HK1234357A1 - Fire extinguisher with internal mixing and gas cartridge - Google Patents
Fire extinguisher with internal mixing and gas cartridge Download PDFInfo
- Publication number
- HK1234357A1 HK1234357A1 HK17107982.6A HK17107982A HK1234357A1 HK 1234357 A1 HK1234357 A1 HK 1234357A1 HK 17107982 A HK17107982 A HK 17107982A HK 1234357 A1 HK1234357 A1 HK 1234357A1
- Authority
- HK
- Hong Kong
- Prior art keywords
- fire extinguisher
- cartridge
- gas cartridge
- chamber
- extinguisher
- Prior art date
Links
Description
This invention relates to improvements in portable fire extinguishers. More particularly, the present invention relates to a fire extinguisher that uses a replaceable gas cartridge that provides a propellant to push fire extinguishing media outside of the fire extinguisher.
Most portable fire extinguishers are of a similar design where the fire extinguishing powder is contained in a continuously pressurized chamber. Fire extinguishers of this type require scheduled maintenance by trained and certified technicians with certification issued by the fire marshal for each state. This maintenance involves discharging, cleaning, and refilling the extinguisher. If not done periodically, the powder within the chamber becomes compacted and/or the pressure within the chamber may leak and be insufficient to propel the powder out of the dispensing nozzle. If maintenance is not done correctly, moisture absorption by the extinguishing powder will cause caking and block the dispensing nozzle. The aforementioned conditions would prevent the proper dispensing of extinguishing powder when needed.
Current extinguishers are open to wear and tear because of the constant pressure and tear down process. When serviced they are discharged into a recycling chamber and all the parts must be disassembled and cleaned. All the pressure rings must be replaced and every part must then be re-assembled with new powder being placed within the chamber prior to pressurizing the chamber. The servicing of current fire extinguishers often creates more wear and tear on the fire extinguisher than when it is used to extinguish a fire.
Due to the pressurized condition that exists with pressurized fire extinguishers, the opening where powder is placed into the extinguisher is limited due to the structural requirement to maintain pressure within the chamber at all times. The proposed application eliminates this need by providing an external gas cartridge, thus allowing the chamber to exist in a normally un-pressurized condition. Because the chamber is not under pressure the top opening of the extinguisher can be enlarged to allow easier filling of the fire extinguisher with powder, or checking the amount and or condition of the powder within the chamber.
What is needed is a fire extinguisher with a replaceable gas cartridge where the gas cartridge is oriented to discharge only liquid propellant into the body of the extinguisher and the fire extinguisher further has a fluffer that is accessible from outside the chamber, and the chamber has an enlarged top opening for filling the extinguisher. The proposed fire extinguisher provides this solution by providing a fire extinguisher with an external gas cartridge oriented to discharge downward, external mechanism to actuate an internal fluffer, and a large opening. By discharging the compressed liquefied gas downward, liquid is discharged into the fire extinguisher, and as such, the cartridge does not need to absorb nearly as much heat to drive the necessary evaporation to maintain temperature and pressure within the cartridge above the triple point, and thus, solidification of the propellant is avoided. For compressed liquefied CO2, this concept has been experimentally demonstrated to discharge nearly 100% of the CO2 from the cartridge, even with the fire extinguisher preconditioned to -40°C.
The present invention provides a portable fire extinguisher according to the appended claims.
It is an object of the fire extinguisher to eliminate the need for service personnel to enter secure areas. The extinguisher can have a higher level of service; can be operated by automatic "self-service" and or manually serviced by the owner or end user. This eliminates the need for non-employees to enter the privacy of business and government areas. This extinguisher can be operated, maintained, refilled, and charged with minimal training and without need for custom equipment.
[Para 11] The reduced outside servicing and maintenance of the fire extinguisher is ideal for placement of the fire extinguisher in secure areas. This will reduce or eliminate the possibility that a terrorist could utilize the fire extinguisher as a weapon, or use false identity as an extinguisher service person to gain access to a secure area.
[Para 12] Well accepted gas cartridges, such as CO2 or nitrogen cartridges, that are used in other applications can be adapted to operate with the fire extinguisher. The gas cartridge is easily replaced or swapped without replacing the entire fire extinguisher. This provides a tremendous benefit when a large number of fire extinguishers need to be serviced at one time.
