[go: up one dir, main page]

HK1211721B - Methods and systems for spoof detection for biometric authentication - Google Patents

Methods and systems for spoof detection for biometric authentication Download PDF

Info

Publication number
HK1211721B
HK1211721B HK15110727.2A HK15110727A HK1211721B HK 1211721 B HK1211721 B HK 1211721B HK 15110727 A HK15110727 A HK 15110727A HK 1211721 B HK1211721 B HK 1211721B
Authority
HK
Hong Kong
Prior art keywords
metric
images
image
eye
sensor
Prior art date
Application number
HK15110727.2A
Other languages
Chinese (zh)
Other versions
HK1211721A1 (en
Inventor
雷扎.德拉克沙尼
凯茜.休利特
杰里米.帕本
乔尔.特普利
托比.拉什
Original Assignee
居米奥公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/572,097 external-priority patent/US8437513B1/en
Application filed by 居米奥公司 filed Critical 居米奥公司
Publication of HK1211721A1 publication Critical patent/HK1211721A1/en
Publication of HK1211721B publication Critical patent/HK1211721B/en

Links

Description

用于生物特征验证的电子欺骗检测的方法和系统Method and system for spoofing detection for biometric authentication

分案申请的相关信息Information about divisional applications

本案是分案申请。该分案的母案是申请日为2013年7月2日、申请号为201310276022.6、发明名称为“用于生物特征验证的电子欺骗检测的方法和系统”的发明专利申请案。This application is a divisional application. The parent application is an invention patent application filed on July 2, 2013, with application number 201310276022.6, and titled “Method and System for Electronic Fraud Detection for Biometric Verification.”

技术领域Technical Field

本发明涉及基于眼睛的图像的生物特征验证。The present invention relates to biometric authentication based on images of the eyes.

背景技术Background Art

常常需要将对房产或资源的进入限于特定个体。生物特征识别系统可用以验证个体的身份以准许或不允许进入资源。举例来说,虹膜扫描仪可由生物特征安全系统使用以基于个体的虹膜中的独特结构来识别个体。It is often necessary to restrict access to a property or resource to specific individuals. Biometric recognition systems can be used to verify the identity of an individual to grant or deny access to a resource. For example, an iris scanner can be used by a biometric security system to identify an individual based on the unique structure in their iris.

发明内容Summary of the Invention

本说明书描述与基于眼睛的图像的生物特征验证有关的技术。一般来说,本说明书中所描述的标的物的一个方面可体现于一方法中,所述方法包含获得主体的包含眼睛的视图的两个或两个以上图像,其中所述图像共同包含多个焦距。所述方法可进一步包含至少基于所述眼睛在多个所述图像中出现时所述眼睛的所检测的移动来确定行为度量。所述行为度量可为对所检测的移动和定时与所述眼睛的预期移动的偏差的测量。所述方法可进一步包含至少基于从传感器到各自具有不同相应焦距的多个所述图像中出现的界标的距离来确定空间度量。所述方法可进一步包含至少基于所述眼睛在多个所述图像中出现时所述眼睛的表面上的表面眩光或镜面反射模式的所检测的改变来确定反射度量,其中所述反射度量为对所述眼睛的所述表面上的眩光或镜面反射膜片的改变的测量。所述方法可进一步包含至少基于所述行为、空间和反射度量来确定分数。所述方法可进一步包含基于所述分数拒绝或接受一个或一个以上图像。This specification describes technology related to biometric authentication based on eye images. Generally speaking, one aspect of the subject matter described herein can be embodied in a method comprising obtaining two or more images of a view of a subject including an eye, wherein the images collectively comprise multiple focal lengths. The method may further comprise determining a behavioral metric based at least on detected movement of the eye as it appears in the plurality of images. The behavioral metric may be a measure of deviation of the detected movement and timing from expected movement of the eye. The method may further comprise determining a spatial metric based at least on distances from a sensor to landmarks appearing in the plurality of images, each having a different corresponding focal length. The method may further comprise determining a reflectance metric based at least on detected changes in a surface glare or specular reflection pattern on a surface of the eye as it appears in the plurality of images, wherein the reflectance metric is a measure of changes in a glare or specular reflection patch on the surface of the eye. The method may further comprise determining a score based at least on the behavioral, spatial, and reflectance metrics. The method may further comprise rejecting or accepting one or more images based on the score.

一般来说,本说明书中所描述的标的物的一个方面可体现于一系统中,所述系统包含经配置以俘获主体的包含眼睛的视图的两个或两个以上图像的传感器,其中所述图像共同包含多个焦距。所述系统可进一步包含照明元件,其与由所述传感器进行的对一个或一个以上图像的所述俘获同步地提供光刺激。所述系统可进一步包含用于至少基于所述眼睛在多个所述图像中出现时所述眼睛的所检测的移动来确定行为度量的构件。所述行为度量为对所检测的移动和定时与所述眼睛的预期移动的偏差的测量。所述系统可进一步包含经配置以至少基于从传感器到各自具有不同相应焦距的多个所述图像中出现的界标的距离来确定空间度量的模块。所述系统可进一步包含经配置以至少基于所述眼睛在多个所述图像中出现时所述眼睛的表面上的表面眩光或镜面反射模式的所检测的改变来确定反射度量的模块,其中所述反射度量为对所述眼睛的所述表面上的眩光或镜面反射膜片的改变的测量。所述系统可进一步包含经配置以至少基于所述行为、空间和反射度量来确定分数的模块。所述系统可进一步包含经配置以基于所述分数拒绝或接受一个或一个以上图像的接口。In general, one aspect of the subject matter described in this specification can be embodied in a system comprising a sensor configured to capture two or more images of a view of a subject including an eye, wherein the images collectively comprise multiple focal lengths. The system can further comprise an illumination element that provides light stimulation in synchronization with the capture of the one or more images by the sensor. The system can further comprise means for determining a behavioral metric based at least on detected movement of the eye as it appears in the plurality of images. The behavioral metric is a measure of deviation of the detected movement and timing from expected movement of the eye. The system can further comprise a module configured to determine a spatial metric based at least on distances from the sensor to landmarks appearing in the plurality of images, each having a different corresponding focal length. The system can further comprise a module configured to determine a reflectance metric based at least on detected changes in a surface glare or specular reflection pattern on a surface of the eye as it appears in the plurality of images, wherein the reflectance metric is a measure of changes in a glare or specular reflection patch on the surface of the eye. The system may further include a module configured to determine a score based at least on the behavioral, spatial, and reflective metrics.The system may further include an interface configured to reject or accept one or more images based on the score.

一般来说,本说明书中所描述的标的物的一个方面可体现于一系统中,所述系统包含数据处理设备和耦合到所述数据处理设备的存储器。所述存储器上存储有指令,所述指令在由所述数据处理设备执行时致使所述数据处理设备执行包含获得主体的包含眼睛的视图的两个或两个以上图像的操作,其中所述图像共同包含多个焦距。所述操作可进一步包含至少基于所述眼睛在多个所述图像中出现时所述眼睛的所检测的移动来确定行为度量。所述行为度量可为对所检测的移动和定时与所述眼睛的预期移动的偏差的测量。所述操作可进一步包含至少基于从传感器到各自具有不同相应焦距的多个所述图像中出现的界标的距离来确定空间度量。所述操作可进一步包含至少基于所述眼睛在多个所述图像中出现时所述眼睛的表面上的表面眩光或镜面反射模式的所检测的改变来确定反射度量,其中所述反射度量为对所述眼睛的所述表面上的眩光或镜面反射膜片的改变的测量。所述操作可进一步包含至少基于所述行为、空间和反射度量来确定分数。所述操作可进一步包含基于所述分数拒绝或接受一个或一个以上图像。In general, one aspect of the subject matter described in this specification can be embodied in a system comprising a data processing device and a memory coupled to the data processing device. The memory has stored thereon instructions that, when executed by the data processing device, cause the data processing device to perform operations comprising obtaining two or more images of a view of a subject including an eye, wherein the images collectively comprise multiple focal lengths. The operations may further comprise determining a behavioral metric based at least on detected movement of the eye as the eye appears in the plurality of images. The behavioral metric may be a measure of deviation of the detected movement and timing from expected movement of the eye. The operations may further comprise determining a spatial metric based at least on distances from a sensor to landmarks appearing in the plurality of images, each having a different corresponding focal length. The operations may further comprise determining a reflectance metric based at least on detected changes in a surface glare or specular reflection pattern on a surface of the eye as the eye appears in the plurality of images, wherein the reflectance metric is a measure of changes in a glare or specular reflection patch on the surface of the eye. The operations may further comprise determining a score based at least on the behavioral, spatial, and reflectance metrics. The operations may further include rejecting or accepting one or more images based on the scores.

一般来说,本说明书中所描述的标的物的一个方面可体现于一非瞬时电脑可读媒体中,所述非瞬时电脑可读媒体存储包含可由处理装置执行的指令的软件,所述指令在此执行之后,随即致使所述处理装置执行包含获得主体的包含眼睛的视图的两个或两个以上图像的操作,其中所述图像共同包含多个焦距。所述操作可进一步包含至少基于所述眼睛在多个所述图像中出现时所述眼睛的所检测的移动来确定行为度量。所述行为度量可为对所检测的移动和定时与所述眼睛的预期移动的偏差的测量。所述操作可进一步包含至少基于从传感器到各自具有不同相应焦距的多个所述图像中出现的界标的距离来确定空间度量。所述操作可进一步包含至少基于所述眼睛在多个所述图像中出现时所述眼睛的表面上的表面眩光或镜面反射模式的所检测的改变来确定反射度量,其中所述反射度量为对所述眼睛的所述表面上的眩光或镜面反射膜片的改变的测量。所述操作可进一步包含至少基于所述行为、空间和反射度量来确定分数。所述操作可进一步包含基于所述分数拒绝或接受一个或一个以上图像。In general, one aspect of the subject matter described herein can be embodied in a non-transitory computer-readable medium storing software comprising instructions executable by a processing device, the instructions, upon execution, causing the processing device to perform operations comprising obtaining two or more images of a view of a subject including an eye, wherein the images collectively comprise a plurality of focal lengths. The operations may further comprise determining a behavioral metric based at least on detected movement of the eye as the eye appears in the plurality of images. The behavioral metric may be a measure of deviation of the detected movement and timing from expected movement of the eye. The operations may further comprise determining a spatial metric based at least on distances from a sensor to landmarks appearing in the plurality of images, each having a different corresponding focal length. The operations may further comprise determining a reflectance metric based at least on detected changes in a surface glare or specular reflection pattern on a surface of the eye as the eye appears in the plurality of images, wherein the reflectance metric is a measure of changes in a glare or specular reflection patch on the surface of the eye. The operations may further comprise determining a score based at least on the behavioral, spatial, and reflectance metrics. The operations may further include rejecting or accepting one or more images based on the scores.

