送到应用程序发行者110,该收集的数据138包括媒体ID 122和客户端设备106的相关联的一个或多个设备/用户标识符124。例如,当媒体发行者120将媒体118发送到客户端设备106时,通过使用从客户端设备106接收的一个或多个设备/用户标识符124中的一者或多者将客户端设备106识别为用于媒体118的目标设备来实现。采用该方式,媒体发行者120可以将媒体118的媒体ID 122与客户端设备106的一个或多个设备/用户标识符124相关联,指示媒体118被发送到特定的客户端设备106用以呈现(例如,生成媒体118的印象)。In some other examples, data collector 112 is configured to collect one or more device/user identifiers 124 from client device 106. Example data collector 112 sends one or more device/user identifiers 124 to application publisher 110 in collected data 126, and example data collector 112 also sends one or more device/user identifiers 124 to media publisher 120. In such other examples, data collector 112 does not collect media ID 122 from media 118 at client device 106 because data collector 112 is not within example system 100 of FIG. 1 . Instead, media publisher 120 that publishes media 118 to client device 106 retrieves media ID 122 from the media 118 it publishes. The media publisher 120 then associates the media ID 122 with the one or more device/user identifiers 124 received from the data collector 112 executing in the client device 106, and sends the collected data 138 to the application publisher 110, the collected data 138 including the media ID 122 and the associated one or more device/user identifiers 124 of the client device 106. For example, when the media publisher 120 sends the media 118 to the client device 106, this is accomplished by using one or more of the one or more device/user identifiers 124 received from the client device 106 to identify the client device 106 as the target device for the media 118. In this manner, the media publisher 120 can associate the media ID 122 of the media 118 with the one or more device/user identifiers 124 of the client device 106, indicating that the media 118 is being sent to a specific client device 106 for presentation (e.g., to generate an impression of the media 118).

在数据收集器112配置成将一个或多个设备/用户标识符124发送到媒体发行者120的一些其它示例中,数据收集器112不从客户端设备106处的媒体118收集媒体ID 122。代替地,将媒体118发行给客户端设备106的媒体发行者120也从其发行的媒体118检索媒体ID 122。媒体发行者120然后将媒体ID 122与客户端设备106的一个或多个设备/用户标识符124相关联。媒体发行者120然后将媒体印象数据130(包括媒体ID 122和一个或多个设备/用户标识符124)发送到AME 108。例如,当媒体发行者120将媒体118发送到客户端设备106时,通过使用一个或多个设备/用户标识符124中的一者或多者将客户端设备106识别为用于媒体118的目标设备来实现。采用该方式,媒体发行者120可以将媒体118的媒体ID 122与客户端设备106的一个或多个设备/用户标识符124相关联,指示媒体118被发送到特定的客户端设备106用以呈现(例如,生成媒体118的印象)。在图示示例中,在AME 108从媒体发行者120接收印象数据130之后,AME 108然后可以将设备/用户标识符日志136a-b发送到合作数据库所有者104a-b以请求上文结合图1描述的用户信息102a-b。In some other examples where the data collector 112 is configured to send the one or more device/user identifiers 124 to the media publisher 120, the data collector 112 does not collect the media ID 122 from the media 118 at the client device 106. Instead, the media publisher 120 that issues the media 118 to the client device 106 also retrieves the media ID 122 from the media 118 it issues. The media publisher 120 then associates the media ID 122 with the one or more device/user identifiers 124 of the client device 106. The media publisher 120 then sends the media impression data 130 (including the media ID 122 and the one or more device/user identifiers 124) to the AME 108. For example, when the media publisher 120 sends the media 118 to the client device 106, it does so by identifying the client device 106 as the target device for the media 118 using one or more of the one or more device/user identifiers 124. In this manner, the media publisher 120 can associate the media ID 122 of the media 118 with one or more device/user identifiers 124 of the client device 106, indicating that the media 118 was sent to a particular client device 106 for presentation (e.g., to generate an impression of the media 118). In the illustrated example, after the AME 108 receives the impression data 130 from the media publisher 120, the AME 108 can then send the device/user identifier logs 136a-b to the collaborating database owners 104a-b to request the user information 102a-b described above in conjunction with FIG. 1 .

尽管在图1中示出媒体发行者120与应用程序发行者110分离,但是应用程序发行者110可以实现媒体发行者120的至少一些操作以将媒体118发送到客户端设备106用以呈现。例如,广告供应商、媒体供应商或其它信息供应商可以将媒体(媒体118)发送到应用程序发行者110,该应用程序发行者110用于借助例如应用程序116(当其在客户端设备106上执行时)向客户端设备106发行。在这类示例中,应用程序发行者110实施如由媒体发行者120执行的上述操作。1 , application publisher 110 may implement at least some of the operations of media publisher 120 to send media 118 to client device 106 for presentation. For example, an advertisement provider, media provider, or other information provider may send media (media 118) to application publisher 110, which then distributes the media to client device 106 via, for example, application 116 when executed on client device 106. In such examples, application publisher 110 implements the operations described above as performed by media publisher 120.

附加地或可替选地,相比于客户端设备106将标识符发送到受众测量实体108(例如借助应用程序发行者110、媒体发行者120、和/或其它实体)的上述示例,在其它示例中,客户端设备106(例如安装在客户端设备106上的数据收集器112)将标识符(例如一个或多个设备/用户标识符124)直接发送到对应的数据库所有者104a、104b(例如不借助AME108)。在这类示例中,示例性客户端设备106将媒体标识符122发送到受众测量实体108(例如直接地或通过媒介物,诸如借助应用程序发行者110),但不将媒体标识符122发送到数据库所有者104a-b。Additionally or alternatively, compared to the above examples in which the client device 106 sends identifiers to the audience measurement entity 108 (e.g., via the application publisher 110, the media publisher 120, and/or other entities), in other examples, the client device 106 (e.g., the data collector 112 installed on the client device 106) sends identifiers (e.g., one or more device/user identifiers 124) directly to the corresponding database owners 104a, 104b (e.g., without the AME 108). In such examples, the exemplary client device 106 sends the media identifier 122 to the audience measurement entity 108 (e.g., directly or through an intermediary, such as via the application publisher 110), but does not send the media identifier 122 to the database owners 104a-b.

如上所述,示例性合作数据库所有者104a-b将用户信息102a-b提供给示例性AME108,用于与媒体标识符122匹配以形成媒体印象信息。也如上所述,数据库所有者104a-b未被提供媒体标识符122的副本。代替地,客户端为数据库所有者104a-b提供印象标识符140。印象标识符相对于客户端设备106的其它印象事件而唯一地识别印象事件,从而可以将印象在客户端设备106处的出现与印象的其它出现区分。然而,印象标识符140本身不识别与印象事件相关联的媒体。在这类示例中,从客户端设备106到AME 108的印象数据130还包括印象标识符140和对应的媒体标识符122。为了使用户信息102a-b与媒体标识符122匹配,示例性合作数据库所有者104a-b将用户信息102a-b提供给与印象标识符140相关联的AME108,该印象标识符140用于触发收集用户信息102a-b的印象事件。采用该方式,AME 108可以将从客户端设备106接收的印象标识符140匹配到从合作数据库所有者104a-b接收的对应印象标识符140以将从客户端设备106接收的媒体标识符122与从数据库所有者104a-b接收的用户信息102a-b中的人口统计信息相关联。印象标识符140可以额外地用于降低或避免人口统计信息的复制。例如,示例性合作数据库所有者104a-b可以在每个印象的基础上(例如每当客户端设备106将包括加密标识符208a-b和印象标识符140的请求发送到合作数据库所有者104a-b时)和/或在聚合基础上(例如将一组用户信息102a-b发送到客户端设备106处呈现的AME 108,该一组用户信息102a-b可以包括在移动设备102a-b处的多个印象的指示(例如多个印象标识符140))将用户信息102a-b和印象标识符140提供给AME 108。As described above, the exemplary collaborative database owners 104a-b provide user information 102a-b to the exemplary AME 108 for matching with the media identifier 122 to form media impression information. As also described above, the database owners 104a-b are not provided with a copy of the media identifier 122. Instead, the client provides the database owners 104a-b with an impression identifier 140. The impression identifier uniquely identifies the impression event relative to other impression events of the client device 106, so that the occurrence of the impression at the client device 106 can be distinguished from other occurrences of the impression. However, the impression identifier 140 itself does not identify the media associated with the impression event. In such examples, the impression data 130 from the client device 106 to the AME 108 also includes the impression identifier 140 and the corresponding media identifier 122. To match the user information 102a-b with the media identifier 122, the exemplary collaborative database owners 104a-b provide the user information 102a-b to the AME 108 associated with the impression identifier 140 that was used to trigger the impression event that collected the user information 102a-b. In this manner, the AME 108 can match the impression identifier 140 received from the client device 106 to the corresponding impression identifier 140 received from the collaborative database owners 104a-b to associate the media identifier 122 received from the client device 106 with the demographic information in the user information 102a-b received from the database owners 104a-b. The impression identifier 140 can additionally be used to reduce or avoid duplication of demographic information. For example, the exemplary collaborative database owner 104a-b may provide the user information 102a-b and the impression identifier 140 to the AME 108 on a per-impression basis (e.g., whenever a client device 106 sends a request including the encrypted identifier 208a-b and the impression identifier 140 to the collaborative database owner 104a-b) and/or on an aggregate basis (e.g., sending a set of user information 102a-b to the AME 108 presented at the client device 106, where the set of user information 102a-b may include indications of multiple impressions (e.g., multiple impression identifiers 140) at the mobile device 102a-b).

提供给AME 108的印象标识符140使AME 108能够区分独特印象且避免过量计数观看媒体的独特用户和/或设备的数目。例如,用于客户端设备106的来自合作A数据库所有者104a的用户信息102a与来自合作B数据库所有者104b的用户信息102b之间的关系对于AME108不容易是明显的。通过包括印象标识符140(或任何类似标识符),示例性AME 108可以基于存储在用户信息102a-b二者中的匹配印象标识符140而关联用户信息102a-b之间的同一用户所对应的用户信息。示例性AME 108可以使用用户信息102a-b上的这类匹配印象标识符140来避免过量计数移动设备和/或用户(例如通过仅计数独特用户而非多次计数同一用户)。The impression identifier 140 provided to the AME 108 enables the AME 108 to distinguish unique impressions and avoid overcounting the number of unique users and/or devices viewing the media. For example, the relationship between the user information 102a from the Collaborative A database owner 104a and the user information 102b from the Collaborative B database owner 104b for the client device 106 may not be readily apparent to the AME 108. By including the impression identifier 140 (or any similar identifier), the example AME 108 can associate user information corresponding to the same user between the user information 102a-b based on matching impression identifiers 140 stored in both user information 102a-b. The example AME 108 can use such matching impression identifiers 140 on the user information 102a-b to avoid overcounting mobile devices and/or users (e.g., by only counting unique users rather than counting the same user multiple times).

例如如果印象使客户端设备106向多个不同的数据库所有者104a-b发送多个设备/用户标识符而不具有印象标识符(例如印象标识符140),则可能对同一用户多次计数。例如,数据库所有者中的第一者104a将第一用户信息102a发送到AME 108,AME 108发信号通知印象出现。此外,数据库所有者中的第二者104b将第二用户信息102b发送到AME 108,AME 108发信号通知(单独地)印象出现。此外,单独地,客户端设备106将印象的指示发送到AME 108。在不知道用户信息102a-b来自同一印象的情况下,AME 108具有来自客户端设备106的单个印象的指示和来自数据库所有者104a-b的多个印象的指示。For example, if an impression causes a client device 106 to send multiple device/user identifiers to multiple different database owners 104a-b without an impression identifier (e.g., impression identifier 140), the same user may be counted multiple times. For example, a first of the database owners 104a sends first user information 102a to AME 108, which signals that the impression occurred. Additionally, a second of the database owners 104b sends second user information 102b to AME 108, which signals (separately) that the impression occurred. Additionally, separately, client device 106 sends an indication of the impression to AME 108. Without knowing that user information 102a-b is from the same impression, AME 108 has an indication of a single impression from client device 106 and indications of multiple impressions from database owners 104a-b.

为了避免过量计数印象,AME 108可以使用印象标识符140。例如,在查找用户信息102a-b之后,示例性合作数据库所有者104a-b将印象标识符140传输到具有对应用户信息102a-b的AME 108。AME 108将从客户端设备106直接获得的印象标识符140匹配到从具有用户信息102a-b的数据库所有者104a-b接收的印象标识符140,从而将用户信息102a-b与媒体标识符122相关联以及生成印象信息。这是可行的,因为AME 108直接从客户端设备106接收了与印象标识符140相关联的媒体标识符122。因此,AME 108可以将来自两个或更多个数据库所有者104a-b的用户数据映射到同一媒体接触事件,从而避免双重计数。To avoid overcounting impressions, the AME 108 can use the impression identifier 140. For example, after looking up the user information 102a-b, the exemplary collaborating database owners 104a-b transmit the impression identifier 140 to the AME 108 having the corresponding user information 102a-b. The AME 108 matches the impression identifier 140 obtained directly from the client device 106 to the impression identifier 140 received from the database owner 104a-b having the user information 102a-b, thereby associating the user information 102a-b with the media identifier 122 and generating the impression information. This is possible because the AME 108 receives the media identifier 122 associated with the impression identifier 140 directly from the client device 106. Thus, the AME 108 can map user data from two or more database owners 104a-b to the same media contact event, thereby avoiding double counting.

在图示示例中的每个唯一的印象标识符140与客户端设备106上的媒体的特定印象相关联。合作数据库所有者104a-b接收各自的设备/用户标识符124并独立地(例如在不管合作数据库所有者104a-b中的其它者的情况下)且在不知道印象中涉及的媒体标识符122的情况下生成用户信息102a-b。在不指示用户信息102a(接收自合作数据库所有者104a)中的特定用户人口统计资料与在客户端设备106处的与用户信息102b(独立于接收自合作数据库所有者104a的用户信息102a而接收自合作数据库所有者104b)中的特定用户人口统计资料相同的印象相关联(例如是其结果)的情况下,且不参考印象标识符140的情况下,AME 108可能无法将用户信息102a与用户信息102b相关联和/或无法确定不同条的用户信息102a-b与同一印象相关联,且因此会将用户信息102a与用户信息102b计数成对应于两个不同的用户/设备和/或两个不同的印象。Each unique impression identifier 140 in the illustrated example is associated with a particular impression of media on the client device 106. The collaborative database owners 104a-b receive the respective device/user identifiers 124 and generate the user information 102a-b independently (e.g., without regard to the other of the collaborative database owners 104a-b) and without knowledge of the media identifiers 122 involved in the impressions. Without indicating that particular user demographics in user information 102a (received from collaborative database owner 104a) are associated with (e.g., are a result of) the same impression at client device 106 as particular user demographics in user information 102b (received from collaborative database owner 104b independently of user information 102a being received from collaborative database owner 104a), and without reference to impression identifier 140, AME 108 may be unable to associate user information 102a with user information 102b and/or determine that different pieces of user information 102a-b are associated with the same impression, and therefore, would count user information 102a and user information 102b as corresponding to two different users/devices and/or two different impressions.

上述示例说明了用于在受众测量实体(或其它实体)处收集数据的方法和装置。上文讨论的示例可以用于收集用于任何类型的媒体的印象信息,包括静态媒体(例如广告图像)、流媒体(例如流视频和/或音频,包括内容、广告、和/或其它类型的媒体)、和/或其它类型的媒体。对于静态媒体(例如不具有时间成分的媒体,诸如图像、文本、网页等),示例性AME 108针对正在呈现到、传送到、或以其它方式提供到客户端设备106的媒体的每次出现记录一次印象。对于流媒体(例如视频、音频等),示例性AME 108针对在一段时间内出现的媒体测量人口统计资料。例如,当媒体位于客户端应用程序/软件114-117时,AME 108(例如借助应用程序发行者110和/或媒体发行者120)将信标指令提供到在客户端设备106上执行的客户端应用程序或客户端软件(例如OS 114、网络浏览器117、应用程序116等)。在一些示例中,信标指令使客户端应用程序/软件114-117按定期间隔和/或不定期间隔(例如每分、每30秒、每2分钟等)向印象收集器132发送请求(例如广播消息)。通过监控和/或计数按间隔发生的请求,示例性AME 108监控基于持续时间的媒体(例如视频、音频等)的个体印象的持续时间。示例性AME 108可以确定基于持续时间的媒体的印象(例如初始加载)的数量、基于持续时间的媒体的唯一受众、和/或在多个印象中观看的基于持续时间的媒体的总持续时间(单位例如秒或分钟)。如在本文中使用的,术语“印象信息”可以包括印象和/或持续时间单位。示例性印象收集器132识别来自网络浏览器117的请求,并结合一个或多个数据库所有者将用于媒体的印象信息与网络浏览器117的用户的人口统计资料相匹配。The above examples illustrate methods and apparatus for collecting data at an audience measurement entity (or other entity). The examples discussed above can be used to collect impression information for any type of media, including static media (e.g., advertising images), streaming media (e.g., streaming video and/or audio, including content, advertisements, and/or other types of media), and/or other types of media. For static media (e.g., media without a temporal component, such as images, text, web pages, etc.), the exemplary AME 108 records an impression for each occurrence of the media being presented to, transmitted to, or otherwise provided to the client device 106. For streaming media (e.g., video, audio, etc.), the exemplary AME 108 measures demographic information for media that appears over a period of time. For example, when the media is located in a client application/software 114-117, the AME 108 (e.g., with the aid of an application publisher 110 and/or a media publisher 120) provides beacon instructions to the client application or client software (e.g., OS 114, web browser 117, application 116, etc.) executing on the client device 106. In some examples, the beacon instructions cause the client applications/software 114-117 to send requests (e.g., broadcast messages) to the impression collector 132 at regular intervals and/or irregular intervals (e.g., every minute, every 30 seconds, every 2 minutes, etc.). By monitoring and/or counting the requests that occur at intervals, the exemplary AME 108 monitors the duration of individual impressions of duration-based media (e.g., video, audio, etc.). The exemplary AME 108 can determine the number of impressions (e.g., initial loads) of duration-based media, the unique audience for duration-based media, and/or the total duration (in units such as seconds or minutes) of duration-based media viewed across multiple impressions. As used herein, the term "impression information" may include impressions and/or duration units. The exemplary impression collector 132 identifies requests from the web browser 117 and, in conjunction with one or more database owners, matches the impression information for the media to the demographics of the user of the web browser 117.

在一些示例中,用户从网站发行者加载(例如借助浏览器117)网页,其中网页对应于特定的60分钟视频。作为示例性网页的一部分或在示例性网页之外,网站发行者使数据收集器112例如通过向浏览器117提供信标指令而将广播消息(例如信标请求)发送到信标服务器142。例如,当信标指令被示例性浏览器117执行时,信标指令使数据收集器112按指定间隔(例如每分钟或任何其它合适间隔)将广播消息(例如信标请求、HTTP请求、声脉冲)发送到印象收集器132。示例性信标指令(或例如来自印象收集器132或数据库所有者104a-b的重定向消息)还使数据收集器112将广播消息或信标请求发送到一个或多个数据库所有者104a-b,该一个或多个数据库所有者104a-b收集和/或保留关于用户的人口统计信息。数据库所有者104a-b传输关于与数据收集器112相关联的用户的人口统计信息,用于与由印象收集器132确定的印象组合或关联。如果用户在视频结束之前关闭包含视频的网页,则信标指令被停止,并且数据收集器112停止向印象收集器132发送广播消息。在一些示例中,广播消息包括时间戳和/或指示视频中多个广播消息所对应的位置的其它信息。通过确定在印象收集器132处从客户端设备106接收的广播消息的数量和/或内容,示例性印象收集器132可以确定用户观看了视频的特定长度(例如视频的一部分,在印象收集器132处接收了针对该部分的广播消息)。In some examples, a user loads (e.g., via browser 117) a web page from a website publisher, where the web page corresponds to a particular 60-minute video. As part of the exemplary web page or in addition to the exemplary web page, the website publisher causes data collector 112 to send a broadcast message (e.g., a beacon request) to beacon server 142, for example, by providing beacon instructions to browser 117. For example, when the beacon instructions are executed by exemplary browser 117, the beacon instructions cause data collector 112 to send a broadcast message (e.g., a beacon request, an HTTP request, a sound pulse) to impression collector 132 at a specified interval (e.g., every minute or any other suitable interval). The exemplary beacon instructions (or, for example, a redirect message from impression collector 132 or database owners 104a-b) also cause data collector 112 to send the broadcast message or beacon request to one or more database owners 104a-b, which collect and/or maintain demographic information about the user. The database owners 104a-b transmit demographic information about the users associated with the data collector 112 for combination or association with impressions determined by the impression collector 132. If the user closes the webpage containing the video before the video ends, the beaconing instruction is stopped and the data collector 112 stops sending broadcast messages to the impression collector 132. In some examples, the broadcast messages include timestamps and/or other information indicating the locations in the video to which the multiple broadcast messages correspond. By determining the number and/or content of broadcast messages received at the impression collector 132 from the client device 106, the example impression collector 132 can determine that the user watched a particular length of the video (e.g., the portion of the video for which the broadcast message was received at the impression collector 132).

图示示例的客户端设备106执行导向主网站(例如www.acme.com)的客户端应用程序/软件114-117,从该主网站获得媒体118(例如音频、视频、交互式媒体、流媒体等),用以借助客户端设备106来呈现。在图示示例中,媒体118(例如广告和/或内容)标有标识符信息(例如媒体ID 122、创建类型ID、布局ID、发行者源URL等)和信标指令。示例性信标指令使客户端应用程序/软件114-117向信标服务器142请求其它信标指令,该信标服务器142将指示客户端应用程序/软件114-117如何以及在哪里发送信标请求以上报媒体118的印象。例如,示例性客户端应用程序/软件114-117将包括媒体118的标识(例如媒体标识符122)的请求发送到信标服务器142。然后信标服务器142生成信标指令144并将其返回到示例性客户端设备106。尽管信标服务器142和印象收集器132被分离示出,但是在一些示例中,信标服务器142和印象收集器132被组合。在图示示例中,信标指令144包括一个或多个数据库所有者(例如合作数据库所有者104a-b中的一者或多者)或任何其它服务器(客户端设备106应当向其发送信标请求(例如印象请求))的URL。在一些示例中,广播消息或信标请求可以被实施成HTTP请求。然而,尽管发送的HTTP请求识别网页或其它待下载的资源,但是广播消息或信标请求包括作为其有效载荷的受众测量信息(例如广告活动标识、内容标识符、和/或设备/用户标识信息)。广播消息或信标请求导向的服务器被编程以记录广播消息或信标请求的受众测量数据作为印象(例如取决于标有信标指令的媒体的性质的广告和/或内容印象)。在一些示例中,与标记的媒体118一起接收的信标指令包括信标指令144。在这类示例中,客户端应用程序/软件114-117不需要向信标服务器142请求信标指令144,这是因为在标记的媒体118中已经提供了信标指令144。The client device 106 of the illustrated example executes client applications/software 114-117 directed to a host website (e.g., www.acme.com), from which media 118 (e.g., audio, video, interactive media, streaming media, etc.) is obtained for presentation via the client device 106. In the illustrated example, the media 118 (e.g., advertisements and/or content) is tagged with identifier information (e.g., media ID 122, creation type ID, layout ID, publisher source URL, etc.) and beacon instructions. The exemplary beacon instructions cause the client applications/software 114-117 to request additional beacon instructions from a beacon server 142, which instructs the client applications/software 114-117 on how and where to send beacon requests to report impressions of the media 118. For example, the exemplary client applications/software 114-117 send a request including an identification of the media 118 (e.g., media identifier 122) to the beacon server 142. The beacon server 142 then generates beacon instructions 144 and returns them to the exemplary client device 106. Although beacon server 142 and impression collector 132 are shown separately, in some examples, beacon server 142 and impression collector 132 are combined. In the illustrated example, beacon instructions 144 include the URL of one or more database owners (e.g., one or more of collaborating database owners 104a-b) or any other server to which client device 106 should send a beacon request (e.g., an impression request). In some examples, the broadcast message or beacon request can be implemented as an HTTP request. However, while the HTTP request sent identifies a web page or other resource to be downloaded, the broadcast message or beacon request includes audience measurement information (e.g., an ad campaign identifier, a content identifier, and/or device/user identification information) as its payload. The server to which the broadcast message or beacon request is directed is programmed to record the audience measurement data of the broadcast message or beacon request as an impression (e.g., an ad and/or content impression depending on the nature of the media tagged with the beacon instruction). In some examples, the beacon instructions received with the tagged media 118 include beacon instructions 144. In such examples, the client applications/software 114 - 117 do not need to request the beaconing instructions 144 from the beaconing server 142 because the beaconing instructions 144 are already provided in the tagged media 118 .

当信标指令144被客户端设备106执行时,信标指令144使客户端设备106将信标请求(例如按指定间隔重复地)发送到在信标指令144中指定的远程服务器(例如印象收集器132、媒体发行者120、数据库所有者104a-b、或其它服务器)。在图示示例中,指定的服务器为受众测量实体108的服务器,即处于印象收集器132。信标指令144可以使用Java脚本或可借助客户端应用程序(例如网络浏览器)执行的任何其它类型的指令或脚本(例如包括Java、HTML等)来实现。When beaconing instructions 144 are executed by client device 106, beaconing instructions 144 cause client device 106 to send beaconing requests (e.g., repeatedly at specified intervals) to a remote server (e.g., impression collector 132, media publisher 120, database owners 104a-b, or other server) specified in beaconing instructions 144. In the illustrated example, the specified server is a server of audience measurement entity 108, i.e., at impression collector 132. Beaconing instructions 144 may be implemented using Java script or any other type of instructions or script (e.g., including Java, HTML, etc.) that can be executed by a client application (e.g., a web browser).

在2013年8月28日递交的序列号为14/127,414的美国专利申请、2014年4月24日递交的序列号为14/261,085的美国专利申请、2014年3月13日递交的序列号为61/952,726的美国临时专利申请、2014年4月14日递交的序列号为61/979,391的美国临时专利申请、2014年4月30日递交的序列号为61/986,784的美国临时专利申请、2014年5月9日递交的序列号为61/991,286的美国临时专利申请、和2014年6月19日递交的序列号为62/014,659的美国临时专利申请中公开了可用于实现图1的系统的示例。序列号为14/127,414的美国专利申请、序列号为14/261,085的美国专利申请、序列号为61/952,726的美国临时专利申请、序列号为61/979,391的美国临时专利申请、序列号为61/986,784的美国临时专利申请、序列号为61/991,286的美国临时专利申请、和序列号为62/014,659的美国临时专利申请的全部内容通过引用并入在本文中。Examples of systems that may be used to implement FIG. 1 are disclosed in U.S. patent application serial number 14/127,414, filed on August 28, 2013; U.S. patent application serial number 14/261,085, filed on April 24, 2014; U.S. provisional patent application serial number 61/952,726, filed on March 13, 2014; U.S. provisional patent application serial number 61/979,391, filed on April 14, 2014; U.S. provisional patent application serial number 61/986,784, filed on April 30, 2014; U.S. provisional patent application serial number 61/991,286, filed on May 9, 2014; and U.S. provisional patent application serial number 62/014,659, filed on June 19, 2014. The entire contents of U.S. patent application serial number 14/127,414, U.S. patent application serial number 14/261,085, U.S. provisional patent application serial number 61/952,726, U.S. provisional patent application serial number 61/979,391, U.S. provisional patent application serial number 61/986,784, U.S. provisional patent application serial number 61/991,286, and U.S. provisional patent application serial number 62/014,659 are incorporated herein by reference.

图2至图11的示例可以用于补偿从客户端设备收集的印象信息中的错误认定和/或未覆盖误差,用户通过该客户端设备访问媒体。这类印象信息可以使用任何合适的技术来收集,包括上文讨论的示例性技术。例如,从数据库所有者104a-b收集的印象信息可以为聚合印象信息,其描述用于感兴趣的媒体项目(例如广告、流媒体、网站等)的多个印象、基于持续时间的媒体在其期间呈现的多个持续时间单位(例如分钟、秒等)、和/或印象所对应的受众成员的计数。从数据库所有者104a-b获得的聚合印象信息可能经受错误认定误差(例如由如下造成的误差:当印象应当与第二人口统计组中的第二人员相关联时,数据库所有者错误地将该印象与第一人口统计组中的第一人员相关联)和/或未覆盖误差(例如由如下造成的误差:数据库所有者无法将印象与人员相关联)。由于无法通过数据库所有者104a-b而与人口统计信息相关联的印象和/或持续时间单位可以不被包括在聚合人口统计信息中,因此在一些公开的示例中,聚合人口统计信息中的未覆盖误差可以使用例如以下方式来检测:在AME 108处对印象进行计数并将计数的印象与数据库所有者104a-b针对其识别人口统计信息的大量印象相比较。在一些其它示例中,数据库所有者104a-b返回印象和/或持续时间单位的数目,数据库所有者104a-b无法针对这些印象和/或持续时间单位确定人口统计信息。数据库所有者104a-b无法针对其确定人口统计信息的印象和/或持续时间单位的数目可以被用作未覆盖印象的数目。The examples of Figures 2-11 can be used to compensate for misidentification and/or non-coverage errors in impression information collected from a client device through which a user accesses media. Such impression information can be collected using any suitable technique, including the exemplary techniques discussed above. For example, the impression information collected from database owners 104a-b can be aggregate impression information that describes a number of impressions for a media item of interest (e.g., an advertisement, streaming media, website, etc.), a number of duration units (e.g., minutes, seconds, etc.) during which the duration-based media was presented, and/or a count of audience members corresponding to the impressions. The aggregate impression information obtained from database owners 104a-b may be subject to misidentification errors (e.g., errors caused by a database owner mistakenly associating an impression with a first person in a first demographic group when it should be associated with a second person in a second demographic group) and/or non-coverage errors (e.g., errors caused by a database owner being unable to associate an impression with a person). Because impressions and/or duration units that cannot be associated with demographic information by database owners 104a-b may not be included in the aggregated demographic information, in some disclosed examples, non-coverage errors in the aggregated demographic information can be detected using, for example, counting impressions at AME 108 and comparing the counted impressions to a number of impressions for which database owners 104a-b identified demographic information. In some other examples, database owners 104a-b return a number of impressions and/or duration units for which database owners 104a-b were unable to determine demographic information. The number of impressions and/or duration units for which database owners 104a-b were unable to determine demographic information can be used as the number of non-coverage impressions.

本文中所公开的示例使用调查校准数据来估计各自的误差并生成补偿的印象信息,该补偿的印象信息被调整以校正错误认定误差和/或未覆盖误差。本文中所公开的示例可以用于从客户端设备(例如移动设备和/或非移动设备)收集的印象和/或持续时间单位、可以应用于仅从移动设备收集的印象和/或持续时间单位、可以应用于从移动设备收集的印象和/或持续时间单位(与应用于从非移动设备收集的印象和/或持续时间单位分离)、和/或可以应用于从第一类型的移动设备收集的印象和/或持续时间单位(与应用于从第二类型的移动设备收集的印象分离)。在一些示例中,补偿的印象信息针对移动设备和非移动设备而被分离地呈现或上报、和/或被上报成移动设备和非移动设备二者所对应的聚合数据。Examples disclosed herein use survey calibration data to estimate respective errors and generate compensated impression information that is adjusted to correct for misidentification errors and/or non-coverage errors. Examples disclosed herein can be used for impressions and/or duration units collected from client devices (e.g., mobile devices and/or non-mobile devices), can be applied to impressions and/or duration units collected only from mobile devices, can be applied to impressions and/or duration units collected from mobile devices (separate from impressions and/or duration units collected from non-mobile devices), and/or can be applied to impressions and/or duration units collected from a first type of mobile device (separate from impressions collected from a second type of mobile device). In some examples, compensated impression information is presented or reported separately for mobile devices and non-mobile devices, and/or reported as aggregated data corresponding to both mobile devices and non-mobile devices.

本文中所公开的示例可以实时地或基本上实时地(例如在接收数据的秒或分钟内)应用于输入数据,以及可以用于在任何期望时间段内(例如每小时、每日、每周、每月等)和/或累积地(例如应用于在多个时间段上收集的印象和/或持续时间单位)补偿印象信息(例如印象、持续时间单位)。因此,本文中所公开的示例可以向广告商和/或媒体发布者提供准确的人口统计信息,以实现比已知方法更快速地调整媒体活动策略以符合测量的人口统计资料。The examples disclosed herein can be applied to input data in real time or substantially real time (e.g., within seconds or minutes of receiving the data), and can be used to compensate impression information (e.g., impressions, duration units) over any desired time period (e.g., hourly, daily, weekly, monthly, etc.) and/or cumulatively (e.g., applied to impressions and/or duration units collected over multiple time periods). Thus, the examples disclosed herein can provide advertisers and/or media publishers with accurate demographic information to enable faster adjustments to media campaign strategies to align with measured demographics than known methods.

图2为示例性印象数据补偿器200的框图,该示例性印象数据补偿器200可以用于实现图1的示例性印象收集器132以针对错误认定和/或未覆盖误差补偿印象信息。图2的示例性印象数据补偿器200补偿或调整从客户端设备(例如图1的客户端设备106)和/或从数据库所有者104a-b获得的印象信息以减小(例如避免)误差,诸如上文提及的那些误差。FIG2 is a block diagram of an exemplary impression data compensator 200 that can be used to implement the exemplary impression collector 132 of FIG1 to compensate impression information for misidentification and/or non-coverage errors. The exemplary impression data compensator 200 of FIG2 compensates or adjusts impression information obtained from a client device (e.g., the client device 106 of FIG1) and/or from database owners 104a-b to reduce (e.g., avoid) errors such as those mentioned above.

图2的示例性印象数据补偿器200包括校准数据收集器202、共享矩阵生成器204、错误认定校正器206、印象信息收集器208、未覆盖计算器210、未覆盖校正器212、和印象信息调整器214。The exemplary impression data compensator 200 of FIG. 2 includes a calibration data collector 202 , a shared matrix generator 204 , a false positive corrector 206 , an impression information collector 208 , a non-coverage calculator 210 , a non-coverage corrector 212 , and an impression information adjuster 214 .

图2的示例性校准数据收集器202收集或获得描述受众的移动设备使用特性的调查校准数据。例如,调查校准数据可以包括和/或基于对随机选择的家庭的调查的响应。在一些示例中,校准调查获得包括下列项的信息:家庭中的人员数、家庭的人口统计特性(例如年龄和性别、种族、种族划分、语言特点、家庭收入、地理位置等)、家庭中存在的移动设备(例如智能手机、平板电脑、便携式媒体播放器等)的数目和/或类型、和/或家庭中的人员向指定数据库所有者(例如图1的合作数据库所有者104a-b)的注册。在一些示例中,针对家庭中的每个人员,校准调查获得各个移动设备的使用特性和/或家庭中存在的移动设备的类型;通常由人员观看的媒体类别;通常由人员在各移动设备上观看的媒体类别和/或家庭中的移动设备的类型;由人员在各移动设备上使用的应用程序和/或家庭中的移动设备的类型;和/或在各移动设备上与指定数据库所有者的交互特性和/或家庭中的移动设备的类型。示例性校准数据收集器202从至少阈值数目的家庭获得调查校准数据,且如果合适,则对反映一般人群或受众的结果进行加权。The example calibration data collector 202 of FIG. 2 collects or obtains survey calibration data that describes characteristics of mobile device usage by an audience. For example, the survey calibration data may include and/or be based on responses to a survey of randomly selected households. In some examples, the calibration survey obtains information including the number of people in the household, demographic characteristics of the household (e.g., age and gender, race, ethnicity, language characteristics, household income, geographic location, etc.), the number and/or type of mobile devices (e.g., smartphones, tablets, portable media players, etc.) present in the household, and/or the registrations of the people in the household with a designated database owner (e.g., partner database owners 104a-b of FIG. 1 ). In some examples, for each person in the household, the calibration survey obtains usage characteristics of each mobile device and/or the type of mobile devices present in the household; the media categories typically viewed by the person; the media categories typically viewed by the person on each mobile device and/or the type of mobile devices in the household; the applications used by the person on each mobile device and/or the type of mobile devices in the household; and/or interaction characteristics on each mobile device with the designated database owner and/or the type of mobile devices in the household. The example calibration data collector 202 obtains survey calibration data from at least a threshold number of households and, if appropriate, weights the results to reflect a general population or audience.

在一些其它示例中,调查校准数据源包括建立的一个或多个应答者小组的调查,诸如用于收视率的尼尔森全国人民计(NPM)小组。建立的小组的调查经常提供较高质量的调查校准数据。在一些示例中,来自多个调查的数据用于计算不同的补偿因子和/或组合用于计算补偿因子。In some other examples, the survey calibration data source includes a survey of one or more established respondent panels, such as the Nielsen National People's Monitor (NPM) Panel used for ratings. Established panel surveys often provide higher quality survey calibration data. In some examples, data from multiple surveys are used to calculate different compensation factors and/or are combined to calculate the compensation factor.

错误认定校正Error identification correction

图2的示例性共享矩阵生成器204基于调查校准数据计算设备共享矩阵。在图2的示例中,共享矩阵生成器204为在调查校准数据中表示的设备类型和媒体类别的每个组合创建单独的错误认定校正矩阵。The example sharing matrix generator 204 of Figure 2 calculates a device sharing matrix based on the survey calibration data. In the example of Figure 2, the sharing matrix generator 204 creates a separate false positive correction matrix for each combination of device type and media category represented in the survey calibration data.

为了生成用于感兴趣的设备类型和媒体类别的错误认定校正矩阵,示例性共享矩阵生成器204包括家庭分布生成器216、聚合分布生成器218、矩阵校正器220、和矩阵归一化器222。To generate the misidentification correction matrix for the device types and media categories of interest, the example shared matrix generator 204 includes a household distribution generator 216 , an aggregate distribution generator 218 , a matrix corrector 220 , and a matrix normalizer 222 .

图2的示例性家庭分布生成器216基于调查校准数据生成家庭的受众分布。例如,家庭分布生成器216确定在调查校准数据中表示的人员使用感兴趣的设备类型来观看感兴趣的媒体类型的媒体的对应可能性。为了说明,考虑如下示例。从其收集调查校准数据的示例性家庭包括四种成员:1)45-54岁的男性,2)35-44岁的女性,3)18-24岁的女性,和4)12-17岁的男性。18-24岁的女性和12-17岁的男性已经向图1的示例性数据库所有者104a(例如Facebook)注册(例如可被图1的示例性数据库所有者104a识别为注册用户),并使用平板电脑(例如图1的客户端设备106)访问数据库所有者104a(尽管不同时)。45-54岁的男性和35-44岁的女性在平板电脑上不可被数据库所有者104a识别。下表1示出了按媒体类别的用于平板电脑的示例性共享模式。在表1中,标有“X”的单元指示,在单元的人口统计组标注处标出的人员观看具有在内容类型标注中标出的类别的媒体。相反地,在表1中的空白单元指示,在单元的人口统计组标注处标出的人员不观看具有在内容类型标注中标出的类别的媒体。媒体类别可以基于例如在调查校准数据中使用的媒体类别和/或在电视和/或其它媒体评价中使用的媒体类别来限定。The exemplary household distribution generator 216 of FIG. 2 generates an audience distribution for a household based on the survey calibration data. For example, the household distribution generator 216 determines the corresponding likelihood that the person represented in the survey calibration data uses the device type of interest to view media of the media type of interest. To illustrate, consider the following example. The exemplary household from which the survey calibration data was collected includes four members: 1) a male aged 45-54, 2) a female aged 35-44, 3) a female aged 18-24, and 4) a male aged 12-17. The female aged 18-24 and the male aged 12-17 have registered with the exemplary database owner 104a of FIG. 1 (e.g., Facebook) (e.g., can be identified as registered users by the exemplary database owner 104a of FIG. 1) and access the database owner 104a using a tablet (e.g., the client device 106 of FIG. 1) (although not simultaneously). The male aged 45-54 and the female aged 35-44 are not identifiable by the database owner 104a on the tablet. Table 1 below shows exemplary sharing patterns for tablets by media category. In Table 1, cells marked with an "X" indicate that the person identified at the demographic group label of the cell watches media having the category identified in the content type label. Conversely, a blank cell in Table 1 indicates that the person identified at the demographic group label of the cell does not watch media having the category identified in the content type label. Media categories can be defined based on, for example, media categories used in survey calibration data and/or media categories used in television and/or other media evaluations.