[Para 13] A fire extinguisher according to the present disclosure provides a fire extinguisher with an optional externally accessible fluffing mechanism. The size, structure and necessity of the fluffing mechanism can be based upon the size of the fire extinguisher. The externally accessible fluffing mechanism promotes anti-bridging of the powder within the chamber to keep it fluffed, agitated, stirred or disturbed to prevent caking of the powder and keep the powder in a liquefied state to ensure proper discharge onto a fire. The fluffing is accomplished with paddles, flapper, chains rods or other mixing mechanisms located within the chamber. The mixing mechanism is accessed by a connection on the top, bottom or side of the chamber and can be either manually operated or operated with a tool of some type.
[Para 14] Various objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention, along with the accompanying drawings in which like numerals represent like components.
- FIG. 1 shows a perspective view of the fire extinguisher.
- FIG. 2 shows a cross-sectional view of the fire extinguisher.
- FIG. 3 shows a detailed view of the dispensing valve.
- FIG. 4 shows a sectional view of the head of the fire extinguisher.
- FIG. 5A, 5B and 5C show stages of removing the safety device prior to discharging the fire extinguisher.
- FIG. 6 shows a detailed view of the pressurized gas cartridge puncturing mechanism.
- FIG. 7 shows a detail cross-sectional view of the puncture pin.
- FIG. 8 shows a graph of the amount of Dry Ice that is generated based upon the orientation of the pressurized gas.
- FIG. 9 shows the fluffing and siphon tube.
- FIG. 10 shows a detail of the multiple siphon intake holes and the fluffing arm.
With reference to FIG. 1 & 2 , a handle 40 allows the operator to hold the fire extinguisher 19 by placing a hand through the grip area 41. This allows the fire extinguisher 19 to be held in an upright orientation when it is being transported or used. The fire extinguisher 19 can also be stored and or transported in the upright orientation, but the upright orientation is not critical for the storage or operation of the fire extinguisher 19. Partially within the handle 40 and top housing 30 a replaceable pressurized gas cartridge 50 is located under a transparent portion 42 of handle 40. The transparent portion 42 provides the ability to verify that the pressurized gas cartridge 50 is installed within the fire extinguisher 19. While in the preferred embodiment the pressurized gas cartridge 50 is shown partially within the handle 40 and top housing 30 other locations are contemplated.
The replaceable pressurized gas cartridge 50 consists essentially of a compressed gas cartridge of CO2, but cartridges of different types of gas are possible that do not promote spreading of a fire. Because the gas within the cartridge is under high pressure and possibly in a liquid state, a small cartridge of propellant is required to expel the internal fire suppressant material 99 of the fire extinguisher 19. It is also contemplated that multiple gas cartridges can be used to accommodate a larger fire extinguisher without deviating from the inventive nature of the design. Pressurized gas cartridges are available and can be replaced or serviced without the need to service the entire fire extinguisher 19. The handle 40 and its transparent portion 42 provides protection to the pressurized gas cartridge 50 in the event the fire extinguisher 19 is dropped or roughly handled. A trigger mechanism 60 activates the pressurized gas cartridge 50 to pressurize the chamber 22 and expel the fire suppressant material 99 into and out of the hose 81 and exit port 90.
While some figures in this document show and describe a flexible hose 81, some contemplated embodiments may include a duct, hollow passage or nozzle 97 where the fire extinguishing media passes from the body of the fire extinguisher out of the nozzle 97 to extinguish a fire. A control valve lever 92 opens and closes the exit port 90 or to prevent fire suppressant material 99 from pouring out of the extinguisher when the chamber is pressurized. When a nozzle 97 is used, a control valve can be located near the nozzle to control the flow of fire extinguishing media out of the fire extinguisher. The puncturing mechanism of the pressurized gas cartridge and the path from the gas cartridge 50 into the chamber 22 is shown and described in figure 2 .
Polycarbonate is a cost effective candidate for providing a transparent bottom housing 20, however when polycarbonate is in contact with ammonia gas that is the main constituent of ABC dry chemical, material degradation will occur, especially at elevated temperatures, there is a need to isolate or protect the polycarbonate from direct exposure. When using polycarbonate material, the interior of the bottom housing 20 is preferably coated with a transparent protection coating 21 with a Siloxane base, or equivalent. This coating 21 improves chemical and abrasion resistance as well as provides UV protection. The coating 21 can be applied in any number of methods to isolate the polycarbonate exposure to Monoammonium phosphate and any emitted ammonia gas. The coating 21 would provide necessary chemical resistance whereas the polycarbonate bottom housing 20 would provide necessary strength and impact resistance.