这些以及其它实施例可各自任选地包含以下特征中的一者或一者以上。确定行为度量可包含确定响应于光刺激的瞳孔收缩的开始、持续时间、速度或加速度。所述光刺激可包含闪光脉冲。所述光刺激可包含由显示器进行的光输出的强度的改变。所述确定所述行为度量可包含确定响应于外部刺激的注视点转变的开始、持续时间或加速度。所述外部刺激可包含用于指示用户定向注视点的提示。所述外部刺激可包含显示器中所描绘的在所述显示器内移动的对象。所述空间度量可为对所述主体与二维平面的偏差的测量。所述空间度量可为对所述主体与预期三维形状的偏差的测量。确定所述空间度量可包含确定多个所述图像中出现的两个或两个以上界标的视差。半色调可在使用减少的动态范围俘获的图像中检测到,且所述图像可至少部分基于所述半色调而被拒绝。确定所述行为度量可包含在所述眼睛在多个所述图像中出现时检测所述眼睛的血流量。确定所述分数可包含使用受训练函数近似器来确定所述分数。所述界标可为所述图像中所描绘的脸的部分。确定所述反射度量可包含在俘获所述图像中的一者或一者以上时以脉冲形式发出闪光,从而照亮所述主体,检测所述图像中的来自所述闪光的所述眼睛上的眩光的出现,以及测量所述闪光的所述脉冲与所述图像中的所述眼睛上的对应眩光的所述出现之间的时间差。确定所述反射度量可包含在俘获所述图像中的一者或一者以上时以脉冲形式发出闪光以照亮所述主体,及通过测量所述图像中的来自所述闪光的所述眼睛上的眩光的模式均匀性来检测所述眼睛的眼白的精细三维纹理。控制聚焦的传感器设置可在所述图像中的两者或两者以上的俘获期间调整为多个不同设置。可比较在不同聚焦设置的情况下俘获的所述图像以确定这些图像是否反映其相应聚焦设置。控制曝光的传感器设置可在所述图像中的两者或两者以上的俘获期间调整为多个不同设置。可比较在不同曝光设置的情况下俘获的所述图像以确定这些图像是否反映其相应曝光设置。控制白平衡的传感器设置可在所述图像中的两者或两者以上的俘获期间调整为多个不同设置。可比较在不同白平衡设置的情况下俘获的所述图像以确定这些图像是否反映其相应白平衡设置。These and other embodiments may each optionally include one or more of the following features. Determining a behavioral metric may include determining the onset, duration, speed, or acceleration of pupil constriction in response to a light stimulus. The light stimulus may include a flashing light pulse. The light stimulus may include a change in the intensity of light output by a display. Determining the behavioral metric may include determining the onset, duration, or acceleration of a gaze shift in response to an external stimulus. The external stimulus may include a cue for instructing a user to direct their gaze. The external stimulus may include an object depicted in a display moving within the display. The spatial metric may be a measure of the subject's deviation from a two-dimensional plane. The spatial metric may be a measure of the subject's deviation from an expected three-dimensional shape. Determining the spatial metric may include determining a disparity of two or more landmarks appearing in a plurality of the images. Halftones may be detected in images captured using a reduced dynamic range, and the images may be rejected based at least in part on the halftones. Determining the behavioral metric may include detecting blood flow in the eye when the eye appears in the plurality of the images. Determining the score may include determining the score using a trained function approximator. The landmark may be a portion of a face depicted in the image. Determining the reflectance metric may include pulsing a flash of light to illuminate the subject while capturing one or more of the images, detecting the occurrence of glare on the eye from the flash in the image, and measuring a time difference between the pulse of the flash and the occurrence of corresponding glare on the eye in the image. Determining the reflectance metric may include pulsing a flash of light to illuminate the subject while capturing one or more of the images, and detecting a fine three-dimensional texture of the white of the eye by measuring the pattern uniformity of the glare on the eye from the flash in the image. A sensor setting controlling focus may be adjusted to a plurality of different settings during the capture of two or more of the images. The images captured at different focus settings may be compared to determine whether the images reflect their respective focus settings. A sensor setting controlling exposure may be adjusted to a plurality of different settings during the capture of two or more of the images. The images captured at different exposure settings may be compared to determine whether the images reflect their respective exposure settings. The sensor setting controlling the white balance may be adjusted to a plurality of different settings during the capture of two or more of the images. The images captured at different white balance settings may be compared to determine whether the images reflect their respective white balance settings.

可实施本发明的特定实施例以不实现以下优势中的任一者、实现以下优势中的一者或一者以上。一些实施方案可通过可靠地验证个体来提供安全性。一些实施方案可防止使用不是真人眼睛的对象对基于眼睛生物特征的验证系统进行电子欺骗。Certain embodiments of the present invention may be implemented to achieve none, one, or more of the following advantages. Some embodiments may provide security by reliably authenticating individuals. Some embodiments may prevent spoofing eye-based biometric authentication systems using objects that are not real eyes.

本发明的一个或一个以上实施例的细节陈述于附图及以下描述中。从描述、图式和权利要求书将明白本发明的其它特征、方面和优势。The details of one or more embodiments of the present invention are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the present invention will be apparent from the description, drawings, and claims.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是人眼的解剖结构的图。FIG1 is a diagram of the anatomy of the human eye.

图2是包含展示眼睛的眼白的脉管系统的部分的实例图像的图。2 is a diagram including an example image showing a portion of the vasculature of the white of the eye.

图3是经分段以进行分析的实例图像的图。3 is a diagram of an example image segmented for analysis.

图4是经配置以至少部分基于眼睛的眼白的一个或一个以上图像来验证个体的实例安全系统的框图。4 is a block diagram of an example security system configured to authenticate an individual based at least in part on one or more images of the white of the eye.

图5为实例在线环境的框图。FIG5 is a block diagram of an example online environment.

图6是用于基于眼睛的眼白的一个或一个以上图像来验证个体的实例过程的流程图,其中对用于验证的所获得图像中的眼睛的真实度进行检查。6 is a flow diagram of an example process for authenticating an individual based on one or more images of the whites of the eyes, in which the eyes in the obtained images used for authentication are checked for realism.

图7是用于确定眼睛的一个或一个以上图像的真实度分数的实例过程的流程图。7 is a flow diagram of an example process for determining a realism score for one or more images of an eye.

图8A是用于基于瞳孔响应于光刺激的收缩来确定行为度量的实例过程的流程图。8A is a flow diagram of an example process for determining a behavioral metric based on pupil constriction in response to light stimulation.

图8B是用于基于响应于外部刺激的虹膜的注视点转变来确定行为度量的实例过程的流程图。8B is a flow diagram of an example process for determining a behavioral metric based on gaze shifts of the iris in response to an external stimulus.

图9展示可用以实施此处所描述的技术的计算机装置和移动计算机装置的实例。9 shows an example of a computer device and a mobile computer device that can be used to implement the techniques described here.

具体实施方式DETAILED DESCRIPTION

个体的眼睛的眼白中的可见脉管系统的特有特征可用来识别或验证个体。举例来说,可获得且分析用户眼睛的眼白的图像以比较眼睛的特征与参考记录,以便验证用户且准许或不允许用户进入资源。敌人或入侵者可企图通过将除了真人眼睛之外的某物(例如,授权用户的脸的图像或授权用户的眼睛的塑性模型)呈现给安全系统的光传感器来对使用此验证方法的安全系统进行电子欺骗。可通过配置安全系统以分析所获得图像从而区分真人眼睛的图像与道具的图像而使某些电子欺骗企图落空。Unique features of the visible vasculature in the whites of an individual's eyes can be used to identify or authenticate the individual. For example, an image of the whites of a user's eyes can be obtained and analyzed to compare the eye's features with a reference record in order to authenticate the user and grant or deny access to a resource. An adversary or intruder may attempt to spoof a security system using this authentication method by presenting something other than a real eye (e.g., an image of an authorized user's face or a plastic model of an authorized user's eye) to the security system's light sensor. Some spoofing attempts can be thwarted by configuring the security system to analyze the obtained image to distinguish between an image of a real eye and an image of a prop.