在示例性第一家庭中基于调查校准数据按媒体类别的用于平板电脑的示例性共享模式Example sharing patterns for tablets by media category based on survey calibration data in an example first household

表1Table 1

如表1所示,45-54岁的男性使用平板电脑观看被分类为政治媒体的媒体(例如网站、流媒体等),35-44岁的女性在平板电脑上观看被分类为戏剧、喜剧、和/或现实的媒体(例如网站、流媒体等),以及18-24岁的女性使用平板电脑观看被分类为戏剧和喜剧的媒体(例如网站、流媒体等)。当12-17岁的男性使用平板电脑登录数据库所有者104a时,他不在平板电脑上观看被受众测量实体108监控的媒体。基于表1的共享模式,示例性家庭分布生成器216针对表1的各个媒体类别计算设备共享概率,如下表2所示。在表2中将设备共享概率示出成在人口统计组标注中识别的人员在设备上观看内容类型(例如媒体类别)的概率密度函数(PDF)。As shown in Table 1, males aged 45-54 use tablets to view media categorized as political media (e.g., websites, streaming media, etc.), females aged 35-44 use tablets to view media categorized as drama, comedy, and/or reality (e.g., websites, streaming media, etc.), and females aged 18-24 use tablets to view media categorized as drama and comedy (e.g., websites, streaming media, etc.). When males aged 12-17 use tablets to log in to database owner 104a, they do not view media monitored by audience measurement entity 108 on their tablets. Based on the sharing patterns in Table 1, the exemplary household distribution generator 216 calculates device sharing probabilities for each media category in Table 1, as shown in Table 2 below. Table 2 shows the device sharing probabilities as probability density functions (PDFs) of the content types (e.g., media categories) viewed on devices by people identified in the demographic group annotations.

针对第一示例性家庭的按媒体类别的示例性设备共享概率Example device sharing probabilities by media category for a first example household

表2Table 2

在该示例中,如果12-17岁的男性在平板电脑上登录数据库所有者(借助浏览器和/或应用程序)且不退出数据库所有者,以及35-44岁的女性随后使用同一平板电脑(而12-17岁的男性仍登录数据库所有者104a)且不用其自身证书登录数据库所有者104a,当35-44岁的女性在平板电脑上观看媒体时,数据库所有者104a将正确归属于35-44岁的女性的印象和/或持续时间单位错误认定给12-17岁的男性。因此,在这类示例中,使用数据库所有者信息将印象和/或持续时间单位与人口统计信息相关联,导致印象和/或持续时间单位不归属于(或欠归属于)45-54岁的男性和35-44岁的女性,以及印象和/或持续时间单位过归属于18-24岁的女性和/或12-17岁的男性。In this example, if a male aged 12-17 logs into the database owner on a tablet (via a browser and/or an application) and does not log out of the database owner, and a female aged 35-44 subsequently uses the same tablet (while the male aged 12-17 is still logged into database owner 104a) and does not log in to database owner 104a with her own credentials, when the female aged 35-44 views media on the tablet, database owner 104a will misattribute impressions and/or duration units that were correctly attributed to the female aged 35-44 to the male aged 12-17. Thus, in such examples, using database owner information to associate impressions and/or duration units with demographic information results in impressions and/or duration units being not attributed (or underattributed) to the male aged 45-54 and the female aged 35-44, and impressions and/or duration units being overattributed to the female aged 18-24 and/or the male aged 12-17.

为了针对平板电脑和‘喜剧’类别确定用于家庭的错误认定校正矩阵,示例性家庭分布生成器216将上表2中的‘喜剧’概率转换为在下表3中所示的示例性重分布受众矩阵。在表3中,列(识别的人口统计组i)表示被数据库所有者104a识别为与印象相关联的人口统计组,行(实际观看者人口统计组j)表示实际观看(例如实际观看者)印象所对应的媒体的人口统计组。因此,表3包括如下事件的PDF:当数据库所有者将人员识别为在识别的人口统计组i中的人员时,实际的或真实的观看者为实际观看者人口统计组j中的人员。各单元中的值为如下事件的概率γij:当数据库所有者104a将对于媒体的印象与列中的识别的人口统计组i相关联时,该行的实际观看者人口统计组j正在观看该媒体。To determine the misidentification correction matrix for households for the tablet and 'comedy' categories, the example household distribution generator 216 converts the 'comedy' probabilities in Table 2 above into the example redistributed audience matrix shown in Table 3 below. In Table 3, the columns (Identified Demographic Group i) represent the demographic groups identified by the database owner 104a as being associated with an impression, and the rows (Actual Viewer Demographic Group j) represent the demographic groups that actually viewed (e.g., actual viewers) the media corresponding to the impression. Thus, Table 3 includes a PDF for the event that, when the database owner identifies a person as being in Identified Demographic Group i, the actual or real viewer is a person in Actual Viewer Demographic Group j. The value in each cell is the probability γ ij that , when the database owner 104a associates an impression of media with Identified Demographic Group i in the column, Actual Viewer Demographic Group j in that row is viewing the media.

j\ij\i M45-54M45-54 F35-44F35-44 M12-17M12-17 F18-24F18-24 M45-54M45-54 00 00 00 00 F35-44F35-44 00 00 0.50.5 0.50.5 M12-17M12-17 00 00 00 00 F18-24F18-24 00 00 0.50.5 0.50.5 总数total 00 00 11 11

用于针对第一示例性家庭的“喜剧”媒体类别的示例性重分布受众矩阵Example Redistribution Audience Matrix for the "Comedy" Media Category for a First Example Household

表3Table 3

作为从表3的用于家庭的重分布受众矩阵确定印象的示例,对于被数据库所有者104a识别为正被识别的人口统计组i中的12-17岁男性观看的‘喜剧’媒体类别中的10个印象,5个印象应当被归于实际观看者人口统计组j中的35-44岁女性(例如10个印象乘以表3中的概率0.5),5个印象应当被归于实际观看者人口统计组j中的18-24岁女性(例如10个印象乘以表3中的概率0.5),以及没有印象应当被归于实际观看者人口统计组j中的12-17岁男性或45-54岁男性(例如10个印象乘以表3中的概率0)。As an example of determining impressions from the redistributed audience matrix for a household of Table 3, for 10 impressions in the ‘comedy’ media category identified by the database owner 104a as viewed by 12-17 year old males in the identified demographic group i, 5 impressions should be attributed to 35-44 year old females in the actual viewer demographic group j (e.g., 10 impressions multiplied by the probability of 0.5 in Table 3), 5 impressions should be attributed to 18-24 year old females in the actual viewer demographic group j (e.g., 10 impressions multiplied by the probability of 0.5 in Table 3), and no impressions should be attributed to 12-17 year old males or 45-54 year old males in the actual viewer demographic group j (e.g., 10 impressions multiplied by the probability of 0 in Table 3).

示例性家庭分布生成器216可以使用表2和/或表3中的PDF,其中,PDF具有对于不同人口统计组标注的不同概率(表2)和/或对于不同实际观看者人口统计组的不同概率(表3)。例如,当家庭成员之一比家庭的另一成员更经常地观看显著感兴趣的媒体类别时,可以从调查校准数据来确定PDF中的不同概率。例如,如果表2的35-44岁女性上报‘经常’中观看‘喜剧’类别中的媒体,而表2的18-24岁女性上报‘很少’观看‘喜剧’类别中的媒体,则在表2中用于‘喜剧’类别的PDF可以为(0,0.75,0,0.25)以反映不同的观看频率。附加地或可替选地,示例性家庭分布生成器216可以基于同一人口统计组中的多个人员的存在使用具有表2的示例性共享矩阵中的不同概率的PDF。例如,具有两个12-17岁女性和一个35-44岁女性的家庭可以具有PDF,其中F12-17人口统计组的概率为F35-44人口统计组的概率的两倍。The exemplary household distribution generator 216 may use the PDFs in Table 2 and/or Table 3, wherein the PDFs have different probabilities labeled for different demographic groups (Table 2) and/or different probabilities for different actual viewer demographic groups (Table 3). For example, when one member of a household views a media category of significant interest more frequently than another member of the household, the different probabilities in the PDFs may be determined from the survey calibration data. For example, if females aged 35-44 from Table 2 report viewing media in the category of 'comedy' as 'frequently', while females aged 18-24 from Table 2 report viewing media in the category of 'comedy' as 'rarely', the PDF for the 'comedy' category in Table 2 may be (0, 0.75, 0, 0.25) to reflect the different viewing frequencies. Additionally or alternatively, the exemplary household distribution generator 216 may use PDFs with different probabilities in the exemplary sharing matrix of Table 2 based on the presence of multiple persons in the same demographic group. For example, a family with two females aged 12-17 and one female aged 35-44 may have a PDF where the probability of the F12-17 demographic group is twice the probability of the F35-44 demographic group.

图2的示例性聚合分布生成器218基于示例性调查校准数据中的所有家庭而针对设备类型和媒体类别的每个组合生成聚合重分布受众矩阵。The example aggregate distribution generator 218 of FIG. 2 generates an aggregate redistributed audience matrix for each combination of device type and media category based on all households in the example survey calibration data.

在一些示例中,家庭分布生成器216从个体家庭的调查响应生成单独的设备共享矩阵,以及聚合分布生成器218将个体重分布受众矩阵聚合为聚合重分布受众矩阵。例如,家庭分布生成器216可以将识别的人口统计组i中可被数据库所有者104a识别的人员重分布在家庭内。因此,家庭分布生成器216还基于调查校准数据将与那些人员相关联的印象重分布到实际观看者人口统计组j。In some examples, household distribution generator 216 generates individual device share matrices from the survey responses of individual households, and aggregate distribution generator 218 aggregates the individual redistributed audience matrices into an aggregated redistributed audience matrix. For example, household distribution generator 216 may redistribute individuals within identified demographic group i that are identifiable by database owner 104a within households. Thus, household distribution generator 216 also redistributes impressions associated with those individuals to actual viewer demographic group j based on the survey calibration data.

在重分布受众矩阵的另一示例中,下表4示出用于家庭的按媒体类别的示例性设备共享概率,该家庭具有同一识别的人口统计组i的两个女性(例如被数据库所有者104a识别为印象所对应的媒体的观看者),这两个女性被示出成18-24岁女性(F18-24)。在图示示例中,F18-24人口统计组中的两个女性为属于F18-24人口统计组的数据库所有者104a的可识别注册用户。In another example of a redistributed audience matrix, Table 4 below shows exemplary device sharing probabilities by media category for a household having two females of the same identified demographic group i (e.g., identified by database owner 104a as viewers of the media to which the impression corresponds), shown as females aged 18-24 (F18-24). In the illustrated example, the two females in the F18-24 demographic group are identifiable registered users of database owner 104a belonging to the F18-24 demographic group.

内容类型Content Type M45-54M45-54 F35-44F35-44 F18-24F18-24 F18-24F18-24 所有all 0.330.33 0.330.33 00 0.330.33 政治politics 11 00 00 00 戏剧drama 00 0.50.5 00 0.50.5 喜剧comedy 00 0.50.5 00 0.50.5 现实Reality 00 11 00 00

用于第二示例性家庭的按媒体类别的示例性设备共享概率Example Device Sharing Probabilities by Media Category for a Second Example Household

表4Table 4

上表4的单元包括概率密度函数(PDF),该PDF指示针对指定媒体类别(例如所有、政治、戏剧、喜剧、现实)在属于指定识别的人口统计组i的人员(例如M45-54人口统计组中的一个人员、F35-44人口统计组中的一个人员、以及F18-24人口统计组中的两个人员)之间共享媒体设备的概率。例如,对于M45-54识别的人口统计组i中的人员、F35-44识别的人口统计组i中的人员、和F18-24识别的人口统计组i中的人员之一中的每一者,观看“所有”媒体类别中的媒体的PDF为0.33。在图示示例中,对于F18-24识别的人口统计组i中的另一人员,该PDF为0。表4中的数据基于调查校准数据源(例如随机选择的人员和/或家庭的调查),该调查校准数据源提供关于由家庭中的人员观看的媒体的信息。The cells of Table 4 above include a probability density function (PDF) indicating the probability of sharing a media device between persons belonging to a specified identified demographic group i (e.g., one person in the M45-54 demographic group, one person in the F35-44 demographic group, and two persons in the F18-24 demographic group) for a specified media category (e.g., all, politics, drama, comedy, reality). For example, for each of a person in demographic group i identified by M45-54, a person in demographic group i identified by F35-44, and one of persons in demographic group i identified by F18-24, the PDF for viewing media in the "all" media category is 0.33. In the illustrated example, for another person in demographic group i identified by F18-24, the PDF is 0. The data in Table 4 is based on a survey-calibrated data source (e.g., a survey of randomly selected persons and/or households) that provides information about the media viewed by persons in a household.

在图示示例中,由上表4表示的示例性家庭的F18-24识别的人口统计组i中的两个女性为数据库所有者104a(例如社交网络服务)的注册用户。基于上表4的数据,家庭分布生成器216基于从示例性调查校准数据源中的家庭收集的设备共享模式和观看模式而在家庭中观看感兴趣类别的媒体的实际观看者人口统计组j M45-54、F35-44、和F18-24之间重分布每个注册的数据库所有者用户(例如F18-24人口统计组中的观看者)的受众(和因此相关联的印象)。用于“所有”媒体类别的示例性重分布受众和表4的第二示例性家庭在下表5中示出。In the illustrated example, two women in demographic group i, identified by F18-24 of the exemplary household represented in Table 4 above, are registered users of database owner 104a (e.g., a social networking service). Based on the data in Table 4 above, household distribution generator 216 redistributes the audience (and therefore associated impressions) of each registered database owner user (e.g., viewers in the F18-24 demographic group) among the actual viewer demographic groups j, M45-54, F35-44, and F18-24, who watch the media of interest category in the household based on the device sharing patterns and viewing patterns collected from the households in the exemplary survey calibration data source. An exemplary redistributed audience for the "all" media category and the second exemplary household of Table 4 are shown in Table 5 below.

j\ij\i M45-54M45-54 F35-44F35-44 F18-24F18-24 F18-24F18-24 M45-54M45-54 00 00 0.330.33 0.330.33 F35-44F35-44 00 00 0.330.33 0.330.33 F18-24F18-24 00 00 00 00 F18-24F18-24 00 00 0.330.33 0.330.33 总数total 00 00 11 11

用于“所有”类别的示例性重分布受众矩阵Example Redistribution Audience Matrix for the "All" Category

表5Table 5

在上表5中,家庭分布生成器216将同一PDF(例如0.33)应用于同一识别的人口统计组i中的每个注册的数据库所有者用户(例如人口统计组F18-24的两个家庭成员)。在表5的图示示例中,单元值指示如下事件的对应概率:当家庭中的人员被数据库所有者识别为识别的人口统计组i中的人员(即列中指示的人员和/或人口统计组)时,实际或真实观看者为实际观看者人口统计组j的人员(即行中指示的人员和/或人口统计组)。例如,如下事件的概率为0.33:当数据库所有者识别F18-24识别的人口统计组i中的第一人员时,“所有”类别中的媒体的真实观看者为M45-54实际观看者人口统计组j中的人员。在该示例中,如下事件的概率相同(例如0.33):当数据库所有者识别F18-24识别的人口统计组i中的第二人员时,“所有”类别中的媒体的实际或真实观看者为M45-54实际观看者人口统计组j中的人员。In Table 5 above, the household distribution generator 216 applies the same PDF (e.g., 0.33) to each registered database owner user in the same identified demographic group i (e.g., two family members of demographic groups F18-24). In the illustrated example of Table 5, the cell value indicates the corresponding probability that when a person in the household is identified by the database owner as a person in identified demographic group i (i.e., the person and/or demographic group indicated in the column), the actual or real viewer is a person in actual viewer demographic group j (i.e., the person and/or demographic group indicated in the row). For example, the probability is 0.33 that when the database owner identifies the first person in demographic group i identified by F18-24, the real viewer of the media in the "All" category is a person in actual viewer demographic group j M45-54. In this example, the probability of the following events is the same (e.g., 0.33): when the database owner identifies a second person in demographic group i identified by F18-24, the actual or real viewer of the media in the "All" category is a person in actual viewer demographic group j by M45-54.

在图示示例中,无所谓的是,F18-24识别的人口统计组i中的女性观看者是否指示她们在特定设备上观看由表5的示例性重分布受众矩阵表示的特定媒体类别。只要数据库所有者104a捕获关于该特定设备的印象和/或持续时间单位,则家庭分布生成器216可以在该家庭的所有的实际观看者人口统计组j M45-54、F35-44、和F18-24之间等同地重分布印象和/或持续时间单位。因此,标为F18-24的两列(例如对应于家庭的两个女儿)填有相等的重分布0.33(对于M45-54实际观看者人口统计组j)、0.33(对于F35-44实际观看者人口统计组j)、和0.33(对于F18-24实际观看者人口统计组j)。对于F18-24实际观看者人口统计组j的同一行中的概率值然而在F18-24列之间求和,因为这些值对应于同一个识别的人口统计组i F18-24。“总数”行中的单元指示在相应的识别的人口统计组i(M45-54、F35-44、F18-24)内为数据库所有者104a的注册用户的受众成员的数目。In the illustrated example, it does not matter whether the female viewers in demographic group i identified by F18-24 indicate that they watch a particular media category represented by the exemplary redistributed audience matrix of Table 5 on a particular device. As long as the database owner 104a captures impressions and/or duration units for that particular device, the household distribution generator 216 can redistribute the impressions and/or duration units equally among all actual viewer demographic groups j, M45-54, F35-44, and F18-24, for that household. Thus, the two columns labeled F18-24 (e.g., corresponding to the two daughters of the household) are filled with equal redistributions of 0.33 (for M45-54 actual viewer demographic group j), 0.33 (for F35-44 actual viewer demographic group j), and 0.33 (for F18-24 actual viewer demographic group j). The probability values in the same row for actual viewer demographic group j, F18-24, are however summed across columns F18-24 because these values correspond to the same identified demographic group i, F18-24. The cells in the "Total" row indicate the number of audience members within the corresponding identified demographic group i (M45-54, F35-44, F18-24) who are registered users of the database owner 104a.

下表6示出“所有”类型的示例性重分布受众矩阵,其中,用于F18-24识别的人口统计组i的求和值被示出。Table 6 below shows an exemplary redistributed audience matrix of type "all," where the summed values for demographic group i identified by F18-24 are shown.

j\ij\i M45-54M45-54 F35-44F35-44 F18-24F18-24 M45-54M45-54 00 00 0.660.66 F35-44F35-44 00 00 0.660.66 M12-17M12-17 00 00 00 F18-24F18-24 00 00 0.660.66 总数total 00 00 22

针对具有F18-24人口统计组中的两个人员的家庭的用于“所有”媒体类别的示例性重分布受众矩阵Example Redistributed Audience Matrix for the "All" Media Category for a Household with Two Persons in the F18-24 Demographic Group

表6Table 6

在示例性上表6中,每列(识别的人口统计组i M45-54、F35-44和F18-24)对应于家庭中的识别的人口统计组i中的数据库所有者104a的注册用户的总数目。“总数”行中的单元指示在对应的识别的人口统计组i(例如M45-54、F35-44、F18-24)内为数据库所有者104a的注册用户的受众成员的数目。在一些示例中,表6的重分布受众矩阵的实际观看者人口统计组j(例如行)被扩展成包括由受众测量实体108和/或数据库所有者104a使用的所有识别的人口统计组i以实现矩阵的聚合。因此,尽管由上表6表示的家庭不具有实际观看者人口统计组M12-17中的任何家庭成员,但是示例性上表6包括M12-17行以实现表6的PDF与下表7的PDF的聚合。In the exemplary upper Table 6, each column (identified demographic group i M45-54, F35-44, and F18-24) corresponds to the total number of registered users of the database owner 104a in the identified demographic group i in the household. The cells in the "Total" row indicate the number of audience members within the corresponding identified demographic group i (e.g., M45-54, F35-44, F18-24) who are registered users of the database owner 104a. In some examples, the actual viewer demographic group j (e.g., row) of the redistributed audience matrix of Table 6 is expanded to include all identified demographic groups i used by the audience measurement entity 108 and/or database owner 104a to achieve aggregation of the matrix. Thus, although the household represented by the upper Table 6 does not have any family members in the actual viewer demographic group M12-17, the exemplary upper Table 6 includes the M12-17 rows to achieve aggregation of the PDF of Table 6 with the PDF of Table 7 below.

在表4中示出的设备共享概率用于生成用于上文结合表5和表6所描述的第二家庭的重分布受众矩阵之后,表6和表7的重分布受众矩阵在家庭上被聚合(例如求和)以组合识别的人口统计组i中的数据库所有者104a的注册用户以及对用于实际观看者人口统计组j的重分布受众求和。例如上表6和下表7的重分布受众被聚合以生成在下表8中示出的跨家庭的聚合重分布受众。在图示示例中,表6和表7对应于两个不同家庭。After the device sharing probabilities shown in Table 4 are used to generate the redistributed audience matrix for the second household described above in conjunction with Tables 5 and 6, the redistributed audience matrices of Tables 6 and 7 are aggregated (e.g., summed) across households to combine registered users of database owner 104a in identified demographic group i and sum the redistributed audiences for actual viewer demographic group j. For example, the redistributed audiences of Tables 6 and 7 above are aggregated to generate the aggregated redistributed audience across households shown in Table 8 below. In the illustrated example, Tables 6 and 7 correspond to two different households.

j\ij\i M45-54M45-54 F35-44F35-44 M12-17M12-17 F18-24F18-24 M45-54M45-54 00 00 0.330.33 0.330.33 F35-44F35-44 00 00 0.330.33 0.330.33 M12-17M12-17 00 00 00 00 F18-24F18-24 00 00 0.330.33 0.330.33 总数total 00 00 11 11

针对具有一个M12-17人员和一个F18-24人员的家庭的用于“所有”媒体类别的示例性重分布受众矩阵Example Redistributed Audience Matrix for the "All" Media Category for a Household with One M12-17 Person and One F18-24 Person

表7Table 7

针对多个家庭的用于“所有”媒体类别的示例性聚合重分布受众矩阵Example Aggregate Redistribution Audience Matrix for "All" Media Categories for Multiple Households

表8Table 8

上表8中的概率反映在表6和表7中对应表中表示的两个家庭中的用于数据库所有者104a的注册用户的重分布受众。M12-17和F18-24识别的人口统计组i列的总和反映识别的人口统计组i中的数据库所有者104a的注册用户的总数目。“总数”行中的单元指示在相应的识别的人口统计组i(M45-54、F35-44、M12-17、F18-24)内为数据库所有者104a的注册用户的受众成员的数目。The probabilities in Table 8 above reflect the redistributed audience for registered users of database owner 104a within the two households represented in the corresponding tables in Tables 6 and 7. The sum of the columns for demographic group i identified by M12-17 and F18-24 reflects the total number of registered users of database owner 104a within the identified demographic group i. The cells in the "Total" row indicate the number of audience members who are registered users of database owner 104a within the corresponding identified demographic group i (M45-54, F35-44, M12-17, F18-24).

在一些示例中,矩阵校正器220生成尼尔森全国人民计(NPM)指标以解释同一家庭中一起生活的人口统计对i,j(例如来自识别的人口统计组i的一人和来自实际观看者人口统计组j的一人)的概率。例如,P(L)ij为识别的人口统计组i中的第一人员与实际观看者人口统计组j中的人员生活在同一家庭中的概率。在图示示例中,NPM指标为校准数据的另一源。在本文中所公开的示例中,从家庭收集NPM数据,其中当家庭成员借助与家庭相关联的媒体设备观看/聆听媒体时,由AME 108(图1)安装的仪表收集家庭成员的标识。由于在家庭使用促进家庭成员识别自身的本地安装的仪表收集NPM数据(或者以其它方式准确地收集观看/聆听媒体的家庭成员的标识),因此NPM数据具有关于识别哪个家庭成员实际正在观看由媒体设备呈现的媒体(例如为该媒体的实际观看者)的高准确度。In some examples, the matrix corrector 220 generates a Nielsen National People Meter (NPM) metric to account for the probability of demographic pairs i, j (e.g., a person from identified demographic group i and a person from actual viewer demographic group j) living together in the same household. For example, P(L) ij is the probability that the first person in identified demographic group i and a person from actual viewer demographic group j live in the same household. In the illustrated example, the NPM metric is another source of calibration data. In the examples disclosed herein, NPM data is collected from a household where a meter installed by AME 108 ( FIG. 1 ) collects identification of household members as they view/listen to media via media devices associated with the household. Because the NPM data is collected in the household using a locally installed meter that facilitates household members identifying themselves (or otherwise accurately collects identification of household members viewing/listening to media), the NPM data has a high degree of accuracy in identifying which household member is actually viewing the media presented by the media device (e.g., is the actual viewer of the media).

下文描述的NPM指标可以用于解释P(L)ij概率。在这些示例中,矩阵校正器220将NPM指标应用于重分布数据库所有者注册用户的表中的对应i,j单元(例如在上表5中示出的用于“所有”类别的示例性重分布受众矩阵)。下表9示出了基于从家庭收集的调查响应(在这些示例中,这也用作调查校准数据源,从其确定重分布受众表)的一起生活的人员的人口统计组i,j对的估计量。下表10示出了基于收集的NPM数据的一起生活的人员的人口统计组i,j对的估计量。下表11示出了由矩阵校正器220基于表9和表10的估计量生成的NPM指标。The NPM metrics described below can be used to interpret the P(L) ij probabilities. In these examples, the matrix corrector 220 applies the NPM metrics to the corresponding i, j cells in the table of registered users of the redistribution database owner (e.g., the exemplary redistribution audience matrix for the "all" category shown in Table 5 above). Table 9 below shows estimates for demographic groups i, j pairs of people living together based on survey responses collected from households (in these examples, this also serves as a survey calibration data source from which the redistribution audience table is determined). Table 10 below shows estimates for demographic groups i, j pairs of people living together based on the collected NPM data. Table 11 below shows the NPM metrics generated by the matrix corrector 220 based on the estimates in Tables 9 and 10.

j\ij\i M45-54M45-54 F35-44F35-44 M12-17M12-17 F18-24F18-24 M45-54M45-54 100100 6060 1010 5555 F35-44F35-44 3030 100100 1010 8080 M12-17M12-17 2020 5050 8080 1515 F18-24F18-24 5050 2020 2020 9090

基于调查响应的一起生活的人员的人口统计组i,j对的示例性估计量Exemplary estimators for demographic groups i, j pairs of people living together based on survey responses

表9Table 9

j\ij\i M45-54M45-54 F35-44F35-44 M12-17M12-17 F18-24F18-24 M45-54M45-54 105105 5050 1515 4848 F35-44F35-44 3535 102102 1212 8080 M12-17M12-17 2525 4040 7070 2020 F18-24F18-24 4040 1515 1818 9898

基于NPM数据的一起生活的人员的人口统计组i,j对的示例性估计量Exemplary estimators for demographic groups i, j pairs of people living together based on NPM data

表10Table 10

j\ij\i M45-54M45-54 F35-44F35-44 M12-17M12-17 F18-24F18-24 M45-54M45-54 1.051.05 0.830.83 1.501.50 0.870.87 F35-44F35-44 1.171.17 1.021.02 1.201.20 1.001.00 M12-17M12-17 1.251.25 0.800.80 0.880.88 1.331.33 F18-24F18-24 0.800.80 0.750.75 0.900.90 1.091.09

示例性NPM指标Example NPM Metrics

表11Table 11

上表11的示例性NPM指标通过将表10的值(基于小组成员数据的一起生活的人员的人口统计组i,j对的估计量)除以表9的对应值(基于调查响应的一起生活的人员的人口统计组i,j对的估计量)来计算。在图示示例中,表11用于解释在同一家庭中一起生活的来自不同人口统计组i,j的任何观看者的过采样/欠采样。例如,表9基于调查响应估计M45-54的人口统计组i,j中的100个人一起生活。基于更准确的NPM数据,表10估计同一M45-54的人口统计组i,j中的105个人一起生活在同一家庭中。因此,用于该人口统计组M45-54的表11的示例性NPM指标为1.05,其大于1以补偿表9相对于表10的对应值105而对来自M45-54的人口统计组i,j的一起生活的人员的数目欠采样(例如100)。对于表9中的估计量相对于表10中的对应量过采样的实例,表11中的对应NPM指标将小于1(例如,对于F18-24的实际观看者人口统计组j和F35-44的识别的人口统计组i,表11中的NPM指标=0.75)。The exemplary NPM metric of Table 11 above is calculated by dividing the value of Table 10 (the estimated number of people living together for demographic group i, j pairs based on panelist data) by the corresponding value of Table 9 (the estimated number of people living together for demographic group i, j pairs based on survey responses). In the illustrated example, Table 11 is used to account for oversampling/undersampling of any viewers from different demographic groups i, j living together in the same household. For example, Table 9 estimates that 100 people in demographic group i, j for M45-54 live together based on survey responses. Based on more accurate NPM data, Table 10 estimates that 105 people in demographic group i, j for the same M45-54 live together in the same household. Therefore, the exemplary NPM metric of Table 11 for this demographic group M45-54 is 1.05, which is greater than 1 to compensate for the fact that Table 9 undersamples the number of people living together from demographic group i, j for M45-54 (e.g., 100) relative to the corresponding value of 105 in Table 10. For instances where the estimates in Table 9 are oversampled relative to the corresponding amounts in Table 10, the corresponding NPM metric in Table 11 will be less than 1 (e.g., for actual viewer demographic group j of F18-24 and identified demographic group i of F35-44, NPM metric in Table 11 = 0.75).

在一些示例中,来自表9的一起生活的一些人口统计组对i,j的估计(例如基于调查响应来确定)与来自表10的基于NPM数据的估计对准,这是因为NPM数据为比来自数据库所有者104a的人口统计数据质量更高的数据源。表12和表13示出示例性数据,其中一起生活的人员的人口统计组i,j对的估计被对准更靠近NPM数据。在表12中,矩阵校正器220调整上表8的用于识别的人口统计组i中的第一人员与实际观看者人口统计组j中的人员生活在同一家庭中的概率P(L)ij的重分布受众值。在图示示例中,矩阵校正器220通过将上表8的i,j单元中的重分布受众值乘以上表11的i,j单元值中的对应NPM指标来确定表12中的每个i,j单元值。采用该方式,共享矩阵校正器220将NPM指标应用于由数据库所有者104a在不同家庭收集的重分布印象以解释识别的人口统计组i中的第一人员与实际观看者人口统计组j中的人员生活在同一家庭中的概率P(L)ijIn some examples, the estimates for some demographic group pairs i, j living together from Table 9 (e.g., determined based on survey responses) align with the estimates based on NPM data from Table 10 because NPM data is a higher quality data source than the demographic data from database owner 104a. Tables 12 and 13 illustrate exemplary data in which the estimates for demographic group pairs i, j of people living together are aligned closer to the NPM data. In Table 12, matrix corrector 220 adjusts the redistributed audience values from Table 8 above for the probability P(L) ij that the first person in identified demographic group i lives in the same household as a person in actual viewer demographic group j. In the illustrated example, matrix corrector 220 determines each i, j cell value in Table 12 by multiplying the redistributed audience value in the i, j cell of Table 8 above by the corresponding NPM indicator in the i, j cell value of Table 11 above. In this way, the sharing matrix corrector 220 applies the NPM metric to the redistributed impressions collected by the database owner 104a across different households to account for the probability P(L) ij that the first person in the identified demographic group i lives in the same household as a person in the actual viewer demographic group j.

针对P(L)ij调整的示例性数据库所有者重分布受众Example database owner redistribution audience adjusted for P(L) ij

表12Table 12

j\ij\i M45-54M45-54 F35-44F35-44 M12-17M12-17 F18-24F18-24 M45-54M45-54 00 00 0.4170.417 0.2950.295 F35-44F35-44 00 00 0.3330.333 0.3380.338 M12-17M12-17 00 00 00 00 F18-24F18-24 00 00 0.2500.250 0.3680.368 总数total 00 00 11 11

示例性归一化重分布受众Example Normalized Redistributed Audience

表13Table 13

在上表13中,矩阵归一化器222使来自上表12的调整的印象重分布归一化,从而识别的人口统计组i的列(例如M12-17和F18-24识别的人口统计组i)的总和为1。采用该方式,每列(例如识别的人口统计组i M12-17和F18-24)表示如下事件的概率密度函数(PDF):当数据库所有者104a检测特定识别的人口统计组i时,AME 108将什么确定为媒体的真实观看者的实际观看者人口统计组j。在图示示例中,表13的归一化重分布受众为错误认定校正因子,或对于每对人口统计组i,j的概率γij,该概率γij为如下事件的概率:当识别的人口统计组i中的人员被数据库所有者104a识别为媒体观看者时,实际观看者人口统计组j中的人员为实际观看者(例如γij=0.417、0.295、0.333、0.338、0.250和0.368)。In Table 13 above, the matrix normalizer 222 normalizes the adjusted impression redistribution from Table 12 above so that the columns for identified demographic group i (e.g., M12-17 and F18-24 identified demographic group i) sum to 1. In this manner, each column (e.g., identified demographic group i M12-17 and F18-24) represents a probability density function (PDF) of what the AME 108 determines to be the actual viewer demographic group j of the real viewers of the media when the database owner 104a detects a particular identified demographic group i. In the illustrated example, the normalized redistributed audience of Table 13 is the misidentification correction factor, or the probability γ ij for each pair of demographic groups i, j, which is the probability that when a person in identified demographic group i is identified as a media viewer by the database owner 104a, a person in actual viewer demographic group j is the actual viewer (e.g., γ ij = 0.417 , 0.295, 0.333, 0.338, 0.250, and 0.368).

在一些示例中,对于每对由数据库所有者检测的识别的人口统计组i和分配为真实或实际观看者的实际观看者人口统计组j的概率γij可以在所有的个体家庭矩阵中被加权和/或求均值以确定聚合概率。在图示示例中,真实观看者或实际观看者指示特定人口统计组中被视为在设备上接触(例如观看、聆听、消费等)媒体的实际受众成员的人员。例如,实际观看者可以为被AME 108确定为实际上观看或接触监控媒体的人员的观看者。人员为实际观看者的确定可以基于统计概率,其基于上文讨论的对随机选择的人员和/或家庭调查的响应指示实际观看者的可能性。如由AME 108感知的实际观看者的确定还可以基于表示家庭中的实际观看者的观察或其它收集的数据(例如NPM数据)。在任何情况下,实际观看者为AME 108对谁是实际观看者的强推论,但如在本文中使用的,实际观看者不一定为实际观看者的身份的绝对确定。然而,如结合本文中所公开的示例所使用的实际观看者的推论强度足以准确地结合本文中所公开的示例来用于提供具有高准确度的校正的印象和/或持续时间单位。在一些示例中,共享矩阵生成器204基于附加的和/或替选的区别生成设备共享矩阵,诸如不同的人口统计市场、不同站、和/或不同时段。In some examples, the probability γ ij for each pair of identified demographic group i detected by the database owner and actual viewer demographic group j assigned as a real or actual viewer can be weighted and/or averaged across all individual household matrices to determine an aggregate probability. In the illustrated example, a real viewer or actual viewer refers to a person in a particular demographic group who is considered an actual audience member who engages with (e.g., watches, listens to, consumes, etc.) media on a device. For example, an actual viewer can be a viewer determined by AME 108 to be a person who actually views or engages with the monitored media. The determination that a person is an actual viewer can be based on statistical probability, which indicates the likelihood of an actual viewer based on responses to a randomly selected person and/or household survey discussed above. The determination of an actual viewer as perceived by AME 108 can also be based on observational or other collected data (e.g., NPM data) representing actual viewers in a household. In any case, an actual viewer is a strong inference by AME 108 as to who is an actual viewer, but as used herein, an actual viewer is not necessarily an absolute determination of the identity of an actual viewer. However, the inference strength of actual viewers as used in conjunction with the examples disclosed herein is sufficient to accurately be used in conjunction with the examples disclosed herein to provide corrected impression and/or duration units with a high degree of accuracy. In some examples, the sharing matrix generator 204 generates device sharing matrices based on additional and/or alternative distinctions, such as different demographic markets, different stations, and/or different time periods.

作为如上所述的用于使用重分布受众计算γij的示例性方法的替选,在一些示例中,聚合分布生成器218通过计算复合概率来计算聚合重分布受众矩阵,如等式1所示:As an alternative to the exemplary method for calculating γij using the redistributed audience described above, in some examples, the aggregated distribution generator 218 calculates the aggregated redistributed audience matrix by calculating compound probabilities, as shown in Equation 1:

γij=P(L)ij×P(D|L)ij×P(Sx|D)ij (等式1)γ ij =P(L) ij ×P(D|L) ij ×P(S x |D) ij (Equation 1)

在以上等式1中,P(L)ij为识别的人口统计组i中的第一人员与实际观看者人口统计组j中的人员生活在同一家庭中的概率;P(D|L)ij为如下事件的概率:假定识别的人口统计组i中的第一人员与实际观看者人口统计组j中的人员生活在同一家庭中,两人在该家庭中访问移动设备(任何类型);以及P(Sx|D)ij为如下事件的概率:假定识别的人口统计组i中的第一人员访问与实际观看者人口统计组j中的人员相同的所选类型的移动设备,两人针对所选类别的媒体共享移动设备。如在本文中使用的,“所选类别”指的是经受分析的感兴趣的类别。因此“所选”指的是“针对分析所选”,如在本上下文中所使用。相同含义应用于“所选设备类型”、“所选人口统计组”和“所选人口统计组的对”。In Equation 1 above, P(L) ij is the probability that the first person in identified demographic group i lives in the same household as a person in actual viewer demographic group j; P(D|L) ij is the probability that the first person in identified demographic group i and a person in actual viewer demographic group j have access to a mobile device (of any type) in the same household, assuming that the two people live in the same household; and P(S x |D) ij is the probability that the first person in identified demographic group i has access to the same selected type of mobile device as a person in actual viewer demographic group j, and the two people share the mobile device for media of a selected category. As used herein, "selected category" refers to the category of interest that is subject to analysis. Therefore, "selected" means "selected for analysis," as used in this context. The same meaning applies to "selected device type,""selected demographic group," and "pair of selected demographic groups."

在一些示例中,聚合分布生成器218使用来自一个或多个校准数据源的数据(例如调查校准数据)来确定概率中的一者或多者。例如,在一些示例中,共享矩阵计算器从建立小组的调查确定概率P(L)ij和P(D|L)ij以及从随机家庭的另一调查确定P(Sx|D)ij,该建立小组诸如用于确定上文讨论的NPM指标数据的小组。In some examples, the aggregate distribution generator 218 uses data from one or more calibration data sources (e.g., survey calibration data) to determine one or more of the probabilities. For example, in some examples, the shared matrix calculator determines the probabilities P(L) ij and P(D|L) ij from a survey of a panel, such as the panel used to determine the NPM indicator data discussed above, and P(S x |D) ij from another survey of random households.