In another contemplated embodiment, construct the bottom housing 20 as a transparent cylinder from two separate cylinders where the inner cylinder 21 is inserted into the outer cylinder 23 of bottom housing 20. This could be accomplished by insert molding a transparent inner cylinder of tritan, acrylic, san or an equivalently performing other material into the polycarbonate outer cylinder 23. The outer cylinder 23 of would be polycarbonate, and would serve to provide the assembly with necessary strength and impact resistance, whereas, the inner cylinder 21 would provide the necessary chemical resistance to Monoammonium phosphate. For these embodiments the strength of the inner cylinder 21 could be sufficient to ensure safe operation in the event outer cylinder 23 of bottom housing 20 is damaged from a severe environment or impact.
To expel fire suppressant material 99 from within the fire extinguisher 19 an operator must puncture the pressurized gas cartridge 50. The pressurized gas cartridge 50 is secured by threads 52 or otherwise secured into the top housing of the fire extinguisher 19. Within the top housing 30 a replaceable pressurized gas cartridge 50 is located under a transparent portion 42 of handle 40. The handle 40 and its transparent portion 42 provides protection to the pressurized gas cartridge 50 in the event of the fire extinguisher being dropped, and also allows the operator to verify that the pressurized gas cartridge 50 is installed within the fire extinguisher 19. To puncture the pressurized gas cartridge 50 the operator lowers or rotates the trigger mechanism 60 that pushes the puncture pin 62 into the pressurized gas cartridge 50. Details of the trigger mechanism 60 and the puncture pin 62 is shown and described in more detail in figures 6 and 7 . Once the pressurized gas cartridge 50 is punctured the gas and or liquid will be forced into the chamber 22.
When liquefied gas is discharged from pressurized gas cartridge 50, evaporation must occur from the contained liquid in order to maintain thermodynamic equilibrium within the pressurized gas cartridge 50. To maintain thermodynamic equilibrium heat is required to drive the evaporation. If the available heat from the surrounding cartridge environment is insufficient the compressed liquefied gas temperature and pressure will drop. For liquefied CO2, if the pressure drops below 5.2 bar (75 psig), the liquid CO2 will solidify into dry ice. If dry ice forms, the dry ice will not have time to absorb enough of the surrounding thermal mass to heat the dry ice to change phase into gas and contribute to the effective discharge of the fire extinguisher 19.
The forming of dry ice is exacerbated in low temperatures. Testing agencies such as UL, CSA, and others require operation of a fire extinguisher at temperatures down to -40°C (-40°F). If a pressurized gas cartridge with CO2 is oriented with the discharge port vertical in an upright position (i.e., with threads 52 in the upper position), testing has shown that up to 40% of the CO2 (by mass) can remain in the form of dry ice after completion of the fire extinguishers' discharge. When the pressurized gas cartridge 50 contains CO2 and is oriented in an inverted orientation (i.e., with threads 52 in the lower position), the cartridge does not need to absorb nearly as much heat to evaporate the liquid CO2 from the pressurized gas cartridge 50 to maintain temperature and pressure above the triple point, and thus, creation of dry ice within the cartridge 50 is avoided. This concept has been experimentally demonstrated to discharge nearly 100% of the CO2 from the cartridge, even with the fire extinguisher preconditioned to -40°C (-40°F). Once the CO2 enters the chamber 22, there is sufficient heat and surface area in the comparatively large volume to rapidly convert liquid CO2 into gaseous CO2.
The mixture of fire suppressant material 99 and gas are pushed through the central shaft 110 and then through the flow path 80 in the top housing 30 where they are pushed through hose 81 to a manually operable valve 95 and are expelled out of the exit port 90. The central shaft 110 has an integral siphon tube 112 where fire suppressant material 99 is pushed into multiple holes in the bottom of the central shaft 110 through integral siphon tube 112. The dispensing nozzle 96 has a valve 95 that is operated with a control rod 94 to open and close the valve 95. The control rod 94 holds the valve 95 closed with a spring 93. An operator depresses the control valve lever 92 to overcome the spring 93 and opens the valve 95. The dispensing nozzle 96 can be operated by either hand. This is shown and described in more detail in figure 3 .