可计算一个或一个以上真实度度量,其反映真人眼睛预期展现的可不由某些电子欺骗企图展现的性质。举例来说,可在图像获取过程期间向用户施加刺激,且图像中所描绘的眼睛的响应可用度量来量化,与真人眼睛对那些刺激的预期响应相比较。在一些实施方案中,可在多个焦距处对所获得图像进行检查以确定图像中所描绘的眼睛是否为三维的(例如,眼睛是否具有看起来定位在与同单一平面产生偏差的传感器相隔一段距离处的界标)。在一些实施方案中,可确定与眼睛的反射有关的度量。真人眼睛具有由其三维形状和其精细表面纹理和湿度导致的独特反射性质,其可能不由许多电子欺骗攻击道具展现。举例来说,闪光装置可用以在图像获取过程的部分期间照亮主体,且可分析主体的眼睛上的闪光脉冲的反射的定时和质量以确定其是否确为实时成像的真人眼球。One or more realism metrics can be calculated that reflect properties that a real eye is expected to exhibit that may not be exhibited by certain spoofing attempts. For example, stimuli can be applied to the user during the image acquisition process, and the response of the eye depicted in the image can be quantified using metrics, compared to the expected response of a real eye to those stimuli. In some implementations, the acquired image can be examined at multiple focal lengths to determine whether the eye depicted in the image is three-dimensional (e.g., whether the eye has landmarks that appear to be positioned at a distance from the sensor that deviates from a single plane). In some implementations, metrics related to the reflectivity of the eye can be determined. A real eye has unique reflective properties due to its three-dimensional shape and its fine surface texture and moisture, which may not be exhibited by many spoofing attack props. For example, a flash device can be used to illuminate a subject during part of the image acquisition process, and the timing and quality of the reflection of the flash pulse on the subject's eye can be analyzed to determine whether it is indeed a real eye imaged in real time.

在一些实施方案中,可组合多个真实度度量以确定反映图像描绘真人眼睛而不是(例如)模型图像或眼睛的二维图像的可能性的真实度分数或决定。举例来说,受训练函数近似器(例如,神经网络)可用以基于多个真实度度量来确定真实度分数。接着可基于真实度分数接受或拒绝所获得图像。在一些实施方案中,可在真实度分数指示图像不描绘真人眼睛时报告电子欺骗企图。In some implementations, multiple realism metrics may be combined to determine a realism score or decision reflecting the likelihood that an image depicts a real eye, rather than, for example, a model image or a two-dimensional image of an eye. For example, a trained function approximator (e.g., a neural network) may be used to determine a realism score based on multiple realism metrics. The obtained image may then be accepted or rejected based on the realism score. In some implementations, a spoofing attempt may be reported when the realism score indicates that the image does not depict a real eye.

图1是人眼100的解剖结构的图。所述图是眼睛的截面,其中解剖结构的放大图102靠近眼睛的角膜缘边界,所述角膜缘边界分离有色虹膜110与眼睛的周围眼白。眼睛的眼白包含复杂的脉管结构,其不仅易于从眼睛外部看到且可扫描,而且脉管结构是唯一的且在个体间不同。因此,主要归因于结膜和巩膜外层的脉管系统,眼睛的眼白的这些脉管结构可加以扫描且有利地用作生物特征。可使用此生物特征来验证特定个体,或识别未知的个体。FIG1 is a diagram of the anatomy of a human eye 100. The diagram is a cross-section of the eye, with a magnified view 102 of the anatomy near the limbal boundary of the eye, which separates the colored iris 110 from the surrounding white of the eye. The white of the eye contains a complex vascular structure that is not only easily visible from the outside of the eye and scannable, but also unique and varies between individuals. Therefore, due primarily to the vasculature of the conjunctiva and episclera, these vascular structures of the white of the eye can be scanned and advantageously used as a biometric feature. This biometric feature can be used to authenticate a specific individual, or to identify an unknown individual.

眼睛的眼白具有若干层。巩膜120为眼睛的不透明纤维性保护层,其含有胶原蛋白和弹性纤维。巩膜120由巩膜外层130覆盖,巩膜外层130具有穿过其中和其上的相当大量的血管和静脉。巩膜外层130由球结膜140覆盖,球结膜140为与眼睑150或在眼睑张开时与环境介接的薄透明隔膜。血管和静脉穿过眼睛的眼白的所有这些层,且可在眼睛的图像中检测到。眼睛还包含睫毛160,睫毛160有时可能使眼睛的眼白的多个部分在图像中模糊不清。The white of the eye has several layers. The sclera 120 is the eye's opaque, fibrous protective layer, containing collagen and elastic fibers. The sclera 120 is covered by the episclera 130, which has a significant number of blood vessels and veins running through and on it. The episclera 130 is covered by the bulbar conjunctiva 140, a thin, transparent membrane that interfaces with the eyelid 150 or, when the eyelid is open, with the environment. Blood vessels and veins pass through all of these layers of the white of the eye and can be detected in images of the eye. The eye also contains eyelashes 160, which can sometimes obscure portions of the white of the eye in an image.

图2是包含展示眼睛的眼白的脉管系统的部分的实例图像200的图。此图像200可用集成到计算装置中的传感器(例如,相机)俘获,所述计算装置例如智能电话、平板计算机、电视、膝上型计算机或个人计算机。举例来说,可通过显示器或音频提示来提示用户在俘获图像时看向左方,因此将眼睛的眼白到虹膜右方的较大区域暴露到传感器的视野。类似地,可提示用户在俘获图像时向右看、向上看、向下看、向前看等。所述实例图像包含虹膜220的视图,其中瞳孔210处于其中心。虹膜220延伸到眼睛的角膜缘边界225。眼睛的眼白230在眼睛的角膜缘边界225外部。眼睛的眼白的粗略脉管系统240在图像100中可见。此脉管系统240可为个体所特有的。在一些实施方案中,脉管系统240的特有特征可用作识别、检验或验证个别用户的基础。FIG2 is a diagram including an example image 200 showing a portion of the vasculature of the white of the eye. This image 200 may be captured using a sensor (e.g., a camera) integrated into a computing device, such as a smartphone, tablet, television, laptop, or personal computer. For example, a user may be prompted, via a display or audio prompt, to look to the left when the image is captured, thereby exposing a larger area of the white of the eye to the right of the iris to the sensor's field of view. Similarly, the user may be prompted to look to the right, up, down, forward, etc., when the image is captured. The example image includes a view of the iris 220, with the pupil 210 at its center. The iris 220 extends to the limbus boundary 225 of the eye. The white of the eye 230 is outside the limbus boundary 225. The gross vasculature 240 of the white of the eye is visible in image 100. This vasculature 240 may be unique to an individual. In some embodiments, unique characteristics of the vasculature 240 may be used as a basis for identifying, verifying, or authenticating an individual user.

图3是包含展示两只眼睛的眼白的脉管系统的部分的实例图像300的图,所述图像经分段以进行分析。可以多种方式获得所俘获图像310。所俘获图像310可经预处理及分段以隔离出图像内的兴趣区,且增强眼睛的眼白中的脉管系统的视图。举例来说,兴趣区可为形成覆盖眼睛的一些或所有眼白的栅格的平铺式部分。可例如通过识别角膜缘边界和眼睑的边缘来隔离出对应于右眼眼白的在虹膜左方的部分320。类似地,可隔离出对应于左眼眼白的在虹膜左方的部分322。可例如通过从图像数据选择使眼睛的眼白的脉管系统与周围眼白部分之间的对比度最大的分量色彩来使用预处理来增强此区中的脉管系统的视图。在一些实施方案中,可将图像的这些部分320、322进一步分段成形成栅格330、332的平铺块,所述栅格330、332将眼睛的眼白的暴露表面区域划分成较小区以用于分析目的。这些兴趣区中的脉管系统的特征可用来识别、检验或验证个体。FIG3 is a diagram including an example image 300 showing portions of the vasculature of the whites of two eyes, the image being segmented for analysis. Captured image 310 can be obtained in a variety of ways. Captured image 310 can be pre-processed and segmented to isolate a region of interest within the image and enhance the view of the vasculature in the whites of the eyes. For example, the region of interest can be a tiled portion forming a grid covering some or all of the whites of the eyes. Portion 320 corresponding to the white of the right eye, to the left of the iris, can be isolated, for example, by identifying the limbus boundary and the edge of the eyelid. Similarly, portion 322 corresponding to the white of the left eye, to the left of the iris, can be isolated. Pre-processing can be used to enhance the view of the vasculature in this region, for example, by selecting a component color from the image data that maximizes contrast between the vasculature of the white of the eye and the surrounding white portions. In some embodiments, these portions of the image 320, 322 can be further segmented into tiles forming a grid 330, 332 that divides the exposed surface area of the white of the eye into smaller regions for analysis purposes. Features of the vasculature in these regions of interest can be used to identify, verify, or authenticate an individual.

图4是经配置以至少部分基于眼睛410的眼白的一个或一个以上图像来验证个体的实例安全系统400的框图。安全系统400的用户可将其眼睛410呈现给光传感器420。以此方式,可俘获眼睛410的眼白的一个或一个以上图像。数码相机、三维(3D)相机和光场传感器是可使用的光传感器的实例。光传感器420可使用多种技术,例如数字电荷耦合装置(CCD)或互补金属氧化物半导体(CMOS)。在一些实施方案中,可经由在显示器424上显示的消息来提示用户摆出某些姿势以暴露眼睛410的眼白的多个部分且促进图像获取。举例来说,可提示用户定向其注视点以便将其眼睛410的虹膜向左转动、向右转动、向左上方转动,以及向右上方转动。在未展示的一些实施方案中,可通过经由扬声器播放的消息、通过指示灯(例如,LED)来提示用户采用某些姿势,或根本不提示。FIG4 is a block diagram of an example security system 400 configured to authenticate an individual based at least in part on one or more images of the white of an eye 410. A user of security system 400 can present their eye 410 to a light sensor 420. In this manner, one or more images of the white of the eye 410 can be captured. Digital cameras, three-dimensional (3D) cameras, and light field sensors are examples of light sensors that can be used. Light sensor 420 can use a variety of technologies, such as a digital charge-coupled device (CCD) or a complementary metal oxide semiconductor (CMOS). In some implementations, the user can be prompted to perform certain gestures to expose portions of the white of the eye 410 and facilitate image acquisition via a message displayed on display 424. For example, the user can be prompted to orient their gaze so that the iris of their eye 410 turns left, right, upward to the left, and upward to the right. In some implementations (not shown), the user can be prompted to perform certain gestures via a message played through a speaker, via an indicator light (e.g., an LED), or not at all.