参考上文参照表1-13所描述的示例,示例性聚合分布生成器218针对每对人口统计组i,j使用重分布聚合受众矩阵计算如下概率γij:(1)识别的人口统计组i中的人员被数据库所有者104a识别为媒体的观看者,和(2)实际观看者人口统计组j的人员为实际观看者。示例性聚合分布生成器218生成错误认定校正矩阵,其包括各个所计算的概率γij。示例性聚合分布生成器218可以使用上文的示例性等式(1)和/或可以使用上文描述的NPM指标方法来计算错误认定校正矩阵的概率γij。用于所选的平板电脑设备类型和所选的喜剧媒体类型的示例性聚合重分布受众矩阵在下表14中被示出为示例性错误认定校正矩阵。示例性表14的后续章节延伸到右侧使得该表具有相等数量的行和列。Referring to the examples described above with reference to Tables 1-13, the exemplary aggregate distribution generator 218 uses the redistributed aggregate audience matrix to calculate, for each pair of demographic groups i, j, the probability γ ij that (1) a person in the identified demographic group i is identified by the database owner 104a as a viewer of the media, and (2) a person in the actual viewer demographic group j is an actual viewer. The exemplary aggregate distribution generator 218 generates a false positive correction matrix that includes each of the calculated probabilities γ ij . The exemplary aggregate distribution generator 218 can use the exemplary equation (1) above and/or can use the NPM indicator method described above to calculate the probabilities γ ij for the false positive correction matrix. An exemplary aggregate redistributed audience matrix for the selected tablet device type and the selected comedy media type is shown below in Table 14 as an exemplary false positive correction matrix. The subsequent sections of the exemplary Table 14 extend to the right so that the table has an equal number of rows and columns.

示例性错误认定校正矩阵Exemplary False Positive Correction Matrix

表14Table 14

如上表14的示例性错误认定校正矩阵中所示,各列的值总计为100%。因此,当基于上表14的示例性错误认定校正矩阵重分布印象、持续时间单位、和/或受众时,解释归属于识别的人口统计组i的印象、持续时间单位、和/或受众。如下文更详细地描述,图2的错误认定校正器206将上表14的示例性错误认定校正矩阵应用于补偿用于错误认定误差的印象信息。As shown in the exemplary misidentification correction matrix of Table 14 above, the values of each column total 100%. Therefore, when redistributing impressions, duration units, and/or audiences based on the exemplary misidentification correction matrix of Table 14 above, the impressions, duration units, and/or audiences attributed to the identified demographic group i are accounted for. As described in more detail below, the misidentification corrector 206 of FIG. 2 applies the exemplary misidentification correction matrix of Table 14 above to compensate for misidentification errors in the impression information.

共同观看矩阵Co-viewing Matrix

在一些示例中,共享矩阵生成器204还包括共同观看矩阵生成器224,除了上表14的示例性错误认定校正矩阵外,该共同观看矩阵生成器224还生成共同观看矩阵(例如针对媒体类别和设备类型的每个组合)。共同观看矩阵为提供两个人口统计组之间的同时观看的概率的PDF的矩阵。例如,共同观看概率κij为如下事件的概率:当数据库所有者将识别的人口统计组i中的人员识别为与媒体印象相关联时,实际观看者人口统计组j中的人员也正在与识别的人一起看(例如共同观看)媒体。因此,对于印象可以正确地与多个人相关联的情况,共同观看矩阵中的概率κij可用于补偿印象信息。In some examples, the sharing matrix generator 204 also includes a co-viewing matrix generator 224 that generates a co-viewing matrix (e.g., for each combination of media category and device type) in addition to the exemplary misidentification correction matrix of Table 14 above. A co-viewing matrix is a matrix that provides the PDF of the probability of simultaneous viewing between two demographic groups. For example, the co-viewing probability κ ij is the probability that, when the database owner identifies a person in the identified demographic group i as being associated with a media impression, a person in the actual viewer demographic group j is also viewing (e.g., co-viewing) the media with the identified person. Therefore, for situations where an impression can be correctly associated with multiple people, the probability κ ij in the co-viewing matrix can be used to compensate for the impression information.

像上表14的示例性错误认定校正矩阵一样,也由共同观看矩阵生成器224生成的共同观看矩阵具有相等数目的行和列。然而,不像上表14的示例性错误认定校正矩阵,共同观看矩阵的列不一定总计为任何特定数(例如100%)。在图示示例中,示例性共同观看矩阵生成器224使用上文讨论的概率P(L)ij和P(D|L)ij且还使用概率P(Cx|D)ij来计算共同观看概率κij,概率P(Cx|D)ij描述了如下事件的概率:生活在同一家庭中且访问所选设备类型的移动设备的识别的人口统计组i中的人员与实际观看者人口统计组j中的人员同时使用设备类型x的同一移动设备来观看所选媒体类别的媒体。在一些示例中,共同观看矩阵生成器224用P(Cx|D)ij替代上文等式(1)中的P(Sx|D)ij项来计算共同观看概率κijLike the exemplary false positive correction matrix of Table 14 above, the co-viewing matrix generated by the co-viewing matrix generator 224 has an equal number of rows and columns. However, unlike the exemplary false positive correction matrix of Table 14 above, the columns of the co-viewing matrix do not necessarily sum to any particular number (e.g., 100%). In the illustrated example, the exemplary co-viewing matrix generator 224 uses the probabilities P(L) ij and P(D|L) ij discussed above and also uses the probability P( Cx |D) ij to calculate the co-viewing probability κ ij , which describes the probability that a person in the identified demographic group i , who lives in the same household and has access to a mobile device of a selected device type, and a person in the actual viewer demographic group j, simultaneously uses the same mobile device of device type x to view media of the selected media category. In some examples, the co-viewing matrix generator 224 replaces the P( Sx |D) ij term in equation (1) above with P( Cx |D) ij to calculate the co-viewing probability κ ij .

在一些示例中,错误认定校正器206将共同观看矩阵应用于针对设备共享错误认定而调整的印象和/或持续时间单位。在一些其它示例中,由于共同观看可以被视为表示在数据收集中未解释的附加的印象和/或持续时间单位,因此错误认定校正器206将共同观看矩阵中的概率κij应用于由数据库所有者104a针对设备共享错误认定而调整的且针对未覆盖而调整的印象和/或持续时间单位,从而基于补偿的(例如校正的)印象和/或持续时间单位确定共同观看。In some examples, the false positive corrector 206 applies the co-viewing matrix to the impressions and/or duration units adjusted for device-sharing false positives. In some other examples, because co-viewing can be considered to represent additional impressions and/or duration units that were not accounted for in the data collection, the false positive corrector 206 applies the probabilities κ ij in the co-viewing matrix to the impressions and/or duration units adjusted for device-sharing false positives and for lack of coverage by the database owner 104 a, thereby determining co-viewing based on the compensated (e.g., corrected) impressions and/or duration units.

错误认定校正示例1Misidentification Correction Example 1

在生成上表14的示例性错误认定校正矩阵之后,示例性错误认定校正器206将错误认定校正矩阵应用于从图2的印象信息收集器208获得的一组印象。在错误认定校正的第一示例中,错误认定校正矩阵应用于校正印象归属于人口统计组,且不影响受众计数。这类示例可以例如被应用于校正基于因特网的流媒体(例如流视频和/或流音频)的印象。例如,用于基于因特网的流媒体的校正的印象信息可以与用于另一类型设备的印象信息组合,可以附加地或可替选地在该另一类型设备上访问媒体。例如,在电视上呈现(例如广播)剧集之后,受众成员可以借助用于延迟的或时间偏移的流回放的计算设备访问电视剧集。借助计算设备访问的流媒体的印象可以被添加到Live+7收视率指标,这测量初始呈现的观看印象(或对应的受众规模)和发生在初始调度的广播呈现的当天以及在初始调度的广播呈现之后的7天内的印象(或对应的受众规模)的总和。After generating the example false positive correction matrix of Table 14 above, the example false positive corrector 206 applies the false positive correction matrix to a set of impressions obtained from the impression information collector 208 of FIG. 2 . In a first example of false positive correction, the false positive correction matrix is applied to correct impressions for attribution to demographic groups without affecting audience counts. This type of example can, for example, be applied to correct impressions of Internet-based streaming media (e.g., streaming video and/or streaming audio). For example, corrected impression information for Internet-based streaming media can be combined with impression information for another type of device on which the media can be accessed in addition or alternatively. For example, after an episode is presented (e.g., broadcast) on television, an audience member can access the television series via a computing device for delayed or time-shifted streaming playback. Impressions of the streaming media accessed via the computing device can be added to the Live+7 ratings metric, which measures the sum of viewing impressions (or corresponding audience size) of the initial presentation and impressions (or corresponding audience size) occurring on the day of the initially scheduled broadcast presentation and within 7 days after the initially scheduled broadcast presentation.

图2的示例性印象信息收集器208从数据库所有者104a收集印象信息且收集从客户端设备(例如图1的客户端设备106)获得的印象量信息。从数据库所有者104a获得的示例性印象信息包括通过数据库所有者104a从每个人口统计组而与该人口统计组相关联的印象的聚合数目。The example impression information collector 208 of Figure 2 collects impression information from the database owner 104a and collects impression volume information obtained from client devices, such as the client device 106 of Figure 1. The example impression information obtained from the database owner 104a includes an aggregate number of impressions associated with each demographic group from the database owner 104a.

示例性数据库所有者104a可以提供用于感兴趣的每个媒体项目(例如正被受众测量实体108监控的媒体项目)的印象信息(例如被数据库所有者104a识别为与识别的人相关联的印象的数目)。附加地或可替选地,示例性数据库所有者104a向印象信息收集器208提供用于各类设备的印象信息。下表15示出了通过印象信息收集器208从示例性数据库所有者104a获得的用于平板电脑设备的示例性印象信息。示例性印象信息收集器208可以收集用于其它类型的移动设备(例如智能手机、便携式媒体播放器等)的类似数据。The example database owner 104a may provide impression information (e.g., the number of impressions identified by the database owner 104a as being associated with an identified person) for each media item of interest (e.g., a media item being monitored by the audience measurement entity 108). Additionally or alternatively, the example database owner 104a provides impression information for various types of devices to the impression information collector 208. Table 15 below illustrates example impression information for a tablet device obtained from the example database owner 104a by the impression information collector 208. The example impression information collector 208 may collect similar data for other types of mobile devices (e.g., smartphones, portable media players, etc.).

用于平板电脑设备的示例性印象信息Example impression information for a tablet device

表15Table 15

在一些示例中,在向印象信息收集器208提供印象之前,通过决策树处理印象。在一些示例中,决策树用于确定识别的人口统计组i和/或实际观看者人口统计组j之间的描述。在2011年8月12日递交的序列号为13/209,292的美国专利申请中和在2014年1月6日递交的序列号为61/923,959的美国临时专利申请中公开了处理印象的示例。序列号为13/209,292的美国专利申请和序列号为61/923,959的美国临时专利申请的全部内容通过引用并入本文中。In some examples, the impressions are processed through a decision tree before being provided to the impression information collector 208. In some examples, the decision tree is used to determine the delineation between the identified demographic group i and/or the actual viewer demographic group j. Examples of processing impressions are disclosed in U.S. patent application serial number 13/209,292 filed on August 12, 2011 and in U.S. provisional patent application serial number 61/923,959 filed on January 6, 2014. The entire contents of U.S. patent application serial number 13/209,292 and U.S. provisional patent application serial number 61/923,959 are incorporated herein by reference.

图2的示例性错误认定校正器206调整或补偿从数据库所有者104a获得的用于错误认定误差的印象信息。图3A示出了由错误认定校正器206执行以调整印象信息的示例性计算。在图2和图3A的示例中,错误认定校正器206使用由示例性共享矩阵生成器204生成的设备共享矩阵来调整由数据库所有者104a提供的人口统计信息(例如每设备类型和/或媒体类别的每人口统计组的印象计数等)。The example false positive corrector 206 of FIG2 adjusts or compensates for false positive errors in impression information obtained from the database owner 104a. FIG3A illustrates an example calculation performed by the false positive corrector 206 to adjust the impression information. In the examples of FIG2 and FIG3A, the false positive corrector 206 uses the device sharing matrix generated by the example sharing matrix generator 204 to adjust demographic information provided by the database owner 104a (e.g., impression counts per demographic group per device type and/or media category, etc.).

使用由印象信息收集器208获得的数据库所有者数据(例如图1的印象信息102a,102b),图2的错误认定校正器206计算用于设备类型和/或媒体类别的n×n错误认定校正矩阵302和用于设备类型和/或媒体类别的n×1数据库所有者数据304(例如印象计数矩阵)的点积。点积的结果是n×1错误认定调整的数据矩阵306,其具有调整数目的用于设备类型和/或媒体类别的印象。Using the database owner data (e.g., impression information 102a, 102b of FIG. 1 ) obtained by the impression information collector 208, the misidentification corrector 206 of FIG. 2 calculates the dot product of an n×n misidentification correction matrix 302 for device types and/or media categories and an n×1 database owner data 304 (e.g., an impression count matrix) for device types and/or media categories. The result of the dot product is an n×1 misidentification adjusted data matrix 306 having an adjusted number of impressions for the device types and/or media categories.

下表16示出由错误认定校正器206使用表14的示例性错误认定校正矩阵和表15的印象信息所计算的示例性错误认定调整的印象。表16包括基于上文参照图3A所讨论的点积所计算的调整印象。为了便于比较而在表16中也示出来自上表15的未调整的印象。Table 16 below shows an exemplary misidentification-adjusted impression calculated by misidentification corrector 206 using the exemplary misidentification correction matrix of Table 14 and the impression information of Table 15. Table 16 includes the adjusted impression calculated based on the dot product discussed above with reference to FIG. For ease of comparison, the unadjusted impression from Table 15 above is also shown in Table 16.

错误认定调整的印象和未调整的印象Misidentification of adjusted and unadjusted impressions

表16Table 16

因此,如上表16所示,调整的印象补偿从示例性数据库所有者104a接收的印象信息102a,102b的错误认定误差。Thus, as shown in Table 16 above, the adjusted impressions compensate for misidentification errors in the impression information 102a, 102b received from the exemplary database owner 104a.

错误认定校正示例2Misidentification Correction Example 2

在错误认定校正的第二示例中,上表14的错误认定校正矩阵应用于校正印象和受众到人口统计组的错误认定。如上所述,当数据库所有者104a将印象归属于第一人口统计组中的人员而实际上该印象正确地归属于第二人口统计组中的第二人员时可以出现将印象错误认定到不正确的人口统计组(例如由于在第二人口统计组中的第二人员观看给出印象的媒体的时间期间,第一人口统计组中的人员在设备上登录数据库所有者)。例如当可从不同类型的计算设备访问媒体和可以解复制针对那些计算设备记录或测量的受众时,可以使用印象和受众的示例性错误认定校正。例如,当受众成员多次从同一设备和/或不同设备访问同一媒体时,记录的受众成员的复制发生。同一受众成员对同一媒体的多次访问导致受众复制,这是因为基于针对该受众成员对同一媒体的多次访问而记录的多个印象而在受众规模计数中两次或更多次计数同一受众成员。这类受众复制可以导致接触或访问特定媒体的真实受众规模的膨胀表示。因此,可以使用解复制来更准确地计数媒体的印象可归属于的受众规模。In a second example of misidentification correction, the misidentification correction matrix of Table 14 above is applied to correct misidentification of impressions and audiences to demographic groups. As described above, misidentification of an impression to an incorrect demographic group can occur when the database owner 104a attributes an impression to a person in a first demographic group when, in fact, the impression is correctly attributed to a second person in a second demographic group (e.g., because a person in the first demographic group was logged into the database owner's device during the time the second person in the second demographic group viewed the media that gave rise to the impression). The exemplary misidentification correction of impressions and audiences can be used, for example, when media can be accessed from different types of computing devices and the audiences recorded or measured for those computing devices can be deduplicated. For example, duplication of recorded audience members occurs when an audience member accesses the same media multiple times from the same device and/or different devices. Multiple visits to the same media by the same audience member result in audience duplication because the same audience member is counted twice or more in the audience size count based on the multiple impressions recorded for the audience member's multiple visits to the same media. This type of audience duplication can result in an inflated representation of the true size of the audience that was exposed to or visited a particular media. Therefore, deduplication can be used to more accurately count the audience size to which impressions of a medium are attributable.

图2的示例性印象信息收集器208从数据库所有者104a收集印象信息以及收集用于发生在客户端设备106处的印象的量信息。从数据库所有者104a获得的示例性印象信息包括由数据库所有者104a生成的按人口统计组的印象的聚合数目和/或来自各个人口统计组的受众规模。2 collects impression information from the database owner 104a and collects volume information for impressions occurring at the client device 106. Exemplary impression information obtained from the database owner 104a includes an aggregate number of impressions by demographic group and/or the size of the audience from each demographic group generated by the database owner 104a.

示例性数据库所有者104a可以提供用于感兴趣的每个媒体项目(例如正被受众测量实体108监控的媒体项目)的印象信息(例如印象计数、按人口统计组的印象计数等)和/或受众信息(例如受众规模、按人口统计组的受众规模等)。附加地或可替选地,示例性数据库所有者104a向印象信息收集器208提供用于各类设备的印象和/或受众信息。在一些示例中,印象信息收集器208还收集印象和/或用于发生在计算机平台(例如非移动设备平台,诸如台式电脑和/或笔记本电脑)上的媒体印象的受众信息。下表17示出由印象信息收集器208从示例性数据库所有者104a获得的用于平板电脑设备的示例性印象和受众信息(例如未校正的印象计数和受众规模)。示例性印象信息收集器208可以收集用于其它类型的移动设备(例如智能手机、便携式媒体播放器等)和/或计算机平台的类似数据。示例性下表17类似于示例性上表15,除了下表17还包括受众规模和频率信息(例如来自数据库所有者104a)。The exemplary database owner 104a may provide impression information (e.g., impression counts, impression counts by demographic group, etc.) and/or audience information (e.g., audience size, audience size by demographic group, etc.) for each media item of interest (e.g., media items being monitored by the audience measurement entity 108). Additionally or alternatively, the exemplary database owner 104a provides impression and/or audience information for various types of devices to the impression information collector 208. In some examples, the impression information collector 208 also collects impressions and/or audience information for media impressions that occur on computer platforms (e.g., non-mobile device platforms, such as desktop computers and/or laptop computers). Table 17 below shows exemplary impression and audience information (e.g., uncorrected impression counts and audience size) for tablet devices obtained by the impression information collector 208 from the exemplary database owner 104a. The exemplary impression information collector 208 may collect similar data for other types of mobile devices (e.g., smartphones, portable media players, etc.) and/or computer platforms. Exemplary lower table 17 is similar to exemplary upper table 15, except that lower table 17 also includes audience size and frequency information (eg, from database owner 104a).

从示例性数据库所有者获得的用于平板电脑设备的示例性印象和受众信息Example impression and audience information for tablet devices obtained from an example database owner

表17Table 17

在一些示例中,在将数据库所有者总印象和受众规模提供给印象信息收集器208之前,通过决策树处理数据库所有者总印象和受众规模。在2011年8月12日递交的美国非临时专利申请No.13/209,292中和在2014年1月6日递交的美国临时专利申请No.61/923,959中公开了处理印象和特殊受众的示例。美国非临时专利申请No.13/209,292和美国临时专利申请No.61/923,959的全部内容通过引用并入在本文中。In some examples, the database owner's total impressions and audience size are processed through a decision tree before being provided to the impression information collector 208. Examples of processing impressions and specific audiences are disclosed in U.S. Non-Provisional Patent Application No. 13/209,292, filed on August 12, 2011, and U.S. Provisional Patent Application No. 61/923,959, filed on January 6, 2014. The entire contents of U.S. Non-Provisional Patent Application No. 13/209,292 and U.S. Provisional Patent Application No. 61/923,959 are incorporated herein by reference.

图2的示例性错误认定校正器206调整或补偿从数据库所有者104a获得的用于错误认定误差的印象信息。上文讨论的图3A也示出了由错误认定校正器206执行以调整印象和/或受众信息的示例性计算。在该示例中,错误认定校正器206使用由示例性共享矩阵生成器204生成的设备共享矩阵来调整由数据库所有者104a提供的人口统计信息(例如每设备类型和/或媒体类别的每人口统计组的印象计数、每设备类型和/或媒体类别的每人口统计组的受众规模等)。The example false positive corrector 206 of FIG2 adjusts or compensates for the impression information obtained from the database owner 104a for the false positive error. FIG3A discussed above also illustrates an example calculation performed by the false positive corrector 206 to adjust the impression and/or audience information. In this example, the false positive corrector 206 uses the device sharing matrix generated by the example sharing matrix generator 204 to adjust the demographic information provided by the database owner 104a (e.g., impression counts per demographic group per device type and/or media category, audience size per demographic group per device type and/or media category, etc.).

使用由印象信息收集器208获得的数据库所有者数据(例如印象计数和/或受众规模信息),图2的错误认定校正器206计算用于设备类型和/或媒体类别的n×n错误认定校正矩阵302和/或n×1数据库所有者数据304(例如印象计数矩阵、受众规模矩阵)的点积。点积的结果是n×1错误认定调整的数据矩阵306,其具有调整的印象计数或调整的受众规模。Using the database owner data (e.g., impression counts and/or audience size information) obtained by the impression information collector 208, the false positive corrector 206 of FIG2 calculates the dot product of the n×n false positive correction matrix 302 and/or the n×1 database owner data 304 (e.g., impression count matrix, audience size matrix) for device type and/or media category. The result of the dot product is an n×1 false positive adjusted data matrix 306 having adjusted impression counts or adjusted audience size.

下表18示出由错误认定校正器206使用上表14的错误认定校正矩阵和上表17的示例性印象计数和/或受众规模数据所计算的示例性错误认定调整的数据矩阵。下表18包括基于上文所讨论的点积所计算的受众、以及错误认定校正器206使用调整的受众规模所计算的印象计数信息。在该示例中,错误认定校正器206通过将错误认定调整的受众规模(例如用于F45-49的人口统计组的12,216)除以上表17的对应于该人口统计组的频率(例如用于F45-49的人口统计组的9.7)来确定错误认定调整的印象(例如用于F45-49的人口统计组的118,492)。为了便于比较而在表18中也示出未调整的受众规模和未调整的印象计数。Table 18 below shows an exemplary misidentification-adjusted data matrix calculated by misidentification corrector 206 using the misidentification correction matrix of Table 14 above and the exemplary impression count and/or audience size data of Table 17 above. Table 18 below includes the audience calculated based on the dot product discussed above, as well as the impression count information calculated by misidentification corrector 206 using the adjusted audience size. In this example, misidentification corrector 206 determines the misidentification-adjusted impressions (e.g., 118,492 for the F45-49 demographic group) by dividing the misidentification-adjusted audience size (e.g., 12,216 for the F45-49 demographic group) by the frequency corresponding to that demographic group from Table 17 above (e.g., 9.7 for the F45-49 demographic group). The unadjusted audience size and unadjusted impression counts are also shown in Table 18 for comparison purposes.

错误认定调整的印象计数和受众规模、以及用于比较的未调整的印象计数和受众规模Misidentification of adjusted impression counts and audience sizes, and unadjusted impression counts and audience sizes for comparison

表18Table 18

因此,如上表18所示,错误认定调整的印象计数和错误认定调整的受众规模补偿从示例性数据库所有者104a接收的印象计数和受众规模信息中的错误认定误差。总的错误认定调整的受众规模基本上等于(例如除了舍入误差,等于)由数据库所有者104a上报的总的未调整的受众规模。针对如在下文示例中所描述的未覆盖误差,校正该示例的示例性错误认定调整的受众规模和/或错误认定调整的印象计数。Thus, as shown in Table 18 above, the misidentification-adjusted impression counts and misidentification-adjusted audience size compensate for misidentification errors in the impression count and audience size information received from the example database owner 104a. The total misidentification-adjusted audience size is substantially equal to (e.g., equal to, except for rounding errors) the total unadjusted audience size reported by the database owner 104a. The example misidentification-adjusted audience size and/or misidentification-adjusted impression counts of this example are corrected for uncovered errors as described in the examples below.

用于未覆盖的α因子Alpha factor for uncovered

在一些示例中,诸如补偿与收视率相关联的媒体(例如可用于流式传输的电视节目剧集)所对应的印象计数信息中的误差,图2的未覆盖计算器210使用“α因子”计算用于受众的未覆盖因子。如在本文中使用的,术语“α因子”指的是B/A的比值,其中B被定义为人员(例如感兴趣的人口统计组中的人员)使用未被数据库所有者覆盖的感兴趣的设备类型(例如在移动设备上和/或在特定类型的移动设备上,诸如平板电脑、智能手机、或便携式媒体播放器)访问感兴趣的媒体项目(例如借助流视频的电视节目的剧集)的概率。例如,如果数据库所有者不在感兴趣的设备类型上访问任何标识符或信息(例如图1的一个或多个设备/用户标识符124),则数据库所有者可以未覆盖该设备类型,数据库所有者可以使用该设备类型来与注册用户信息(例如人口统计资料)相关联。如在本文中使用的,在α因子比值B/A中,A被定义为人员在移动设备之外的一种设备(诸如用于访问感兴趣的媒体项目的标准设备,例如在电视节目的情况下为电视机)上访问感兴趣的媒体项目的概率。例如,对于特定媒体类别中的电视节目的剧集,指定类型可以为电视且第一设备类型可以为计算设备(例如移动设备和/或更具体类型的移动设备,诸如智能手机、平板电脑、和/或便携式媒体播放器),可以在该计算设备上借助流视频访问电视节目的剧集。在电视上的初始或首映呈现之后,经常使这类电视节目借助流视频而可用。因此,人员可以在电视上和/或在计算设备上借助流媒体访问电视节目的剧集。In some examples, such as to compensate for errors in impression count information corresponding to media associated with viewership (e.g., episodes of television programs available for streaming), the non-coverage calculator 210 of FIG. 2 uses an "alpha factor" to calculate the non-coverage factor for an audience. As used herein, the term "alpha factor" refers to the ratio B/A, where B is defined as the probability that a person (e.g., a person in a demographic group of interest) accesses a media item of interest (e.g., an episode of a television program via streaming video) using a device type of interest that is not covered by the database owner (e.g., on a mobile device and/or on a specific type of mobile device, such as a tablet, smartphone, or portable media player). For example, if the database owner does not have access to any identifiers or information on the device type of interest (e.g., one or more device/user identifiers 124 of FIG. 1 ), the database owner may not cover the device type, which the database owner can use to associate registered user information (e.g., demographic profile). As used herein, in the alpha factor ratio B/A, A is defined as the probability that a person accesses the media item of interest on a device other than a mobile device (e.g., a standard device used to access the media item of interest, such as a television in the case of a television program). For example, for episodes of a television program in a particular media category, the designated type may be a television and the first device type may be a computing device (e.g., a mobile device and/or a more specific type of mobile device, such as a smartphone, tablet, and/or portable media player), on which episodes of the television program may be accessed via streaming video. Such television programs are often made available via streaming video after an initial or premiere presentation on the television. Thus, a person may access episodes of the television program on the television and/or on a computing device via streaming media.

图2的示例性未覆盖计算器210可以生成用于不同人口统计组、不同媒体类别、不同移动设备类型、移动和非移动设备、不同地理区域、不同站、不同时段的不同α因子、和/或基于调查校准数据源识别的任何其它因子。The example uncovered calculator 210 of FIG. 2 can generate different alpha factors for different demographic groups, different media categories, different mobile device types, mobile and non-mobile devices, different geographic regions, different stations, different time periods, and/or any other factors identified based on a survey calibration data source.

在图2的示例中,示例性未覆盖计算器210将概率B(例如人员使用感兴趣的设备类型观看感兴趣的媒体项目的概率)计算为在所选设备类型上访问感兴趣的媒体项目的所选人口统计组(例如基于来自调查或另一校准数据源的响应)占所选人口统计组中人员的总数(例如基于来自调查或另一校准数据源的响应)的比例。例如,如果M18-24人口统计组中的40个人响应于他们在平板电脑上访问‘喜剧’媒体类别中的媒体的调查(在调查中表示的M18-24人口统计组中的100人中),则概率B为40%或0.40。类似地,示例性未覆盖计算器210将概率A(例如人员使用所选的其它设备类型观看感兴趣的媒体项目的概率)计算为在其它设备类型上访问感兴趣的媒体项目的所选人口统计组(例如基于来自调查或另一校准数据源的响应)占所选人口统计组中人员的总数(例如基于调查或另一校准数据源)的比例。例如,如果M18-24人口统计组中的20个人响应于他们在电视上访问‘喜剧’媒体类别中的媒体的调查(在调查中表示的M18-24人口统计组中的100人中),则概率A为20%或0.20。下文等式2和等式3分别示出了用于计算概率A和概率B的示例性模型。用于M18-24人口统计组、平板电脑上的‘喜剧’媒体类别的形成的α因子为0.40/0.20=2。2 , the example non-coverage calculator 210 calculates probability B (e.g., the probability that a person views the media item of interest using a device type of interest) as the proportion of the selected demographic group (e.g., based on responses from a survey or another calibration data source) that accessed the media item of interest on the selected device type to the total number of people in the selected demographic group (e.g., based on responses from the survey or another calibration data source). For example, if 40 people in the M18-24 demographic group responded to a survey that they accessed media in the 'comedy' media category on a tablet (out of 100 people in the M18-24 demographic group represented in the survey), probability B is 40% or 0.40. Similarly, the example non-coverage calculator 210 calculates probability A (e.g., the probability that a person views the media item of interest using a selected other device type) as the proportion of the selected demographic group (e.g., based on responses from a survey or another calibration data source) that accessed the media item of interest on the other device type to the total number of people in the selected demographic group (e.g., based on responses from a survey or another calibration data source). For example, if 20 people in the M18-24 demographic group responded to a survey that they accessed media in the 'comedy' media category on television (out of the 100 people in the M18-24 demographic group represented in the survey), then Probability A is 20% or 0.20. Example models for calculating Probability A and Probability B are shown in Equations 2 and 3 below, respectively. The alpha factor for the M18-24 demographic group, the 'comedy' media category on tablets, is 0.40/0.20 = 2.

等式2A=(年龄和性别组X中在TV上观看媒体类别Y的人员的数目)/(年龄和性别组X中的人员的总数目)Equation 2A = (number of people in age and gender group X who watch media category Y on TV) / (total number of people in age and gender group X)

等式3B=(年龄和性别组X中在感兴趣的设备类型上观看媒体类别Y的人员的数目)/(年龄和性别组X中的人员的总数目)Equation 3B = (Number of people in age and gender group X who watch media category Y on the device type of interest) / (Total number of people in age and gender group X)

在未覆盖计算器210确定用于确定数据库所有者104a未覆盖的α因子的示例中,示例性未覆盖校正器212通过将用于人口统计组的α因子乘以用于感兴趣的媒体项目的人口统计组的分布百分比来校正印象信息。例如,如果35-39岁女性组(例如下表19中的F35-39)表示2.9%的用于电视节目的特定剧集的印象,且对于将电视节目分类的媒体类别,用于35-39岁女性组的α因子为3.8,则新计算的百分比约为11.2%。然而,形成的百分比(即11.2%)被归一化,使得对于电视节目的剧集,用于所有人口统计组的百分比总计为100%。示例性未覆盖校正器212将归一化的百分比乘以未被数据库所有者104a关联到用户的印象的数目,以确定归属于35-39岁女性组(F35-39)的印象的数目。在一些示例中,未被数据库所有者104a关联到用户的印象的数目从如下二者的差来确定:1)由AME 108识别的印象的数目和2)被数据库所有者104a关联到用户的印象的数目。附加地或可替选地,数据库所有者104a监控并上报数据库所有者104a无法关联到用户的印象的数目,同时还监控人口统计组所对应的印象(例如数据库所有者能够关联到用户的印象)的数目。In an example where the non-coverage calculator 210 determines an alpha factor for determining non-coverage by the database owner 104a, the exemplary non-coverage corrector 212 corrects the impression information by multiplying the alpha factor for the demographic group by the distribution percentage of the demographic group for the media item of interest. For example, if the 35-39 year old female group (e.g., F35-39 in Table 19 below) represents 2.9% of the impressions for a particular episode of a television program, and the alpha factor for the 35-39 year old female group is 3.8 for the media category that categorizes the television program, the newly calculated percentage is approximately 11.2%. However, the resulting percentage (i.e., 11.2%) is normalized so that the percentages for all demographic groups for the episodes of the television program total 100%. The exemplary non-coverage corrector 212 multiplies the normalized percentage by the number of impressions that were not associated to the user by the database owner 104a to determine the number of impressions attributed to the 35-39 year old female group (F35-39). In some examples, the number of impressions that the database owner 104a cannot associate with a user is determined from the difference between: 1) the number of impressions identified by the AME 108 and 2) the number of impressions that the database owner 104a associates with a user. Additionally or alternatively, the database owner 104a monitors and reports the number of impressions that the database owner 104a cannot associate with a user, while also monitoring the number of impressions corresponding to a demographic group (e.g., impressions that the database owner can associate with a user).

下表19示出了由未覆盖校正器212生成的示例性数据,以使用α因子校正印象信息。在表19的示例中,AME 108计数数据库所有者104a无法关联到人口统计组(例如在下表19的第一列中标出的“Demos”)的2,000个媒体印象。Table 19 below shows exemplary data generated by the uncovered corrector 212 to correct impression information using an alpha factor. In the example of Table 19, AME 108 counts 2,000 media impressions that the database owner 104a is unable to associate to a demographic group (e.g., labeled "Demos" in the first column of Table 19 below).

未覆盖印象Uncovered impressions

表19Table 19

如上表19的示例所示,针对每个人口统计组(Demos),未覆盖校正器212将调整的百分比(Adj%)计算成α因子(α=B/A)与测量的百分比的乘积。未覆盖校正器212将调整的百分比(Adj%)归一化为100%的总和(例如将调整的百分比(Adj%)除以总的调整的百分比(例如160.9%))以获得归一化的百分比(Norm%)。未覆盖校正器212将归一化的百分比(Norm%)乘以未被数据库所有者104a关联到人口统计组(Demos)的印象的数目以获得归属于每个人口统计组(Demos)的未覆盖印象(未覆盖印象)的数目。由未覆盖校正器212确定的示例性印象(未覆盖印象)可以与错误认定调整的印象相加以确定错误认定和未覆盖调整的印象。As shown in the example of Table 19 above, for each demographic group (Demos), the non-coverage corrector 212 calculates the adjusted percentage (Adj%) as the product of the alpha factor (α=B/A) and the measured percentage. The non-coverage corrector 212 normalizes the adjusted percentage (Adj%) to a sum of 100% (e.g., dividing the adjusted percentage (Adj%) by the total adjusted percentage (e.g., 160.9%)) to obtain a normalized percentage (Norm%). The non-coverage corrector 212 multiplies the normalized percentage (Norm%) by the number of impressions that were not associated with the demographic group (Demos) by the database owner 104a to obtain the number of uncovered impressions (Non-covered Impressions) attributed to each demographic group (Demos). The exemplary impressions (Non-covered Impressions) determined by the non-coverage corrector 212 can be added to the misidentification-adjusted impressions to determine misidentification- and non-coverage-adjusted impressions.

用于未覆盖校正的未覆盖因子Non-coverage factor for non-coverage correction

作为使用上文公开的示例性α因子(α=B/A)补偿用于未覆盖误差的印象信息的替选方案,图2的示例性未覆盖计算器210可以计算用于各个示例性人口统计组的未覆盖因子。未覆盖因子反映未被数据库所有者104a归属于人员的部分印象。As an alternative to using the exemplary α factor (α=B/A) disclosed above to compensate impression information for non-coverage error, the exemplary non-coverage calculator 210 of FIG2 can calculate a non-coverage factor for each exemplary demographic group. The non-coverage factor reflects the portion of the impression that is not attributed to a person by the database owner 104a.

为了计算用于人口统计组和特定设备类型的未覆盖因子,示例性未覆盖计算器210从调查校准数据源确定人口统计组中的大量或部分人员(例如调查的应答者),这些人员指示他们在使用特定设备类型时不会被数据库所有者104a识别为人口统计组中拥有和访问该特定设备类型的部分人员。例如,未覆盖计算器210可以确定,如果应答者指示在应答者的家里没人使用该特定类型的设备访问数据库所有者104a、他没有向数据库所有者104a注册、和/或在人员在特定设备类型上访问媒体时采取阻止数据库所有者104a识别该人员的任何其它行为或无所作为,则应答者在使用特定设备类型时不会被数据库所有者104a识别。To calculate the uncovered factor for a demographic group and a particular device type, the example uncovered calculator 210 determines from a survey calibration data source a significant number or portion of persons in the demographic group (e.g., respondents to a survey) who indicate that they would not be recognized by the database owner 104a when using a particular device type as being a portion of the persons in the demographic group who own and access the particular device type. For example, the uncovered calculator 210 may determine that a respondent would not be recognized by the database owner 104a when using a particular device type if the respondent indicates that no one in the respondent's home uses the particular device type to access the database owner 104a, that the respondent is not registered with the database owner 104a, and/or that the respondent has taken any other action or inaction that prevents the database owner 104a from recognizing the respondent when accessing media on the particular device type.

图2的示例性未覆盖计算器210创建用于各个人口统计组和设备类型的未覆盖因子的表,其中未覆盖因子被计算为:未覆盖因子=(人口统计组中针对设备类型的应答者的未覆盖部分)/(人口统计组中访问该设备类型的设备的应答者的总数目)。在下表20中示出了用于平板电脑的示例性未覆盖因子表。在一些示例中,示例性未覆盖计算器210制作用于其它设备类型的类似表。如表20所示,21-24岁女性人口统计组的20%在平板电脑上未被数据库所有者104a覆盖(例如不可识别)。换言之,访问平板电脑的21-24岁女性的10%不会被数据库所有者104a识别。类似地,18-20岁男性人口统计组的10%在平板电脑上未被数据库所有者104a覆盖。The example non-coverage calculator 210 of FIG2 creates a table of non-coverage factors for each demographic group and device type, where the non-coverage factor is calculated as: non-coverage factor = (uncovered portion of respondents for the device type in the demographic group) / (total number of respondents in the demographic group who accessed devices of the device type). An example non-coverage factor table for a tablet is shown in Table 20 below. In some examples, the example non-coverage calculator 210 creates similar tables for other device types. As shown in Table 20, 20% of the 21-24 year old female demographic group is not covered (e.g., not identifiable) on the tablet by the database owner 104a. In other words, 10% of the 21-24 year old females who accessed the tablet would not be recognized by the database owner 104a. Similarly, 10% of the 18-20 year old male demographic group is not covered on the tablet by the database owner 104a.