An operator can hold dispensing nozzle 96 of the fire extinguisher 19 in one hand and operate the lever 92 with the same hand. The operator can then direct the dispensing nozzle 96 at the fire. When the lever 92 is depressed, the lever will press against spring 93 and slide the control rod 94 to open the valve 95. When the valve 95 is opened fire suppressant material 99 will flow out of the exit port 90. When the lever 92 is released the spring 93 will close the valve 95 to prevent further dispensing of fire suppressant material 99. This will retain pressure within the chamber 22 of fire extinguisher 19.
In figure 5B the safety knob 72 is shown in the vertical orientation to allow the trigger mechanism 60 to pass by the sides of the safety knob 72. When the safety knob 72 is rotated, the rotation causes internal pins 74 to shear and release or eject the tamper indicator 73. The release of the tamper indicator 73 identifies that the fire extinguisher 19 may have been discharged and requires service inspection. Also, when the safety knob 72 is in the vertical orientation, access to the gas cartridge 50 by opening transparent portion 42 of handle 40 has been blocked. The design prevents the insertion of a new pressurized gas cartridge 50 without the trigger mechanism 60 returned to an upright and locked orientation to prevent puncturing the new pressurized gas cartridge 50 upon insertion.
In figure 5C an operator can then pull or push the trigger mechanism 60 downward 69 to where the trigger mechanism 60 is shown in a lower position 67 (as dashed lines). When the trigger mechanism 60 is rotated from the upper to the lower position 67 the puncture pin 62 is pushed into and punctures the pressurized gas cartridge 50. The trigger mechanism 60 can be operated by either hand.
Fire extinguishers generally require approval from regulatory agencies such as Underwriters Laboratory (UL). For most fire extinguishers the housing is pressurized. The fire extinguisher disclosed in this document uses a separate pressurized cartridge 50 that is filled with liquefied gas that must exit the cartridge 50 and expand into the bottom housing 20.
For cartridge-operated extinguishers an interval of 5 seconds is able to elapse after the cartridge is punctured in order that pressure builds up before discharge of the agent is initiated. An extinguisher shall have duration of discharge not less than either 8 seconds, or the minimum duration specified in the Standard for Rating and Fire Testing of Fire Extinguishers.
When the charged extinguisher is held in a vertical position, with the discharge nozzle in the horizontal position. The extinguisher then is to be discharged, and the duration to gas point and amount of dry chemical discharged recorded.
Based upon the ambient temperature and the orientation of the gas canister, different amounts of dry ice (solid CO2) is retained within a CO2 cartridge when discharged vertically upward; conversely, a minimum amount of dry ice was retained when discharged vertically downward.
These results were measured when pressurized liquid CO2 cartridges were conditioned at either 21°C (70°F) or -40°C (-40°F) and then discharged in various orientations. Dry ice remaining within the cartridges was measured 30 seconds after puncturing the cartridge.
The integral siphon tube 112 is constructed with an elongated tube member 119 having the blades 120 molded with the elongated tube. A bottom cap 111 is secured to the elongated tube 119 by ultrasonic welding or the like.
Because the pressurized gas cartridge 50 is inverted, essentially only liquefied gas exits and expands into gas within the fire extinguisher 19 therefore essentially all of the gas within the cartridge is expelled. Because the liquid / gas is expelled at a rapid rate a pressure wave 11 3 traveling nearly the speed of sound pushes onto the top of the fluffing arms 120. A gusset 116 supports the fluffing arm 120 and prevents the fluffing arm 120 from being sheared off by the pressure wave. In a short period of time, pressure within the fire extinguisher 19 stabilizes. Once valve 95 is opened, the static pressure within chamber 22 pushes the fire suppressant material 99 toward at least one intake hole 114 in the bottom of the central shaft 110 shown in the other figures herein.
Thus, specific embodiments of a portable fire extinguisher have been disclosed. It should be apparent, however, to those skilled in the art that many more modifications besides those described are possible without departing from the claims.
The industrial applicability relates to fire extinguishers.