在一些实施方案中,传感器420可经配置以检测眼睛410何时已恰当地定位于传感器的视野中。或者,在计算装置430上实施的软件或硬件可分析由光传感器420产生的一个或一个以上图像以确定眼睛410是否已恰当定位。在一些实施方案中,用户可通过用户接口(例如,按钮、键盘、小键盘、触摸板,或触摸屏)手动地指示眼睛410何时恰当地定位。In some implementations, the sensor 420 can be configured to detect when the eye 410 is properly positioned in the sensor's field of view. Alternatively, software or hardware implemented on the computing device 430 can analyze one or more images generated by the light sensor 420 to determine whether the eye 410 is properly positioned. In some implementations, the user can manually indicate when the eye 410 is properly positioned through a user interface (e.g., a button, keyboard, keypad, touchpad, or touch screen).

在计算装置430上实施的验证模块440可经由光传感器420获得眼睛的眼白的一个或一个以上图像。在一些实施方案中,计算装置430与光传感器420集成或电子耦合到光传感器420。在一些实施方案中,计算装置430可通过无线接口(例如,天线)与光传感器420通信。The verification module 440 implemented on the computing device 430 can obtain one or more images of the white of the eye via the light sensor 420. In some implementations, the computing device 430 is integrated with or electronically coupled to the light sensor 420. In some implementations, the computing device 430 can communicate with the light sensor 420 through a wireless interface (e.g., an antenna).

验证模块440处理经由光传感器420获得的图像以控制对安全装置450的访问。举例来说,验证模块440可实施相对于图6描述的验证过程。在一些实施方案中,安全装置450可包含影响来自验证模块440的访问控制指令的致动器460(例如,锁定机构)。Verification module 440 processes the image obtained via light sensor 420 to control access to security device 450. For example, verification module 440 may implement the verification process described with respect to FIG6. In some implementations, security device 450 may include an actuator 460 (e.g., a locking mechanism) that affects access control instructions from verification module 440.

计算装置可以多种方式与安全装置450集成或介接。举例来说,安全装置450可为汽车,光传感器420可为集成到汽车的方向盘或仪表盘中的相机,且计算装置430可集成到汽车中且电连接到相机和充当安全致动器460的点火锁定系统。用户可将其眼睛的眼白的视图呈现给相机以便被验证为汽车的经授权驾驶员且起动引擎。The computing device can be integrated or interfaced with safety device 450 in a variety of ways. For example, safety device 450 can be a car, light sensor 420 can be a camera integrated into the car's steering wheel or dashboard, and computing device 430 can be integrated into the car and electrically connected to the camera and an ignition lock system acting as safety actuator 460. The user can present a view of the whites of their eyes to the camera in order to be authenticated as an authorized driver of the car and start the engine.

在一些实施方案中,安全装置450可为房地产钥匙盒,光传感器420可为与用户的移动装置(例如,智能电话或平板装置)集成的相机,且验证模块440的处理可部分地由用户的移动装置且部分地由与钥匙盒集成的控制电力锁定机构的计算装置来执行。两个计算装置可经由无线接口来通信。举例来说,用户(例如,给出房产展示的房地产经纪人)可使用其移动装置上的相机来获得一个或一个以上图像且基于所述图像提交数据到钥匙盒以便被验证为经授权用户且被准许使用钥匙盒中存放的钥匙。In some implementations, the security device 450 may be a real estate key box, the light sensor 420 may be a camera integrated with a user's mobile device (e.g., a smartphone or tablet device), and the processing of the verification module 440 may be performed in part by the user's mobile device and in part by a computing device integrated with the key box that controls the power locking mechanism. The two computing devices may communicate via a wireless interface. For example, a user (e.g., a real estate agent giving a property showing) may use the camera on their mobile device to obtain one or more images and submit data based on the images to the key box in order to be verified as an authorized user and permitted to use the keys stored in the key box.

在一些实施方案中,安全装置450为控制进入房产的闸门或门。光传感器420可集成到门或闸门中或定位于靠近门或闸门的墙壁或围墙上。计算装置430可定位于光传感器420和门或闸门中充当致动器460的电力锁定机构附近,且可经由无线接口与所述光传感器420和所述电力锁定机构通信。在一些实施方案中,安全装置450可为来福枪,且光传感器420可与附接到来福枪的瞄准镜集成。计算装置430可集成到来福枪的枪托中,且可电连接到光传感器420和充当致动器460的扳机或撞针锁定机构。在一些实施方案中,安全装置450可为一件租赁设备(例如,自行车)。In some embodiments, the security device 450 is a gate or door that controls access to a property. The light sensor 420 can be integrated into the door or gate or positioned on a wall or fence near the door or gate. The computing device 430 can be positioned near the light sensor 420 and the electric locking mechanism in the door or gate that acts as an actuator 460 and can communicate with the light sensor 420 and the electric locking mechanism via a wireless interface. In some embodiments, the security device 450 can be a rifle, and the light sensor 420 can be integrated with a scope attached to the rifle. The computing device 430 can be integrated into the stock of the rifle and can be electrically connected to the light sensor 420 and the trigger or firing pin locking mechanism that acts as an actuator 460. In some embodiments, the security device 450 can be a piece of rental equipment (e.g., a bicycle).

计算装置430可包含处理装置432(例如,如相对于图9所描述)和机器可读存储库或数据库434。在一些实施方案中,机器可读存储库可包含闪存存储器。机器可读存储库434可用以存储一个或一个以上参考记录。参考记录可包含从安全装置450的经注册或经授权用户的眼睛的眼白的一个或一个以上图像导出的数据。在一些实施方案中,参考记录包含完整参考图像。在一些实施方案中,参考记录包含从参考图像提取的特征。在一些实施方案中,参考记录包含从参考图像提取的经加密特征。在一些实施方案中,参考记录包含由从参考图像提取的特征加密的识别密钥。为建立新用户的参考记录,可执行登记或注册过程。登记过程可包含俘获新注册用户的眼睛的眼白的一个或一个以上参考图像。在一些实施方案中,可使用验证系统400的光传感器420和处理装置430来执行登记过程。Computing device 430 may include processing device 432 (e.g., as described with respect to FIG. 9 ) and a machine-readable repository or database 434. In some implementations, the machine-readable repository may include flash memory. Machine-readable repository 434 may be used to store one or more reference records. The reference record may include data derived from one or more images of the whites of the eyes of registered or authorized users of security device 450. In some implementations, the reference record includes the entire reference image. In some implementations, the reference record includes features extracted from the reference image. In some implementations, the reference record includes encrypted features extracted from the reference image. In some implementations, the reference record includes an identification key encrypted from features extracted from the reference image. To establish a reference record for a new user, an enrollment or registration process may be performed. The enrollment process may include capturing one or more reference images of the whites of the eyes of the newly registered user. In some implementations, the enrollment process may be performed using light sensor 420 and processing device 430 of verification system 400.

图5为展示其中可实施本文所描述的技术的网络环境500的实例的框图。网络环境500包含经配置以经由网络511与第一服务器系统512和/或第二服务器系统514通信的计算装置502、504、506、508、510。计算装置502、504、506、508、510具有与其相关联的相应用户522、524、526、528、530。第一和第二服务器系统512、514各自包含计算装置516、517和机器可读存储库或数据库518、519。实例环境500可包含未展示的数以千计的网站、计算装置和服务器。5 is a block diagram showing an example of a network environment 500 in which the techniques described herein may be implemented. The network environment 500 includes computing devices 502, 504, 506, 508, 510 configured to communicate with a first server system 512 and/or a second server system 514 via a network 511. The computing devices 502, 504, 506, 508, 510 have respective users 522, 524, 526, 528, 530 associated therewith. The first and second server systems 512, 514 each include computing devices 516, 517 and machine-readable repositories or databases 518, 519. The example environment 500 may include thousands of websites, computing devices, and servers, which are not shown.

网络511可包含大的计算机网络,其实例包含连接数个移动计算装置、固定计算装置和服务器系统的局域网(LAN)、广域网(WAN)、蜂窝式网络,或其组合。包含于网络511中的网络可提供在各种模式或协议下的通信,其实例包含传输控制协议/因特网协议(TCP/IP)、全球移动通信系统(GSM)语音呼叫、短电子消息服务(SMS)、增强型消息接发服务(EMS),或多媒体消息接发服务(MMS)消息接发、以太网、码分多址(CDMA)、时分多址(TDMA)、个人数字蜂窝(PDC)、宽频码分多址(WCDMA)、CDMA2000,或通用分组无线电系统(GPRS),以及其它者。通信可经由射频收发器而发生。另外,可例如使用蓝牙(BLUETOOTH)、WiFi或其它此种收发器系统来发生短程通信。The network 511 may comprise a large computer network, examples of which include a local area network (LAN), a wide area network (WAN), a cellular network, or a combination thereof, connecting a plurality of mobile computing devices, fixed computing devices, and server systems. The networks included in the network 511 may provide communication in various modes or protocols, examples of which include transmission control protocol/Internet protocol (TCP/IP), global system for mobile communications (GSM) voice calling, short electronic message service (SMS), enhanced messaging service (EMS), or multimedia messaging service (MMS) messaging, Ethernet, code division multiple access (CDMA), time division multiple access (TDMA), personal digital cellular (PDC), wideband code division multiple access (WCDMA), CDMA2000, or general packet radio system (GPRS), among others. Communication may occur via a radio frequency transceiver. In addition, short-range communication may occur, for example, using Bluetooth, WiFi, or other such transceiver systems.

计算装置502、504、506、508、510使得相应用户522、524、526、528、530能够访问并观看文档,例如包含于网站中的网页。举例来说,计算装置502的用户522可使用网页浏览器来观看网页。可通过服务器系统512、服务器系统514或另一服务器系统(未展示)来将网页提供到计算装置502。Computing devices 502, 504, 506, 508, 510 enable respective users 522, 524, 526, 528, 530 to access and view documents, such as web pages included in a website. For example, user 522 of computing device 502 may use a web browser to view the web page. The web page may be provided to computing device 502 by server system 512, server system 514, or another server system (not shown).