用于平板电脑的示例性未覆盖因子Exemplary non-coverage factors for tablets

表20Table 20

上表20的未覆盖因子可以被用作用于执行针对印象信息的未覆盖调整的α因子(α=B/A)的替选。例如,由数据库所有者104a所观察的频率(例如在一时段期间每受众成员的平均印象)可以用于计算由数据库所有者104a所观察的印象所对应的受众。然后示例性未覆盖计算器210通过未覆盖因子调整受众(例如调整的受众=受众/(1-未覆盖因子)),并使用该频率将调整的受众转换为未覆盖调整的印象。The non-coverage factor of Table 20 above can be used as an alternative to the α factor (α = B/A) for performing non-coverage adjustments on impression information. For example, the frequency observed by the database owner 104a (e.g., the average impression per audience member during a time period) can be used to calculate the audience corresponding to the impressions observed by the database owner 104a. The example non-coverage calculator 210 then adjusts the audience by the non-coverage factor (e.g., adjusted audience = audience / (1-non-coverage factor)) and uses the frequency to convert the adjusted audience into non-coverage adjusted impressions.

尽管上文示例描述了用于一个数据库所有者的未覆盖因子,但是示例性未覆盖计算器210可以附加地或可替选地计算用于多个数据库所有者的未覆盖因子。例如,如果使用两个数据库所有者,则示例性调查校准数据源可以包括指定为确定应答者是否借助一个或多个设备类型访问数据库所有者104a-b中的任一者的数据。图2的示例性未覆盖计算器210然后确定,未覆盖误差受限于数据库所有者104a-b均不可识别的那些人员和/或印象。在图2的示例中,如果数据库所有者104a-b中的至少一者可以在移动设备上识别人员,则示例性人员被视为被覆盖。Although the above example describes a non-coverage factor for one database owner, the example non-coverage calculator 210 can additionally or alternatively calculate non-coverage factors for multiple database owners. For example, if two database owners are used, the example survey calibration data source can include data designated to determine whether a respondent accessed any of the database owners 104a-b via one or more device types. The example non-coverage calculator 210 of FIG2 then determines that the non-coverage error is limited to those persons and/or impressions that are not identifiable by any of the database owners 104a-b. In the example of FIG2, the example person is considered covered if at least one of the database owners 104a-b can identify the person on a mobile device.

未覆盖误差补偿和缩放示例1Uncovered Error Compensation and Scaling Example 1

补偿未覆盖误差的第一示例包括将用于人口统计组的α因子(α=B/A)乘以同一人口统计组所对应的错误认定调整的印象计数。例如,α因子可以用于基于上文参照表16和/或表18所描述的第一错误认定补偿示例的错误认定调整的印象计数来计算未覆盖印象计数。A first example of compensating for uncovered errors includes multiplying an alpha factor (α = B/A) for a demographic group by the misidentification-adjusted impression count corresponding to the same demographic group. For example, the alpha factor can be used to calculate the uncovered impression count based on the misidentification-adjusted impression count of the first misidentification compensation example described above with reference to Table 16 and/or Table 18.

图3B示出了可由图2的未覆盖校正器212执行以补偿未覆盖误差的示例性计算。在图3B的示例中,未覆盖校正器212获得在图3A的示例中由错误认定校正器206计算的错误认定调整的数据306。未覆盖校正器212将同一设备类型(和/或媒体类别)所对应的未覆盖因子308(例如一组α因子、一组标量)应用于用于该设备类型(和/或媒体类别)的错误认定调整的数据306以确定用于该设备类型(和/或媒体类别)的错误认定和未覆盖调整的数据310。FIG3B illustrates exemplary calculations that may be performed by the non-coverage corrector 212 of FIG2 to compensate for non-coverage errors. In the example of FIG3B , the non-coverage corrector 212 obtains the misidentification-adjusted data 306 calculated by the misidentification corrector 206 in the example of FIG3A . The non-coverage corrector 212 applies non-coverage factors 308 (e.g., a set of alpha factors, a set of scalars) corresponding to the same device type (and/or media category) to the misidentification-adjusted data 306 for the device type (and/or media category) to determine misidentification- and non-coverage-adjusted data 310 for the device type (and/or media category).

例如,下表21示出了用于使用上表18的对应的错误认定调整的印象计数的总数目来确定每人口统计组的未覆盖印象的量的示例性计算。未覆盖校正器212使用针对M25-29人口统计组的α因子(α=B/A)(例如来自上表19的1.68)来调整错误认定调整的印象计数(例如上表18的针对M25-29人口统计组的210,945)。下表21示出了错误认定和未覆盖调整的数据310(例如错误认定和未覆盖调整的印象计数)的示例。在如下示例中,AME 108已经识别了数据库所有者104未将其与人口统计组相关联的1,126,462个总印象。For example, Table 21 below shows an exemplary calculation for determining the amount of uncovered impressions per demographic group using the total number of corresponding misidentification-adjusted impression counts from Table 18 above. The uncovered corrector 212 adjusts the misidentification-adjusted impression counts (e.g., 210,945 for the M25-29 demographic group from Table 18 above) using an alpha factor (α=B/A) for the M25-29 demographic group (e.g., 1.68 from Table 19 above). Table 21 below shows an example of misidentification- and uncovered-adjusted data 310 (e.g., misidentification- and uncovered-adjusted impression counts). In the following example, AME 108 has identified 1,126,462 total impressions that the database owner 104 has not associated with a demographic group.

示例性错误认定和未覆盖调整的印象数据Example Misidentification and Non-coverage Adjusted Impression Data

表21Table 21

在上表21中,从上文参照表18描述的错误认定校正示例获得示例性错误认定调整的印象(Misatt.-adjusted Imp.Count)。通过确定错误认定调整的印象计数(例如针对F30-34人口统计组的182,026)相对于总的错误认定调整的印象计数(例如3,034,551)的百分比,而针对各个人口统计组基于错误认定调整的印象计数(Misatt.-adjustedImp.Count)确定表21的示例性测量的百分比(Meas%)。In Table 21 above, exemplary misidentification-adjusted impressions (Misatt.-adjusted Imp. Count) are obtained from the misidentification correction example described above with reference to Table 18. The exemplary measured percentages (Meas %) of Table 21 are determined based on the misidentification-adjusted impression count (Misatt.-adjusted Imp. Count) for each demographic group by determining the percentage of the misidentification-adjusted impression count (e.g., 182,026 for the F30-34 demographic group) relative to the total misidentification-adjusted impression count (e.g., 3,034,551).

表21包括用于各个示例性人口统计组的一组示例性α因子(α=B/A),其可以如上所述参照示例性表19来计算。例如借助校准调查(例如上文讨论的调查)的结果以及上文公开的等式2和等式3来确定α因子。使用α因子,示例性未覆盖校正器212针对表21的每个示例性人口统计组而通过将测量的百分比(Meas.%)乘以对应的α因子来计算调整的百分比(Adj.%)。示例性未覆盖校正器212还针对表21的每个示例性人口统计组将调整的百分比(Adj.%)归一化以获得归一化的百分比(Norm.%)。Table 21 includes a set of exemplary alpha factors (α=B/A) for various exemplary demographic groups, which can be calculated as described above with reference to exemplary Table 19. The alpha factors are determined, for example, using the results of a calibration survey (such as the survey discussed above) and equations 2 and 3 disclosed above. Using the alpha factors, the exemplary non-coverage corrector 212 calculates an adjusted percentage (Adj.%) for each exemplary demographic group of Table 21 by multiplying the measured percentage (Meas.%) by the corresponding alpha factor. The exemplary non-coverage corrector 212 also normalizes the adjusted percentage (Adj.%) for each exemplary demographic group of Table 21 to obtain a normalized percentage (Norm.%).

示例性未覆盖校正器212通过将用于表21的每个示例性人口统计组的归一化的百分比(Norm.%)乘以总的未覆盖印象计数(例如1,126,426)来确定未覆盖印象计数(Non-Covered Imp.Count)。例如,用于F30-34人口统计组的未覆盖印象计数(Non-CoveredImp.Count)被计算成3.85%*1,126,426=43,388。示例性未覆盖校正器212然后可以针对表21的每个示例性人口统计组将未覆盖印象计数(Non-Covered Imp.Count)与错误认定调整的印象计数(Misatt.-adjusted Imp.Count)相加以确定错误认定和未覆盖调整的印象计数(Misatt.and Non-Cov.-Adj.Imp.Count)。The example non-coverage corrector 212 determines the non-covered impression count (Non-Covered Imp. Count) by multiplying the normalized percentage (Norm. %) for each example demographic group of Table 21 by the total non-covered impression count (e.g., 1,126,426). For example, the non-covered impression count (Non-Covered Imp. Count) for the F30-34 demographic group is calculated as 3.85%*1,126,426=43,388. The example non-coverage corrector 212 can then add the non-covered impression count (Non-Covered Imp. Count) to the misidentification-adjusted impression count (Misatt.-adjusted Imp. Count) for each example demographic group of Table 21 to determine the misidentification and non-coverage adjusted impression count (Misatt. and Non-Cov.-Adj. Imp. Count).

未覆盖误差补偿和缩放示例2Uncovered Error Compensation and Scaling Example 2

补偿未覆盖误差的第二示例包括使用上表20的未覆盖因子。例如当α因子不可用于特定类型的媒体和/或特定设备类型(例如观看媒体的概率和/或在设备类型上观看的概率不可用)时,可以使用上文结合未覆盖因子公开的示例性未覆盖方法来代替上文结合α因子公开的未覆盖误差补偿示例的α因子。A second example of compensating for uncovered errors includes using the uncovered factors of Table 20. For example, when the alpha factor is not available for a particular type of media and/or a particular device type (e.g., the probability of viewing the media and/or the probability of viewing on the device type is not available), the exemplary uncovered method disclosed above in conjunction with the uncovered factor can be used in place of the alpha factor of the uncovered error compensation example disclosed above in conjunction with the alpha factor.

在本示例中,图2的未覆盖校正器212使用未覆盖因子校正从数据库所有者104a获得的印象信息。例如,未覆盖校正器212可以将印象的调整数目确定为:(上报的印象计数)/(1-(用于人口统计组的未覆盖因子))。2 uses the non-coverage factor to correct the impression information obtained from the database owner 104a. For example, the non-coverage corrector 212 can determine the adjusted number of impressions as: (reported impression count)/(1-(non-coverage factor for the demographic group)).

使用图3B的示例,未覆盖校正器212获得在图3A的示例中由错误认定校正器206计算的错误认定调整的数据306。未覆盖校正器212将同一设备类型所对应的未覆盖因子308(例如一组标量而非一组α因子)应用于用于该设备类型的错误认定调整的数据306以确定用于该设备类型的错误认定和未覆盖调整的数据310。例如,未覆盖校正器212使用表20的用于M25-29人口统计组的10.0%未覆盖因子来调整错误认定调整的印象计数(例如上表18的用于M25-29人口统计组的210,945)以将错误认定和未覆盖调整的印象计数确定为19,046。示例性未覆盖校正器212还将错误认定和未覆盖调整的受众规模确定为错误认定和未覆盖调整的印象计数除以从数据库所有者计算或获得的频率(例如来自上表17的频率)的商。表22示出了用于平板电脑设备类型的错误认定和未覆盖调整的数据310(例如错误认定和未覆盖调整的印象和受众)的示例。Using the example of FIG3B , the non-coverage corrector 212 obtains the misidentification-adjusted data 306 calculated by the misidentification corrector 206 in the example of FIG3A . The non-coverage corrector 212 applies a non-coverage factor 308 corresponding to the same device type (e.g., a set of scalars rather than a set of alpha factors) to the misidentification-adjusted data 306 for that device type to determine the misidentification- and non-coverage-adjusted data 310 for that device type. For example, the non-coverage corrector 212 adjusts the misidentification-adjusted impression count (e.g., 210,945 for the M25-29 demographic group from Table 18 above) using the 10.0% non-coverage factor from Table 20 to determine the misidentification- and non-coverage-adjusted impression count as 19,046. The example non-coverage corrector 212 also determines the misidentification- and non-coverage-adjusted audience size as the quotient of the misidentification- and non-coverage-adjusted impression count divided by the frequency calculated or obtained from the database owner (e.g., the frequency from Table 17 above). Table 22 shows an example of misidentification and non-reach adjusted data 310 (eg, misidentification and non-reach adjusted impressions and audience) for a tablet device type.

用于平板电脑设备类型的示例性错误认定和未覆盖调整的印象计数和受众规模Example misidentification and non-reach adjustment impression counts and audience size for the tablet device type

表22Table 22

在上表22的示例中,示例性未覆盖校正器212通过将对应的错误认定和未覆盖调整的印象计数除以表17的对应频率(例如来自数据库所有者104a)而针对各个人口统计组确定错误认定和未覆盖调整的受众规模。In the example of Table 22 above, the example non-coverage corrector 212 determines the misidentified and non-coverage adjusted audience size for each demographic group by dividing the corresponding misidentified and non-coverage adjusted impression count by the corresponding frequency of Table 17 (e.g., from the database owner 104a).

图2的示例性印象信息调整器214调整补偿的印象计数和受众规模以对齐由受众测量实体108所观察的印象的数目。图3C示出了基于观察的户口普查数据(例如印象量计数)调整补偿的(例如错误认定和未覆盖调整的)印象计数和/或受众规模310的示例性过程。The example impression information adjuster 214 of Figure 2 adjusts compensated impression counts and audience size to align with the number of impressions observed by the audience measurement entity 108. Figure 3C illustrates an example process for adjusting compensated (e.g., misidentification and non-coverage adjusted) impression counts and/or audience size 310 based on observed census data (e.g., impression volume counts).

尽管补偿上文参照表15-22所描述的错误认定和/或未覆盖的示例描述了补偿印象和特殊受众规模,但是图2的示例性错误认定校正器206和/或示例性未覆盖校正器212可以附加地或可替选地使用相同技术来补偿持续时间单位错误认定和/或未覆盖。下表23示出了将上表14的错误认定矩阵应用于与上表18的示例的印象和特殊受众规模相关联的持续时间单位的示例。While the examples of compensating for misidentification and/or non-coverage described above with reference to Tables 15-22 describe compensating for impressions and specific audience sizes, the example misidentification corrector 206 and/or the example non-coverage corrector 212 of FIG2 can additionally or alternatively use the same techniques to compensate for duration unit misidentification and/or non-coverage. Table 23 below shows an example of applying the misidentification matrix of Table 14 above to duration units associated with impressions and specific audience sizes of the example of Table 18 above.

用于平板电脑设备类型的示例性错误认定和未覆盖调整的印象计数、持续时间单位和特殊受众规模,以及未调整的印象计数、持续时间单位和特殊受众规模Example misidentification and non-coverage adjusted impression counts, duration units, and special audience sizes for the tablet device type, and unadjusted impression counts, duration units, and special audience sizes

表23Table 23

如上表23所示,将表14的错误认定校正矩阵应用于表23的未调整的持续时间单位(Unadj.Duration Units)导致在人口统计组(Demo.Group)中重分布持续时间单位。错误认定和特殊受众规模的调整与上文参照表18描述的示例中相同。示例性未覆盖校正器212然后可以使用上文参照表19-21的印象所描述的未覆盖校正技术校正错误认定调整的持续时间单位。As shown in Table 23 above, applying the misidentification correction matrix of Table 14 to the unadjusted duration units (Unadj.DurationUnits) of Table 23 results in a redistribution of duration units among the demographic groups (Demo.Group). The adjustments for misidentification and special audience size are the same as in the example described above with reference to Table 18. The example uncover corrector 212 can then correct the misidentified adjusted duration units using the uncover correction techniques described above with reference to the impressions of Tables 19-21.

印象缩放、持续时间单位缩放、和/或受众缩放示例Examples of impression scaling, duration unit scaling, and/or audience scaling

图2的示例性印象信息调整器214调整补偿的印象以与由受众测量实体108观察的印象的数目对齐。图3C示出了基于观察的户口普查数据(例如印象量计数)调整补偿的(例如错误认定和未覆盖调整的)印象的示例性过程。The example impression information adjuster 214 of Figure 2 adjusts compensated impressions to align with the number of impressions observed by the audience measurement entity 108. Figure 3C illustrates an example process for adjusting compensated (e.g., misidentification and non-coverage adjusted) impressions based on observed census data (e.g., impression volume counts).

使用上表21的示例的示例性错误认定和未覆盖调整的印象计数,印象信息调整器214缩放312错误认定和未覆盖调整的印象计数310以匹配(例如等于)从平板电脑观察的印象的数目(例如如由图1的AME 108观察的),在本示例中为6,385,686个印象。示例性印象信息调整器214可以缩放用于主网站(例如其上主持广告或其它媒体的网站)的印象计数和/或可以缩放投放在主站点上的媒体(广告或其它媒体)的印象。Using the example misidentified and uncovered adjusted impression counts of the example of Table 21 above, the impression information adjuster 214 scales 312 the misidentified and uncovered adjusted impression counts 310 to match (e.g., be equal to) the number of impressions observed from the tablet (e.g., as observed by the AME 108 of FIG. 1 ), which in this example is 6,385,686 impressions. The example impression information adjuster 214 can scale the impression counts for the primary website (e.g., the website on which the advertisement or other media is hosted) and/or can scale the impressions of the media (advertisements or other media) placed on the primary website.

为了缩放312用于人口统计组的示例性补偿的印象信息,示例性印象信息调整器214将从数据库所有者观察的印象(例如识别的印象和未识别的印象)的总数目(例如在本示例中为6,385,686)与归属于M21-24人口统计组的补偿的印象计数(例如上表21中的158,067)相乘,作为总的补偿印象(例如上表21中的4,161,011)的分数(例如百分比)。例如,印象信息调整器214将用于21-24岁男性人口统计组的缩放的补偿印象确定为(6,385,686)*(123,750/4,161,011)=189,913。下表24示出了用于平板电脑的示例性缩放的补偿印象计数。To scale 312 the exemplary compensated impression information for the demographic group, the exemplary impression information adjuster 214 multiplies the total number of impressions (e.g., recognized and unrecognized) observed from the database owner (e.g., 6,385,686 in this example) by the compensated impression count attributable to the M21-24 demographic group (e.g., 158,067 in Table 21 above) as a fraction (e.g., a percentage) of the total compensated impressions (e.g., 4,161,011 in Table 21 above). For example, the impression information adjuster 214 determines the scaled compensated impressions for the 21-24 male demographic group as (6,385,686)*(123,750/4,161,011)=189,913. Table 24 below shows exemplary scaled compensated impression counts for a tablet.

用于平板电脑的示例性缩放的补偿印象计数Exemplary scaled compensated impression count for tablets

表24Table 24

在一些其它示例中,印象信息调整器214基于主持媒体的站点的PDF缩放印象,针对该媒体计算印象信息。例如,为了缩放用于投放在主网站的媒体的印象,示例性印象信息调整器214针对感兴趣的人口统计组和感兴趣的设备(或所有设备)确定如下二者的差:a)由受众测量实体108针对主站点识别的用于设备类型的印象的数目(印象的人口普查计数)和b)用于设备类型的错误认定和未覆盖调整的印象。该差为通过缩放而解释的印象的数目。示例性印象信息调整器214确定该差与可归属于用于感兴趣的设备类型的感兴趣的人口统计组的部分印象的乘积。换言之,印象信息调整器214将用于主站点的人口统计组的概率分布函数应用于缩放错误认定和未覆盖调整的印象所需添加的印象的数目。将该乘积(例如用于人口统计组的部分印象)添加到用于人口统计组的错误认定和未覆盖调整的印象。因此,在本示例中,印象信息调整器214将缩放的印象确定为:缩放的印象=(用于所选人口统计组和所选设备类型的错误认定和未覆盖调整的印象)+(用于所选设备类型的针对主站点上的媒体的人口普查印象–用于所选设备类型的针对所有人口统计组的总的错误认定和未覆盖调整的印象)*(用于所选人口统计组和所选设备类型的针对主站点的缩放印象/用于所有人口统计组和所选设备类型的针对主站点的总的缩放印象)。In some other examples, the impression information adjuster 214 calculates impression information for the media based on the PDF scaled impressions of the site hosting the media. For example, to scale impressions for media delivered on a primary website, the exemplary impression information adjuster 214 determines, for the demographic group of interest and the devices of interest (or all devices), the difference between: a) the number of impressions for the device type identified by the audience measurement entity 108 for the primary site (the census count of impressions) and b) the impressions adjusted for misidentification and non-coverage for the device type. The difference is the number of impressions explained by the scaling. The exemplary impression information adjuster 214 determines the product of this difference and the fraction of impressions attributable to the demographic group of interest for the device type of interest. In other words, the impression information adjuster 214 applies the probability distribution function for the demographic group of the primary site to the number of impressions needed to add to scale the misidentification and non-coverage adjusted impressions. This product (e.g., the fraction of impressions for the demographic group) is added to the misidentification and non-coverage adjusted impressions for the demographic group. Therefore, in this example, the impression information adjuster 214 determines the scaled impressions as: scaled impressions = (misidentification and non-coverage adjusted impressions for the selected demographic group and the selected device type) + (census impressions for media on the primary site for the selected device type - total misidentification and non-coverage adjusted impressions for all demographic groups for the selected device type) * (scaled impressions for the primary site for the selected demographic group and the selected device type / total scaled impressions for the primary site for all demographic groups and the selected device type).

下表25示出了使用上文描述的概率分布函数、以及使用上表19的示例性错误认定和未覆盖调整的印象作为用于被缩放的媒体印象(而非主站点的印象)的调整的印象的示例性缩放。表25基于在用于示例性媒体的主站点上的用于平板电脑的6,385,687个总的人口普查印象。Table 25 below shows an exemplary scaling of impressions for scaled media impressions (rather than primary site impressions) using the probability distribution function described above and the exemplary misidentification and non-coverage adjusted impressions of Table 19 above. Table 25 is based on 6,385,687 total census impressions for tablets on the primary site for the exemplary media.

示例性缩放Example Scaling

表25Table 25

在上表25的示例中,示例性印象信息调整器214将用于F21-24人口统计组和平板电脑设备类型的印象缩放成缩放印象=(用于设备类型和人口统计组的错误认定和未覆盖调整的印象计数)+(用于所有人口统计组的总的观察的平板电脑印象计数–用于所有人口统计组的总的错误认定和未覆盖调整的平板电脑印象计数)*(用于人口统计组的缩放的主站点印象计数/用于所有人口统计组的总的缩放的主站点印象计数)=123,750+(6,385,686–4,161,015)*(1,132,301/37,873,074)=190,262。以上示例的示例性缩放可以被执行以将用于不同人口统计组的印象缩放到其它人口普查印象计数,诸如主站点的印象计数(例如如果主站点排外地呈现感兴趣的媒体)。In the example of Table 25 above, the example impression information adjuster 214 scales impressions for the F21-24 demographic groups and tablet device type to scaled impressions = (misidentification and non-coverage adjusted impression count for device type and demographic group) + (total observed tablet impression count for all demographic groups - total misidentification and non-coverage adjusted tablet impression count for all demographic groups) * (scaled primary site impression count for demographic group / total scaled primary site impression count for all demographic groups) = 123,750 + (6,385,686 - 4,161,015) * (1,132,301 / 37,873,074) = 190,262. The example scaling of the above example can be performed to scale impressions for different demographic groups to other census impression counts, such as the primary site's impression count (e.g., if the primary site exclusively presents media of interest).

尽管参考观看和视频媒体和/或组合音频/视频媒体描述了本文中所公开的示例,但是本文中所公开的示例也可以用于测量仅音频媒体的聆听者。例如,可以针对音频媒体剪裁用于计算α因子的媒体类别、调查校准数据、和/或第二设备类型。例如用于计算“A”项(例如上文等式2)的第二设备类型可以被修改成指的是(年龄和性别组X中在无线电上聆听媒体类别Y的人数)/(年龄和性别组X中的总人数)。Although the examples disclosed herein are described with reference to viewing and video media and/or combined audio/video media, the examples disclosed herein can also be used to measure listeners of audio-only media. For example, the media categories, survey calibration data, and/or second device types used to calculate the alpha factor can be tailored for audio media. For example, the second device type used to calculate the "A" term (e.g., Equation 2 above) can be modified to refer to (number of people in age and gender group X who listen to media category Y on the radio)/(total number of people in age and gender group X).

上文参照表24和表25描述的示例性缩放技术可以用于将错误认定和/或未覆盖调整的持续时间单位缩放到针对主站点观察的持续时间单位计数(例如人口普查持续时间计数)。The exemplary scaling techniques described above with reference to Tables 24 and 25 may be used to scale misidentification and/or non-coverage adjusted duration units to duration unit counts observed for the primary site (eg, census duration counts).

尽管上文示例公开了执行错误认定校正和未覆盖校正二者,但是可以对印象计数和/或受众规模执行错误认定校正而不执行未覆盖校正。可替选地,可以对印象计数和/或受众规模执行未覆盖校正而不执行错误认定校正。Although the above examples disclose performing both misidentification correction and non-coverage correction, misidentification correction may be performed on impression counts and/or audience size without performing non-coverage correction. Alternatively, non-coverage correction may be performed on impression counts and/or audience size without performing misidentification correction.

尽管在图2中示出了实施示例性印象数据补偿器200的示例性方式,但是在图2中所示的元件、过程和/或设备中的一者或多者可以被组合、划分、重排、省略、消除和/或以任何其它方式实现。另外,示例性校准数据收集器202、示例性共享矩阵生成器204、示例性错误认定校正器206、示例性印象信息收集器208、示例性未覆盖计算器210、示例性未覆盖校正器212、示例性印象信息调整器214、示例性家庭分布生成器216、示例性聚合分布生成器218、示例性矩阵校正器220、示例性矩阵归一化器222、示例性共同观看矩阵生成器224和/或更一般地,示例性印象数据补偿器200可以使用硬件,软件,固件,和/或硬件、软件和/或固件的任何组合来实现。因此,例如,示例性校准数据收集器202、示例性共享矩阵生成器204、示例性错误认定校正器206、示例性印象信息收集器208、示例性未覆盖计算器210、示例性未覆盖校正器212、示例性印象信息调整器214、示例性家庭分布生成器216、示例性聚合分布生成器218、示例性矩阵校正器220、示例性矩阵归一化器222、示例性共同观看矩阵生成器224和/或更一般地,示例性印象数据补偿器200中的任一者可以使用如下项来实现:一个或多个模拟或数字电路、一个或多个逻辑电路、一个或多个可编程处理器、一个或多个专用集成电路(ASIC)、一个或多个可编程逻辑设备(PLD)和/或一个或多个场可编程设备(FPLD)等。当阅读覆盖纯软件和/或固件实现的本专利的设备或系统权利要求中的任一者时,示例性校准数据收集器202、示例性共享矩阵生成器204、示例性错误认定校正器206、示例性印象信息收集器208、示例性未覆盖计算器210、示例性未覆盖校正器212、示例性印象信息调整器214、示例性家庭分布生成器216、示例性聚合分布生成器218、示例性矩阵校正器220、示例性矩阵归一化器222、和/或示例性共同观看矩阵生成器224中的至少一者由此明确地被限定成包括有形的计算机可读存储设备或存储盘,诸如存储软件和/或固件的内存、数字通用光盘(DVD)、光盘(CD)、蓝光碟等。另外,图2的示例性印象数据补偿器200可以包括除了图2中所示那些以外或代替图2中所示那些的一个或多个元件、过程和/或设备,和/或可以包括图示元件、过程和设备中的任何或全部中的多于一者。Although an exemplary manner of implementing the exemplary impression data compensator 200 is shown in FIG2 , one or more of the elements, processes, and/or devices shown in FIG2 may be combined, divided, rearranged, omitted, eliminated, and/or implemented in any other manner. Additionally, the exemplary calibration data collector 202 , the exemplary sharing matrix generator 204 , the exemplary false positive corrector 206 , the exemplary impression information collector 208 , the exemplary non-coverage calculator 210 , the exemplary non-coverage corrector 212 , the exemplary impression information adjuster 214 , the exemplary household distribution generator 216 , the exemplary aggregate distribution generator 218 , the exemplary matrix corrector 220 , the exemplary matrix normalizer 222 , the exemplary co-viewing matrix generator 224 , and/or more generally, the exemplary impression data compensator 200 may be implemented using hardware, software, firmware, and/or any combination of hardware, software, and/or firmware. Thus, for example, any of the exemplary calibration data collector 202, the exemplary sharing matrix generator 204, the exemplary false positive corrector 206, the exemplary impression information collector 208, the exemplary non-coverage calculator 210, the exemplary non-coverage corrector 212, the exemplary impression information adjuster 214, the exemplary household distribution generator 216, the exemplary aggregate distribution generator 218, the exemplary matrix corrector 220, the exemplary matrix normalizer 222, the exemplary co-viewing matrix generator 224 and/or more generally, the exemplary impression data compensator 200 may be implemented using one or more analog or digital circuits, one or more logic circuits, one or more programmable processors, one or more application specific integrated circuits (ASICs), one or more programmable logic devices (PLDs) and/or one or more field programmable devices (FPLDs), etc. When reading any of the device or system claims of this patent covering a purely software and/or firmware implementation, at least one of the exemplary calibration data collector 202, exemplary sharing matrix generator 204, exemplary false positive corrector 206, exemplary impression information collector 208, exemplary non-coverage calculator 210, exemplary non-coverage corrector 212, exemplary impression information adjuster 214, exemplary household distribution generator 216, exemplary aggregate distribution generator 218, exemplary matrix corrector 220, exemplary matrix normalizer 222, and/or exemplary co-viewing matrix generator 224 is hereby expressly defined to include a tangible computer-readable storage device or storage disk, such as a memory, digital versatile disk (DVD), compact disk (CD), Blu-ray disk, etc., storing software and/or firmware. In addition, the exemplary impression data compensator 200 of FIG. 2 may include one or more elements, processes, and/or devices in addition to or in place of those shown in FIG. 2 , and/or may include more than one of any or all of the illustrated elements, processes, and devices.

在图4至图13中示出了表示用于实现图2的印象数据补偿器200的示例性机器可读指令的流程图。在本示例中,机器可读指令包括由处理器执行的程序,该处理器诸如在下文结合图14所讨论的示例性处理器平台1400中示出的处理器1412。这些程序可以被嵌入在软件中,该软件存储在有形的计算机可读存储介质上,该存储介质诸如CD-ROM、软盘、硬盘驱动器、数字通用光盘(DVD)、蓝光碟、或与处理器1412相关联的存储器,但是全部程序和/或其部分可以替选地由处理器1412以外的设备来执行和/或体现在固件或专用硬件中。另外,尽管参照在图4至图13中所示的流程图来描述示例性程序,但是可以替选地使用许多其它实现示例性印象数据补偿器200的方法。例如,框的执行次序可以被改变,和/或描述的一些框可以被改变、消除或组合。Flowcharts representing exemplary machine-readable instructions for implementing the impression data compensator 200 of FIG. 2 are shown in FIG. 4 through FIG. 13 . In this example, the machine-readable instructions comprise programs executed by a processor, such as the processor 1412 shown in the exemplary processor platform 1400 discussed below in conjunction with FIG. 14 . These programs may be embedded in software stored on a tangible, computer-readable storage medium, such as a CD-ROM, floppy disk, hard drive, digital versatile disk (DVD), Blu-ray Disc, or memory associated with the processor 1412, but all programs and/or portions thereof may alternatively be executed by a device other than the processor 1412 and/or embodied in firmware or dedicated hardware. Furthermore, while the exemplary programs are described with reference to the flowcharts shown in FIG. 4 through FIG. 13 , many other methods of implementing the exemplary impression data compensator 200 may alternatively be used. For example, the order of execution of the blocks may be changed, and/or some of the blocks described may be changed, eliminated, or combined.

如上所述,图4至图13的示例性过程可以使用编码指令(例如计算机和/或机器可读指令)来实现,该编码指令存储在有形的计算机可读存储介质上,该存储介质诸如硬盘驱动器、闪存、只读存储器(ROM)、光盘(CD)、数字通用光盘(DVD)、缓存、随机存取存储器(RAM)和/或任何其它存储设备或存储盘,其中存储信息达任何持续时间(例如延长的时段、永久地、短时地、暂时缓冲、和/或信息的缓存)。如在本文中使用的,术语“有形的计算机可读存储介质”明确地被限定成包括任何类型的计算机可读存储介质和/或存储盘以及排除传播信号和传输媒体。如在本文中使用的,可交换地使用“有形的计算机可读存储介质”和“有形的机器可读存储介质”。附加地或可替选地,图4至图13的示例性过程可以使用编码指令(例如计算机和/或机器可读指令)来实现,该编码指令存储在非易失性计算机和/或机器可读介质上,该可读介质诸如硬盘驱动器、闪存、只读存储器、光盘、数字通用光盘、缓存、随机存取存储器和/或任何其它存储设备或存储盘,其中存储信息达任何持续时间(例如延长的时段、永久地、短时地、暂时缓冲、和/或信息的缓存)。如在本文中使用的,术语“非易失性计算机可读介质”明确地被限定成包括任何类型的计算机可读存储介质和/或存储盘以及排除传播信号和传输媒体。如在本文中使用的,当短语“至少”用作权利要求的前序中的过渡词时,它是开放式的,同样术语“包括”也是开放式的。As described above, the exemplary processes of Figures 4 to 13 can be implemented using coded instructions (e.g., computer and/or machine-readable instructions) stored on a tangible computer-readable storage medium, such as a hard drive, flash memory, read-only memory (ROM), compact disc (CD), digital versatile disc (DVD), cache, random access memory (RAM), and/or any other storage device or storage disk in which information is stored for any duration (e.g., for an extended period, permanently, temporarily, temporarily buffered, and/or cached information). As used herein, the term "tangible computer-readable storage medium" is expressly defined to include any type of computer-readable storage medium and/or storage disk and to exclude propagating signals and transmission media. As used herein, "tangible computer-readable storage medium" and "tangible machine-readable storage medium" are used interchangeably. Additionally or alternatively, the exemplary processes of Figures 4 to 13 can be implemented using coded instructions (e.g., computer and/or machine readable instructions) stored on a non-volatile computer and/or machine readable medium, such as a hard drive, flash memory, read-only memory, optical disc, digital versatile disc, cache, random access memory, and/or any other storage device or storage disk in which information is stored for any duration (e.g., an extended period, permanently, temporarily, temporarily buffered, and/or cached information). As used herein, the term "non-volatile computer readable medium" is expressly defined to include any type of computer readable storage medium and/or storage disk and to exclude propagation signals and transmission media. As used herein, when the phrase "at least" is used as a transitional word in the preamble of a claim, it is open ended, as is the term "comprising."

图4是表示示例性机器可读指令400的流程图,该示例性机器可读指令400可被执行以实现图2的用于补偿印象数据的示例性印象数据补偿器200。FIG. 4 is a flow diagram representative of example machine readable instructions 400 that may be executed to implement the example impression data compensator 200 of FIG. 2 for compensating impression data.

图2的示例性共享矩阵生成器204生成错误认定校正矩阵和/或共同观看矩阵(框402)。例如,共享矩阵生成器204针对在由校准数据收集器202(图2)从数据库所有者104a(图1)获得的印象信息(例如印象)中表示的每个设备类型计算设备共享矩阵。示例性共享矩阵生成器204可以通过计算上文在等式1中描述的概率和/或通过计算和聚合家庭共享矩阵而计算用于设备类型的错误认定校正矩阵。附加地或可替选地,示例性共享矩阵生成器204可以计算用于每个设备类型和/或媒体类别的包含共同观看概率κij的共同观看矩阵。也可以使用示例性调查校准数据源(例如随机选择的人员和/或家庭的调查)来计算共同观看概率κij,以确定例如在表示家庭中共同观看的发生率。下文参照图5描述可用于实现框402的示例性指令。The example sharing matrix generator 204 of FIG. 2 generates a false positive correction matrix and/or a co-viewing matrix (block 402). For example, the sharing matrix generator 204 calculates a device sharing matrix for each device type represented in the impression information (e.g., impressions) obtained by the calibration data collector 202 ( FIG. 2 ) from the database owner 104a ( FIG. 1 ). The example sharing matrix generator 204 may calculate the false positive correction matrix for the device type by calculating the probabilities described above in Equation 1 and/or by calculating and aggregating household sharing matrices. Additionally or alternatively, the example sharing matrix generator 204 may calculate a co-viewing matrix for each device type and/or media category that includes a co-viewing probability κ ij . The co-viewing probability κ ij may also be calculated using an example survey calibration data source (e.g., a survey of randomly selected individuals and/or households) to determine, for example, the incidence of co-viewing within a representative household. Example instructions that may be used to implement block 402 are described below with reference to FIG. 5 .

图2的示例性未覆盖计算器210确定未覆盖受众在感兴趣的设备类型上访问媒体的概率(框404)。示例性未覆盖计算器210还确定未覆盖因子(框405)。例如,未覆盖计算器210可以确定α因子(例如上文参照表17描述的示例性α因子α=B/A),该α因子用于计算用于未被数据库所有者104a关联到人口统计信息的印象的人口统计分布。下文参照图9描述可被执行以实现框404和框405的示例性指令。The example coverage calculator 210 of FIG2 determines the probability that the uncovered audience accessed the media on the device type of interest (block 404). The example coverage calculator 210 also determines a coverage factor (block 405). For example, the coverage calculator 210 can determine an alpha factor (e.g., the example alpha factor α=B/A described above with reference to Table 17) that is used to calculate the demographic distribution for impressions that are not associated with demographic information by the database owner 104a. Example instructions that can be executed to implement blocks 404 and 405 are described below with reference to FIG9.

图2的示例性印象信息收集器208从印象的容积(例如人口普查)测量获得印象计数(框406)。例如,印象信息收集器208确定在受众测量实体108(图1)处针对各个感兴趣的媒体项目(例如被监控的媒体)和/或针对各个设备类型识别的印象的数量。上表16中示出了示例性容积数据。示例性印象信息收集器208还获得印象(和/或印象的子集)所对应的人口统计信息(框408)。例如,印象信息收集器208接收针对各个设备类型和/或针对所有设备类型通过数据库所有者104a而与每个人口统计组相关联的印象的计数。The example impression information collector 208 of FIG2 obtains impression counts from a volumetric (e.g., census) measurement of impressions (block 406). For example, the impression information collector 208 determines the number of impressions identified at the audience measurement entity 108 ( FIG1 ) for each media item of interest (e.g., monitored media) and/or for each device type. Example volumetric data is shown in Table 16 above. The example impression information collector 208 also obtains demographic information corresponding to the impressions (and/or a subset of the impressions) (block 408). For example, the impression information collector 208 receives a count of impressions associated with each demographic group by the database owner 104a for each device type and/or for all device types.

图2的示例性错误认定校正器206选择媒体类别(例如喜剧、戏剧、剧情片等)(框410)。示例性错误认定校正器206还选择设备类型(例如智能手机、平板电脑、便携式媒体播放器)(框412)。示例性错误认定校正器206基于用于所选媒体类别和所选设备类型的错误认定校正矩阵调整印象、持续时间单位和/或特殊受众规模(从数据库所有者104a获得)(框414)。例如,错误认定校正器206可以确定错误认定校正矩阵302和数据库所有者印象数据304的点积,如图3A所示。在一些示例中,错误认定校正器206基于错误认定校正的印象和由数据库所有者104a确定的频率计算错误认定校正的特殊受众规模。下文参照图7描述可被执行以实现框414的示例性指令。The example misidentification corrector 206 of FIG. 2 selects a media category (e.g., comedy, drama, feature film, etc.) (block 410). The example misidentification corrector 206 also selects a device type (e.g., smartphone, tablet, portable media player) (block 412). The example misidentification corrector 206 adjusts impressions, duration units, and/or special audience size (obtained from the database owner 104a) based on a misidentification correction matrix for the selected media category and the selected device type (block 414). For example, the misidentification corrector 206 may determine a dot product of the misidentification correction matrix 302 and the database owner impression data 304, as shown in FIG. 3A. In some examples, the misidentification corrector 206 calculates a misidentification corrected special audience size based on the misidentification corrected impressions and the frequency determined by the database owner 104a. Example instructions that may be executed to implement block 414 are described below with reference to FIG. 7.