Claims (10)
- A portable fire extinguisher (19) comprising:a chamber (22) filled with fire suppressant material (99);a replaceable inverted gas cartridge (50);a puncturing mechanism (60, 62) that allows for puncturing said inverted gas cartridge (50), said puncturing mechanism comprising a puncture pin (62) that is operably connected to a trigger mechanism (60);a passage for expelling said fire suppressant material from said chamber;characterized in that said trigger mechanism (60) is configured to move the puncture pin (62) to rupture an end of said replaceable inverted gas cartridge (50) when activated;and in that the portable extinguisher comprises a safety knob (72) movable between a first orientation in which it restricts the trigger mechanism (60) to lock said puncture mechanism (60, 62) and a second orientation in which it does not restrict movement of the trigger mechanism and the puncture mechanism (60, 62) is unlocked.
- A portable fire extinguisher (19) as claimed in claim 1 wherein said replaceable inverted gas cartridge (50) is oriented to expel gas in a liquefied state into said chamber (22) of the fire extinguisher (19).
- A portable fire extinguisher (19) as claimed in claim 2 wherein said liquefied gas vaporizes in within said chamber (22).
- A portable fire extinguisher (19) as claimed in claim 2, wherein the extinguisher further includes a fluffing mechanism operable externally of said chamber (22), said fluffing mechanism having at least one fluffing blade (120) that when moved disturbs caking of said fire suppressant material (99).
- A portable fire extinguisher (19) as claimed in claim 4 wherein said fluffing mechanism comprises a rotatable shaft (110) centrally located within said chamber (22) on which said at least one fluffer blade (120) is supported, the central shaft defining a hollow siphon tube (112) for said fire suppressing material (99) to enter into said hollow siphon tube and out of said portable fire extinguisher.
- A portable fire extinguisher (19) as claimed in claim 5 wherein said hollow siphon tube (112) connects with a rotary seal (109).
- A portable fire extinguisher (19) as claimed in claim 5 wherein said hollow siphon tube (112) is fabricated from at least two parts having a first part that is an elongated hollow tube (119), and at least a second part being an end cap (111).
- A portable fire extinguisher (19) as claimed in claim 4 and claim 3 wherein said vaporizing creates a pressure wave in use and said fluffing blade (120) is shaped to resist said pressure wave.
- A portable fire extinguisher (19) as claimed in claim 1 wherein said safety knob (72) includes a tamper indicator that breaks upon disturbing said safety knob (72).
- A portable fire extinguisher (19) as claimed in claim 1 wherein when said puncture mechanism (60, 62) is locked by said safety knob (72), said replaceable inverted gas cartridge (50) is accessible, and when said puncture mechanism (60, 62) is unlocked, access to said replaceable inverted gas cartridge (50) is blocked, thereby preventing inadvertent puncturing.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/313,761 | 2014-06-24 | ||
| US14/704,820 | 2015-05-05 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| HK1234357A1 true HK1234357A1 (en) | 2018-02-15 |
| HK1234357B HK1234357B (en) | 2022-12-30 |
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3160598B1 (en) | Fire extinguisher with internal mixing and gas cartridge | |
| US10350443B2 (en) | Fire extinguisher with internal mixing and external gas cartridge | |
| US11896858B2 (en) | Fire extinguisher with internal mixing and gas cartridge | |
| AU2020204190B2 (en) | Fire extinguisher with internal mixing and gas cartridge | |
| US11305140B1 (en) | Fire extinguisher with internal mixing and gas cartridge | |
| HK1234357B (en) | Fire extinguisher with internal mixing and gas cartridge | |
| HK1234357A1 (en) | Fire extinguisher with internal mixing and gas cartridge | |
| NZ728200B2 (en) | Fire extinguisher with internal mixing and gas cartridge | |
| NZ758094A (en) | Systems and methods for distributed data mapping | |
| OA18132A (en) | Fire extinguisher with internal mixing and gas cartridge | |
| NZ758094B2 (en) | Optical acoustic sensing system and method | |
| HK40011443A (en) | A portable fire extinguisher | |
| HK40011443B (en) | A portable fire extinguisher | |
| HK40012695A (en) | A portable fire extinguisher | |
| HK40012695B (en) | A portable fire extinguisher | |
| HK1233989A1 (en) | Fire extinguisher with internal mixing and gas cartridge | |
| HK1233989B (en) | Fire extinguisher with internal mixing and gas cartridge |