在实例环境500中,计算装置502、504、506说明为桌上型计算装置,计算装置508说明为膝上型计算装置508,且计算装置510说明为移动计算装置。然而,注意,计算装置502、504、506、508、510可包含例如桌上型计算机、膝上型计算机、手持式计算机、具有嵌入于其中和/或耦合到其的一个或一个以上处理器的电视、平板计算装置、个人数字助理(PDA)、蜂窝式电话、网络器具、相机、智能电话、增强型通用分组无线电业务(EGPRS)移动电话、媒体播放器、导航装置、电子消息接发装置、游戏控制台,或这些数据处理装置或其它适当数据处理装置中的两者或两者以上的组合。在一些实施方案中,计算装置可包含为机动车辆(例如,汽车、应急车辆(例如,消防车、救护车)、公共汽车)的部分。In example environment 500, computing devices 502, 504, 506 are illustrated as desktop computing devices, computing device 508 is illustrated as a laptop computing device 508, and computing device 510 is illustrated as a mobile computing device. However, it is noted that computing devices 502, 504, 506, 508, 510 may include, for example, a desktop computer, a laptop computer, a handheld computer, a television having one or more processors embedded therein and/or coupled thereto, a tablet computing device, a personal digital assistant (PDA), a cellular telephone, a network appliance, a camera, a smartphone, an Enhanced General Packet Radio Service (EGPRS) mobile phone, a media player, a navigation device, an electronic messaging device, a game console, or a combination of two or more of these data processing devices or other suitable data processing devices. In some implementations, the computing device may include being part of a motor vehicle (e.g., an automobile, an emergency vehicle (e.g., a fire truck, an ambulance), a bus).

与计算装置502、504、506、508、510交互的用户可通过验证自身且经由网络511发出指令或命令而与例如由服务器系统512托管的安全交易服务523交互。安全交易可包含例如电子商务购买、金融交易(例如,在线银行交易、信用卡或银行卡交易、会员奖励积分兑现),或在线投票。安全交易服务可包含验证模块525,所述验证模块525协调从交易的安全服务器侧对用户的验证。在一些实施方案中,验证模块525可从用户装置(例如,计算装置502、504、506、508、510)接收图像数据,其包含用户(例如,用户522、524、526、528、530)的眼睛的一个或一个以上图像。验证模块可接着处理所述图像数据以通过确定所述图像数据是否匹配经辨识用户身份的参考记录来验证用户,所述参考记录先前已基于在登记会话期间收集的图像数据而建立。Users interacting with computing devices 502, 504, 506, 508, 510 can interact with a secure transaction service 523, for example, hosted by server system 512, by authenticating themselves and issuing instructions or commands via network 511. Secure transactions may include, for example, e-commerce purchases, financial transactions (e.g., online banking transactions, credit or bank card transactions, loyalty points redemption), or online voting. The secure transaction service may include an authentication module 525 that coordinates the authentication of users from the secure server side of the transaction. In some implementations, the authentication module 525 may receive image data from a user device (e.g., computing device 502, 504, 506, 508, 510) that includes one or more images of the eyes of a user (e.g., user 522, 524, 526, 528, 530). The authentication module may then process the image data to authenticate the user by determining whether the image data matches a reference record of the recognized user's identity, previously established based on the image data collected during the registration session.

在一些实施方案中,已提交服务请求的用户可被重定向到在单独服务器系统514上运行的验证模块540。验证模块540可维持安全交易服务523的经注册或经登记用户的参考记录,且还可包含其它安全交易服务的用户的参考记录。验证模块540可使用加密网络通信(例如,使用公共密钥加密协议)建立与各种安全交易服务(例如,安全交易服务523)的安全会话,以向安全交易服务指示用户是否被验证为已注册或登记的用户。极类似于验证模块525,验证模块540可从请求用户的计算装置(例如,计算装置502、504、506、508、510)接收图像数据,且可处理所述图像数据以验证所述用户。在一些实施方案中,验证模块可确定从用户接收的图像的真实度分数,且可基于所述真实度分数来接受或拒绝所述图像。当图像被当作呈现除真人眼睛之外的某物的电子欺骗企图而拒绝时,验证模块540可发送网络通信消息来向安全交易服务523或有关当局报告电子欺骗企图。In some embodiments, a user who has submitted a service request may be redirected to a verification module 540 running on a separate server system 514. Verification module 540 may maintain a reference record of registered or enrolled users of secure transaction service 523 and may also include reference records of users of other secure transaction services. Verification module 540 may use encrypted network communications (e.g., using a public key encryption protocol) to establish secure sessions with various secure transaction services (e.g., secure transaction service 523) to indicate to the secure transaction services whether the user is verified as a registered or enrolled user. Much like verification module 525, verification module 540 may receive image data from a requesting user's computing device (e.g., computing devices 502, 504, 506, 508, 510) and may process the image data to authenticate the user. In some embodiments, verification module 540 may determine a authenticity score for an image received from a user and may accept or reject the image based on the authenticity score. When the image is rejected as a spoofing attempt to present something other than real human eyes, verification module 540 may send a network communication message to report the spoofing attempt to secure transaction service 523 or the relevant authorities.

验证模块540可实施为在处理设备(例如,一个或一个以上计算装置(如图9中所说明的计算机系统))上执行的软件、硬件或软件与硬件的组合。The verification module 540 may be implemented as software, hardware, or a combination of software and hardware executing on a processing apparatus, such as one or more computing devices (such as the computer system illustrated in FIG. 9 ).

用户装置(例如,计算装置510)可包含验证应用程序550。验证应用程序550可促进将用户验证为经注册或经登记用户身份以经由网络511访问安全服务(例如,安全交易服务523)。举例来说,验证应用程序550可为用于与服务器侧验证模块(例如,验证模块540)交互的移动应用程序或另一类型的客户端应用程序。验证应用程序550可驱动传感器(例如,连接到用户计算装置或与用户计算装置集成的相机)以俘获用户的一个或一个以上图像(例如,用户530),其包含用户的眼睛的眼白的视图。验证应用程序550可提示(例如,经由显示器或扬声器)用户摆姿势以进行图像俘获。举例来说,可提示用户面向传感器,且将其注视点定向到左方或右方,以将眼睛的眼白的大部分暴露到传感器。A user device (e.g., computing device 510) may include an authentication application 550. Authentication application 550 may facilitate authentication of the user as a registered or enrolled user identity for accessing secure services (e.g., secure transaction service 523) via network 511. For example, authentication application 550 may be a mobile application or another type of client application for interacting with a server-side authentication module (e.g., authentication module 540). Authentication application 550 may drive a sensor (e.g., a camera connected to or integrated with the user computing device) to capture one or more images of a user (e.g., user 530), including a view of the whites of the user's eyes. Authentication application 550 may prompt the user (e.g., via a display or speaker) to pose for image capture. For example, the user may be prompted to face the sensor and direct their gaze to the left or right, exposing a significant portion of the whites of their eyes to the sensor.

在一些实施方案中,验证应用程序550经由网络511将所俘获图像数据传输到远程服务器(例如,服务器系统512或514)上的验证模块(例如,验证模块525或540)。收集来自用户的图像数据可促进登记和建立用户的参考记录。收集来自用户的图像数据还可促进对照参考记录来验证用户身份。In some implementations, the verification application 550 transmits the captured image data to a verification module (e.g., verification module 525 or 540) on a remote server (e.g., server system 512 or 514) via the network 511. Collecting image data from the user can facilitate registration and establishing a reference record for the user. Collecting image data from the user can also facilitate verifying the user's identity against the reference record.

在一些实施方案中,可通过验证应用程序550执行对图像数据的额外处理以用于验证目的,且所述处理的结果可传输到验证模块(例如,验证模块525或540)。以此方式,验证功能可以适合于特定应用的方式分布于客户端与服务器侧处理之间。举例来说,在一些实施方案中,验证应用程序550确定所俘获图像的真实度分数,且拒绝具有指示电子欺骗攻击的真实度分数的任何图像。如果真实度分数指示真人眼睛,那么可基于所接受的图像将图像数据传输到服务器侧验证模块(例如,验证模块525或540)以进行进一步分析。In some embodiments, additional processing of the image data may be performed by the verification application 550 for verification purposes, and the results of that processing may be transmitted to a verification module (e.g., verification module 525 or 540). In this way, verification functionality may be distributed between client-side and server-side processing in a manner suitable for a particular application. For example, in some embodiments, the verification application 550 determines a authenticity score for the captured image and rejects any image with a authenticity score that indicates a spoofing attack. If the authenticity score indicates a real eye, the image data may be transmitted to a server-side verification module (e.g., verification module 525 or 540) for further analysis based on the accepted image.

在一些实施方案中,验证应用程序访问用户身份的参考记录,且进行完全验证过程,随后将结果(例如,用户被接受还是被拒绝)报告给服务器侧验证模块。In some embodiments, the authentication application accesses a reference record of the user's identity and performs a full authentication process, then reports the results (eg, whether the user was accepted or rejected) to the server-side authentication module.

验证应用程序550可实施为在处理设备(例如,一个或一个以上计算装置(如图9中所说明的计算机系统))上执行的软件、硬件或软件与硬件的组合。The authentication application 550 may be implemented as software, hardware, or a combination of software and hardware executing on a processing apparatus, such as one or more computing devices (such as the computer system illustrated in FIG. 9 ).

图6是用于基于眼睛的眼白的一个或一个以上图像验证个体的实例过程600的流程图。确定所获得图像的真实度分数,且使用所述真实度分数来接受或拒绝所述图像。当检测并接受具有真人眼睛的图像时,对图像进行进一步分析以通过从图像提取特征并比较所述特征与参考记录来确定匹配分数。接着基于所述匹配分数来接受或拒绝用户。FIG6 is a flow chart of an example process 600 for verifying an individual based on one or more images of the whites of the eyes. A authenticity score is determined for the obtained image and used to accept or reject the image. When an image with a real eye is detected and accepted, the image is further analyzed to determine a match score by extracting features from the image and comparing them to a reference record. The user is then accepted or rejected based on the match score.