图2的示例性未覆盖校正器212还基于用于所选媒体类别和所选设备类型的未覆盖因子调整印象、持续时间单位和/或特殊受众规模(框416)。例如,未覆盖校正器212可以将图3B的错误认定调整的印象306除以覆盖百分比(例如1-未覆盖百分比)以获得错误认定和未覆盖调整的印象信息310。在一些示例中,错误认定校正器206基于错误认定和未覆盖校正的印象和由数据库所有者104a确定的频率计算错误认定和未覆盖校正的受众。下文参照图8描述可被执行以实现框416的示例性指令。The example non-coverage corrector 212 of FIG. 2 also adjusts the impressions, duration units, and/or special audience sizes based on the non-coverage factor for the selected media category and the selected device type (block 416). For example, the non-coverage corrector 212 may divide the misidentified adjusted impressions 306 of FIG. 3B by the coverage percentage (e.g., 1-non-coverage percentage) to obtain the misidentified and non-coverage adjusted impression information 310. In some examples, the misidentified corrector 206 calculates the misidentified and non-coverage corrected audience based on the misidentified and non-coverage corrected impressions and the frequency determined by the database owner 104a. Example instructions that may be executed to implement block 416 are described below with reference to FIG. 8.

示例性错误认定校正器206确定是否存在其印象信息将被补偿的附加设备类型(框418)。如果存在其印象信息将被补偿的附加设备类型(框418),则控制返回到框412,以选择另一设备类型。当不存在其印象信息将被补偿的更多设备类型时(框418),示例性错误认定校正器206确定是否存在其印象信息将被补偿的附加媒体类别(框420)。如果存在其印象信息将被补偿的附加媒体类别(框420),则控制返回到框410,以选择另一媒体类别。The example error correction module 206 determines whether there are additional device types for which impression information is to be compensated (block 418). If there are additional device types for which impression information is to be compensated (block 418), control returns to block 412 to select another device type. When there are no more device types for which impression information is to be compensated (block 418), the example error correction module 206 determines whether there are additional media categories for which impression information is to be compensated (block 420). If there are additional media categories for which impression information is to be compensated (block 420), control returns to block 410 to select another media category.

当不存在其印象信息将被补偿的更多媒体类别时(框420),图2的示例性印象信息调整器214基于调整的印象信息计算媒体收视率(框422)。例如,印象信息调整器214可以缩放错误认定和未覆盖调整的印象以匹配由受众测量实体108识别的印象。附加地或可替选地,示例性印象信息调整器214可以组合设备类型以确定用于多个或所有移动设备类型的印象信息。图4的示例性指令400然后结束。When there are no more media categories whose impression information is to be compensated (block 420), the example impression information adjuster 214 of FIG. 2 calculates media ratings based on the adjusted impression information (block 422). For example, the impression information adjuster 214 may scale the misidentified and uncovered adjusted impressions to match the impressions identified by the audience measurement entity 108. Additionally or alternatively, the example impression information adjuster 214 may combine device types to determine impression information for multiple or all mobile device types. The example instructions 400 of FIG. 4 then end.

图5是表示示例性机器可读指令500的流程图,该示例性机器可读指令500可被执行以实现图2的用于计算错误认定校正矩阵和/或共同观看矩阵的示例性印象数据补偿器200。示例性指令500可以被图2的示例性共享矩阵生成器204执行以实现图4的框402。5 is a flow diagram representing example machine-readable instructions 500 that may be executed to implement the example impression data compensator 200 of FIG 2 for calculating a misidentification correction matrix and/or a co-viewing matrix. The example instructions 500 may be executed by the example sharing matrix generator 204 of FIG 2 to implement block 402 of FIG 4 .

图2的示例性共享矩阵生成器204从调查校准数据源(例如从图2的校准数据收集器202)获得调查校准数据(框502)。例如,共享矩阵生成器204可以获得指示应答者家庭中的人员可访问的设备和/或由应答者在不同设备类型上观看的媒体类别的信息。示例性聚合分布生成器218选择媒体类别(框504)。示例性聚合分布生成器218选择设备类型(框506)。在图5的示例中,媒体类别和/或设备类型选自在调查校准数据中表示的媒体类别和/或设备类型。对于所有的人口统计组i和j,示例性聚合分布生成器218确定如下事件的概率γij:(1)识别的人口统计组i中的人员被数据库所有者(例如图1的数据库所有者104a)识别为媒体的观看者,和(2)实际观看者人口统计组j中的人员为实际观看者(框508)。例如,聚合分布生成器218可以使用上文示例性表1-13来生成如上表14所示的错误认定校正矩阵。下文参照图6描述可被执行以实现框508的示例性指令。The example sharing matrix generator 204 of FIG. 2 obtains survey calibration data from a survey calibration data source (e.g., from the calibration data collector 202 of FIG. 2 ) (block 502). For example, the sharing matrix generator 204 may obtain information indicating the devices accessible to persons in a respondent's household and/or the media categories viewed by the respondent on different device types. The example aggregate distribution generator 218 selects a media category (block 504). The example aggregate distribution generator 218 selects a device type (block 506). In the example of FIG. 5 , the media category and/or device type are selected from the media categories and/or device types represented in the survey calibration data. For all demographic groups i and j, the example aggregate distribution generator 218 determines the probability γ ij of the following events: (1) a person in the identified demographic group i is identified as a viewer of the media by a database owner (e.g., the database owner 104 a of FIG. 1 ), and (2) a person in the actual viewer demographic group j is an actual viewer (block 508). For example, the aggregated distribution generator 218 may use the exemplary Tables 1-13 above to generate the false positive correction matrix shown in the above Table 14. Example instructions that may be executed to implement block 508 are described below with reference to FIG.

对于所有对人口统计组i和j,示例性聚合分布生成器218确定如下事件的概率κij:(1)识别的人口统计组i中的人员被数据库所有者识别为媒体的观看者,和(2)也存在用于实际观看者人口统计组j中的人员的印象(框510)。对用于人口统计组i和j对的概率κij的集合可以被聚合成共同观看矩阵。下文参照图8描述可被执行以实现框510的示例性指令。For all pairs of demographic groups i and j, the example aggregate distribution generator 218 determines the probability κ ij that: (1) a person in the identified demographic group i is identified by the database owner as a viewer of the media, and (2) there is also an impression for a person in demographic group j who is an actual viewer (block 510). The set of probabilities κ ij for pairs of demographic groups i and j can be aggregated into a co-viewing matrix. Example instructions that can be executed to implement block 510 are described below with reference to FIG8.

示例性聚合分布生成器218确定是否存在针对其而来自调查校准数据源的调查校准数据应当被处理的任何附加设备类型(框512)。如果存在附加设备类型(框512),则控制返回到框506。如果不存在附加设备类型(框512),则示例性聚合分布生成器218确定是否存在针对其而来自调查校准数据源的调查校准数据应当被处理的附加媒体类别(框514)。如果存在附加媒体类别,则控制返回到框504。否则,如果不存在附加媒体类别(框514),则示例性指令500结束,且例如控制返回到图4的框404。The example aggregated distribution generator 218 determines whether there are any additional device types for which the survey calibration data from the survey calibration data source should be processed (block 512). If there are additional device types (block 512), control returns to block 506. If there are no additional device types (block 512), the example aggregated distribution generator 218 determines whether there are additional media categories for which the survey calibration data from the survey calibration data source should be processed (block 514). If there are additional media categories, control returns to block 504. Otherwise, if there are no additional media categories (block 514), the example instructions 500 end, and control returns to, for example, block 404 of FIG. 4.

图6是表示示例性机器可读指令600的流程图,该示例性机器可读指令600可被执行以确定错误认定概率γij。示例性指令600可以被执行以实现图5的确定如下事件的概率γij的框508:(1)识别的人口统计组i中的人员被数据库所有者(例如图1的数据库所有者104a)识别为媒体的观看者,和(2)实际观看者人口统计组j中的人员为实际观看者。初始在示例性指令600中,示例性家庭分布生成器216重分布家庭成员中为数据库所有者104a的注册用户的受众(框602)。例如,示例性家庭分布生成器216可以生成用于所选媒体类别的示例性重分布受众矩阵,如上文结合表5和/或表6所描述。示例性聚合分布生成器218聚合被识别的人口统计组i和实际观看者人口统计组j的在家庭中重分布的受众(框604)。例如,聚合分布生成器218可以针对多个家庭生成用于所选媒体类别的示例性重分布受众矩阵,如上文结合表8所描述。FIG6 is a flow diagram of exemplary machine-readable instructions 600 that may be executed to determine a probability of false positives γ ij . The exemplary instructions 600 may be executed to implement block 508 of FIG5 , which determines the probability γ ij of the following events: (1) a person in an identified demographic group i is identified by a database owner (e.g., database owner 104a of FIG1 ) as a viewer of the media, and (2) a person in an actual viewer demographic group j is an actual viewer. Initially in the exemplary instructions 600 , the exemplary household distribution generator 216 redistributes the audience of registered users of the database owner 104a who are members of the household (block 602 ). For example, the exemplary household distribution generator 216 may generate an exemplary redistributed audience matrix for the selected media category, as described above in connection with Tables 5 and/or 6. The exemplary aggregated distribution generator 218 aggregates the redistributed audiences in the household for the identified demographic group i and the actual viewer demographic group j (block 604 ). For example, the aggregate distribution generator 218 may generate an exemplary redistributed audience matrix for a selected media category for a plurality of households, as described above in conjunction with Table 8.

示例性矩阵校正器220生成解释识别的人口统计组i中的第一人员与实际观看者人口统计组j中的人员生活在同一家庭中的概率P(L)ij的NPM指标(框606)。例如,示例性矩阵校正器220可以将NPM数据应用于调查响应数据以生成NPM指标,如上文结合表9-11所描述。示例性矩阵校正器220将NPM指标应用于在家庭中重分布的数据库所有者印象以解释识别的人口统计组i中的第一人员与实际观看者人口统计组j中的人员生活在同一家庭中的概率P(L)ij(框608)。例如,如上文结合表12所描述,矩阵校正器220可以通过将上表8的i,j单元中的重分布受众值乘以上表11的i,j单元值中对应的NPM指标来确定表12中每个i,j单元值。采用该方式,矩阵校正器220将NPM指标应用于由数据库所有者104a在不同家庭中收集的重分布印象以解释识别的人口统计组i中的第一人员与实际观看者人口统计组j中的人员生活在同一家庭中的概率P(L)ijThe example matrix corrector 220 generates an NPM metric that accounts for the probability P(L) ij that the first person in the identified demographic group i lives in the same household as a person in the actual viewer demographic group j (block 606). For example, the example matrix corrector 220 may apply NPM data to the survey response data to generate the NPM metric, as described above in conjunction with Tables 9-11. The example matrix corrector 220 applies the NPM metric to the database owner impressions redistributed across households to account for the probability P(L) ij that the first person in the identified demographic group i lives in the same household as a person in the actual viewer demographic group j (block 608). For example, as described above in conjunction with Table 12, the matrix corrector 220 may determine each i, j cell value in Table 12 by multiplying the redistributed audience value in the i, j cell of Table 8 above by the corresponding NPM metric in the i, j cell value in Table 11 above. In this way, the matrix corrector 220 applies the NPM metric to the redistributed impressions collected by the database owner 104a across different households to account for the probability P(L) ij that the first person in the identified demographic group i lives in the same household as a person in the actual viewer demographic group j.

示例性矩阵归一化器222将用于各个识别的人口统计组i的概率归一化(框610)。例如,矩阵归一化器222将表14的错误认定矩阵中的每列(例如被数据库所有者104a识别的每个人口统计组)归一化以使得各列的总数等于同一个数(例如1.00或100%)。对各列归一化使得在校正错误认定之后的印象的数目等于被数据库所有者104a检测的印象的总数目,以及保持通过数据库所有者104a而与各个识别的人口统计组i相关联的印象的比例。图6的示例性指令600结束,且例如控制返回到图5的框510。The example matrix normalizer 222 normalizes the probabilities for each identified demographic group i (block 610). For example, the matrix normalizer 222 normalizes each column in the false positive matrix of Table 14 (e.g., each demographic group identified by the database owner 104a) so that the totals for each column equal the same number (e.g., 1.00 or 100%). The columns are normalized so that the number of impressions after correcting the false positives equals the total number of impressions detected by the database owner 104a, and the proportion of impressions associated with each identified demographic group i by the database owner 104a is maintained. The example instructions 600 of FIG. 6 end, and control returns to, for example, block 510 of FIG. 5.

图7是表示示例性机器可读指令700的流程图,该示例性机器可读指令700可被执行以实现图2的用于计算错误认定校正矩阵和/或共同观看矩阵的示例性印象数据补偿器200。示例性指令700为上文参照图5描述的实现图4的框402的示例性指令的替选示例。7 is a flow diagram representing example machine-readable instructions 700 that may be executed to implement the example impression data compensator 200 of FIG2 for calculating a misidentification correction matrix and/or a co-viewing matrix. The example instructions 700 are an alternative example of the example instructions implementing block 402 of FIG4 described above with reference to FIG5.

图2的示例性共享矩阵生成器204从调查校准数据源(例如从图2的校准数据收集器202)获得调查校准数据(框702)。例如,共享矩阵生成器204可以获得指示应答者家庭中的人员可访问的设备和/或由应答者在不同设备类型上观看的媒体类别的信息。示例性聚合分布生成器218选择媒体类别(框704)。示例性聚合分布生成器218选择设备类型(框706)。在图7的示例中,媒体类别和/或设备类型选自在调查校准数据中表示的媒体类别和/或设备类型。对于所有对人口统计组i和j,示例性聚合分布生成器218计算识别的人口统计组i中的人员与实际观看者人口统计组j中的人员生活在同一家庭中的概率P(L)ij(例如基于调查校准数据源)(框708)。例如,聚合分布生成器218可以确定人口统计组i和j中生活在同一家庭中的人员共同观看的发生率。The example sharing matrix generator 204 of FIG. 2 obtains survey calibration data from a survey calibration data source (e.g., from the calibration data collector 202 of FIG. 2 ) (block 702). For example, the sharing matrix generator 204 may obtain information indicating the devices accessible to persons in a respondent's household and/or the media categories viewed by the respondent on different device types. The example aggregated distribution generator 218 selects a media category (block 704). The example aggregated distribution generator 218 selects a device type (block 706). In the example of FIG. 7 , the media category and/or device type are selected from the media categories and/or device types represented in the survey calibration data. For all pairs of demographic groups i and j, the example aggregated distribution generator 218 calculates the probability P(L) ij (e.g., based on the survey calibration data source) that a person in identified demographic group i lives in the same household as a person in actual viewer demographic group j (block 708). For example, the aggregated distribution generator 218 may determine the incidence of co-viewing by persons in demographic groups i and j living in the same household.

对于所有对人口统计组i和j,示例性聚合分布生成器218确定生活在同一家庭中的人口统计组i中的人员与实际观看者人口统计组j中的人员均访问所选设备类型的移动设备的概率P(D|L)ij(框710)。For all pairs of demographic groups i and j, the example aggregate distribution generator 218 determines the probability P(D|L) ij that a person in demographic group i and a person in actual viewer demographic group j living in the same household both access a mobile device of the selected device type (block 710).

对于所有对人口统计组i和j,示例性聚合分布生成器218确定生活在同一家庭中且访问所选设备类型的移动设备的识别的人口统计组i中的人员(其为数据库所有者用户)与实际观看者人口统计组j中的人员共享用于观看所选媒体类别的媒体的同一移动设备的概率P(Sx|D)ij(框712)。例如,示例性聚合分布生成器218可以确定人口统计组i和j中的人员均在选自调查校准数据的设备类型上访问所选媒体类别的媒体的发生率。For all pairs of demographic groups i and j, the example aggregated distribution generator 218 determines the probability P(Sx |D)ij that a person in the identified demographic group i (who is a database owner user) who lives in the same household and accesses a mobile device of the selected device type shares the same mobile device used to view media of the selected media category with a person in the actual viewer demographic group j (block 712). For example , the example aggregated distribution generator 218 may determine the incidence of people in demographic groups i and j both accessing media of the selected media category on a device type selected from the survey calibration data.

对于所有对人口统计组i和j,示例性聚合分布生成器218针对与所选设备类型和所选媒体类别相关联的错误认定校正矩阵确定用于所选对的人口统计组i,j的共享概率γij(框714)。例如,聚合分布生成器218可以使用上文描述的示例性等式1来计算共享概率γijFor all pairs of demographic groups i and j, the example aggregated distribution generator 218 determines the sharing probability γ ij for the selected pair of demographic groups i, j for the false positive correction matrix associated with the selected device type and the selected media category (block 714). For example, the aggregated distribution generator 218 can calculate the sharing probability γ ij using the example equation 1 described above.

对于所有对人口统计组i和j,示例性共同观看矩阵生成器224确定如下事件的概率κij:(1)识别的人口统计组i中的人员被数据库所有者识别为媒体的观看者,和(2)也存在用于实际观看者人口统计组j中的人员的印象(框716)。对用于人口统计组i和j对的概率κij的集合可以被聚合成共同观看矩阵。下文参照图8描述用于实现框716的示例性指令。For all pairs of demographic groups i and j, the example co-viewing matrix generator 224 determines the probability κ ij that : (1) a person in the identified demographic group i is identified by the database owner as a viewer of the media, and (2) an impression also exists for a person in demographic group j who is an actual viewer (block 716). The set of probabilities κ ij for pairs of demographic groups i and j can be aggregated into a co-viewing matrix. Example instructions for implementing block 716 are described below with reference to FIG8.

示例性聚合分布生成器218确定是否存在针对其而来自调查校准数据源的调查校准数据应当被处理的任何附加设备类型(框718)。如果存在附加设备类型(框718),则控制返回到框706。如果不存在附加设备类型(框718),则示例性聚合分布生成器218确定是否存在针对其而来自调查校准数据源的调查校准数据应当被处理的附加媒体类别(框720)。如果存在附加媒体类别,则控制返回到框704。否则,如果不存在附加媒体类别(框720),则示例性指令700结束,且例如控制返回到图4的框404。The example aggregated distribution generator 218 determines whether there are any additional device types for which the survey calibration data from the survey calibration data source should be processed (block 718). If there are additional device types (block 718), control returns to block 706. If there are no additional device types (block 718), the example aggregated distribution generator 218 determines whether there are additional media categories for which the survey calibration data from the survey calibration data source should be processed (block 720). If there are additional media categories, control returns to block 704. Otherwise, if there are no additional media categories (block 720), the example instructions 700 end, and control returns to, for example, block 404 of FIG. 4.

图8是示例性机器可读指令800的流程图,该示例性机器可读指令800可被执行以计算共同观看矩阵。例如,指令800可以被图2的示例性共同观看矩阵生成器224执行以实现图5的框510和/或图7的框716。8 is a flow diagram of example machine-readable instructions 800 that may be executed to calculate a co-viewing matrix. For example, the instructions 800 may be executed by the example co-viewing matrix generator 224 of FIG. 2 to implement block 510 of FIG. 5 and/or block 716 of FIG. 7 .

对于所有对人口统计组i和j,示例性共同观看矩阵生成器224确定生活在同一家庭中且访问所选设备类型的移动设备的识别的人口统计组i中的人员与实际观看者人口统计组j中的人员同时使用同一移动设备来访问(例如观看)所选媒体类别的媒体的概率P(Cx|D)ij(框802)。换言之,假定人员生活在同一家庭中且访问同一移动设备,则示例性共同观看矩阵生成器224针对所选设备类型、媒体类别、以及人口统计组i和j确定共同观看的概率或发生率。示例性共同观看矩阵生成器224针对所选设备类型和所选媒体类别确定用于共同观看矩阵的概率κij(框804)。例如,示例性共同观看矩阵生成器224可以将概率κij计算成κij=P(L)ij×P(D|L)ij×P(Cx|D)ij。示例性概率κij表示用于所选对的人口统计组i和j、所选设备类型和所选媒体类别的共同观看的概率。For all pairs of demographic groups i and j, the example co-viewing matrix generator 224 determines the probability P(Cx|D)ij that a person in the identified demographic group i, who lives in the same household and has access to a mobile device of a selected device type, and a person in the actual viewer demographic group j, concurrently accesses (e.g., views ) media of a selected media category using the same mobile device ( block 802). In other words, assuming the persons live in the same household and have access to the same mobile device, the example co-viewing matrix generator 224 determines the probability or incidence of co-viewing for the selected device type, media category, and demographic groups i and j. The example co-viewing matrix generator 224 determines a probability κij for the co-viewing matrix for the selected device type and the selected media category (block 804). For example, the example co-viewing matrix generator 224 may calculate the probability κij as κij = P(L) ij × P(D|L) ij × P( Cx |D) ij . The example probability κij represents the probability of co-viewing for the selected pair of demographic groups i and j, the selected device type, and the selected media category.

示例性指令800结束,且例如控制返回到图5的框512和/或图7的框718。The example instructions 800 end, and control returns to, for example, block 512 of FIG. 5 and/or block 718 of FIG. 7 .

图9是表示示例性机器可读指令900的流程图,该示例性机器可读指令900可被执行以实现图2的计算与未被数据库所有者覆盖的媒体受众相关联的人口统计资料(或未覆盖因子)的示例性印象数据补偿器200。示例性指令900可被图2的示例性未覆盖计算器210执行以实现图4的框404和框405。9 is a flow diagram representing example machine-readable instructions 900 that may be executed to implement the example impression data compensator 200 of FIG 2 for calculating demographics (or non-coverage factors) associated with media audiences that are not covered by the database owner. The example instructions 900 may be executed by the example non-coverage calculator 210 of FIG 2 to implement blocks 404 and 405 of FIG 4 .

图2的示例性未覆盖计算器210从调查校准数据源获得调查校准数据(框902)。例如,未覆盖计算器210可以获得调查校准数据(例如从图2的校准数据收集器202),该调查校准数据指示未向数据库所有者104a注册的和/或向数据库所有者104a注册但未在特定类型的设备上登录数据库所有者104a的人员的数目。The example uncovered calculator 210 of FIG2 obtains survey calibration data from a survey calibration data source (block 902). For example, the uncovered calculator 210 may obtain survey calibration data (e.g., from the calibration data collector 202 of FIG2) that indicates the number of persons who are not registered with the database owner 104a and/or who are registered with the database owner 104a but are not logged into the database owner 104a on a particular type of device.

示例性未覆盖计算器210选择设备类型(框904)。示例性未覆盖计算器210选择人口统计组(框906)。示例性未覆盖计算器210选择媒体类别(框908)。在图9的示例中,媒体类别、人口统计组和/或设备类型选自在调查校准数据中表示的媒体类别、人口统计组和/或设备类型。例如,未覆盖计算器210可以基于从调查校准数据源获得的调查校准数据生成用于人口统计组、媒体类别和设备类型的不同组合的不同α因子(例如表17的示例性α因子α=B/A)。The example non-coverage calculator 210 selects a device type (block 904). The example non-coverage calculator 210 selects a demographic group (block 906). The example non-coverage calculator 210 selects a media category (block 908). In the example of FIG. 9 , the media category, demographic group, and/or device type are selected from the media categories, demographic groups, and/or device types represented in the survey calibration data. For example, the non-coverage calculator 210 can generate different alpha factors (e.g., the example alpha factor α=B/A of Table 17 ) for different combinations of demographic group, media category, and device type based on the survey calibration data obtained from the survey calibration data source.

示例性未覆盖计算器210基于调查校准数据(例如来自调查校准数据源的数据)确定概率B,其中B为所选人口统计组中的人员在所选设备类型上观看所选媒体类别中的媒体项目的概率(框910)。在图9的示例中,未覆盖计算器210基于与从调查校准数据确定的所选设备类型、所选人口统计组和/或所选媒体类别相关联的权重确定概率B。The example non-coverage calculator 210 determines a probability B based on survey calibration data (e.g., data from a survey calibration data source), where B is a probability that a person in the selected demographic group views a media item in the selected media category on the selected device type (block 910). In the example of FIG9 , the non-coverage calculator 210 determines the probability B based on weights associated with the selected device type, the selected demographic group, and/or the selected media category determined from the survey calibration data.

示例性未覆盖计算器210还基于调查校准数据确定概率A,其中A为所选人口统计组中的人员在不同于所选设备类型的另一设备类型(例如与媒体项目相关联的标准设备类型)上观看所选媒体类别中的媒体项目的概率(框912)。在图9的示例中,未覆盖计算器210基于与从调查校准数据确定的另一设备类型、所选人口统计组和/或所选媒体类别相关联的权重确定概率A。在图9的示例中,针对借助所选设备类型和另一设备类型二者均可访问的媒体来确定概率B和A。The example uncovered calculator 210 also determines a probability A based on the survey calibration data, where A is the probability that a person in the selected demographic group views a media item in the selected media category on a device type other than the selected device type (e.g., a standard device type associated with the media item) (block 912). In the example of FIG9, the uncovered calculator 210 determines the probability A based on weights associated with the other device type determined from the survey calibration data, the selected demographic group, and/or the selected media category. In the example of FIG9, the probabilities B and A are determined for media that is accessible via both the selected device type and the other device type.

例如,对于特定媒体类别中的电视节目的剧集,另一设备类型可以为电视,且所选设备类型可以为可在其上借助流视频访问电视节目的剧集的计算设备(例如移动设备和/或更具体类型的移动设备,诸如智能手机、平板电脑和/或便携式媒体播放器)。在电视上的初始或首映呈现之后,经常使这类电视节目借助流视频而可用。因此,人员可以在电视(例如另一设备类型)上和/或在计算设备(例如所选设备类型)上借助流媒体访问电视节目的剧集。For example, for episodes of a television program in a particular media category, the other device type may be a television, and the selected device type may be a computing device (e.g., a mobile device and/or a more specific type of mobile device, such as a smartphone, tablet, and/or portable media player) on which the episodes of the television program can be accessed via streaming video. Such television programs are often made available via streaming video after an initial or premiere presentation on the television. Thus, a person can access episodes of the television program via streaming media on a television (e.g., the other device type) and/or on a computing device (e.g., the selected device type).

示例性未覆盖计算器210确定用于所选人口统计组、所选媒体类别和/或所选设备类型的α因子(例如上表17的α=B/A)(框914)。因此,在图9的示例中,人口统计组、媒体类别和设备类型的每个组合具有单独的α因子。然而,在其它示例中,α因子对于每个人口统计组、每个媒体类别和/或每个设备类型可以是相同的。附加地或可替选地,示例性未覆盖计算器210使用包括诸如地理区域、站点、时段和/或其它因子等因子的组合确定α因子。The example non-coverage calculator 210 determines an alpha factor (e.g., alpha = B/A of Table 17 above) for the selected demographic group, the selected media category, and/or the selected device type (block 914). Thus, in the example of FIG. 9 , each combination of demographic group, media category, and device type has a separate alpha factor. However, in other examples, the alpha factor may be the same for each demographic group, each media category, and/or each device type. Additionally or alternatively, the example non-coverage calculator 210 determines the alpha factor using a combination of factors including, for example, geographic region, site, time of day, and/or other factors.

示例性未覆盖计算器210确定是否存在附加媒体类别(框916)。如果存在附加媒体类别(框916),则控制返回到框908以选择另一媒体类别。当不存在更多媒体类别时(框916),示例性未覆盖计算器210确定是否存在附加人口统计组(框918)。如果存在附加人口统计组(框918),则控制返回到框906以选择另一人口统计组。当不存在用于所选设备类型的更多人口统计组时(框918),示例性未覆盖计算器210确定是否存在附加设备类型(框920)。如果存在附加设备类型(框920),则控制返回到框904以选择另一设备类型。当不存在用于所选媒体类别的附加设备类型时(框920),则图9的示例性指令900结束,且例如控制返回到图4的框406。The example no-cover calculator 210 determines whether additional media categories exist (block 916). If additional media categories exist (block 916), control returns to block 908 to select another media category. When no more media categories exist (block 916), the example no-cover calculator 210 determines whether additional demographic groups exist (block 918). If additional demographic groups exist (block 918), control returns to block 906 to select another demographic group. When no more demographic groups exist for the selected device type (block 918), the example no-cover calculator 210 determines whether additional device types exist (block 920). If additional device types exist (block 920), control returns to block 904 to select another device type. When no additional device types exist for the selected media category (block 920), the example instructions 900 of FIG. 9 end, and control returns to, for example, block 406 of FIG. 4.

图10是表示示例性机器可读指令1000的流程图,该示例性机器可读指令1000可被执行以实现图2的基于错误认定校正矩阵调整印象和/或持续时间单位的示例性印象数据补偿器200。示例性指令1000可被图2的示例性错误认定校正器206执行以实现图4的框414。10 is a flow diagram representing example machine-readable instructions 1000 that may be executed to implement the example impression data compensator 200 of FIG2 for adjusting impression and/or duration units based on a false positive correction matrix. The example instructions 1000 may be executed by the example false positive corrector 206 of FIG2 to implement block 414 of FIG4.

图2的示例性错误认定校正器206通过计算下列项的点积确定错误认定调整的印象:a)对应于所选媒体类别和所选设备类型的错误认定校正矩阵,和b)针对每个识别的人口统计组i而被数据库所有者识别的印象计数(框1002)。该点积的结果为用于各个人口统计组的错误认定调整的印象。例如,错误认定校正器206可以计算表14的错误认定校正矩阵与表15的印象信息的点积以获得错误认定调整的印象。The exemplary misidentification corrector 206 of FIG. 2 determines misidentification-adjusted impressions by calculating the dot product of: a) the misidentification correction matrix corresponding to the selected media category and the selected device type, and b) the impression count identified by the database owner for each identified demographic group i (block 1002). The result of this dot product is the misidentification-adjusted impression for each demographic group. For example, the misidentification corrector 206 can calculate the dot product of the misidentification correction matrix of Table 14 and the impression information of Table 15 to obtain the misidentification-adjusted impressions.

图2的示例性错误认定校正器206通过计算下列项的点积确定错误认定调整的持续时间单位:a)对应于所选媒体类别和所选设备类型的错误认定校正矩阵,和b)针对每个识别的人口统计组i而被数据库所有者识别的持续时间单位(框1004)。示例性1000结束且例如控制返回到图4的框416。The example false positive corrector 206 of FIG. 2 determines the duration units for the false positive adjustment by calculating the dot product of: a) the false positive correction matrix corresponding to the selected media category and the selected device type, and b) the duration units identified by the database owner for each identified demographic group i (block 1004). Example 1000 ends and control returns to, for example, block 416 of FIG. 4.

图11是表示示例性机器可读指令1100的流程图,该示例性机器可读指令1100可被执行以实现图2的基于用于数据库所有者的未覆盖因子调整印象的示例性印象数据补偿器200。示例性指令1100可被图2的示例性未覆盖校正器212执行以实现图4的框416。11 is a flow diagram representing example machine-readable instructions 1100 that may be executed to implement the example impression data compensator 200 of FIG 2 that adjusts impressions based on a non-coverage factor for a database owner. The example instructions 1100 may be executed by the example non-coverage corrector 212 of FIG 2 to implement block 416 of FIG 4 .

图2的示例性未覆盖校正器212选择人口统计组(框1102)。所选人口统计组可以为上文参照表1-14讨论的识别的人口统计组i和/或实际观看者人口统计组j。未覆盖校正器212通过将错误认定调整的印象乘以与所选人口统计组、所选设备类型和/或所选媒体类别相关联的α因子(例如上表17的α=B/A)来确定未覆盖印象(框1104)。例如,未覆盖校正器212可以确定可应用于所选人口统计组(例如在框1102中所选的)、所选设备类型(例如在图4的框412中所选的)和/或所选媒体类别(例如在图4的框410中所选的)的α因子(例如在图4的框404中和/或在图6的示例性指令900中确定的)。在框1104,示例性未覆盖校正器212将确定的α因子乘以错误认定调整的印象以确定未覆盖印象。The example uncover corrector 212 of FIG. 2 selects a demographic group (block 1102). The selected demographic group may be the identified demographic group i and/or the actual viewer demographic group j discussed above with reference to Tables 1-14. The uncover corrector 212 determines uncovered impressions by multiplying the misidentification-adjusted impressions by an alpha factor associated with the selected demographic group, the selected device type, and/or the selected media category (e.g., alpha = B/A of Table 17 above) (block 1104). For example, the uncover corrector 212 may determine an alpha factor (e.g., determined in block 404 of FIG. 4 and/or in the example instructions 900 of FIG. 6 ) that is applicable to the selected demographic group (e.g., selected in block 1102), the selected device type (e.g., selected in block 412 of FIG. 4 ), and/or the selected media category (e.g., selected in block 410 of FIG. 4 ). In block 1104, the example uncover corrector 212 multiplies the determined alpha factor by the misidentification-adjusted impressions to determine uncovered impressions.

示例性未覆盖校正器212确定是否存在附加人口统计组(框1106)。如果存在附加人口统计组(框1106),则控制返回到框1102以选择另一人口统计组。当不存在更多待调整的人口统计组时(框1106),示例性未覆盖校正器212缩放用于人口统计组(例如在同一组计算中的所有人口统计组)的未覆盖印象使得用于所有人口统计组的未覆盖印象的总和等于观察到的未覆盖印象的数目(框1108)。例如,如上文参照表17所描述,示例性未覆盖校正器212可以1)针对每个人口统计组(Demos)将调整的百分比(表17的Adj%)计算成α因子(α=B/A)和测量的百分比(表17的Meas%)的乘积;2)将调整的百分比(表17的Adj%)归一化成总和为100%;以及3)将归一化的百分比(表17的Norm%)乘以未覆盖印象(例如未被数据库所有者104a关联到人口统计组(表17的Demos)的印象的数目)以获得归属于每个人口统计组(表17的Demos)的未覆盖印象(表17的未覆盖印象)的缩放数目。The example uncovered corrector 212 determines whether there are additional demographic groups (block 1106). If there are additional demographic groups (block 1106), control returns to block 1102 to select another demographic group. When there are no more demographic groups to adjust (block 1106), the example uncovered corrector 212 scales the uncovered impressions for the demographic groups (e.g., all demographic groups in the same group calculation) so that the sum of the uncovered impressions for all demographic groups equals the number of observed uncovered impressions (block 1108). For example, as described above with reference to Table 17, the exemplary uncovered corrector 212 may 1) calculate an adjusted percentage (Adj% of Table 17) for each demographic group (Demos) as the product of an alpha factor (α=B/A) and a measured percentage (Meas% of Table 17); 2) normalize the adjusted percentage (Adj% of Table 17) to sum to 100%; and 3) multiply the normalized percentage (Norm% of Table 17) by the uncovered impressions (e.g., the number of impressions not associated to a demographic group (Demos of Table 17) by the database owner 104a) to obtain a scaled number of uncovered impressions (Uncovered Impressions of Table 17) attributed to each demographic group (Demos of Table 17).

图2的示例性未覆盖校正器212选择人口统计组(框1110)。在框1110中所选的人口统计组为之前在框1102的迭代中所选的人口统计组。在图示示例中,框1110、框1112和框1114被执行以处理在框1102、框1104、框1106和框1108处确定的用于所有人口统计组的缩放的未覆盖印象。未覆盖校正器212通过将缩放的未覆盖印象(例如在框1108中确定的)与用于人口统计组的错误认定调整的印象相加来确定用于所选人口统计组的错误认定和未覆盖调整的印象(框1112)。The example uncover corrector 212 of FIG2 selects a demographic group (block 1110). The demographic group selected in block 1110 is the demographic group previously selected in the iteration of block 1102. In the illustrated example, blocks 1110, 1112, and 1114 are executed to process the scaled uncovered impressions for all demographic groups determined at blocks 1102, 1104, 1106, and 1108. The uncover corrector 212 determines the misidentified and uncovered-adjusted impressions for the selected demographic group by adding the scaled uncovered impressions (e.g., as determined in block 1108) to the misidentified-adjusted impressions for the demographic group (block 1112).

示例性未覆盖校正器212确定是否存在附加人口统计组(框1114)。如果存在附加人口统计组(框1114),则控制返回到框1110以选择另一人口统计组。当不存在更多待调整的人口统计组时(框1114),示例性指令1100结束且例如控制返回到图4的框418。The example uncovered corrector 212 determines whether additional demographic groups exist (block 1114). If additional demographic groups exist (block 1114), control returns to block 1110 to select another demographic group. When there are no more demographic groups to adjust (block 1114), the example instructions 1100 end and control returns to, for example, block 418 of FIG. 4.

尽管参照印象描述了以上示例,但是这些示例可以附加地或可替选地应用于特殊受众和/或持续时间单位。例如,重分布受众矩阵可以应用于感兴趣的媒体的受众,而非应用于上文描述的印象。在一些示例中,仅一个印象需要计数在媒体的受众中的人员,且当他或她不具有印象时在媒体的受众中不计数人员。因此,例如,在表3的示例中,在印象的重分布之后,用于12-17岁男性的受众将被减少1,这是因为12-17岁男性被数据库所有者104a上报成访问媒体,但在重分布之后被确定成不具有用于在平板电脑上的喜剧类别的媒体的印象,从而将12-17岁男性的受众减少1。相反地,对于35-44岁女性的受众将增加1,这是因为35-44岁女性未被数据库所有者104a关联到任何印象且未形成受众,但是在受众的重分布之后可以确定出,35-44岁女性实际上确实在平板电脑上访问感兴趣的类别的媒体。Although the above examples are described with reference to impressions, these examples can additionally or alternatively be applied to special audiences and/or duration units. For example, the redistribution audience matrix can be applied to the audience of the media of interest, rather than to the impressions described above. In some examples, only one impression needs to be counted as a person in the audience of the media, and a person is not counted in the audience of the media when he or she does not have an impression. Therefore, for example, in the example of Table 3, after the redistribution of impressions, the audience for males aged 12-17 will be reduced by 1, because males aged 12-17 are reported by database owner 104a as accessing media, but after redistribution, it is determined that they do not have impressions of media in the comedy category on the tablet, thereby reducing the audience for males aged 12-17 by 1. On the contrary, the audience for females aged 35-44 will increase by 1, because females aged 35-44 are not associated with any impressions by database owner 104a and do not form an audience, but after the redistribution of the audience, it can be determined that females aged 35-44 do in fact access the media of the category of interest on the tablet.

图12是表示示例性机器可读指令1200的流程图,该示例性机器可读指令1200可被执行以实现图2的计算与未被数据库所有者覆盖的媒体受众相关联的人口统计资料(或未覆盖因子)的示例性印象数据补偿器200。示例性指令1200可被图2的示例性未覆盖计算器210执行以实现图4的框404和框405。12 is a flow diagram representing example machine-readable instructions 1200 that may be executed to implement the example impression data compensator 200 of FIG 2 for calculating demographics (or non-coverage factors) associated with media audiences that are not covered by the database owner. The example instructions 1200 may be executed by the example non-coverage calculator 210 of FIG 2 to implement blocks 404 and 405 of FIG 4 .

示例性未覆盖计算器210从校准调查获得数据(框1202)。例如,未覆盖计算器210可以获得调查校准数据,该调查校准数据指示未向数据库所有者104a注册的和/或向数据库所有者104a注册但未在特定类型的设备上登录数据库所有者104a的应答者的数目。The example non-coverage calculator 210 obtains data from a calibration survey (block 1202). For example, the non-coverage calculator 210 may obtain survey calibration data indicating the number of respondents who are not registered with the database owner 104a and/or who are registered with the database owner 104a but are not logged into the database owner 104a on a particular type of device.

示例性未覆盖计算器210选择设备类型(框1204)和选择人口统计组(框1206)。示例性未覆盖计算器210将用于所选人口统计组和所选设备类型的未覆盖因子确定成在所选人口统计组中的对校准调查的应答者中在所选设备类型上观看媒体时不会被数据库所有者104a识别的一部分(框1208)。The example non-coverage calculator 210 selects a device type (block 1204) and selects a demographic group (block 1206). The example non-coverage calculator 210 determines a non-coverage factor for the selected demographic group and the selected device type as a portion of respondents to the calibration survey in the selected demographic group that would not be recognized by the database owner 104a when viewing media on the selected device type (block 1208).

示例性未覆盖计算器210确定是否存在附加人口统计组(框1210)。如果存在附加人口统计组(框1210),则控制返回到框1206以选择另一人口统计组。当不存在更多用于所选设备类型的人口统计组时(框1210),示例性未覆盖计算器210确定是否存在附加设备类型(框1212)。如果存在附加设备类型(框1212),则控制返回到框1204以选择另一设备类型。当不存在附加设备类型时(框1212),图12的示例性指令1200结束,且例如控制返回到调用功能或过程,诸如图4的示例性指令400以继续执行框406。The example no-cover calculator 210 determines whether additional demographic groups exist (block 1210). If additional demographic groups exist (block 1210), control returns to block 1206 to select another demographic group. When no more demographic groups exist for the selected device type (block 1210), the example no-cover calculator 210 determines whether additional device types exist (block 1212). If additional device types exist (block 1212), control returns to block 1204 to select another device type. When no additional device types exist (block 1212), the example instructions 1200 of FIG. 12 end, and control returns to the calling function or process, such as the example instructions 400 of FIG. 4 , for example, to continue execution at block 406.

图13是表示示例性机器可读指令1300的流程图,该示例性机器可读指令1300可被执行以实现图2的基于用于数据库所有者的未覆盖因子调整印象计数和/或受众规模的示例性印象数据补偿器200。示例性指令1300可被图2的示例性未覆盖校正器212执行以实现图4的框416。13 is a flow diagram representing example machine-readable instructions 1300 that may be executed to implement the example impression data compensator 200 of FIG 2 that adjusts impression counts and/or audience size based on a non-coverage factor for a database owner. The example instructions 1300 may be executed by the example non-coverage corrector 212 of FIG 2 to implement block 416 of FIG 4 .

图2的示例性未覆盖校正器212选择人口统计组(框1302)。示例性未覆盖校正器212通过将错误认定调整的特殊受众规模(使用图10的指令确定的)除以1-(用于所选人口统计组和所选设备类型的未覆盖因子)来确定错误认定和未覆盖误差调整的特殊受众规模(框1304)。The example non-coverage corrector 212 of FIG2 selects a demographic group (block 1302). The example non-coverage corrector 212 determines a special audience size adjusted for misidentifications and non-coverage errors by dividing the misidentification-adjusted special audience size (determined using the instructions of FIG10) by 1-(non-coverage factor for the selected demographic group and the selected device type) (block 1304).

示例性未覆盖校正器212通过将错误认定和未覆盖调整的特殊受众规模乘以从印象信息确定的用于所选人口统计组和所选设备类型的频率来确定错误认定和未覆盖调整的印象计数(框1306)。The example non-cover corrector 212 determines a misidentified and non-cover adjusted impression count by multiplying the misidentified and non-cover adjusted special audience size by the frequency determined from the impression information for the selected demographic group and the selected device type (block 1306 ).

示例性未覆盖校正器212通过将错误认定调整的持续时间单位(使用图10的指令确定的)除以1-(用于所选人口统计组和所选设备类型的未覆盖因子)来确定错误认定和未覆盖误差调整的持续时间单位(框1308)。The example non-coverage corrector 212 determines the false positive and non-coverage error adjusted duration units by dividing the false positive adjusted duration units (determined using the instructions of FIG. 10 ) by 1−(non-coverage factor for the selected demographic group and the selected device type) (block 1308 ).

示例性未覆盖校正器212确定是否存在附加人口统计组(框1310)。如果存在附加人口统计组(框1310),则控制返回到框1302以选择另一人口统计组。当不存在更多待调整的人口统计组时(框1308),则示例性指令1300结束,且例如控制返回到调用功能或过程,诸如图4的示例性指令400以继续执行框418。The example uncovered corrector 212 determines whether additional demographic groups exist (block 1310). If additional demographic groups exist (block 1310), control returns to block 1302 to select another demographic group. When there are no more demographic groups to adjust (block 1308), the example instructions 1300 end, and control returns to the calling function or process, such as the example instructions 400 of FIG. 4, to continue execution at block 418.

在一些实例中,可以基于艺术类型执行数据选择。在一些示例中,艺术类型可以由媒体发行者120(例如电视网络供应商、媒体供应商等)提供。在其它示例中,艺术类型可能无法从媒体的供应商得到。在这类其它示例中,当艺术类型不容易得到时,可以使用例如下文结合图14至图20公开的技术来预测艺术类型。In some instances, data selection can be performed based on artistic genre. In some examples, artistic genre can be provided by media publisher 120 (e.g., a television network provider, a media provider, etc.). In other examples, artistic genre may not be available from the media provider. In such other examples, when artistic genre is not readily available, the artistic genre can be predicted using techniques such as those disclosed below in conjunction with FIG. 14 to FIG. 20 .

在跨平台受众测量中,当借助电视(和/或无线电)站(例如本地电视台、本地无线电站)广播电视(和/或无线电)节目时且在广播之后的特定量的时间内借助延迟媒体服务提供电视(和/或无线电)节目时,AME(例如图1的AME 108)监控电视(和/或无线电)节目的受众。可以在移动设备或固定的计算设备上借助点播服务、流服务应用程序、应用程序、网页等访问示例性延迟媒体服务。示例性延迟媒体服务还可以被提供在数字视频录像机(DVR)、电缆箱、因特网媒体交付机顶盒、智能电视等上。采用该方式,AME通过收集用于电视(和/或无线电)受众和延迟受众的印象来执行跨平台受众测量。在一些示例中,分析印象以生成媒体收视率。在一些示例中,使用艺术类型来确定用于校准移动人口普查数据的调整因子。在这类示例中,校准的移动人口普查数据用于产生收视率。基于例如形式、风格和/或主题等的类似性,艺术类型为媒体类别。示例性艺术类型包括喜剧、戏剧、体育运动、新闻、儿童节目等。In cross-platform audience measurement, an AME (e.g., AME 108 in FIG. 1 ) monitors the audience for a television (and/or radio) program as it is broadcast by a television (and/or radio) station (e.g., a local television station, a local radio station) and provided via a delayed media service for a specified period of time after the broadcast. Exemplary delayed media services can be accessed on mobile devices or fixed computing devices via on-demand services, streaming service applications, apps, web pages, and the like. Exemplary delayed media services can also be provided on digital video recorders (DVRs), cable boxes, internet media delivery set-top boxes, smart TVs, and the like. In this manner, AME performs cross-platform audience measurement by collecting impressions for both the television (and/or radio) audience and the delayed audience. In some examples, the impressions are analyzed to generate media ratings. In some examples, art genres are used to determine adjustment factors for calibrating mobile census data. In such examples, the calibrated mobile census data is used to generate ratings. Art genres are media categories based on similarities in form, style, and/or subject matter, for example. Exemplary art genres include comedy, drama, sports, news, children's programming, etc.

在一些示例中,基于在媒体中编码的数据收集印象。在一些示例中,编码数据不包括艺术类型信息。例如,由本地广播机广播的节目不具有艺术类型信息且用于本地广播的编码数据不包括节目名或标识符。此外,艺术类型信息或节目名不由广播机或媒体拥有者及时提供以产生隔夜收视率。隔夜收视率经常用于基于印象计数和受众规模快速地评估广播节目的成功。在一些实例中,在隔夜收视率中反映的广播节目的成功可以被媒体网络(例如电视网络)用于出售借助例如媒体网络(例如ABC电视广播公司)或拥有借助延迟观看服务提供媒体的权利的第三方(例如Hulu.com)的应用程序或网页可用的同一媒体的延迟观看访问所对应的广告位。在本文中所公开的示例可以用于生成预测本地电视(和/或无线电)印象的艺术类型的模型。尽管下文相对于电视描述示例,但是下文示例可以可替选地使用无线电或其它媒体类型来实现。In some examples, impressions are collected based on data encoded in the media. In some examples, the encoded data does not include genre information. For example, programs broadcast by local broadcasters do not have genre information, and the encoded data for local broadcasts does not include program names or identifiers. Furthermore, genre information or program names are not provided by the broadcaster or media owner in a timely manner to generate overnight ratings. Overnight ratings are often used to quickly assess the success of broadcast programs based on impression counts and audience size. In some instances, the success of a broadcast program reflected in overnight ratings can be used by a media network (e.g., a television network) to sell advertising space corresponding to delayed viewing access to the same media, for example, through an app or webpage of a media network (e.g., ABC Television) or a third party (e.g., Hulu.com) that owns the rights to provide the media through a delayed viewing service. The examples disclosed herein can be used to generate a model that predicts the genre of local television (and/or radio) impressions. Although the examples below are described with respect to television, the examples below can alternatively be implemented using radio or other media types.

艺术类型预测建模Art Genre Predictive Modeling

错误认定和/或未覆盖校正的以上示例可以包括生成多个错误认定校正表(例如诸如上表14)。在一些示例中,针对不同设备类型和/或不同媒体的艺术类型生成错误认定校正矩阵。下述示例可以用于预测印象的媒体艺术类型,未从印象提供针对该媒体艺术类型的艺术类型信息。通过将艺术类型分配给印象,本文中所公开的示例选择合适的错误认定校正矩阵和/或未覆盖因子(上表19和/或上表21的α因子)来补偿如上所公开的印象计数和/或受众规模中的错误认定误差和/或未覆盖误差。The above examples of misidentification and/or non-coverage correction can include generating multiple misidentification correction tables (e.g., such as Table 14 above). In some examples, misidentification correction matrices are generated for different device types and/or art types for different media. The following examples can be used to predict the media art type of an impression for which no art type information is provided from the impression. By assigning art types to impressions, the examples disclosed herein select an appropriate misidentification correction matrix and/or non-coverage factor (the alpha factor of Table 19 and/or Table 21 above) to compensate for misidentification errors and/or non-coverage errors in impression counts and/or audience sizes as disclosed above.

下文公开的生成艺术类型预测模型的示例使用本地安装在客户端计算机或电视处的家用媒体计量器来收集关于访问媒体或调到媒体的信息以促进生成艺术类型预测模型。然而,上文公开的示例生成错误认定校正因子而不依赖本地安装在客户端计算机处的小组成员计量软件来收集数据库所有者注册状态数据和/或收集关于由家庭成员访问的媒体的数据。本地安装在客户端计算机或电视处的家用媒体计量器在艺术类型预测建模和艺术类型分配中的使用受限于收集印象和/或将艺术类型分配给印象。这类本地安装的家用计量器不用于生成如本文中所公开的错误认定校正矩阵或未覆盖因子。下文公开的艺术类型预测建模和艺术类型分配可用于校正如上文所公开的用于错误认定和/或未覆盖的印象。The examples disclosed below of generating an art type prediction model use a home media meter installed locally at a client computer or television to collect information about media accessed or tuned to to facilitate generating an art type prediction model. However, the examples disclosed above generate misidentification correction factors without relying on panelist metering software installed locally at the client computer to collect database owner registration status data and/or collect data about media accessed by family members. The use of a home media meter installed locally at a client computer or television in art type prediction modeling and art type assignment is limited to collecting impressions and/or assigning art types to impressions. Such locally installed home meters are not used to generate misidentification correction matrices or non-coverage factors as disclosed herein. The art type prediction modeling and art type assignment disclosed below can be used to correct impressions for misidentification and/or non-coverage as disclosed above.

图14示出了示例性系统1400,该示例性系统1400生成艺术类型预测模型、且预测艺术类型和/或将艺术类型分配给非艺术类型印象数据1402(例如不包括艺术类型信息的印象数据)。在图示示例中,家用媒体计量器1404(例如机顶计量器、个人人员计量器等)将本地电视印象数据1402发送到受众测量实体(AME)108。图14的示例性AME 108可以为图1的AME 108。FIG14 illustrates an exemplary system 1400 that generates an art genre prediction model and predicts an art genre and/or assigns an art genre to non-art genre impression data 1402 (e.g., impression data that does not include art genre information). In the illustrated example, a household media meter 1404 (e.g., a set-top meter, a personal meter, etc.) sends local television impression data 1402 to an audience measurement entity (AME) 108. The exemplary AME 108 of FIG14 may be the AME 108 of FIG1 .

在图示示例中,从本地广播电视生成的印象数据1402未编码有艺术类型信息,这是因为本地电视广播机在其广播时还未编码媒体。在图示示例中,为了监控跨平台受众,除了收集用于电视受众的本地电视印象数据1402外,示例性收集器1406被提供在可联网的媒体设备1410中以收集借助可联网的媒体设备1410而使用流服务访问的媒体的印象。在图示示例中,收集器1406使用并入被可联网的媒体访问设备1410(例如计算机、电视、平板电脑、智能手机、电子书阅读器等)执行的网页、应用或应用程序(例如点播应用程序、流应用程序、DVR访问应用程序等)中的指令来实现。In the illustrated example, impression data 1402 generated from local broadcast television is not encoded with artist type information because the local television broadcaster has not yet encoded the media at the time of its broadcast. In the illustrated example, in order to monitor cross-platform audiences, in addition to collecting local television impression data 1402 for television audiences, an exemplary collector 1406 is provided in the network-enabled media device 1410 to collect impressions of media accessed using streaming services via the network-enabled media device 1410. In the illustrated example, the collector 1406 is implemented using instructions incorporated into a webpage, application, or application (e.g., an on-demand application, a streaming application, a DVR access application, etc.) executed by the network-enabled media access device 1410 (e.g., a computer, television, tablet, smartphone, e-book reader, etc.).

在2013年2月5日授权的美国专利No.8,370,489、2013年12月18日递交的序列号为14/127,414的美国专利申请、2014年7月11日递交的序列号为14/329,779的美国专利申请、2014年3月13日递交的序列号为61/952,726的美国临时申请、2014年6月19日递交的序列号为62/014,659的美国临时申请、2014年7月11日递交的序列号为62/023,675的美国临时申请中公开了用于使用示例性收集器1406收集印象的示例,上述美国申请的全部内容通过引用并入在本文中。示例性媒体计量器1404和/或示例性收集器1406通过示例性网络1412(例如因特网、局域网、广域网、蜂窝数据网络等)借助有线连接和/或无线连接(例如电缆/DSL/卫星调制解调器、基地台等)与示例性AME 108通信。Examples of using the exemplary collector 1406 to collect impressions are disclosed in U.S. Patent No. 8,370,489, issued on February 5, 2013; U.S. patent application serial number 14/127,414, filed on December 18, 2013; U.S. patent application serial number 14/329,779, filed on July 11, 2014; U.S. provisional application serial number 61/952,726, filed on March 13, 2014; U.S. provisional application serial number 62/014,659, filed on June 19, 2014; and U.S. provisional application serial number 62/023,675, filed on July 11, 2014, the entire contents of which are incorporated herein by reference. The example media meter 1404 and/or the example collector 1406 communicate with the example AME 108 via an example network 1412 (e.g., the Internet, a local area network, a wide area network, a cellular data network, etc.) via a wired connection and/or a wireless connection (e.g., a cable/DSL/satellite modem, a base station, etc.).

在图14的图示示例中,AME 108处理非艺术类型印象数据1402以基于非艺术类型印象数据1402确定用于在AME 108处记录的印象的艺术类型。在图示示例中,AME 108包括收集数据库1414、艺术类型预测建模器1416、艺术类型预测器1418、历史艺术类型数据库1420和预测数据库1422。示例性收集数据库1414被提供以存储基于从示例性媒体计量器1404和/或示例性收集器1406接收和/或检索的示例性非艺术类型印象数据1402记录的印象。14 , AME 108 processes non-art type impression data 1402 to determine an art type for impressions recorded at AME 108 based on the non-art type impression data 1402. In the illustrated example, AME 108 includes a collection database 1414, an art type prediction modeler 1416, an art type predictor 1418, a historical art type database 1420, and a prediction database 1422. The example collection database 1414 is provided to store impressions recorded based on the example non-art type impression data 1402 received and/or retrieved from the example media meter 1404 and/or the example collector 1406.

示例性艺术类型预测建模器1416基于存储在示例性历史艺术类型数据库1420中的历史艺术类型数据来生成一个或多个艺术类型预测模型1428。在图示示例中,历史艺术类型数据包括历史节目记录1430,该历史节目记录1430例如识别节目的艺术类型、节目的时段、节目的日类别、节目的持续时间。示例性历史节目记录1430基于在广播节目之后由本地广播机1432提供的信息(例如节目标识符、一个或多个时间戳、站标识符、会员标识符等)。例如,在本地广播之后的一周,本地广播机1432可以针对本地广播节目的每一刻钟提供记录1430。The example art genre prediction modeler 1416 generates one or more art genre prediction models 1428 based on historical art genre data stored in the example historical art genre database 1420. In the illustrated example, the historical art genre data includes historical program records 1430 that, for example, identify the program's art genre, the program's time slot, the program's day category, and the program's duration. The example historical program records 1430 are based on information provided by a local broadcaster 1432 after the program is broadcast (e.g., a program identifier, one or more timestamps, a station identifier, a member identifier, etc.). For example, the local broadcaster 1432 may provide records 1430 for every quarter-hour of the locally broadcast program for a week following the local broadcast.

示例性艺术类型预测器1418使用由示例性艺术类型预测建模器1416生成的一个或多个艺术类型预测模型1428来预测艺术类型信息并基于非艺术类型印象数据1402将预测的艺术类型分配给在收集数据库1414中记录的印象。采用该方式,示例性艺术类型预测器1418生成预测艺术类型印象记录1424(例如在收集数据库1414中记录的非艺术类型印象结合预测的艺术类型信息)。在图14的图示示例中,预测艺术类型印象记录1424被存储在预测数据库1422中。在一些示例中,预测艺术类型印象记录1424被用作非校正印象,该非校正印象可以补偿错误认定和未覆盖以确定预测艺术类型印象所归属的人口统计组,如上文所讨论。The example art type predictor 1418 uses one or more art type prediction models 1428 generated by the example art type prediction modeler 1416 to predict art type information and assign predicted art types to impressions recorded in the collection database 1414 based on the non-art type impression data 1402. In this manner, the example art type predictor 1418 generates predicted art type impression records 1424 (e.g., non-art type impressions recorded in the collection database 1414 combined with predicted art type information). In the illustrated example of FIG14 , the predicted art type impression records 1424 are stored in the prediction database 1422. In some examples, the predicted art type impression records 1424 are used as uncorrected impressions that can compensate for misidentifications and under-coverage to determine the demographic group to which the predicted art type impression belongs, as discussed above.

图15示出了图14的艺术类型预测器1418的示例性实现,其基于图14的非艺术类型印象数据1402确定用于在收集数据库1414中记录的非艺术类型印象记录1501的艺术类型信息。在图示示例中,艺术类型预测器1418从收集数据库1414接收和/或检索非艺术类型印象记录1501,并生成预测艺术类型印象记录1424,该预测艺术类型印象记录1424将被存储在预测数据库1422中和/或被上报在预测报告1426上。在图15的图示示例中,艺术类型预测器1418包括数据分类器1500和艺术类型分析器1502。示例性数据分类器1500被构造成将示例性非艺术类型印象记录1501变换为分类的印象数据1504。将在下文参照图16更详细地描述分类的印象数据1504。FIG15 illustrates an exemplary implementation of the art type predictor 1418 of FIG14 , which determines art type information for a non-art type impression record 1501 recorded in the collection database 1414 based on the non-art type impression data 1402 of FIG14 . In the illustrated example, the art type predictor 1418 receives and/or retrieves the non-art type impression record 1501 from the collection database 1414 and generates a predicted art type impression record 1424, which is stored in the prediction database 1422 and/or reported in the prediction report 1426. In the illustrated example of FIG15 , the art type predictor 1418 includes a data classifier 1500 and an art type analyzer 1502. The exemplary data classifier 1500 is configured to transform the exemplary non-art type impression record 1501 into classified impression data 1504. The classified impression data 1504 will be described in more detail below with reference to FIG16 .

示例性艺术类型分析器1502被构造成将由示例性艺术类型预测建模器1416生成的一个或多个艺术类型预测模型1428应用于示例性分类的印象数据1504。示例性艺术类型分析器1502将一个或多个艺术类型预测模型1428应用于分类的印象数据1504。然后示例性艺术类型分析器1502将预测的艺术类型分配给分类的印象数据1504以生成示例性预测艺术类型印象记录1424。示例性艺术类型分析器1502将示例性预测艺术类型印象数据1424存储在示例性预测数据库1422中、和/或包括示例性预测报告1426上的示例性预测艺术类型印象数据1424。The example art type analyzer 1502 is configured to apply one or more art type prediction models 1428 generated by the example art type prediction modeler 1416 to the example classified impression data 1504. The example art type analyzer 1502 applies the one or more art type prediction models 1428 to the classified impression data 1504. The example art type analyzer 1502 then assigns a predicted art type to the classified impression data 1504 to generate an example predicted art type impression record 1424. The example art type analyzer 1502 stores the example predicted art type impression data 1424 in the example prediction database 1422 and/or includes the example predicted art type impression data 1424 on an example prediction report 1426.

图16示出了示例性方式,采用该方式,图15的数据分类器1500分类非艺术类型印象数据记录1501,该非艺术类型印象数据记录1501将被图15的艺术类型分析器1502用来预测艺术类型。在图示示例中,非艺术类型印象数据记录1501包括示例性市场标识符(ID)1600、示例性站ID 1602、示例性会员ID 1604、示例性开始时间戳1606、示例性结束时间戳1608、示例性节目ID 1610、和示例性源ID 1612。这些领域中的任何一者或多者可以被省略且一个或多个附加领域可以存在。例如,本国节目所对应的非艺术类型印象数据记录1501可以包括节目ID 1610和源ID 1612。附加地,本地广播节目所对应的非艺术类型印象数据记录1501可以省略节目ID 1610和源ID 1612。示例性市场ID 1600标识播送对应电视节目的市场(例如地理位置、直辖市等)。在一些示例中,市场ID 1600由AME 108(图14)或任何其它合适实体来分配。站ID 1602标识广播电视节目的本地站。在一些示例中,站ID 1602为由AME 108(图14)或任何其它合适实体分配的字母数字号码。在一些示例中,站ID 1602为被本地电视台用于自我识别的呼号(例如WXTV、KVEA、WSNS等)。FIG16 illustrates an exemplary method by which the data classifier 1500 of FIG15 classifies a non-artistic impression data record 1501, which is then used by the art genre analyzer 1502 of FIG15 to predict an art genre. In the illustrated example, the non-artistic impression data record 1501 includes an exemplary market identifier (ID) 1600, an exemplary station ID 1602, an exemplary affiliate ID 1604, an exemplary start timestamp 1606, an exemplary end timestamp 1608, an exemplary program ID 1610, and an exemplary source ID 1612. Any one or more of these fields may be omitted, and one or more additional fields may be present. For example, a non-artistic impression data record 1501 corresponding to a national program may include a program ID 1610 and a source ID 1612. Additionally, a non-artistic impression data record 1501 corresponding to a locally broadcast program may omit the program ID 1610 and the source ID 1612. Exemplary market ID 1600 identifies the market (e.g., geographic location, municipality, etc.) in which the corresponding television program is broadcast. In some examples, market ID 1600 is assigned by AME 108 ( FIG. 14 ) or any other suitable entity. Station ID 1602 identifies the local station that broadcasts the television program. In some examples, station ID 1602 is an alphanumeric number assigned by AME 108 ( FIG. 14 ) or any other suitable entity. In some examples, station ID 1602 is a call letter used by a local television station to identify itself (e.g., WXTV, KVEA, WSNS, etc.).

示例性会员ID 1604标识本地电视台的网络会员(例如美国广播公司、Telemundo电视台、福克斯广播公司等)。在一些示例中,会员ID 1604为由AME 108分配的表示网络会员的号码(例如用于ABC的100、用于NBC的101等)。在一些示例中,会员ID 1604可以为网络会员的名称的字母表示(例如用于美国广播公司的“ABC”、用于Telemundo的“TMD”等)。示例性开始时间戳1606包括与非艺术类型印象记录1501相关联的节目的开始日期和开始时间。示例性结束时间戳1608包括与非艺术类型印象记录1501相关联的节目的结束日期和结束时间。如果包括在非艺术类型印象记录1501中,则示例性节目ID 1610标识与非艺术类型印象记录1501相关联的电视节目(例如“Arrested Development”、“News Radio”、“SabadoGigante”等)。在一些示例中,节目ID 1610为在基准数据库中唯一地与对应电视节目的标题和/或其它信息相关联的数字的或字母数字的标识符。示例性源ID 1612标识电视节目的源(例如制作公司等)。Example affiliate ID 1604 identifies the network affiliate of a local television station (e.g., ABC, Telemundo, Fox, etc.). In some examples, affiliate ID 1604 is a number assigned by AME 108 that represents the network affiliate (e.g., 100 for ABC, 101 for NBC, etc.). In some examples, affiliate ID 1604 may be an alphabetical representation of the name of the network affiliate (e.g., "ABC" for ABC, "TMD" for Telemundo, etc.). Example start timestamp 1606 includes the start date and start time of the program associated with non-artistic impression record 1501. Example end timestamp 1608 includes the end date and end time of the program associated with non-artistic impression record 1501. Example program ID 1610, if included in non-artistic impression record 1501, identifies the television program associated with non-artistic impression record 1501 (e.g., "Arrested Development," "News Radio," "Sabado Gigante," etc.). In some examples, program ID 1610 is a numeric or alphanumeric identifier uniquely associated with the title and/or other information of the corresponding television program in a reference database.Exemplary source ID 1612 identifies the source of the television program (eg, production company, etc.).

在图16的图示示例中,分类的印象数据1504包括示例性市场ID 1600、示例性站ID1602、示例性会员ID 1604、示例性日类别1614、示例性时段1616、和示例性持续时间1618。示例性数据分类器1500使用非艺术类型印象记录1501的开始时间戳1606和结束时间戳1608来确定分类的印象数据1504的示例性日类别1614、示例性时段1616、和示例性持续时间1618。在图示示例中,分类的印象数据1504的持续时间1618被数据分类器1500计算为在开始时间戳1606中标出的开始时间与在结束时间戳1608中标出的结束时间之间的时间差。16 , the classified impression data 1504 includes an example market ID 1600, an example station ID 1602, an example member ID 1604, an example day category 1614, an example time period 1616, and an example duration 1618. The example data classifier 1500 uses the start timestamp 1606 and the end timestamp 1608 of the non-art type impression record 1501 to determine the example day category 1614, the example time period 1616, and the example duration 1618 of the classified impression data 1504. In the illustrated example, the duration 1618 of the classified impression data 1504 is calculated by the data classifier 1500 as the time difference between the start time marked in the start timestamp 1606 and the end time marked in the end timestamp 1608.

在图示示例中,数据分类器1500通过使用示例性开始时间戳1606中的开始日期和示例性结束时间戳1608中的结束日期来确定示例性日类别1614。在一些示例中,日类别1614可以具有一周的一天的值(例如周一、周二、周三等)。在一些示例中,日类别1614可以为一周各天的减小集合。例如,减小集合可以包括对于“周末”、“周六”或“周日”的值。在一些示例中,当在示例性开始时间戳1606中标出的开始日期和在示例性结束时间戳1608中标出的结束日期不同时,数据分类器1500可以基于在那天广播节目的时间量将一天分配给日类别1614。例如,如果开始时间戳1606为“7/25/2014 23:30”(例如周五的30分钟)且结束时间戳1608为“7/26/2014 1:00”(例如周六的60分钟),则“周六”会被分配给日类别1614。在这类示例中,数据分类器1500将广播节目的较多部分的天分配给日类别1614。In the illustrated example, data classifier 1500 determines example day category 1614 using the start date in example start timestamp 1606 and the end date in example end timestamp 1608. In some examples, day category 1614 may have a value for a day of the week (e.g., Monday, Tuesday, Wednesday, etc.). In some examples, day category 1614 may be a reduced set of days of the week. For example, the reduced set may include values for "weekend," "Saturday," or "Sunday." In some examples, when the start date indicated in example start timestamp 1606 and the end date indicated in example end timestamp 1608 are different, data classifier 1500 may assign a day to day category 1614 based on the amount of time the program was broadcast on that day. For example, if start timestamp 1606 is "7/25/2014 23:30" (e.g., 30 minutes on a Friday) and end timestamp 1608 is "7/26/2014 1:00" (e.g., 60 minutes on a Saturday), then "Saturday" would be assigned to day category 1614. In such examples, the data classifier 1500 assigns days with a larger portion of broadcast programming to the day category 1614 .

示例性数据分类器1500使用在示例性开始时间戳1606中标出的开始时间与在示例性结束时间戳1608中标出的结束时间来确定示例性分类的印象数据1504的示例性时段1616。如下文结合图17所进一步讨论,时段为一天的时间片段或分区(例如夜间时段、周末早晨、工作日白天、傍晚时段、黄金时段、周末白天等),在此期间播送不同类型的电视节目、购买广告、和/或测量受众收视率。在一些示例中,图16的时段1616可以为包括在开始时间戳1606中标出的开始时间与在结束时间戳1608中标出的结束时间的时段。The example data classifier 1500 uses the start time indicated in the example start timestamp 1606 and the end time indicated in the example end timestamp 1608 to determine an example time period 1616 of the example classified impression data 1504. As discussed further below in conjunction with FIG17 , a time period is a time segment or partition of a day (e.g., nighttime, weekend mornings, weekday daytime, evening hours, prime time, weekend daytime, etc.) during which different types of television programs are broadcast, advertising is purchased, and/or audience ratings are measured. In some examples, the time period 1616 of FIG16 may be a time period that includes the start time indicated in the start timestamp 1606 and the end time indicated in the end timestamp 1608.

尽管在图15中示出了实现图14的艺术类型预测器1418的示例性方式,但是图15中示出的元件、过程和/或设备中的一者或多者可以被组合、划分、重排、省略、消除、和/或以任何其他方式来实现。另外,示例性数据分类器1500、示例性艺术类型分析器1502和/或更一般地,图14的示例性艺术类型预测器1418可以通过硬件,软件,固件,和/或硬件、软件和/或固件的任何组合来实现。因此,例如,示例性数据分类器1500、示例性艺术类型分析器1502和/或更一般地,示例性艺术类型预测器1418中的任一者可以使用如下项来实现:一个或多个模拟或数字电路、逻辑电路、一个或多个可编程处理器、一个或多个专用集成电路(ASIC)、一个或多个可编程逻辑设备(PLD)和/或一个或多个现场可编程逻辑设备(FPLD)。当阅读覆盖纯软件和/或固件实现的本专利的设备或系统权利要求中的任一者时,示例性数据分类器1500、示例性艺术类型分析器1502和/或示例性艺术类型预测器1418中的至少一者由此明确地被限定成包括有形的计算机可读存储设备或存储盘,诸如存储软件和/或固件的内存、数字通用光盘(DVD)、光盘(CD)、蓝光碟等。另外,示例性艺术类型预测器1418可以包括除了图15中所示那些以外或代替图15中所示那些的一个或多个元件、过程和/或设备,和/或可以包括图示元件、过程和设备中的任何或全部中的多于一者。Although an exemplary manner of implementing the art type predictor 1418 of FIG. 14 is shown in FIG. 15 , one or more of the elements, processes, and/or devices shown in FIG. 15 may be combined, divided, rearranged, omitted, eliminated, and/or implemented in any other manner. Additionally, the exemplary data classifier 1500, the exemplary art type analyzer 1502, and/or, more generally, the exemplary art type predictor 1418 of FIG. 14 may be implemented using hardware, software, firmware, and/or any combination of hardware, software, and/or firmware. Thus, for example, any of the exemplary data classifier 1500, the exemplary art type analyzer 1502, and/or, more generally, the exemplary art type predictor 1418 may be implemented using one or more analog or digital circuits, logic circuits, one or more programmable processors, one or more application specific integrated circuits (ASICs), one or more programmable logic devices (PLDs), and/or one or more field programmable logic devices (FPLDs). When any of the device or system claims of this patent are read to cover a purely software and/or firmware implementation, at least one of the exemplary data classifier 1500, the exemplary art type analyzer 1502, and/or the exemplary art type predictor 1418 is hereby expressly defined to include a tangible computer-readable storage device or storage disk, such as a memory, a digital versatile disk (DVD), a compact disk (CD), a Blu-ray disk, etc., storing the software and/or firmware. Additionally, the exemplary art type predictor 1418 may include one or more elements, processes, and/or devices in addition to or in place of those shown in FIG. 15 , and/or may include more than one of any or all of the illustrated elements, processes, and devices.

图17示出了描绘由图14和图15的艺术类型预测器1418使用的时段(例如在图16的示例性时段1616中可以指示的时段)和日类别(例如在图16的示例性日类别1614中可以指示的日类别)的示例性图表。在图示示例中,一周的每天1700被划分成多个时段1702。在图示示例中,周一到周五被划分成相同的时段片段或分区(例如具有相同持续时间且被相同时段开始时间和时段结束时间分界的时段)。可替选地,一周的每天1700或其任何组合可以被划分成不同时段。在图示示例中,日类别1704被划分成三类“工作日”、“周六”和“周日”。可替选地,日类别1704可以包括用于一周的每天的独立类别(例如“周一”类别、“周二”类别等)。在一些示例中,日类别可以基于被分组在一起的不同日之间的类似特性(例如时间接近度、受众观看习性等)具有不同的日分组。例如,日类别1704可以包括“早期周”类别(例如包括周一和周二)、“中期周”类别(例如包括周三和周四)、“晚期周”类别(例如包括周五)、以及“周末”类别(例如包括周六和周日)。FIG17 shows an exemplary chart depicting time periods (such as those indicated in the exemplary time periods 1616 of FIG16 ) and day categories (such as those indicated in the exemplary day categories 1614 of FIG16 ) used by the art genre predictor 1418 of FIG14 and FIG15 . In the illustrated example, each day of the week 1700 is divided into a plurality of time periods 1702 . In the illustrated example, Monday through Friday are divided into identical time period segments or partitions (e.g., time periods having the same duration and delimited by the same time period start and end times). Alternatively, each day of the week 1700 , or any combination thereof, may be divided into different time periods. In the illustrated example, the day categories 1704 are divided into three categories: “weekdays,” “Saturdays,” and “Sundays.” Alternatively, the day categories 1704 may include separate categories for each day of the week (e.g., a “Monday” category, a “Tuesday” category, etc.). In some examples, the day categories may have different day groupings based on similar characteristics between the different days being grouped together (e.g., temporal proximity, audience viewing habits, etc.). For example, day categories 1704 may include an “early week” category (e.g., including Monday and Tuesday), a “mid-week” category (e.g., including Wednesday and Thursday), a “late week” category (e.g., including Friday), and a “weekend” category (e.g., including Saturday and Sunday).

图18示出了图14的艺术类型预测建模器1416的示例,该艺术类型预测建模器1416构造将被图14的艺术类型预测器1418使用的一个或多个艺术类型预测模型1428。在图示示例中,艺术类型预测建模器1416包括示例性艺术类型预测模型构造器1802、示例性艺术类型预测模型评估器1804、和示例性艺术类型预测模型比较器1806。示例性艺术类型预测模型构造器1802使用来自历史艺术类型数据库1420的数据集来使用不同建模技术生成一个或多个候选模型。可用于实现艺术类型预测建模器1416的示例性建模技术包括逻辑回归、线性判别分析、二次判别分析、k最近邻算法等。示例性模型构造器1802从历史艺术类型数据库1420检索示例性训练数据集1808。在图示示例中,训练数据集1808用于建立一个或多个艺术类型预测模型1428的输入(例如在图15的分类的印象数据1504中包括的变量)和一个或多个艺术类型预测模型1428的输出之间的预测关系(例如预测的艺术类型)。示例性训练数据集1808包括分类的印象数据(例如示例性市场标识符1600、示例性站ID 1602、示例性会员ID 1604、示例性日类别1614、示例性时段1616、和示例性持续时间1618)和分配的艺术类型。使用训练数据集1808,示例性艺术类型预测模型构造器1802生成一个或多个候选模型1800。候选模型1800为针对其将被艺术类型分析器1502(图15)用来将艺术类型分配给非艺术类型印象记录1501(图14)的合适度(例如准确度)进行评估的艺术类型预测模型。在一些示例中,在生成示例性候选模型1800之后,艺术类型预测模型构造器1802使用训练数据集1808计算正确区别率(CCR)。在一些示例中,CCR为训练数据集1808中被候选模型正确预测的印象的百分比。FIG18 illustrates an example of the art type prediction modeler 1416 of FIG14 , which constructs one or more art type prediction models 1428 to be used by the art type predictor 1418 of FIG14 . In the illustrated example, the art type prediction modeler 1416 includes an exemplary art type prediction model builder 1802, an exemplary art type prediction model evaluator 1804, and an exemplary art type prediction model comparator 1806. The exemplary art type prediction model builder 1802 uses a dataset from the historical art type database 1420 to generate one or more candidate models using various modeling techniques. Exemplary modeling techniques that can be used to implement the art type prediction modeler 1416 include logistic regression, linear discriminant analysis, quadratic discriminant analysis, k-nearest neighbor algorithms, and the like. The exemplary model builder 1802 retrieves an exemplary training dataset 1808 from the historical art type database 1420. In the illustrated example, a training dataset 1808 is used to establish a predictive relationship between the inputs of one or more art-type prediction models 1428 (e.g., variables included in the classified impression data 1504 of FIG. 15 ) and the outputs of one or more art-type prediction models 1428 (e.g., predicted art-type). The exemplary training dataset 1808 includes classified impression data (e.g., exemplary market identifier 1600, exemplary station ID 1602, exemplary member ID 1604, exemplary day category 1614, exemplary time period 1616, and exemplary duration 1618) and assigned art-types. Using the training dataset 1808, the exemplary art-type prediction model builder 1802 generates one or more candidate models 1800. The candidate models 1800 are art-type prediction models that are evaluated for their suitability (e.g., accuracy) for use by the art-type analyzer 1502 ( FIG. 15 ) to assign art-types to non-art-type impression records 1501 ( FIG. 14 ). In some examples, after generating the exemplary candidate model 1800, the art genre prediction model builder 1802 calculates a correct discrimination rate (CCR) using the training dataset 1808. In some examples, the CCR is the percentage of impressions in the training dataset 1808 that are correctly predicted by the candidate model.

在图18所示的示例中,艺术类型预测模型评估器1804接收和/或检索由艺术类型预测模型构造器1802生成的候选模型1800。艺术类型预测模型评估器1804还从历史艺术类型数据库1420检索测试数据集1810。示例性艺术类型预测模型评估器1804使用测试数据集1810验证候选模型1800。在一些示例中,艺术类型预测模型评估器1804使用测试数据集1810计算用于候选模型的CCR。在一些这类示例中,艺术类型预测模型评估器1804计算用于包括在测试数据集1810中的感兴趣的艺术类型的CCR。In the example shown in FIG18 , an art type prediction model evaluator 1804 receives and/or retrieves a candidate model 1800 generated by an art type prediction model builder 1802. The art type prediction model evaluator 1804 also retrieves a test dataset 1810 from the historical art type database 1420. The example art type prediction model evaluator 1804 validates the candidate model 1800 using the test dataset 1810. In some examples, the art type prediction model evaluator 1804 calculates a CCR for the candidate model using the test dataset 1810. In some such examples, the art type prediction model evaluator 1804 calculates a CCR for the art type of interest included in the test dataset 1810.