举例来说,可由图4的计算装置430中的验证模块440来实施过程600。在一些实施方案中,计算装置430为包含经配置以执行过程600的动作的一个或一个以上处理器的数据处理设备。举例来说,数据处理设备可为计算装置(例如,如图9中所说明)。在一些实施方案中,过程600可全部或部分由验证应用程序550实施,验证应用程序550由用户计算装置(例如,计算装置510)执行。举例来说,用户计算装置可为移动计算装置(例如,图9的移动计算装置950)。在一些实施方案中,过程600可全部或部分由验证模块540实施,验证模块540由用户服务器系统(例如,服务器系统514)执行。在一些实施方案中,服务器系统514为包含经配置以执行过程600的动作的一个或一个以上处理器的数据处理设备。举例来说,数据处理设备可为计算装置(例如,如图9中所说明)。在一些实施方案中,计算机可读媒体可包含指令,所述指令在由计算装置(例如,计算机系统)执行时致使装置执行处理器600的动作。For example, process 600 may be implemented by verification module 440 in computing device 430 of FIG. 4 . In some embodiments, computing device 430 is a data processing device comprising one or more processors configured to perform the actions of process 600. For example, the data processing device may be a computing device (e.g., as illustrated in FIG. 9 ). In some embodiments, process 600 may be implemented in whole or in part by verification application 550, which is executed by a user computing device (e.g., computing device 510). For example, the user computing device may be a mobile computing device (e.g., mobile computing device 950 of FIG. 9 ). In some embodiments, process 600 may be implemented in whole or in part by verification module 540, which is executed by a user server system (e.g., server system 514). In some embodiments, server system 514 is a data processing device comprising one or more processors configured to perform the actions of process 600. For example, the data processing device may be a computing device (e.g., as illustrated in FIG. 9 ). In some implementations, the computer-readable medium may include instructions that, when executed by a computing device (eg, a computer system), cause the device to perform the actions of processor 600 .

获得602眼睛的一个或一个以上图像。所述图像包含在眼睛的角膜缘边界外部的眼睛的脉管系统的一部分的视图。所获得的图像可为单色的,或表示于各种色彩空间(例如,RGB、SRGB、HSV、HSL或YCbCr)中。在一些实施方案中,可使用光传感器(例如,数码相机、3D相机,或光场传感器)获得图像。所述传感器可对各种波长范围中的光敏感。举例来说,所述传感器可对光的可见光谱敏感。在一些实施方案中,传感器与可以脉冲形式发出以照亮传感器的视图中的物体的闪光或手电筒配对。图像的俘获可与闪光的脉动同步或用闪光的脉动进行时间锁定。在一些实施方案中,传感器俘获一系列图像,所述系列图像可用来跟踪物体在传感器的视野内的运动。所述传感器可包含控制图像俘获的一个或一个以上设置(例如,焦距、闪光强度、曝光,及白平衡)。图像可共同包含多个焦距。举例来说,可俘获一系列图像,每一图像是用传感器的不同焦距设置俘获的,和/或一些传感器(例如,光场传感器)可俘获聚焦于距传感器多个距离处的图像。在一些实施方案中,可通过经由网络接口(例如,服务器系统514的网络接口)而接受来获得502一个或一个以上图像。One or more images of an eye are obtained 602. The images include a view of a portion of the eye's vasculature outside the limbus boundary of the eye. The obtained images may be monochrome or represented in various color spaces (e.g., RGB, SRGB, HSV, HSL, or YCbCr). In some implementations, the images may be obtained using a light sensor (e.g., a digital camera, a 3D camera, or a light field sensor). The sensor may be sensitive to light in various wavelength ranges. For example, the sensor may be sensitive to the visible spectrum of light. In some implementations, the sensor is paired with a flashlight or a flashlight that can be pulsed to illuminate an object in the sensor's view. The image capture may be synchronized with or time-locked to the pulsation of the flashlight. In some implementations, the sensor captures a series of images that can be used to track the movement of an object within the sensor's field of view. The sensor may include one or more settings that control image capture (e.g., focus, flash intensity, exposure, and white balance). The images may collectively include multiple focal lengths. For example, a series of images may be captured, each image being captured with a different focal length setting of the sensor, and/or some sensors (e.g., light field sensors) may capture images focused at multiple distances from the sensor. In some implementations, one or more images may be obtained 502 by being received via a network interface (e.g., a network interface of the server system 514).

可接着确定604所述一个或一个以上图像的真实度分数。在一些实施方案中,将图像数据元素(例如,体元、像素、射线,或红、绿或蓝通道值)直接输入到受训练函数近似器,所述受训练函数近似器输出真实度分数。可使用对应于与理想分数(例如,真人眼睛为1,且电子欺骗道具为0)配对的真人眼睛和电子欺骗道具两者的训练图像的数据来训练函数近似器。所述函数近似器或分类器用一组模型参数对从输入数据(即,训练图像数据或特征)到输出数据(即,所得真实度分数或二进制决定)的映射进行建模。使用应用于训练数据的训练算法来选择模型参数值。举例来说,函数近似器可基于以下模型:线性回归、沃尔泰拉级数、维纳级数、径向基核函数、核方法、多项式方法、分段线性模型、贝叶斯分类器、k最邻近分类器、神经网络、支持向量机,或混沌函数近似器。其它模型是可能的。在一些实施方案中,真实度分数可为二进制的。A realism score for the one or more images can then be determined 604. In some implementations, image data elements (e.g., voxels, pixels, rays, or red, green, or blue channel values) are directly input to a trained function approximator, which outputs a realism score. The function approximator can be trained using data corresponding to training images of both real eyes and spoof props paired with ideal scores (e.g., real eyes are 1 and spoof props are 0). The function approximator or classifier models the mapping from input data (i.e., training image data or features) to output data (i.e., the resulting realism score or binary decision) using a set of model parameters. The model parameter values are selected using a training algorithm applied to the training data. For example, the function approximator can be based on a model such as linear regression, Volterra series, Wiener series, radial basis kernel function, kernel method, polynomial method, piecewise linear model, Bayesian classifier, k-nearest neighbor classifier, neural network, support vector machine, or chaotic function approximator. Other models are possible. In some implementations, the truthiness score may be binary.

在一些实施方案中,基于一个或一个以上真实度度量来确定604真实度分数,所述一个或一个真实度度量又是基于所获得图像确定的。相对于图7描述此过程的一些实例。In some implementations, a realism score is determined 604 based on one or more realism metrics, which in turn are determined based on the obtained image.Some examples of this process are described with respect to FIG.

举例来说,可通过验证模块440、验证应用程序550、验证模块525或验证模块540来确定604真实度分数。For example, the authenticity score may be determined 604 by verification module 440 , verification application 550 , verification module 525 , or verification module 540 .

对真实度分数进行检查606以确定图像是否可能包含真人眼睛的视图。在一些实施方案中,可将真实度分数与阈值进行比较。The realism score is checked 606 to determine whether the image likely contains a view of a real person's eyes.In some implementations, the realism score may be compared to a threshold.

如果真实度分数指示真人眼睛的低可能性以及因此电子欺骗攻击的高可能性,那么拒绝608一个或一个以上图像。在一些实施方案中,接着可报告610电子欺骗攻击。在一些实施方案中,通过显示器或扬声器(例如,用警报声音或闪光显示器)来报告610电子欺骗攻击。在一些实施方案中,通过使用网络接口经由网络传输一个或一个以上消息来报告610电子欺骗攻击。用户接着可拒绝630且不允许访问安全装置或服务。If the authenticity score indicates a low likelihood of a real eye and, therefore, a high likelihood of a spoofing attack, then one or more images are rejected 608. In some embodiments, the spoofing attack can then be reported 610. In some embodiments, the spoofing attack is reported 610 through a display or speaker (e.g., with an alarm sound or flashing display). In some embodiments, the spoofing attack is reported 610 by transmitting one or more messages over a network using a network interface. The user can then reject 630 and not allow access to the secure device or service.

在一些实施方案(未图示)中,可执行检查以检验从特定传感器俘获所获得图像,且特定传感器尚未被电子欺骗图像数据的提交绕过。举例来说,在图像俘获期间,可调整一个或一个以上传感器配置设置以在图像中的两者或两者以上的俘获期间采取不同设置。预期在所获得图像数据中反映这些不同设置。如果在具有不同设置的图像之间的图像数据改变,那么其可指示传感器已被电子欺骗攻击绕过。举例来说,可以此方式调整控制聚焦、曝光时间或白平衡的传感器配置设置。如果未检测到所获得图像数据的对应改变,那么可拒绝608所获得图像。In some implementations (not shown), a check can be performed to verify that the obtained image was captured from a specific sensor and that the specific sensor has not been bypassed by the submission of spoofed image data. For example, during image capture, one or more sensor configuration settings can be adjusted to assume different settings during the capture of two or more of the images. These different settings are expected to be reflected in the obtained image data. If the image data changes between images with different settings, it can indicate that the sensor has been bypassed by a spoofing attack. For example, sensor configuration settings that control focus, exposure time, or white balance can be adjusted in this manner. If no corresponding change in the obtained image data is detected, the obtained image can be rejected 608.

如果真实度分数指示图像中描绘真人眼睛的高可能性,那么接受616一个或一个以上图像,且其经受进一步分析以完成验证过程。If the authenticity score indicates a high likelihood that real human eyes are depicted in the image, then one or more images are accepted 616 and undergo further analysis to complete the verification process.