在图18所示的示例中,艺术类型预测模型比较器1806使用由AME 108(图14)限定的选择标准选择候选模型1800中的一者或多者作为一个或多个艺术类型预测模型1428。在一些示例中,选择标准包括最高CCR、最短处理时间、最小资源需求等。在一些示例中,艺术类型预测模型比较器1806选择具有最高CCR的候选模型1800。18 , the art type prediction model comparator 1806 uses the selection criteria defined by the AME 108 ( FIG. 14 ) to select one or more of the candidate models 1800 as the one or more art type prediction models 1428. In some examples, the selection criteria include the highest CCR, the shortest processing time, the smallest resource requirements, etc. In some examples, the art type prediction model comparator 1806 selects the candidate model 1800 with the highest CCR.

尽管在图18中示出了实现图14的艺术类型预测建模器1416的示例性方式,但是图18中示出的元件、过程和/或设备中的一者或多者可以被组合、划分、重排、省略、消除、和/或以任何其他方式来实现。另外,示例性艺术类型预测模型构造器1802、示例性艺术类型预测模型评估器1804、示例性艺术类型预测模型比较器1806和/或更一般地,图14的示例性艺术类型预测建模器1416可以通过硬件,软件,固件,和/或硬件、软件和/或固件的任何组合来实现。因此,例如,示例性艺术类型预测模型构造器1802、示例性艺术类型预测模型评估器1804、示例性艺术类型预测模型比较器1806和/或更一般地,示例性艺术类型预测建模器1416中的任一者可以使用如下项来实现:一个或多个模拟或数字电路、逻辑电路、一个或多个可编程处理器、一个或多个专用集成电路(ASIC)、一个或多个可编程逻辑设备(PLD)和/或一个或多个现场可编程逻辑设备(FPLD)。当阅读覆盖纯软件和/或固件实现的本专利的设备或系统权利要求中的任一者时,示例性艺术类型预测模型构造器1802、示例性艺术类型预测模型评估器1804、示例性艺术类型预测模型比较器1806和/或示例性艺术类型预测建模器1416中的至少一者由此明确地被限定成包括有形的计算机可读存储介质或存储盘,诸如存储软件和/或固件的内存、数字通用光盘(DVD)、光盘(CD)、蓝光碟等。另外,示例性艺术类型预测建模器1416可以包括除了图18中所示那些以外或代替图18中所示那些的一个或多个元件、过程和/或设备,和/或可以包括图示元件、过程和设备中的任何或全部中的多于一者。Although an exemplary manner of implementing the art type prediction modeler 1416 of FIG. 14 is shown in FIG. 18 , one or more of the elements, processes, and/or devices shown in FIG. 18 may be combined, divided, rearranged, omitted, eliminated, and/or implemented in any other manner. Furthermore, the exemplary art type prediction model builder 1802, the exemplary art type prediction model evaluator 1804, the exemplary art type prediction model comparator 1806, and/or more generally, the exemplary art type prediction modeler 1416 of FIG. 14 may be implemented using hardware, software, firmware, and/or any combination of hardware, software, and/or firmware. Thus, for example, any of the exemplary art type prediction model builder 1802, the exemplary art type prediction model evaluator 1804, the exemplary art type prediction model comparator 1806, and/or more generally, the exemplary art type prediction modeler 1416 of FIG. 14 may be implemented using one or more analog or digital circuits, logic circuits, one or more programmable processors, one or more application specific integrated circuits (ASICs), one or more programmable logic devices (PLDs), and/or one or more field programmable logic devices (FPLDs). When any of the device or system claims of this patent are read to cover a purely software and/or firmware implementation, at least one of the exemplary art type prediction model constructor 1802, the exemplary art type prediction model evaluator 1804, the exemplary art type prediction model comparator 1806, and/or the exemplary art type prediction modeler 1416 is hereby expressly defined as comprising a tangible computer-readable storage medium or storage disk, such as a memory, a digital versatile disc (DVD), a compact disc (CD), a Blu-ray disc, etc., storing software and/or firmware. Additionally, the exemplary art type prediction modeler 1416 may include one or more elements, processes, and/or devices in addition to or in place of those shown in FIG. 18 , and/or may include more than one of any or all of the illustrated elements, processes, and devices.

在图19中示出了表示用于实现图14和图18的示例性艺术类型预测建模器1416的示例性机器可读指令的流程图。在图20中示出了表示用于实现图14和图15的示例性艺术类型预测器1418的示例性机器可读指令的流程图。在这些示例中,机器可读指令包括用于被处理器执行一个或多个程序,该处理器诸如在下文参照图21讨论的示例性处理器平台2100中所示的处理器2112。该一个或多个程序可以被体现在软件中,该软件存储在有形的计算机可读存储介质上,该存储介质诸如CD-ROM、软盘、硬盘驱动器、数字通用光盘(DVD)、蓝光碟、或与处理器2112相关联的存储器,但是全部的一个或多个程序和/或其部分可以替选地由处理器2112以外的设备来执行和/或被体现在固件或专用硬件中。另外,尽管参照在图19和图20中所示的流程图来描述示例性的一个或多个程序,但是可以替选地使用许多其它实现示例性艺术类型预测器1418和/或示例性艺术类型预测建模器1416的方法。例如,框的执行次序可以被改变,和/或描述的一些框可以被改变、消除或组合。A flowchart representing exemplary machine-readable instructions for implementing the exemplary art genre prediction modeler 1416 of FIG. 14 and FIG. 18 is shown in FIG. 20 . A flowchart representing exemplary machine-readable instructions for implementing the exemplary art genre predictor 1418 of FIG. 14 and FIG. 15 is shown. In these examples, the machine-readable instructions include instructions for executing one or more programs by a processor, such as the processor 2112 shown in the exemplary processor platform 2100 discussed below with reference to FIG. 21 . The one or more programs may be embodied in software stored on a tangible computer-readable storage medium, such as a CD-ROM, floppy disk, hard drive, digital versatile disk (DVD), Blu-ray disc, or memory associated with the processor 2112, although all of the one or more programs and/or portions thereof may alternatively be executed by a device other than the processor 2112 and/or embodied in firmware or dedicated hardware. 19 and 20 , many other methods of implementing the example art type predictor 1418 and/or the example art type prediction modeler 1416 may alternatively be used. For example, the order of execution of the blocks may be changed, and/or some of the blocks described may be changed, eliminated, or combined.

如上所述,图19和/或图20的示例性过程可以使用编码指令(例如计算机和/或机器可读指令)来实现,该编码指令存储在有形的计算机可读存储介质上,该存储介质诸如硬盘驱动器、闪存、只读存储器(ROM)、光盘(CD)、数字通用光盘(DVD)、缓存、随机存取存储器(RAM)和/或任何其它存储设备或存储盘,其中存储信息达任何持续时间(例如延长的时段、永久地、短时地、暂时缓冲、和/或信息的缓存)。附加地或可替选地,图19和/或图20的示例性过程可以使用编码指令(例如计算机和/或机器可读指令)来实现,该编码指令存储在非易失性计算机和/或机器可读介质上,该可读介质诸如硬盘驱动器、闪存、只读存储器、光盘、数字通用光盘、缓存、随机存取存储器和/或任何其它存储设备或存储盘,其中存储信息达任何持续时间(例如延长的时段、永久地、短时地、暂时缓冲、和/或信息的缓存)。As described above, the exemplary processes of Figures 19 and/or 20 may be implemented using coded instructions (e.g., computer and/or machine readable instructions) stored on a tangible computer-readable storage medium, such as a hard drive, flash memory, read-only memory (ROM), compact disc (CD), digital versatile disc (DVD), cache, random access memory (RAM), and/or any other storage device or storage disk in which information is stored for any duration (e.g., for an extended period, permanently, temporarily, temporarily buffered, and/or a cache of information). Additionally or alternatively, the exemplary processes of Figures 19 and/or 20 may be implemented using coded instructions (e.g., computer and/or machine readable instructions) stored on a non-volatile computer and/or machine readable medium, such as a hard drive, flash memory, read-only memory, compact disc, digital versatile disc, cache, random access memory, and/or any other storage device or storage disk in which information is stored for any duration (e.g., for an extended period, permanently, temporarily, temporarily buffered, and/or a cache of information).

图19为表示示例性机器可读指令1900的流程图,该示例性机器可读指令1900可以被执行以实现图14和图18的构造一个或多个艺术类型预测模型(例如图18的一个或多个艺术类型预测模型1428)的示例性艺术类型预测建模器1416,该艺术类型预测模型被用于预测用于基于非艺术类型印象数据1402(图14)记录的非艺术类型印象的艺术类型。初始,在框1902,艺术类型预测模型构造器1802(图18)选择包括在训练数据集(例如图18的训练数据集1808)中的印象中的变量或参数(例如市场标识符、站ID、会员ID、日类别、时段和持续时间),在一些示例中,艺术类型预测模型构造器1802通过对变量执行统计显著性测试(例如计算p值、执行卡方测试等)来选择变量。在框1903,示例性艺术类型预测模型构造器1802基于选择标准将印象从训练数据集1808排除(例如排除与不感兴趣的艺术类型相关联的印象、排除接触或访问的持续时间低于阈值的印象等)。例如,历史艺术类型数据库1420(图14)中的一些记录1430(图14)可以被分类在“无类别的”艺术类型中。在一些实例中,对于艺术类型预测模型1428,可能不期望预测用于印象的“无类别的”艺术类型。在这类示例中,为了防止艺术类型预测模型1428将非艺术类型印象1402(图14)分配到“无类别的”艺术类型,将历史艺术类型数据库1420中被分类在“无类别的”艺术类型中的记录1430从训练数据集1808排除。FIG19 is a flow diagram representing exemplary machine-readable instructions 1900 that can be executed to implement the exemplary art type prediction modeler 1416 of FIG14 and FIG18 for constructing one or more art type prediction models (e.g., one or more art type prediction models 1428 of FIG18 ) for predicting art type for non-art type impressions recorded based on non-art type impression data 1402 ( FIG14 ). Initially, at block 1902, the art type prediction model builder 1802 ( FIG18 ) selects variables or parameters (e.g., market identifier, station ID, member ID, day category, time period, and duration) from among the impressions included in a training dataset (e.g., training dataset 1808 of FIG18 ). In some examples, the art type prediction model builder 1802 selects the variables by performing statistical significance tests on the variables (e.g., calculating p-values, performing chi-square tests, etc.). At block 1903, the example art-type prediction model builder 1802 excludes impressions from the training dataset 1808 based on selection criteria (e.g., excluding impressions associated with art-types of no interest, excluding impressions whose duration of contact or visit is below a threshold, etc.). For example, some records 1430 ( FIG. 14 ) in the historical art-type database 1420 ( FIG. 14 ) may be classified in the “unclassified” art-type. In some instances, it may be undesirable for the art-type prediction model 1428 to predict the “unclassified” art-type for impressions. In such examples, to prevent the art-type prediction model 1428 from assigning non-art-type impressions 1402 ( FIG. 14 ) to the “unclassified” art-type, records 1430 in the historical art-type database 1420 that are classified in the “unclassified” art-type are excluded from the training dataset 1808.

在框1904,示例性艺术类型预测模型构造器1802使用在框1902基于训练数据集1808所选的变量或参数来构造候选模型1800(图18)。可用于生成候选模型1800的示例性建模技术包括逻辑回归、线性判别分析、二次判别分析、k最近邻算法等。例如,艺术类型预测模型构造器1802可以使用k最近邻算法构造模型,其中k等于9。在一些示例中,艺术类型预测模型构造器1802使用训练数据集1808计算候选模型1800的CCR。在框1906,艺术类型预测模型评估器1804(图18)评估在框1904生成的候选模型1800。在一些示例中,艺术类型预测模型评估器1804从历史艺术类型数据库1420(图14)检索一个或多个测试数据集1810(图18),并使用该一个或多个测试数据集1810计算候选模型1800的一个或多个CCR。在一些这类示例中,艺术类型预测模型评估器1804计算用于在一个或多个测试数据集1810中表示的每个艺术类型的独立的一个或多个CCR。At block 1904, the example art-type prediction model builder 1802 constructs a candidate model 1800 ( FIG. 18 ) using the variables or parameters selected at block 1902 based on the training dataset 1808. Example modeling techniques that can be used to generate the candidate model 1800 include logistic regression, linear discriminant analysis, quadratic discriminant analysis, the k-nearest neighbor algorithm, and the like. For example, the art-type prediction model builder 1802 can construct the model using the k-nearest neighbor algorithm, where k equals 9. In some examples, the art-type prediction model builder 1802 calculates the CCR of the candidate model 1800 using the training dataset 1808. At block 1906, the art-type prediction model evaluator 1804 ( FIG. 18 ) evaluates the candidate model 1800 generated at block 1904. In some examples, the art-type prediction model evaluator 1804 retrieves one or more test datasets 1810 ( FIG. 18 ) from the historical art-type database 1420 ( FIG. 14 ) and uses the one or more test datasets 1810 to calculate one or more CCRs for the candidate model 1800. In some such examples, the art genre prediction model evaluator 1804 calculates separate one or more CCRs for each art genre represented in the one or more test datasets 1810 .

在框1908,艺术类型预测模型评估器1804确定在框1906生成的一个或多个CCR是否为可接受的。如果该一个或多个CCR为可接受的,则程序控制前进到框1912。否则,如果该一个或多个CCR为不可接受的,则程序控制前进到框1910。在框1910,艺术类型预测模型构造器1802精化或调整在框1904生成的候选模型1800。在一些示例中,艺术类型预测模型构造器1802调整模型参数(例如选择用于k的不同值等)、调整输入变量(例如使用不同日类别、添加和/或去除变量等)、和/或调整训练数据集1808(例如增大训练数据集1808的规模、改变训练数据集1808的组成以包括之前基于例如艺术类型的种类等而排除的印象)。At block 1908, the art type prediction model evaluator 1804 determines whether the one or more CCRs generated at block 1906 are acceptable. If the one or more CCRs are acceptable, program control proceeds to block 1912. Otherwise, if the one or more CCRs are unacceptable, program control proceeds to block 1910. At block 1910, the art type prediction model builder 1802 refines or adjusts the candidate model 1800 generated at block 1904. In some examples, the art type prediction model builder 1802 adjusts model parameters (e.g., selecting a different value for k, etc.), adjusts input variables (e.g., using different day categories, adding and/or removing variables, etc.), and/or adjusts the training data set 1808 (e.g., increasing the size of the training data set 1808, changing the composition of the training data set 1808 to include impressions that were previously excluded based on, for example, the type of art type, etc.).

在框1912,艺术类型预测模型评估器1804确定是否待生成另一候选模型1800。在一些示例中,艺术类型预测模型评估器1804使用CCR阈值来确定是否待构造另一候选模型1800。在一些示例中,艺术类型预测模型评估器1804基于处理速度和/或计算资源需求来评估候选模型1800。如果待构造另一候选模型1800,则程序控制返回到框1902。否则,如果不待构造另一候选模型1800,则程序控制前进到框1914。在框1914,艺术类型预测模型比较器1806(图18)比较由艺术类型预测模型构造器1802生成的候选模型1800。在一些示例中,艺术类型预测模型比较器1806比较候选模型1800的CCR。在一些这类示例中,对于感兴趣的艺术类型,艺术类型预测模型比较器1806可以比较候选模型1800所对应的单独CCR。例如,第一候选模型可以具有70%的整体CCR(例如用于感兴趣的艺术类型的CCR的平均值等),但是具有30%的用于“家庭”艺术类型的CCR。第二候选模型可以具有65%的整体CCR,但是具有57%的用于“家庭”艺术类型的CCR。At block 1912, the art type prediction model evaluator 1804 determines whether to generate another candidate model 1800. In some examples, the art type prediction model evaluator 1804 uses a CCR threshold to determine whether to construct another candidate model 1800. In some examples, the art type prediction model evaluator 1804 evaluates the candidate models 1800 based on processing speed and/or computational resource requirements. If another candidate model 1800 is to be constructed, program control returns to block 1902. Otherwise, if another candidate model 1800 is not to be constructed, program control proceeds to block 1914. At block 1914, the art type prediction model comparator 1806 ( FIG. 18 ) compares the candidate models 1800 generated by the art type prediction model builder 1802. In some examples, the art type prediction model comparator 1806 compares the CCRs of the candidate models 1800. In some such examples, for the art type of interest, the art type prediction model comparator 1806 may compare the individual CCRs corresponding to the candidate models 1800. For example, a first candidate model may have an overall CCR of 70% (e.g., the average of the CCRs for the art genre of interest, etc.), but a CCR of 30% for the "family" art genre. A second candidate model may have an overall CCR of 65%, but a CCR of 57% for the "family" art genre.

在框1916,艺术类型预测模型比较器1806选择候选艺术类型预测模型1800作为将被艺术类型预测模型预测器1418使用的艺术类型预测模型1428。在一些示例中,艺术类型预测模型比较器1806选择具有最高整体CCR的候选模型1800。例如,从上文示例,艺术类型预测模型比较器1806会选择第一候选模型。在一些示例中,艺术类型预测模型比较器1806选择在感兴趣的特定艺术类型上具有最高CCR的候选模型1800。例如,从上文示例,如果“家庭”艺术类型为特别感兴趣的,则艺术类型预测模型比较器1806会选择第二候选模型。这是因为第二候选模型的“家庭”艺术类型CCR高于第一候选模型的“家庭”艺术类型CCR。在一些示例中,艺术类型预测模型比较器1806基于性能因子(例如预测艺术类型所需的处理功率、预测艺术类型所需的处理速度等)选择候选模型1800。然后图19的示例性程序1900结束。At block 1916, the art-type prediction model comparator 1806 selects a candidate art-type prediction model 1800 as the art-type prediction model 1428 to be used by the art-type prediction model predictor 1418. In some examples, the art-type prediction model comparator 1806 selects the candidate model 1800 with the highest overall CCR. For example, from the example above, the art-type prediction model comparator 1806 would select the first candidate model. In some examples, the art-type prediction model comparator 1806 selects the candidate model 1800 with the highest CCR for a particular art-type of interest. For example, from the example above, if the "family" art-type is of particular interest, the art-type prediction model comparator 1806 would select the second candidate model. This is because the second candidate model's CCR for the "family" art-type is higher than the first candidate model's CCR for the "family" art-type. In some examples, the art-type prediction model comparator 1806 selects the candidate model 1800 based on performance factors (e.g., the processing power required to predict the art-type, the processing speed required to predict the art-type, etc.). The example process 1900 of FIG. 19 then ends.

图20为表示示例性机器可读指令2000的流程图,该示例性机器可读指令2000可以被执行以实现图14和图15的预测针对本地电视节目收集的印象的艺术类型的示例性艺术类型预测器1418,该本地电视节目没有编码有艺术类型信息(例如图14的非艺术类型印象数据1402)。在框2002,示例性数据分类器1500(图15和图16)从收集数据库1414(图14和图15)检索非艺术类型印象数据(例如基于图14和图15的非艺术类型印象数据1402记录的非艺术类型印象记录1501)。在框2004,数据分类器1500将非艺术类型印象记录1501变换为分类的印象数据1504(图15)。在一些示例中,数据分类器1500使用包括在非艺术类型印象记录1501中的时间戳值(例如图16的开始时间戳1606和结束时间戳1608)来生成变量,该变量被艺术类型预测模型(例如图14和图18的艺术类型预测模型1428)用来分类将被输入到艺术类型预测模型1428中的非艺术类型印象记录1501。例如,数据分类器1500可以生成日类别值1614(图16)、时段值1616(图16)、和/或持续时间值1618(图16)。FIG20 is a flow diagram representing exemplary machine-readable instructions 2000 that may be executed to implement the exemplary art genre predictor 1418 of FIG14 and FIG15 for predicting the art genre of collected impressions of local television programs that are not encoded with art genre information (e.g., non-art genre impression data 1402 of FIG14 ). At block 2002, the exemplary data classifier 1500 ( FIG15 and FIG16 ) retrieves non-art genre impression data (e.g., non-art genre impression record 1501 based on non-art genre impression data 1402 of FIG14 and FIG15 ) from the collection database 1414 ( FIG14 and FIG15 ). At block 2004, the data classifier 1500 transforms the non-art genre impression record 1501 into classified impression data 1504 ( FIG15 ). In some examples, the data classifier 1500 uses the timestamp values included in the non-art type impression record 1501 (e.g., the start timestamp 1606 and the end timestamp 1608 of FIG. 16 ) to generate variables that are used by an art type prediction model (e.g., the art type prediction model 1428 of FIG. 14 and FIG. 18 ) to classify the non-art type impression record 1501 to be input into the art type prediction model 1428. For example, the data classifier 1500 may generate a day category value 1614 ( FIG. 16 ), a time period value 1616 ( FIG. 16 ), and/or a duration value 1618 ( FIG. 16 ).

在框2006,艺术类型分析器1502(图15)将由艺术类型预测建模器1416(图14和图18)生成的艺术类型预测模型1428应用于分类的印象数据1504以预测艺术类型信息。在一些示例中,艺术类型预测可以包括准确度等级。在一些这类示例中,准确度等级可以基于由艺术类型预测建模器1416计算的艺术类型预测模型1428的一个或多个CCR。在框2008,艺术类型分析器1502将艺术类型预测与非艺术类型印象数据1402相关联以创建预测艺术类型印象1424(图14和图15)。在一些示例中,艺术类型分析器1502将预测艺术类型印象1424存储在预测数据库1422(图14和图15)中。可替选地或附加地,艺术类型分析器1502使预测艺术类型印象1424包括在预测报告1426(图14和图15)中。然后图20的示例性程序2000结束。At block 2006, the art type analyzer 1502 ( FIG. 15 ) applies the art type prediction model 1428 generated by the art type prediction modeler 1416 ( FIG. 14 and FIG. 18 ) to the classified impression data 1504 to predict art type information. In some examples, the art type prediction may include a rating of accuracy. In some such examples, the rating of accuracy may be based on one or more CCRs of the art type prediction model 1428 calculated by the art type prediction modeler 1416. At block 2008, the art type analyzer 1502 associates the art type prediction with the non-art type impression data 1402 to create a predicted art type impression 1424 ( FIG. 14 and FIG. 15 ). In some examples, the art type analyzer 1502 stores the predicted art type impression 1424 in a prediction database 1422 ( FIG. 14 and FIG. 15 ). Alternatively or additionally, the art type analyzer 1502 includes the predicted art type impression 1424 in a prediction report 1426 ( FIG. 14 and FIG. 15 ). The example process 2000 of FIG. 20 then ends.

图21为示例性处理器平台1200的框图,该处理器平台1200能够执行图4、图5、图6、图7、图8、图9、图10、图11、图12和/或图13的指令以实现示例性校准数据收集器202、示例性共享矩阵生成器204、示例性错误认定校正器206、示例性印象信息收集器208、示例性未覆盖计算器210、示例性未覆盖校正器212、示例性印象信息调整器214、示例性家庭分布生成器216、示例性聚合分布生成器218、示例性矩阵校正器220、示例性矩阵归一化器222、示例性共同观看矩阵生成器224、和/或更一般地,图2的示例性印象数据补偿器200。处理器平台2100可以为例如服务器、个人计算机、移动设备(例如移动手机、智能手机、平板电脑,诸如iPadTM)、因特网器件、或任何其它类型的计算设备。21 is a block diagram of an exemplary processor platform 1200 capable of executing the instructions of FIG4 , FIG5 , FIG6 , FIG7 , FIG8 , FIG9 , FIG10 , FIG11 , FIG12 , and/or FIG13 to implement the exemplary calibration data collector 202 , the exemplary sharing matrix generator 204 , the exemplary false positive corrector 206 , the exemplary impression information collector 208 , the exemplary non-coverage calculator 210 , the exemplary non-coverage corrector 212 , the exemplary impression information adjuster 214 , the exemplary household distribution generator 216 , the exemplary aggregate distribution generator 218 , the exemplary matrix corrector 220 , the exemplary matrix normalizer 222 , the exemplary co-viewing matrix generator 224 , and/or more generally, the exemplary impression data compensator 200 of FIG2 . The processor platform 2100 may be, for example, a server, a personal computer, a mobile device (e.g., a mobile phone, a smartphone, a tablet computer such as an iPad ), an Internet appliance, or any other type of computing device.

图示示例的处理器平台2100包括处理器2112。图示示例的处理器2112为硬件。例如,处理器2112可以通过来自任何期望家庭或制造商的一个或多个集成电路、逻辑电路、微处理器或控制器来实现。图21的示例性处理器2112可以实现示例性校准数据收集器202、示例性共享矩阵生成器204、示例性错误认定校正器206、示例性印象信息收集器208、示例性未覆盖计算器210、示例性未覆盖校正器212、示例性印象信息调整器214、示例性家庭分布生成器216、示例性聚合分布生成器218、示例性矩阵校正器220、示例性矩阵归一化器222、和/或示例性共同观看矩阵生成器224。The illustrated example processor platform 2100 includes a processor 2112. The illustrated example processor 2112 is hardware. For example, the processor 2112 can be implemented by one or more integrated circuits, logic circuits, microprocessors, or controllers from any desired family or manufacturer. The exemplary processor 2112 of FIG. 21 can implement the exemplary calibration data collector 202, the exemplary shared matrix generator 204, the exemplary false positive corrector 206, the exemplary impression information collector 208, the exemplary non-coverage calculator 210, the exemplary non-coverage corrector 212, the exemplary impression information adjuster 214, the exemplary family distribution generator 216, the exemplary aggregate distribution generator 218, the exemplary matrix corrector 220, the exemplary matrix normalizer 222, and/or the exemplary co-viewing matrix generator 224.

图示示例的处理器2112包括本地存储器2113(例如缓存)。图示示例的处理器2112借助总线2118与主存储器通信,主存储器包括易失性存储器2114和非易失性存储器2116。易失性存储器2114可以通过同步动态随机存取存储器(SDRAM)、动态随机存取存储器(DRAM)、RAMBUS动态随机存取存储器(RDRAM)、和/或任何其它类型的随机存取存储设备来实现。非易失性存储器2116可以通过闪存和/或任何其它期望类型的存储设备来实现。对主存储器2114、2116的访问受存储器控制器控制。The processor 2112 of the illustrated example includes a local memory 2113 (e.g., a cache). The processor 2112 of the illustrated example communicates with a main memory via a bus 2118. The main memory includes a volatile memory 2114 and a non-volatile memory 2116. The volatile memory 2114 can be implemented by synchronous dynamic random access memory (SDRAM), dynamic random access memory (DRAM), RAMBUS dynamic random access memory (RDRAM), and/or any other type of random access memory device. The non-volatile memory 2116 can be implemented by flash memory and/or any other desired type of memory device. Access to the main memories 2114 and 2116 is controlled by a memory controller.

图示示例的处理器平台2100还包括接口电路2120。接口电路2120可以通过任何类型的接口标准来实现,诸如以太网接口、通用串行总线(USB)、和/或PCI express接口。The processor platform 2100 of the illustrated example also includes an interface circuit 2120. The interface circuit 2120 may be implemented by any type of interface standard, such as an Ethernet interface, a universal serial bus (USB), and/or a PCI express interface.

在图示示例中,一个或多个输入设备2122连接到接口电路2120。一个或多个输入设备2122允许用户将数据和命令输入到处理器2112中。一个或多个输入设备可以通过例如音频传感器、麦克风、照相机(静止或视频)、键盘、按钮、鼠标、触摸屏、轨迹板、轨迹球、等点和/或声音识别系统来实现。In the illustrated example, one or more input devices 2122 are connected to the interface circuit 2120. The one or more input devices 2122 allow a user to enter data and commands into the processor 2112. The one or more input devices can be implemented by, for example, an audio sensor, a microphone, a camera (still or video), a keyboard, buttons, a mouse, a touch screen, a trackpad, a trackball, a touch screen, and/or a voice recognition system.

一个或多个输出设备2124也连接到图示示例的接口电路2120。输出设备2124可以通过例如显示设备(例如发光二极管(LED)、有机发光二极管(OLED)、液晶显示器、阴极射线管显示器(CRT)、触摸屏、触摸式输出设备、发光二极管(LED)、打印机和/或扬声器)来实现。图示示例的接口电路2120因此通常包括图形驱动卡、图形驱动芯片或图形驱动处理器。One or more output devices 2124 are also connected to the interface circuit 2120 of the illustrated example. Output device 2124 can be implemented by, for example, a display device (e.g., a light emitting diode (LED), an organic light emitting diode (OLED), a liquid crystal display, a cathode ray tube display (CRT), a touch screen, a touch-type output device, a light emitting diode (LED), a printer, and/or a speaker). The interface circuit 2120 of the illustrated example therefore typically includes a graphics driver card, a graphics driver chip, or a graphics driver processor.

图示示例的接口电路2120还包括通信设备,诸如发送器、接收器、收发器、调制解调器和/或网络接口卡以促进借助网络2126(例如以太网连接、数字用户线路(DSL)、电话线、同轴电缆、移动电话系统等)与外部机器(例如任何类型的计算设备)的数据交换。The interface circuitry 2120 of the illustrated example also includes communication devices such as transmitters, receivers, transceivers, modems, and/or network interface cards to facilitate data exchange with an external machine (e.g., any type of computing device) via a network 2126 (e.g., an Ethernet connection, a digital subscriber line (DSL), a telephone line, a coaxial cable, a mobile telephone system, etc.).

图示示例的处理器平台2100还包括用于存储软件和/或数据的一个或多个大容量存储设备2128。图21的示例性大容量存储设备2128可以实现图1的AME媒体印象存储器134。这类大容量存储设备2128的示例包括软盘驱动器、硬驱动盘、光盘驱动器、蓝光碟驱动器、RAID系统、和数字通用光盘(DVD)驱动器。The processor platform 2100 of the illustrated example also includes one or more mass storage devices 2128 for storing software and/or data. The exemplary mass storage device 2128 of FIG. 21 may implement the AME media image storage 134 of FIG. 1. Examples of such mass storage devices 2128 include floppy disk drives, hard drives, optical disk drives, Blu-ray disk drives, RAID systems, and digital versatile disk (DVD) drives.

图4、图5、图6、图7、图8、图9、图10、图11、图12和/或图13的编码指令2132可以被存储在大容量存储设备2128、易失性存储器2114、非易失性存储器2116、和/或可移除有形计算机可读存储介质(诸如CD或DVD)中。The encoded instructions 2132 of Figures 4, 5, 6, 7, 8, 9, 10, 11, 12 and/or 13 may be stored in a mass storage device 2128, a volatile memory 2114, a non-volatile memory 2116, and/or a removable tangible computer-readable storage medium such as a CD or DVD.

图22为示例性处理器平台1200的框图,该处理器平台1200能够执行图19和/或图20的指令以实现示例性收集数据库1414、示例性艺术类型预测建模器1416、示例性艺术类型预测器1418、示例性历史艺术类型数据库1420、示例性预测数据库1422、示例性数据分类器1500、示例性艺术类型分析器1502、示例性艺术类型预测模型构造器1802、示例性艺术类型预测模型评估器1804、示例性艺术类型预测模型比较器1806、和/或更一般地,图1的示例性受众测量实体108。处理器平台2200可以为例如服务器、个人计算机、移动设备(例如移动手机、智能手机、平板电脑,诸如iPadTM)、因特网器件、或任何其它类型的计算设备。22 is a block diagram of an exemplary processor platform 1200 capable of executing the instructions of FIG19 and/or FIG20 to implement the exemplary collection database 1414, the exemplary art type prediction modeler 1416, the exemplary art type predictor 1418, the exemplary historical art type database 1420, the exemplary prediction database 1422, the exemplary data classifier 1500, the exemplary art type analyzer 1502, the exemplary art type prediction model builder 1802, the exemplary art type prediction model evaluator 1804, the exemplary art type prediction model comparator 1806, and/or more generally, the exemplary audience measurement entity 108 of FIG1. The processor platform 2200 may be, for example, a server, a personal computer, a mobile device (e.g., a mobile phone, a smartphone, a tablet computer such as an iPad ), an Internet appliance, or any other type of computing device.

图示示例的处理器平台2200包括处理器2212。图示示例的处理器2212为硬件。例如,处理器2212可以通过来自任何期望家庭或制造商的一个或多个集成电路、逻辑电路、微处理器或控制器来实现。图22的示例性处理器2212可以实现示例性艺术类型预测建模器1416、示例性艺术类型预测器1418、示例性数据分类器1500、示例性艺术类型分析器1502、示例性艺术类型预测模型构造器1802、示例性艺术类型预测模型评估器1804、和/或示例性艺术类型预测模型比较器1806。The example processor platform 2200 of the illustrated example includes a processor 2212. The example processor 2212 of the illustrated example is hardware. For example, the processor 2212 can be implemented by one or more integrated circuits, logic circuits, microprocessors, or controllers from any desired manufacturer. The example processor 2212 of FIG. 22 can implement the example art type prediction modeler 1416, the example art type predictor 1418, the example data classifier 1500, the example art type analyzer 1502, the example art type prediction model builder 1802, the example art type prediction model evaluator 1804, and/or the example art type prediction model comparator 1806.

图示示例的处理器2212包括本地存储器2213(例如缓存)。图示示例的处理器2212借助总线2218与主存储器通信,主存储器包括易失性存储器2214和非易失性存储器2216。易失性存储器2214可以通过同步动态随机存取存储器(SDRAM)、动态随机存取存储器(DRAM)、RAMBUS动态随机存取存储器(RDRAM)、和/或任何其它类型的随机存取存储设备来实现。非易失性存储器2216可以通过闪存和/或任何其它期望类型的存储设备来实现。对主存储器2214、2216的访问受存储器控制器控制。The processor 2212 of the illustrated example includes a local memory 2213 (e.g., a cache). The processor 2212 of the illustrated example communicates with a main memory via a bus 2218. The main memory includes a volatile memory 2214 and a non-volatile memory 2216. The volatile memory 2214 can be implemented by synchronous dynamic random access memory (SDRAM), dynamic random access memory (DRAM), RAMBUS dynamic random access memory (RDRAM), and/or any other type of random access memory device. The non-volatile memory 2216 can be implemented by flash memory and/or any other desired type of memory device. Access to the main memories 2214 and 2216 is controlled by a memory controller.

图示示例的处理器平台2200还包括接口电路2220。接口电路2220可以通过任何类型的接口标准来实现,诸如以太网接口、通用串行总线(USB)、和/或PCI express接口。The processor platform 2200 of the illustrated example also includes an interface circuit 2220. The interface circuit 2220 may be implemented by any type of interface standard, such as an Ethernet interface, a universal serial bus (USB), and/or a PCI express interface.

在图示示例中,一个或多个输入设备2222连接到接口电路2220。一个或多个输入设备2222允许用户将数据和命令输入到处理器2212中。一个或多个输入设备可以通过例如音频传感器、麦克风、照相机(静止或视频)、键盘、按钮、鼠标、触摸屏、轨迹板、轨迹球、等点和/或声音识别系统来实现。In the illustrated example, one or more input devices 2222 are connected to the interface circuit 2220. The one or more input devices 2222 allow a user to enter data and commands into the processor 2212. The one or more input devices can be implemented by, for example, an audio sensor, a microphone, a camera (still or video), a keyboard, buttons, a mouse, a touch screen, a trackpad, a trackball, a touchscreen, and/or a voice recognition system.

一个或多个输出设备2224也连接到图示示例的接口电路2220。输出设备2224可以通过例如显示设备(例如发光二极管(LED)、有机发光二极管(OLED)、液晶显示器、阴极射线管显示器(CRT)、触摸屏、触摸式输出设备、发光二极管(LED)、打印机和/或扬声器)来实现。图示示例的接口电路2220因此通常包括图形驱动卡、图形驱动芯片或图形驱动处理器。One or more output devices 2224 are also connected to the interface circuit 2220 of the illustrated example. Output device 2224 can be implemented by, for example, a display device (e.g., a light emitting diode (LED), an organic light emitting diode (OLED), a liquid crystal display, a cathode ray tube display (CRT), a touch screen, a touch-type output device, a light emitting diode (LED), a printer, and/or a speaker). The interface circuit 2220 of the illustrated example therefore typically includes a graphics driver card, a graphics driver chip, or a graphics driver processor.

图示示例的接口电路2220还包括通信设备,诸如发送器、接收器、收发器、调制解调器和/或网络接口卡以促进借助网络2226(例如以太网连接、数字用户线路(DSL)、电话线、同轴电缆、移动电话系统等)与外部机器(例如任何类型的计算设备)的数据交换。The interface circuitry 2220 of the illustrated example also includes communication devices such as transmitters, receivers, transceivers, modems, and/or network interface cards to facilitate data exchange with an external machine (e.g., any type of computing device) via a network 2226 (e.g., an Ethernet connection, a digital subscriber line (DSL), a telephone line, a coaxial cable, a mobile telephone system, etc.).

图示示例的处理器平台2200还包括用于存储软件和/或数据的一个或多个大容量存储设备2228。图22的示例性大容量存储设备2228可以实现AME媒体印象存储器134、示例性收集数据库1414、示例性历史艺术类型数据库1420、和/或示例性预测数据库1422。这类大容量存储设备2228的示例包括软盘驱动器、硬驱动盘、光盘驱动器、蓝光碟驱动器、RAID系统、和数字通用光盘(DVD)驱动器。The processor platform 2200 of the illustrated example also includes one or more mass storage devices 2228 for storing software and/or data. The example mass storage device 2228 of FIG22 may implement the AME media impression memory 134, the example collection database 1414, the example historical art type database 1420, and/or the example prediction database 1422. Examples of such mass storage devices 2228 include floppy disk drives, hard drives, optical disk drives, Blu-ray disk drives, RAID systems, and digital versatile disk (DVD) drives.

图19和/或图20的编码指令可以被存储在大容量存储设备2228、易失性存储器2214、非易失性存储器2216、和/或可移除有形计算机可读存储介质(诸如CD或DVD)中。The coded instructions of FIG. 19 and/or FIG. 20 may be stored in the mass storage device 2228 , the volatile memory 2214 , the non-volatile memory 2216 , and/or a removable tangible computer-readable storage medium such as a CD or DVD.