可对所述一个或一个以上图像进行分段620以识别包含眼睛的眼白中的脉管系统的最佳视图的兴趣区。在一些实施方案中,可识别所述一个或一个以上图像中的解剖界标(例如,虹膜、其中心及角膜缘边界、眼角,及眼睑的边缘)。可基于其相对于所识别的解剖界标的位置来识别并选择图像内的兴趣区。举例来说,兴趣区可位于眼睛的眼白中虹膜左方、右方、上方或下方。在一些实施方案中,所选择的兴趣区经平铺以形成覆盖眼睛的眼白的较大部分的栅格。在一些实施方案中,图像的所选择区是不连续的(例如,相邻区可重叠,或相邻区之间可具有空间)。所选择的兴趣区可对应于从参考图像(参考记录中的数据是基于所述参考图像)选择的兴趣区。The one or more images may be segmented 620 to identify a region of interest that includes an optimal view of the vasculature in the white of the eye. In some embodiments, anatomical landmarks (e.g., the iris, its center and limbal border, the canthus, and the edge of the eyelid) may be identified in the one or more images. The region of interest within the image may be identified and selected based on its position relative to the identified anatomical landmarks. For example, the region of interest may be located to the left, right, above, or below the iris in the white of the eye. In some embodiments, the selected region of interest is tiled to form a grid that covers a larger portion of the white of the eye. In some embodiments, the selected region of interest of the image is discontinuous (e.g., adjacent regions may overlap, or there may be space between adjacent regions). The selected region of interest may correspond to a region of interest selected from a reference image (the data in the reference record is based on the reference image).

在一些实施方案中,通过将曲线拟合在眼睑的在巩膜上的所选择部分上,且接着外插并发现那些曲线的相交点来找出眼角。如果归因于巩膜过近(例如,归因于注视方向)的事实而不能发现一个相交点(眼角),那么可导出来自同一眼角区域但来自相反注视方向照片的模板并将其应用于手边图像中的有问题的眼角邻域,且可将最大相关位置标记为眼角。In some embodiments, the canthus is found by fitting curves to the selected portion of the eyelid on the sclera, and then extrapolating and finding the intersection of those curves. If an intersection point (the canthus) cannot be found due to the fact that the sclera is too close (e.g., due to gaze direction), a template from the same canthus region but from a photo of the opposite gaze direction can be derived and applied to the problematic canthus neighborhood in the image at hand, and the maximum correlation position can be marked as the canthus.

在一些实施方案中,通过自适应性阈值方法来找出眼睑,所述自适应性阈值方法从图像中找出眼睛的眼白,其与眼睑接界。可通过形态学操作(例如,凸包)来校正巩膜遮罩自身以去除像差。In some embodiments, the eyelid is found by an adaptive thresholding method that finds the white of the eye from the image, which borders the eyelid.The scleral mask itself can be corrected by morphological operations (e.g., convex hull) to remove aberrations.

在一些实施方案中,从巩膜遮罩找出边缘边界,其为巩膜结束之处,因为其终止于虹膜边缘边界处。In some embodiments, the limbal boundary is found from the scleral mask, which is where the sclera ends because it ends at the iris limbal boundary.

在一些实施方案中,经由多种方法找出虹膜中心。如果眼睛色彩明亮,那么可找出瞳孔的中心作为虹膜中心。如果虹膜过暗,那么找出拟合到边缘边界和其中心的椭圆形的中心,或将其确定为围绕虹膜中心收敛的正常射线(即,垂直于边缘边界的切线的线)的焦点,或以上方法的组合。In some implementations, the iris center is found through a variety of methods. If the eye is bright in color, the center of the pupil can be found as the iris center. If the iris is too dark, the center of an ellipse fitted to the limbus boundary and its center is found, or it is determined as the focus of normal rays (i.e., lines perpendicular to the tangents to the limbus boundary) converging around the iris center, or a combination of these methods.

可对图像区进行预处理622以增强图像内的脉管系统的视图。在一些实施方案中,预处理622包含色彩图像增强和对比度受限自适应性直方图均衡化(CLAHE),其增强强度图像的对比度。CLAHE在图像的小的区(称为平铺块)中操作。每一平铺块的对比度被增强,使得输出的直方图大致匹配由特定分布(例如,均匀分布、指数分布或瑞雷分布)指定的直方图。接着使用双线性内插来组合相邻平铺块,以消除人为造成的边界。在一些实施方案中,可通过选择红、绿或蓝色分量中在血管与背景之间具有最佳对比度的一者来增强图像。绿色分量可为优选的,因为其可在血管与背景之间提供最佳对比度。The image region may be pre-processed 622 to enhance the view of the vasculature within the image. In some embodiments, pre-processing 622 includes color image enhancement and contrast-limited adaptive histogram equalization (CLAHE), which enhances the contrast of the intensity image. CLAHE operates on small regions of the image, called tiles. The contrast of each tile is enhanced so that the output histogram approximately matches a histogram specified by a particular distribution (e.g., uniform, exponential, or Rayleigh). Adjacent tiles are then combined using bilinear interpolation to eliminate artifactual boundaries. In some embodiments, the image may be enhanced by selecting one of the red, green, or blue components that provides the best contrast between the blood vessels and the background. The green component may be preferred because it provides the best contrast between the blood vessels and the background.

在一些实施方案中,预处理622包含应用多尺度增强过滤方案来增强图像的强度,由此促进脉管结构的检测和后续提取特征。可凭经验确定过滤器的参数,以便考虑到血管的围长的变化。所使用的算法可具有良好曲线敏感性、良好曲线特异性且抑制其它形状的对象。所述算法可基于图像的二阶导数。首先,由于二阶导数对噪声敏感,因此用高斯函数来对图像片段进行卷积。高斯函数的参数σ可对应于血管的厚度。接下来,对于每一图像数据元素,可建立海森矩阵,且可计算特征值λl和λ2。在每一海森矩阵中,将矩阵脊定义为图像在曲率方向上具有极值处的点。曲率方向为图像的二阶导数的特征向量,其对应于最大绝对特征值λ。特征值的正负号确定其为局部最小值λ>0还是最大值λ<0。接着使用所计算的特征值来用以下方程式过滤血管线:In some embodiments, preprocessing 622 includes applying a multi-scale enhancement filtering scheme to enhance the intensity of the image, thereby facilitating the detection of vascular structures and subsequent feature extraction. The parameters of the filter can be determined empirically to take into account variations in the girth of the blood vessels. The algorithm used can have good curve sensitivity, good curve specificity, and suppress objects of other shapes. The algorithm can be based on the second-order derivative of the image. First, since the second-order derivative is sensitive to noise, the image segment is convolved with a Gaussian function. The parameter σ of the Gaussian function can correspond to the thickness of the blood vessel. Next, for each image data element, a Hessian matrix can be established, and the eigenvalues λ1 and λ2 can be calculated. In each Hessian matrix, the matrix ridge is defined as the point where the image has an extreme value in the curvature direction. The curvature direction is the eigenvector of the second-order derivative of the image, which corresponds to the maximum absolute eigenvalue λ. The sign of the eigenvalue determines whether it is a local minimum λ>0 or a maximum λ<0. The calculated eigenvalues are then used to filter the blood vessel lines using the following equation:

I_line(λ1,λ2)=|λ1|-|λ2|(如果λl<0),且I_line(λ1,λ2)=0(如果λ1≥0)I_line(λ1,λ2)=|λ1|-|λ2| (if λl<0), and I_line(λ1,λ2)=0 (if λ1≥0)

血管的直径变化,但算法假定直径在区间[d0,d1]内。可在尺度范围[d0/4,d1/4]中使用高斯平滑过滤器。可基于以下平滑尺度将此过滤重复N次:The diameter of the blood vessels varies, but the algorithm assumes that the diameter is in the interval [d0, d1]. A Gaussian smoothing filter with a scale of [d0/4, d1/4] can be used. This filtering can be repeated N times based on the following smoothing scale:

σ1=d0/4,σ2=r*σ1,σ2=r^2*σ1,...σ2=r^(N-1)*σ1=d1/4σ1=d0/4,σ2=r*σ1,σ2=r^2*σ1,...σ2=r^(N-1)*σ1=d1/4

此最终输出可为来自N个尺度的所有个别过滤器的输出的最大值。This final output may be the maximum of the outputs from all individual filters at the N scales.

确定624每一图像区的特征,其反映在用户的眼睛的所述区中可见的脉管系统的结构或特性。在一些实施方案中,可使用细节检测方法来提取用户的脉管系统的特征。细节检测过程的实例描述于第7,327,860号美国专利中。A feature of each image region is determined 624, which reflects the structure or characteristics of the vasculature visible in that region of the user's eye. In some implementations, a detail detection method can be used to extract features of the user's vasculature. An example of a detail detection process is described in U.S. Patent No. 7,327,860.

在一些实施方案中,可部分通过将对应于那些图像区的纹理特征的一组过滤器应用于图像区来确定624特征。举例来说,可部分通过将各种角度处的一组复数伽柏过滤器应用于图像来确定特征。可凭经验确定过滤器的参数,以便考虑到血管的间隔、定向和围长的变化。图像的纹理特征可测量为兴趣区中的尖锐可见脉管系统的量。可用尖锐可见脉管系统的面积对兴趣区的面积的比率来确定此质量。伽柏过滤的图像的相位当使用阈值来二进制化时可促进检测且揭示尖锐可见脉管系统。In some embodiments, features may be determined 624 in part by applying a set of filters corresponding to the texture characteristics of those image regions to the image regions. For example, features may be determined in part by applying a set of complex Gabor filters at various angles to the image. The parameters of the filters may be determined empirically to account for variations in the spacing, orientation, and girth of the vessels. The texture characteristics of the image may be measured as the amount of sharp visible vasculature in the region of interest. This quality may be determined as the ratio of the area of the sharp visible vasculature to the area of the region of interest. The phase of the Gabor-filtered image, when binarized using a threshold, may facilitate detection and revealing of sharp visible vasculature.