从上文可知,将理解,已经公开了加强计算机的操作以提高基于印象的数据(诸如特殊受众、印象计数和持续时间单位)的准确度的方法、装置和制品,从而可以依赖本文中的计算机和处理系统来产生具有较高准确度的受众分析信息。在一些示例中,基于上述用于确定错误认定校正和/或未覆盖校正的特殊受众规模、错误认定校正和/或未覆盖校正的印象计数、和/或错误认定校正和/或未覆盖校正的持续时间单位的等式和技术,可以使计算机操作更高效。即,通过使用这些过程,计算机可以通过相对快速地确定参数并通过上文公开的技术将那些参数应用于确定错误认定校正和/或未覆盖校正的数据而更高效地操作。例如,使用本文中公开的示例性过程,计算机可以更高效地且更有效地在由AME108和数据库所有者104a-b记录的发展或测试数据中校正错误认定误差(例如将上表14的错误认定校正矩阵应用于印象、特殊受众规模、和/或持续时间单位)和/或校正未覆盖误差(例如将未覆盖因子或α因子应用于印象、特殊受众规模、和/或持续时间单位),而不使用大量网络通信带宽(例如节约网络通信带宽)且不使用大量计算机处理资源(例如节约计算机处理资源)来连续地与个体在线用户通信以请求关于他们的在线媒体访问行为的调查响应,以及无需依赖于来自这类在线用户的这类连续调查响应。由于用户无法或不愿意重新收集在线媒体访问,使得来自在线用户的调查响应可能不准确。调查响应还可能不完全,这可以需要附加处理器资源来识别和补充不完全的调查响应。因此,本文中所公开的示例更高效地且更有效地确定错误认定校正的数据。这类错误认定校正的数据在随后处理中可用于识别不同媒体的接触性能,从而媒体供应商、广告商、产品制造商、和/或服务供应商可以关于如何花销广告费用和/或媒体制造和分布费用制定更精明的决定。From the foregoing, it will be appreciated that methods, apparatus, and articles of manufacture have been disclosed for enhancing the operation of a computer to improve the accuracy of impression-based data (such as special audiences, impression counts, and duration units), such that the computers and processing systems herein can be relied upon to generate audience analytics information with a higher degree of accuracy. In some examples, based on the equations and techniques described above for determining special audience sizes for misidentification corrections and/or non-coverage corrections, impression counts for misidentification corrections and/or non-coverage corrections, and/or duration units for misidentification corrections and/or non-coverage corrections, computer operation can be made more efficient. That is, by using these processes, a computer can operate more efficiently by relatively quickly determining parameters and applying those parameters to data for determining misidentification corrections and/or non-coverage corrections through the techniques disclosed above. For example, using the example processes disclosed herein, a computer can more efficiently and effectively correct misidentification errors (e.g., applying the misidentification correction matrix of Table 14 above to impressions, special audience sizes, and/or duration units) and/or correct non-coverage errors (e.g., applying non-coverage factors or alpha factors to impressions, special audience sizes, and/or duration units) in development or test data recorded by AME 108 and database owners 104a-b without using a large amount of network communication bandwidth (e.g., conserving network communication bandwidth) and without using a large amount of computer processing resources (e.g., conserving computer processing resources) to continuously communicate with individual online users to request survey responses about their online media access behavior, and without relying on such continuous survey responses from such online users. Survey responses from online users may be inaccurate due to the users' inability or unwillingness to recollect online media access. Survey responses may also be incomplete, which may require additional processor resources to identify and supplement incomplete survey responses. Thus, the examples disclosed herein more efficiently and effectively determine misidentification-corrected data. Such misidentification-corrected data can be used in subsequent processing to identify the engagement performance of different media so that media providers, advertisers, product manufacturers, and/or service providers can make more informed decisions about how to spend advertising dollars and/or media production and distribution costs.

尽管本文中公开了某些示例性方法、装置和制品,但是本专利的覆盖范围不限于此。相反,本专利覆盖公正地落在本专利的权利要求的范围内的所有方法、装置和制品。Although certain example methods, apparatus, and articles of manufacture have been disclosed herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all methods, apparatus, and articles of manufacture fairly falling within the scope of the claims of this patent.

Claims (52)

1.一种用于补偿印象数据的方法,包括:1. A method for compensating for impression data, comprising: 在第一因特网域的第一服务器处,从第一类型的计算设备接收第一网络通信,所述第一网络通信指示在所述第一类型的计算设备处对媒体的访问;At a first server in a first Internet domain, a first network communication is received from a first type of computing device, the first network communication indicating access to media at the first type of computing device; 通过利用所述第一服务器执行指令,从所述第一服务器发送第二网络通信,以请求人口统计信息,所述人口统计信息对应于在所述第一因特网域从所述第一类型的计算设备接收的所述第一网络通信和第三网络通信;By utilizing the instructions executed by the first server, a second network communication is sent from the first server to request demographic information, the demographic information corresponding to the first network communication and the third network communication received from the first type of computing device in the first Internet domain; 通过利用至少一个处理器执行指令,访问发生在所述第一类型的计算设备上的媒体印象的计数,所述媒体印象的第一部分对应于数据库所有者的第二服务器能够识别其第一人口统计信息的人员,且所述数据库所有者的不能够访问人员的第二人口统计信息的所述第二服务器所产生的未覆盖误差对应于所述媒体印象的第二部分;以及By utilizing instructions executed by at least one processor, a count of media impressions occurring on the first type of computing device is accessed, wherein a first portion of the media impressions corresponds to individuals whose first demographic information can be identified by a second server of the database owner, and an uncovered error generated by the second server for second demographic information of individuals whose second demographic information cannot be accessed by the database owner corresponds to a second portion of the media impressions; and 通过利用所述至少一个处理器执行指令,通过基于以下而确定用于所述媒体印象的所述第二部分的所述第二人口统计信息来校正由所述数据库所有者的所述第二服务器所产生的所述未覆盖误差:1)响应于所述第二网络通信,由所述数据库所有者的所述第二服务器提供的用于所述第一部分的所述第一人口统计信息;2)在所述第一类型的计算设备上访问所述媒体印象所对应的所述媒体的第一概率;以及3)在第二类型的设备上访问所述媒体的第二概率,校正由所述第二服务器所产生的所述未覆盖误差提高计算机的与生成受众分析信息相关联的准确度。By executing instructions using the at least one processor, the undercoverage error generated by the second server of the database owner is corrected by determining the second demographic information for the second portion of the media impression based on: 1) the first demographic information for the first portion provided by the second server of the database owner in response to the second network communication; 2) a first probability of accessing the media corresponding to the media impression on a first type of computing device; and 3) a second probability of accessing the media on a second type of device, thereby improving the accuracy of the computer in relation to generating audience analysis information by correcting the undercoverage error generated by the second server. 2.如权利要求1所述的方法,其中,所述第二人口统计信息的确定包括将以下相乘:1)所述第一概率与所述第二概率的比率,和2)归属于第一人口统计组的所述媒体印象的数目。2. The method of claim 1, wherein determining the second demographic information comprises multiplying the following: 1) the ratio of the first probability to the second probability, and 2) the number of media impressions belonging to the first demographic group. 3.如权利要求2所述的方法,其中,所述第一概率为所述第一人口统计组中的人员在所述第一类型的计算设备上访问所述媒体的概率,且所述第二概率为所述第一人口统计组中的所述人员在所述第二类型的设备上访问所述媒体的概率。3. The method of claim 2, wherein the first probability is the probability that a person in the first demographic group accesses the media on a computing device of the first type, and the second probability is the probability that the person in the first demographic group accesses the media on a device of the second type. 4.如权利要求2所述的方法,还包括:调整所述媒体印象以对于将所述媒体印象的子集不正确归属于第二人口统计组中的第二人员进行补偿,归属于所述第一人口统计组的所述媒体印象的所述数目从被调整以补偿所述不正确归属的所述媒体印象的所述子集来确定。4. The method of claim 2, further comprising: adjusting the media impressions to compensate for incorrect attribution of a subset of the media impressions to a second person in a second demographic group, wherein the number of media impressions attribution to the first demographic group is determined from the subset of media impressions adjusted to compensate for the incorrect attribution. 5.如权利要求1所述的方法,其中,所述第一类型的计算设备包括移动设备,且所述第二类型的设备包括电视。5. The method of claim 1, wherein the first type of computing device includes a mobile device, and the second type of device includes a television. 6.如权利要求1所述的方法,其中,所述第一类型的计算设备包括智能手机、平板电脑和便携式媒体播放器中的至少一者。6. The method of claim 1, wherein the computing device of the first type includes at least one of a smartphone, a tablet computer, and a portable media player. 7.如权利要求1所述的方法,其中,所述第一概率和所述第二概率对应于所述媒体的媒体类别。7. The method of claim 1, wherein the first probability and the second probability correspond to the media category of the media. 8.如权利要求7所述的方法,其中,所述媒体类别为喜剧、戏剧、政治、现实和组合媒体类别中的至少一者。8. The method of claim 7, wherein the media category is at least one of comedy, drama, political, realistic, and combined media categories. 9.如权利要求1所述的方法,还包括:在所述第二人口统计信息的确定之前,针对以下情况调整所述媒体印象:所述媒体印象中的媒体印象被不正确地归属于未引起该媒体印象的人员。9. The method of claim 1, further comprising: prior to determining the second demographic information, adjusting the media impression for cases where the media impression is incorrectly attributed to persons who did not generate the media impression. 10.如权利要求1所述的方法,还包括:基于对人员调查的调查响应计算所述第一概率和所述第二概率,所述第一概率的计算包括从所述调查响应确定与人口统计组、媒体类别、计算设备的类型和地理区域中的至少一者相关联的权重,所述权重指示在感兴趣的设备类型上访问与所述媒体印象相关联的所述媒体的对应概率。10. The method of claim 1, further comprising: calculating the first probability and the second probability based on a survey response to a person survey, wherein the calculation of the first probability includes determining a weight from the survey response associated with at least one of a demographic group, a media category, a type of computing device, and a geographic region, the weight indicating the probability of accessing the media associated with the media impression on a device type of interest. 11.如权利要求10所述的方法,其中,所述调查针对随机小组和由受众测量实体维持的受众成员的小组中的至少一者。11. The method of claim 10, wherein the survey targets at least one of a randomized group and a group of audience members maintained by an audience measurement entity. 12.如权利要求1所述的方法,其中,用于所述媒体印象的所述第二部分的所述第二人口统计信息的确定包括:12. The method of claim 1, wherein determining the second demographic information for the second portion of the media impression comprises: 确定归属于所述人员所对应的不同人口统计组的所述媒体印象的比例;以及Determine the proportion of media impressions belonging to different demographic groups corresponding to the individuals; and 将所述媒体印象的所述比例缩放至所述媒体印象的所述第二部分。The scale of the media impression is scaled to the second portion of the media impression. 13.如权利要求1所述的方法,还包括:将指令提供给发行者,所述指令将由所述发行者提供给所述计算设备以及在被所述计算设备执行时使所述计算设备发送所述第一网络通信。13. The method of claim 1, further comprising: providing instructions to an issuer, the instructions being provided by the issuer to the computing device, and, when executed by the computing device, causing the computing device to send the first network communication. 14.如权利要求1所述的方法,还包括:通过不与个体在线用户关于其在线媒体访问活动进行通信以及通过不向所述在线用户请求调查响应以确定在所述第一类型的计算设备上访问所述媒体印象所对应的所述媒体的所述第一概率或确定在所述第二类型的设备上访问所述媒体的所述第二概率,来节省计算机处理资源。14. The method of claim 1, further comprising: conserving computer processing resources by not communicating with individual online users about their online media access activities and by not requesting survey responses from the online users to determine the first probability of accessing the media corresponding to the media impression on the first type of computing device or to determine the second probability of accessing the media on the second type of device. 15.如权利要求1所述的方法,还包括:通过不与个体在线用户关于其在线媒体访问活动进行通信以及通过不向所述在线用户请求调查响应以确定在所述第一类型的计算设备上访问所述媒体印象所对应的所述媒体的所述第一概率或确定在所述第二类型的设备上访问所述媒体的所述第二概率,来节省网络通信带宽。15. The method of claim 1, further comprising: saving network communication bandwidth by not communicating with individual online users about their online media access activities and by not requesting survey responses from the online users to determine a first probability of accessing the media corresponding to the media impression on a first type of computing device or a second probability of accessing the media on a second type of device. 16.一种用于补偿印象数据的装置,包括:16. An apparatus for compensating impression data, comprising: 印象收集器,所述印象收集器用于:An impression collector, the impression collector being used for: 在第一因特网域处,访问在第一服务器处从第一类型的计算设备接收的第一网络通信,所述第一网络通信指示在所述第一类型的计算设备处对媒体的访问;以及In a first Internet domain, access is made to first network communication received from a first type of computing device at a first server, the first network communication indicating access to media at the first type of computing device; and 从所述第一服务器发送第二网络通信以请求人口统计信息,所述人口统计信息对应于在所述第一因特网域从所述第一类型的计算设备接收的所述第一网络通信和第三网络通信;A second network communication is sent from the first server to request demographic information, the demographic information corresponding to the first network communication and the third network communication received from the first type of computing device in the first Internet domain; 印象信息收集器,所述印象信息收集器用于访问发生在所述第一类型的计算设备上的媒体印象的计数,所述媒体印象的第一部分对应于数据库所有者的第二服务器能够识别其第一人口统计信息的人员,且所述数据库所有者的不能够访问人员的第二人口统计信息的所述第二服务器所产生的未覆盖误差对应于所述媒体印象的第二部分;以及An impression information collector is configured to access counts of media impressions occurring on a computing device of the first type, wherein a first portion of the media impressions corresponds to individuals whose first demographic information can be identified by a second server of a database owner, and an uncovered error generated by the second server for individuals whose second demographic information cannot be accessed by the database owner corresponds to a second portion of the media impressions; and 未覆盖校正器,所述未覆盖校正器用于通过基于在所述第一类型的计算设备上访问所述媒体印象所对应的所述媒体的第一概率且基于在第二类型的设备上访问所述媒体的第二概率,确定用于所述媒体印象的所述第二部分的所述第二人口统计信息来校正由所述数据库所有者的所述第二服务器所产生的所述未覆盖误差,校正由所述第二服务器所产生的所述未覆盖误差提高计算机的与生成受众分析信息相关联的准确度。An uncovering corrector is configured to correct the uncovering error generated by the second server of the database owner by determining second demographic information for the second portion of the media impression based on a first probability of accessing the media corresponding to the media impression on a first type of computing device and a second probability of accessing the media on a second type of device, thereby improving the accuracy of the computer associated with generating audience analysis information. 17.如权利要求16所述的装置,还包括未覆盖计算器,所述未覆盖计算器用于将以下相乘:1)所述第一概率与所述第二概率的比率,和2)归属于第一人口统计组的所述媒体印象的数目。17. The apparatus of claim 16, further comprising an uncovered calculator for multiplying: 1) the ratio of the first probability to the second probability, and 2) the number of media impressions belonging to a first demographic group. 18.如权利要求17所述的装置,其中,所述第一概率为所述第一人口统计组中的人员在所述第一类型的计算设备上访问所述媒体的可能性,且所述第二概率为所述第一人口统计组中的所述人员在所述第二类型的设备上访问所述媒体的可能性。18. The apparatus of claim 17, wherein the first probability is the likelihood that a person in the first demographic group accesses the media on a computing device of the first type, and the second probability is the likelihood that the person in the first demographic group accesses the media on a device of the second type. 19.如权利要求17所述的装置,还包括错误认定校正器,所述错误认定校正器用于调整所述媒体印象以对于将所述媒体印象的子集不正确归属于第二人口统计组中的第二人员进行补偿,归属于所述第一人口统计组的所述媒体印象的所述数目从被调整以补偿所述不正确归属的所述媒体印象的所述子集来确定。19. The apparatus of claim 17, further comprising an error identification corrector for adjusting the media impressions to compensate for incorrect attribution of a subset of the media impressions to a second person in a second demographic group, the number of media impressions attributing to the first demographic group being determined from the subset of media impressions adjusted to compensate for the incorrect attribution. 20.如权利要求16所述的装置,其中,所述第一类型的计算设备包括移动设备,且所述第二类型的设备包括电视。20. The apparatus of claim 16, wherein the first type of computing device includes a mobile device, and the second type of device includes a television. 21.如权利要求16所述的装置,其中,所述第一类型的计算设备包括智能手机、平板电脑和便携式媒体播放器中的至少一者。21. The apparatus of claim 16, wherein the computing device of the first type includes at least one of a smartphone, a tablet computer, and a portable media player. 22.如权利要求16所述的装置,还包括未覆盖计算器,所述未覆盖计算器用于基于对人员调查的调查响应计算所述第一概率和所述第二概率,所述未覆盖计算器用于通过从所述调查响应确定与人口统计组、媒体类别、计算设备的类型和地理区域中的至少一者相关联的权重来计算所述第一概率,所述权重指示在感兴趣的设备类型上访问与所述媒体印象相关联的所述媒体的对应概率。22. The apparatus of claim 16, further comprising an uncovered calculator for calculating the first probability and the second probability based on a survey response to a person survey, the uncovered calculator being configured to calculate the first probability by determining from the survey response a weight associated with at least one of a demographic group, a media category, a type of computing device, and a geographic region, the weight indicating the probability of accessing the corresponding media associated with the media impression on the device type of interest. 23.如权利要求22所述的装置,其中,所述调查针对随机小组和由受众测量实体维持的受众成员的小组中的至少一者。23. The apparatus of claim 22, wherein the survey targets at least one of a randomized group and a group of audience members maintained by an audience measurement entity. 24.如权利要求16所述的装置,其中,所述第一概率和所述第二概率对应于所述媒体的媒体类别。24. The apparatus of claim 16, wherein the first probability and the second probability correspond to the media category of the media. 25.如权利要求24所述的装置,其中,所述媒体类别为喜剧、戏剧、政治、现实和组合媒体类别中的至少一者。25. The apparatus of claim 24, wherein the media category is at least one of comedy, drama, political, realistic, and combined media categories. 26.如权利要求16所述的装置,其中,所述未覆盖校正器用于通过如下方式确定用于所述媒体印象的所述第二部分的所述第二人口统计信息:26. The apparatus of claim 16, wherein the uncovered corrector is configured to determine the second demographic information for the second portion of the media impression in such a manner as follows: 确定归属于所述人员所对应的不同人口统计组的所述媒体印象的比例;以及Determine the proportion of media impressions belonging to different demographic groups corresponding to the individuals; and 将所述媒体印象的所述比例缩放至所述媒体印象的所述第二部分。The scale of the media impression is scaled to the second portion of the media impression. 27.一种有形的计算机可读存储介质,包括计算机可读指令,所述计算机可读指令在被执行时,引起处理器至少:27. A tangible computer-readable storage medium comprising computer-readable instructions, which, when executed, cause a processor to at least: 在第一因特网域的第一服务器处,访问来自第一类型的计算设备的第一网络通信,所述第一网络通信指示在所述第一类型的计算设备处对媒体的访问;At a first server in a first Internet domain, access is made to a first network communication from a first type of computing device, the first network communication indicating access to media at the first type of computing device; 发送请求人口统计信息的第二网络通信,所述人口统计信息对应于在所述第一因特网域从所述第一类型的计算设备接收的所述第一网络通信和第三网络通信;A second network communication is sent requesting demographic information, which corresponds to the first and third network communications received from the first type of computing device in the first Internet domain; 访问发生在所述第一类型的计算设备上的媒体印象的计数,所述媒体印象的第一部分对应于数据库所有者的第二服务器能够识别其第一人口统计信息的人员,且所述数据库所有者的不能够访问人员的第二人口统计信息的所述第二服务器所产生的未覆盖误差对应于所述媒体印象的第二部分;以及Access to a count of media impressions occurring on the first type of computing device, the first portion of which corresponds to a person whose first demographic information can be identified by a second server of the database owner, and the uncovered error generated by the second server for the second demographic information of persons whose second demographic information cannot be accessed by the database owner corresponds to a second portion of the media impression; and 通过基于在所述第一类型的计算设备上访问所述媒体印象所对应的所述媒体的第一概率且基于在第二类型的设备上访问所述媒体的第二概率,确定用于所述媒体印象的所述第二部分的所述第二人口统计信息来校正由所述数据库所有者的所述第二服务器所产生的所述未覆盖误差,校正由所述第二服务器所产生的所述未覆盖误差提高计算机的与生成受众分析信息相关联的准确度。By determining the second demographic information for the second portion of the media impression based on a first probability of accessing the media corresponding to the media impression on a first type of computing device and a second probability of accessing the media on a second type of device, the uncovering error generated by the second server of the database owner is corrected, thereby improving the accuracy of the computer in relation to the generation of audience analysis information. 28.如权利要求27所述的有形的计算机可读存储介质,其中,所述指令引起所述处理器通过将所述第一概率与所述第二概率的比率乘以归属于第一人口统计组的所述媒体印象的数目,来确定所述第二人口统计信息。28. The tangible computer-readable storage medium of claim 27, wherein the instructions cause the processor to determine the second demographic information by multiplying the ratio of the first probability to the second probability by the number of media impressions belonging to the first demographic group. 29.如权利要求28所述的有形的计算机可读存储介质,其中,所述第一概率为所述第一人口统计组中的人员在所述第一类型的计算设备上访问所述媒体的可能性,且所述第二概率为所述第一人口统计组中的所述人员在所述第二类型的设备上访问所述媒体的可能性。29. The tangible computer-readable storage medium of claim 28, wherein the first probability is the likelihood that a person in the first demographic group accesses the medium on a computing device of the first type, and the second probability is the likelihood that the person in the first demographic group accesses the medium on a device of the second type. 30.如权利要求28所述的有形的计算机可读存储介质,其中,所述指令还引起所述处理器调整所述媒体印象以对于将所述媒体印象的子集不正确归属于第二人口统计组中的第二人员进行补偿,归属于所述第一人口统计组的所述媒体印象的所述数目从被调整以补偿所述不正确归属的所述媒体印象的所述子集来确定。30. The tangible computer-readable storage medium of claim 28, wherein the instructions further cause the processor to adjust the media impressions to compensate for incorrect attribution of a subset of the media impressions to a second person in a second demographic group, the number of media impressions attributing to the first demographic group being determined from the subset of media impressions adjusted to compensate for the incorrect attribution. 31.如权利要求27所述的有形的计算机可读存储介质,其中,所述第一类型的计算设备包括移动设备,且所述第二类型的设备包括电视。31. The tangible computer-readable storage medium of claim 27, wherein the computing device of the first type includes a mobile device, and the device of the second type includes a television. 32.如权利要求27所述的有形的计算机可读存储介质,其中,所述第一类型的计算设备包括智能手机、平板电脑和便携式媒体播放器中的至少一者。32. The tangible computer-readable storage medium of claim 27, wherein the computing device of the first type includes at least one of a smartphone, a tablet computer, and a portable media player. 33.如权利要求27所述的有形的计算机可读存储介质,其中,所述第一概率和所述第二概率对应于所述媒体的媒体类别。33. The tangible computer-readable storage medium of claim 27, wherein the first probability and the second probability correspond to the media category of the medium. 34.如权利要求33所述的有形的计算机可读存储介质,其中,所述媒体类别为喜剧、戏剧、政治、现实和组合媒体类别中的至少一者。34. The tangible computer-readable storage medium of claim 33, wherein the media category is at least one of comedy, drama, political, realistic, and combined media categories. 35.如权利要求27所述的有形的计算机可读存储介质,其中,所述指令还引起所述处理器,在所述第二人口统计信息的确定之前,针对以下情况调整所述媒体印象:所述媒体印象中的媒体印象被不正确地归属于未引起该媒体印象的人员。35. The tangible computer-readable storage medium of claim 27, wherein the instructions further cause the processor to adjust the media impression for the following situation prior to the determination of the second demographic information: the media impression in the media impression is incorrectly attributed to a person who did not give rise to the media impression. 36.如权利要求35所述的有形的计算机可读存储介质,其中,所述指令还引起所述处理器,基于对人员调查的调查响应计算所述第一概率和所述第二概率,所述指令引起所述处理器通过从所述调查响应确定与人口统计组、媒体类别、计算设备的类型和地理区域中的至少一者相关联的权重来计算所述第一概率,所述权重指示在感兴趣的设备类型上访问与所述媒体印象相关联的所述媒体的对应概率。36. The tangible computer-readable storage medium of claim 35, wherein the instructions further cause the processor to calculate the first probability and the second probability based on a survey response to a person survey, the instructions causing the processor to calculate the first probability by determining from the survey response a weight associated with at least one of a demographic group, a media category, a type of computing device, and a geographic region, the weight indicating the probability of accessing the corresponding media associated with the media impression on a device type of interest. 37.如权利要求36所述的有形的计算机可读存储介质,其中,所述调查针对随机小组和由受众测量实体维持的受众成员的小组中的至少一者。37. The tangible computer-readable storage medium of claim 36, wherein the survey targets at least one of a randomized group and a group of audience members maintained by an audience measurement entity. 38.如权利要求27所述的有形的计算机可读存储介质,其中,所述指令引起所述处理器通过以下来确定用于所述媒体印象的所述第二部分的所述第二人口统计信息:38. The tangible computer-readable storage medium of claim 27, wherein the instructions cause the processor to determine the second demographic information for the second portion of the media impression by: 确定归属于所述人员所对应的不同人口统计组的所述媒体印象的比例;以及Determine the proportion of media impressions belonging to different demographic groups corresponding to the individuals; and 将所述媒体印象的所述比例缩放至所述媒体印象的所述第二部分。The scale of the media impression is scaled to the second portion of the media impression. 39.一种用于补偿印象数据的方法,包括:39. A method for compensating for impression data, comprising: 使用处理器从第一类型的计算设备收集媒体印象;Use a processor to collect media impressions from a first-type computing device; 使用所述处理器向数据库所有者的第一服务器请求用于所述媒体印象的人口统计信息,所述媒体印象的第一部分对应于所述数据库所有者的所述第一服务器存储其第一人口统计信息的人员,且所述数据库所有者的不能够访问人员的第二人口统计信息的所述第一服务器所产生的未覆盖误差对应于所述媒体印象的第二部分;The processor requests demographic information for the media impression from the first server of the database owner, the first part of the media impression corresponding to the person whose first demographic information is stored on the first server of the database owner, and the overwrite error generated by the first server for the second demographic information of the person whose second demographic information is inaccessible to the database owner corresponds to the second part of the media impression; 从所述数据库所有者的所述第一服务器接收所述媒体印象的所述第一部分所对应的所述第一人口统计信息;Receive the first demographic information corresponding to the first portion of the media impression from the first server of the database owner; 使用所述处理器确定所述媒体印象的所述第二部分中的媒体印象的数目;以及The processor is used to determine the number of media impressions in the second portion of the media impressions; and 通过基于在所述第一类型的计算设备上访问所述媒体印象所对应的媒体的第一概率且基于在第二类型的设备上访问所述媒体的第二概率,使用所述处理器确定用于所述媒体印象的所述第二部分的所述第二人口统计信息来校正由所述数据库所有者的所述第一服务器所产生的所述未覆盖误差,校正由所述第一服务器所产生的所述未覆盖误差提高计算机的与生成受众分析信息相关联的准确度。By using the processor to determine the second demographic information for the second portion of the media impression based on a first probability of accessing the media corresponding to the media impression on a first type of computing device and a second probability of accessing the media on a second type of device, the processor corrects the uncovering error generated by the first server of the database owner, thereby improving the accuracy of the computer in relation to the generation of audience analysis information. 40.一种用于补偿印象数据的方法,包括:40. A method for compensating for impression data, comprising: 在第一因特网域的第一服务器处,从第一类型的计算设备接收第一网络通信,所述第一网络通信指示在所述第一类型的计算设备处对媒体的访问;At a first server in a first Internet domain, a first network communication is received from a first type of computing device, the first network communication indicating access to media at the first type of computing device; 在所述第一因特网域的所述第一服务器处,从所述第一类型的计算设备接收第二网络通信,所述第二网络通信指示在所述计算设备处对所述媒体的持续时间单元的访问;At the first server in the first Internet domain, a second network communication is received from a computing device of the first type, the second network communication indicating access to a duration unit of the media at the computing device; 通过利用所述第一服务器执行指令,从所述第一服务器发送第三网络通信以请求人口统计信息,所述人口统计信息对应于在所述第一因特网域从所述第一类型的计算设备接收的所述第一网络通信和所述第二网络通信;By utilizing the instructions executed by the first server, a third network communication is sent from the first server to request demographic information, the demographic information corresponding to the first network communication and the second network communication received from the first type of computing device in the first Internet domain; 通过利用至少一个处理器执行指令,访问发生在所述第一类型的计算设备上的持续时间单元的计数,所述持续时间单元的第一部分对应于数据库所有者的第二服务器能够识别其第一人口统计信息的人员,且所述数据库所有者的不能够访问人员的第二人口统计信息的所述第二服务器所产生的未覆盖误差对应于所述持续时间单元的第二部分;以及By executing instructions using at least one processor, a count of duration units occurring on the first type of computing device is accessed, the first portion of which corresponds to a person whose first demographic information can be identified by a second server of the database owner, and the uncovered error generated by the second server of the database owner's inability to access the second demographic information of persons corresponds to a second portion of the duration unit; and 通过利用所述至少一个处理器执行指令,通过基于在所述第一类型的计算设备上访问所述持续时间单元所对应的所述媒体的第一概率且基于在第二类型的设备上访问所述媒体的第二概率,确定用于所述持续时间单元的所述第二部分的所述第二人口统计信息来校正由所述数据库所有者的所述第二服务器所产生的所述未覆盖误差,校正由所述第二服务器所产生的所述未覆盖误差提高计算机的与生成受众分析信息相关联的准确度。By executing instructions using the at least one processor, and by determining the second demographic information for the second portion of the duration unit based on a first probability of accessing the media corresponding to the duration unit on a first type of computing device and a second probability of accessing the media on a second type of device, the computer corrects the uncovering error generated by the second server of the database owner, thereby improving the accuracy of the computer in relation to the generation of audience analysis information. 41.一种用于补偿印象数据的装置,包括:41. An apparatus for compensating impression data, comprising: 印象收集器,所述印象收集器用于:An impression collector, the impression collector being used for: 在第一因特网域处,接收在第一服务器处从第一类型的计算设备接收的第一网络通信,所述第一网络通信指示在所述第一类型的计算设备处对媒体的访问;At a first Internet domain, a first network communication received at a first server from a first type of computing device, the first network communication indicating access to media at the first type of computing device; 在所述第一因特网域从所述第一类型的计算设备接收第二网络通信,所述第二网络通信指示在所述第一类型的计算设备处对所述媒体的持续时间单元的访问;以及Receiving second network communication from a first-type computing device in the first Internet domain, the second network communication indicating access to a duration unit of the media at the first-type computing device; and 从所述第一服务器发送来自所述第一服务器的第三网络通信以请求人口统计信息,所述人口统计信息对应于在所述第一因特网域从所述第一类型的计算设备接收的所述第一网络通信和所述第二网络通信;A third network communication is sent from the first server to request demographic information, the demographic information corresponding to the first network communication and the second network communication received from the first type of computing device in the first Internet domain; 印象信息收集器,所述印象信息收集器用于访问发生在所述第一类型的计算设备上的持续时间单元的计数,所述持续时间单元的第一部分对应于数据库所有者的第二服务器能够识别其第一人口统计信息的人员,且所述数据库所有者的不能够访问人员的第二人口统计信息的所述第二服务器所产生的未覆盖误差对应于所述持续时间单元的第二部分;以及An impression information collector is configured to access counts of duration units occurring on a computing device of the first type, wherein a first portion of the duration unit corresponds to a person whose first demographic information can be identified by a second server of the database owner, and an uncovered error generated by the second server of the database owner for persons whose second demographic information cannot be accessed corresponds to a second portion of the duration unit; and 未覆盖校正器,所述未覆盖校正器用于通过基于在所述第一类型的计算设备上访问所述持续时间单元所对应的所述媒体的第一概率且基于在第二类型的设备上访问所述媒体的第二概率,确定用于所述持续时间单元的所述第二部分的所述第二人口统计信息来校正由所述数据库所有者的所述第二服务器所产生的所述未覆盖误差,校正由所述第二服务器所产生的所述未覆盖误差提高计算机的与生成受众分析信息相关联的准确度,所述印象信息收集器和所述未覆盖校正器中的至少一者由逻辑电路来实现。An uncovering corrector is configured to correct the uncovering error generated by the second server of the database owner by determining second demographic information for the second portion of the duration unit based on a first probability of accessing the media corresponding to the duration unit on a first type of computing device and a second probability of accessing the media on a second type of device. Correcting the uncovering error generated by the second server improves the accuracy of the computer associated with generating audience analysis information. At least one of the impression information collector and the uncovering corrector is implemented by logic circuitry. 42.一种用于补偿印象数据的装置,包括:42. An apparatus for compensating impression data, comprising: 用于收集印象的部件,所述用于收集印象的部件用于在第一因特网域访问在第一服务器处从第一类型的计算设备接收的第一网络通信,所述第一网络通信指示在所述第一类型的计算设备处对媒体的访问;以及A component for collecting impressions, the component for collecting impressions being used to access first network communication received at a first server from a first type of computing device in a first Internet domain, the first network communication indicating access to media at the first type of computing device; and 用于收集人口统计信息的部件,所述用于收集人口统计信息的部件用于从所述第一服务器发送第二网络通信以请求人口统计信息,所述人口统计信息对应于在所述第一因特网域从所述第一类型的计算设备接收的所述第一网络通信和所述第二网络通信;A component for collecting demographic information, the component for collecting demographic information being used to send a second network communication from the first server to request demographic information, the demographic information corresponding to the first network communication and the second network communication received from the first type of computing device in the first Internet domain; 用于收集印象信息的部件,所述用于收集印象信息的部件用于访问发生在所述第一类型的计算设备上的媒体印象的计数,所述媒体印象的第一部分对应于数据库所有者的第二服务器能够识别其第一人口统计信息的人员,且所述数据库所有者的不能够访问人员的第二人口统计信息的所述第二服务器所产生的未覆盖误差对应于所述媒体印象的第二部分;以及A component for collecting impression information, the component for collecting impression information being used to access counts of media impressions occurring on the first type of computing device, a first portion of the media impressions corresponding to persons whose first demographic information can be identified by a second server of the database owner, and an uncovering error generated by the second server of persons whose second demographic information cannot be accessed by the database owner corresponding to a second portion of the media impressions; and 用于校正未覆盖的部件,所述用于校正未覆盖的部件用于通过基于在所述第一类型的计算设备上访问所述媒体印象所对应的所述媒体的第一概率且基于在第二类型的设备上访问所述媒体的第二概率,确定用于所述媒体印象的所述第二部分的所述第二人口统计信息来校正由所述数据库所有者的所述第二服务器所产生的所述未覆盖误差,校正由所述第二服务器所产生的所述未覆盖误差提高计算机的与生成受众分析信息相关联的准确度。The component for correcting uncovered parts is used to correct the uncovered error generated by the second server of the database owner by determining the second demographic information for the second part of the media impression based on a first probability of accessing the media corresponding to the media impression on a first type of computing device and a second probability of accessing the media on a second type of device. Correcting the uncovered error generated by the second server improves the accuracy of the computer associated with generating audience analysis information. 43.如权利要求42所述的装置,还包括用于计算未覆盖的部件,所述用于计算未覆盖的部件用于将以下相乘:1)所述第一概率与所述第二概率的比率,和2)归属于第一人口统计组的所述媒体印象的数目。43. The apparatus of claim 42, further comprising a component for calculating uncovered areas, the component for calculating uncovered areas being configured to multiply by: 1) the ratio of the first probability to the second probability, and 2) the number of media impressions belonging to a first demographic group. 44.如权利要求43所述的装置,其中,所述第一概率为所述第一人口统计组中的人员在所述第一类型的计算设备上访问所述媒体的可能性,且所述第二概率为所述第一人口统计组中的所述人员在所述第二类型的设备上访问所述媒体的可能性。44. The apparatus of claim 43, wherein the first probability is the likelihood that a person in the first demographic group accesses the media on a computing device of the first type, and the second probability is the likelihood that the person in the first demographic group accesses the media on a device of the second type. 45.如权利要求43所述的装置,还包括用于校正错误认定的部件,所述用于校正错误认定的部件用以调整所述媒体印象以对于将所述媒体印象的子集不正确归属于第二人口统计组中的第二人员进行补偿,归属于所述第一人口统计组的所述媒体印象的所述数目从被调整以补偿所述不正确归属的所述媒体印象的所述子集来确定。45. The apparatus of claim 43, further comprising a component for correcting misidentification, the component for correcting misidentification being configured to adjust the media impressions to compensate for incorrectly attributing a subset of the media impressions to a second person in a second demographic group, the number of media impressions attributing to the first demographic group being determined from the subset of media impressions adjusted to compensate for the incorrect attribution. 46.如权利要求42所述的装置,其中,所述第一类型的计算设备包括移动设备,且所述第二类型的设备包括电视。46. The apparatus of claim 42, wherein the first type of computing device includes a mobile device, and the second type of device includes a television. 47.如权利要求42所述的装置,其中,所述第一类型的计算设备包括智能手机、平板电脑和便携式媒体播放器中的至少一者。47. The apparatus of claim 42, wherein the computing device of the first type includes at least one of a smartphone, a tablet computer, and a portable media player. 48.如权利要求42所述的装置,还包括用于计算未覆盖的部件,所述用于计算未覆盖的部件用于基于对人员调查的调查响应计算所述第一概率和所述第二概率,所述用于计算未覆盖的部件用于通过从所述调查响应确定与人口统计组、媒体类别、计算设备的类型和地理区域中的至少一者相关联的权重来计算所述第一概率,所述权重指示在感兴趣的设备类型上访问与所述媒体印象相关联的所述媒体的对应概率。48. The apparatus of claim 42, further comprising a component for calculating uncovered areas, the component for calculating uncovered areas being configured to calculate the first probability and the second probability based on a survey response to a person survey, the component for calculating uncovered areas being configured to calculate the first probability by determining from the survey response a weight associated with at least one of a demographic group, a media category, a type of computing device, and a geographic region, the weight indicating the probability of accessing the corresponding media associated with the media impression on a device type of interest. 49.如权利要求48所述的装置,其中,所述调查针对随机小组和由受众测量实体维持的受众成员的小组中的至少一者。49. The apparatus of claim 48, wherein the survey targets at least one of a randomized group and a group of audience members maintained by an audience measurement entity. 50.如权利要求42所述的装置,其中,所述第一概率和所述第二概率对应于所述媒体的媒体类别。50. The apparatus of claim 42, wherein the first probability and the second probability correspond to the media category of the media. 51.如权利要求50所述的装置,其中,所述媒体类别为喜剧、戏剧、政治、现实和组合媒体类别中的至少一者。51. The apparatus of claim 50, wherein the media category is at least one of comedy, drama, political, realistic, and combined media categories. 52.如权利要求42所述的装置,其中,所述用于校正未覆盖的部件用于通过如下方式确定用于所述媒体印象的所述第二部分的所述第二人口统计信息:52. The apparatus of claim 42, wherein the component for correcting uncovered areas is used to determine the second demographic information for the second portion of the media impression in such a way as follows: 确定归属于所述人员所对应的不同人口统计组的所述媒体印象的比例;以及Determine the proportion of media impressions belonging to different demographic groups corresponding to the individuals; and 将所述媒体印象的所述比例缩放至所述媒体印象的所述第二部分。The scale of the media impression is scaled to the second portion of the media impression.
HK17108306.3A 2014-03-13 2014-12-04 Methods and apparatus to compensate impression data for misattribution and/or non-coverage by a database proprietor HK1234870B (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US61/952,726 2014-03-13
US61/979,391 2014-04-14
US61/986,784 2014-04-30
US61/991,286 2014-05-09
US62/014,659 2014-06-19
US62/023,675 2014-07-11
US62/030,571 2014-07-29

Publications (2)

Publication Number Publication Date
HK1234870A1 HK1234870A1 (en) 2018-02-23
HK1234870B true HK1234870B (en) 2022-07-08

Family

ID=

Similar Documents

Publication Publication Date Title
US12045845B2 (en) Methods and apparatus to compensate for server-generated errors in database proprietor impression data due to misattribution and/or non-coverage
US11854041B2 (en) Methods and apparatus to determine impressions corresponding to market segments
HK40072670B (en) Method and apparatus to compensate for impressions of media for misattribution errors
HK40072670A (en) Method and apparatus to compensate for impressions of media for misattribution errors
HK1234870B (en) Methods and apparatus to compensate impression data for misattribution and/or non-coverage by a database proprietor
HK1234870A1 (en) Methods and apparatus to compensate impression data for misattribution and/or non-coverage by a database proprietor