当伽柏过滤器核经配置成西格玛=2.5像素,频率=6且伽马=1时,复数伽柏过滤的图像的相位反映不同角度处的脉管模式。频率的选择可取决于脉管之间的距离,其又取决于分辨率和图像获取系统与主体之间的距离。对于图像,这些参数可为不变的。举例来说,可针对在远离眼睛6到12厘米的距离处使用特定传感器(例如,智能手机上的后部相机)俘获的眼睛图像导出核参数,且经分段的巩膜区可重调大小为(例如,401x501像素)的分辨率以用于分析。可见眼睛表面脉管系统可散布在眼睛的眼白上的所有方向上。举例来说,伽柏核可在六个不同角度(角度=0、30、60、90、120和150度)上对准。伽柏过滤的图像的相位可在–π到+π弧度范围内变化。高于0.25及低于-0.25弧度的相位值可对应于脉管结构。为了使用取阈值来二进制化相位图像,高于0.25或低于-0.25的相位的所有值可设定为1,且剩余值设定为0。这可导致对应相位图像中的尖锐脉管系统结构。可针对由不同角度处的所有六个伽柏核的应用程序产生的图像执行此操作。可添加所有六个二进制化图像以揭示精细且清晰的脉管结构。在一些实施方案中,二进制化相位图像的元素的向量可用作用于比较图像与参考记录的特征向量。在一些实施方案中,图像兴趣区之间的纹理特征的差异可用作特征向量。由兴趣区的区域划分的二进制化图像区域的所有1的总和可反映可见脉管系统的程度。When the Gabor filter kernel is configured with sigma = 2.5 pixels, frequency = 6, and gamma = 1, the phase of the complex Gabor-filtered image reflects the vascular pattern at different angles. The choice of frequency can depend on the distance between vasculature, which in turn depends on the resolution and the distance between the image acquisition system and the subject. These parameters can be invariant for the image. For example, kernel parameters can be derived for an eye image captured at a distance of 6 to 12 centimeters from the eye using a specific sensor (e.g., the rear camera on a smartphone), and the segmented scleral region can be resized to a resolution of (e.g., 401 x 501 pixels) for analysis. It can be seen that the ocular surface vasculature is distributed in all directions across the white of the eye. For example, the Gabor kernel can be aligned at six different angles (angle = 0, 30, 60, 90, 120, and 150 degrees). The phase of the Gabor-filtered image can vary from -π to +π radians. Phase values above 0.25 and below -0.25 radians may correspond to vascular structures. To binarize the phase image using thresholding, all phase values above 0.25 or below -0.25 can be set to 1, and the remaining values set to 0. This can result in sharp vasculature structures in the corresponding phase image. This operation can be performed for images resulting from the application of all six Gabor kernels at different angles. All six binarized images can be added to reveal fine and clear vasculature structures. In some embodiments, a vector of elements of the binarized phase image can be used as a feature vector for comparing the image to a reference recording. In some embodiments, differences in texture features between image regions of interest can be used as feature vectors. The sum of all 1s in the binarized image region divided by the region of interest can reflect the extent of visible vasculature.

基于特征和来自参考记录的对应特征来确定626匹配分数。参考记录可包含至少部分基于在用户的登记或注册过程期间俘获的一个或一个以上参考图像的数据。在一些实施方案中,匹配分数可确定626为从一个或一个以上所获得图像提取的特征向量与来自参考记录的特征向量之间的距离(例如,欧几里德距离、相关系数、改进豪斯多夫距离、马氏距离、布雷格曼发散、余弦相似度、库尔贝克-莱布勒距离和延森-香农发散)。在一些实施方案中,可通过将从一个或一个以上所获得图像提取的特征和来自参考记录的特征输入到受训练函数近似器来确定626匹配分数。A match score is determined 626 based on the features and corresponding features from the reference record. The reference record may include data based at least in part on one or more reference images captured during the user's enrollment or registration process. In some implementations, the match score may be determined 626 as a distance (e.g., Euclidean distance, correlation coefficient, modified Hausdorff distance, Mahalanobis distance, Bregman divergence, cosine similarity, Kulbeck-Leibler distance, and Jensen-Shannon divergence) between a feature vector extracted from one or more obtained images and a feature vector from the reference record. In some implementations, the match score may be determined 626 by inputting the features extracted from one or more obtained images and the features from the reference record into a trained function approximator.

在一些实施方案中,基于相同脉管系统的多个图像的匹配分数来确定626基于质量的融合匹配分数。在一些实施方案中,多个图像的匹配分数通过将匹配分数一起与相应地取决于多个图像中的每一者所确定的质量分数的权重加权线性组合地相加来组合。可用以基于多个图像的相应质量分数组合多个图像的匹配分数的技术的其它实例包含分层混合、求和规则、乘积规则、闸控融合、德普斯特-沙佛组合和堆叠式推广以及其它者。In some implementations, a quality-based fused match score is determined 626 based on the match scores of the multiple images of the same vasculature. In some implementations, the match scores of the multiple images are combined by adding the match scores together in a weighted linear combination with weights that depend on the quality scores determined for each of the multiple images, respectively. Other examples of techniques that can be used to combine the match scores of the multiple images based on their respective quality scores include hierarchical blending, sum rule, product rule, gated fusion, Dempster-Schafer combination, and stacked generalization, among others.

在一些实施方案中,由验证模块(例如,计算装置430上运行的验证模块440)确定626匹配分数。In some implementations, a match score is determined 626 by a verification module (eg, verification module 440 running on computing device 430).

可对匹配分数进行检查628以确定一个或一个以上所获得图像与参考记录之间的匹配是否存在。举例来说,匹配分数可与阈值进行比较。匹配可反映在一个或一个以上所获得图像中描绘其眼睛的用户与关联于参考记录的个体相同的高可能性。The match score may be checked 628 to determine whether a match exists between the one or more acquired images and the reference record. For example, the match score may be compared to a threshold. A match may reflect a high likelihood that the user whose eyes are depicted in the one or more acquired images is the same individual associated with the reference record.

如果不存在匹配,那么可拒绝630用户。结果,可不允许用户访问安全装置或服务(例如,安全装置450或安全交易装置523)。在一些实施方案中,可通过展示于显示器上或通过扬声器播放的消息通知用户所述拒绝630。在一些实施方案中,可通过经由网络传输反映被拒绝的用户的状态的消息来影响拒绝。举例来说,验证模块540在拒绝用户530之后可随即使用服务器系统514的网络接口将拒绝消息传输到安全交易服务器523。验证模块540在此情形下还可将拒绝消息发送到用户计算装置510。If there is no match, the user may be denied 630. As a result, the user may not be allowed to access the secure device or service (e.g., the secure device 450 or the secure transaction device 523). In some embodiments, the user may be notified of the denial 630 by a message displayed on a display or played through a speaker. In some embodiments, the denial may be effected by transmitting a message over a network reflecting the status of the denied user. For example, the verification module 540 may transmit a denial message to the secure transaction server 523 using the network interface of the server system 514 immediately after denying the user 530. The verification module 540 may also send the denial message to the user computing device 510 in this case.

如果存在匹配,那么可接受632用户。结果,可准许用户访问安全装置或服务(例如,安全装置450或安全交易装置523)。在一些实施方案中,可通过展示于显示器上或通过扬声器播放的消息通知用户所述接受632。在一些实施方案中,可通过经由网络传输反映被接受的用户的状态的消息来影响接受。举例来说,验证模块540在接受用户530之后可随即使用服务器系统514的网络接口将接受消息传输到安全交易服务器523。验证模块540在此情形下还可将接受消息发送到用户计算装置510。If there is a match, the user may be accepted 632. As a result, the user may be granted access to the secure device or service (e.g., secure device 450 or secure transaction device 523). In some embodiments, the user may be notified of the acceptance 632 by a message displayed on a display or played through a speaker. In some embodiments, acceptance may be effected by transmitting a message reflecting the status of the user being accepted via a network. For example, upon accepting the user 530, the verification module 540 may transmit an acceptance message to the secure transaction server 523 using the network interface of the server system 514. The verification module 540 may also send the acceptance message to the user computing device 510 in this case.

图7是用于确定眼睛的一个或一个以上图像的真实度分数的实例过程700的流程图。针对图像确定710一个或一个以上真实度度量,且基于一个或一个以上真实度度量确定730真实度分数。7 is a flow diagram of an example process 700 for determining a realism score for one or more images of an eye.One or more realism metrics are determined 710 for the image, and a realism score is determined 730 based on the one or more realism metrics.

举例来说,可由图4的计算装置430中的验证模块440来实施过程700。在一些实施方案中,计算装置430为包含经配置以执行过程700的动作的一个或一个以上处理器的数据处理设备。举例来说,数据处理设备可为计算装置(例如,如图9中所说明)。在一些实施方案中,过程700可全部或部分由验证应用程序550实施,验证应用程序550由用户计算装置(例如,计算装置510)执行。举例来说,用户计算装置可为移动计算装置(例如,图9的移动计算装置950)。在一些实施方案中,过程700可全部或部分由验证模块540实施,验证模块540由用户服务器系统(例如,服务器系统514)执行。在一些实施方案中,服务器系统514为包含经配置以执行过程700的动作的一个或一个以上处理器的数据处理设备。举例来说,数据处理设备可为计算装置(例如,如图9中所说明)。在一些实施方案中,计算机可读媒体可包含指令,所述指令在由计算装置(例如,计算机系统)执行时致使装置执行处理器700的动作。For example, process 700 may be implemented by verification module 440 in computing device 430 of FIG. 4 . In some embodiments, computing device 430 is a data processing device comprising one or more processors configured to perform the actions of process 700. For example, the data processing device may be a computing device (e.g., as illustrated in FIG. 9 ). In some embodiments, process 700 may be implemented in whole or in part by verification application 550, which is executed by a user computing device (e.g., computing device 510). For example, the user computing device may be a mobile computing device (e.g., mobile computing device 950 of FIG. 9 ). In some embodiments, process 700 may be implemented in whole or in part by verification module 540, which is executed by a user server system (e.g., server system 514). In some embodiments, server system 514 is a data processing device comprising one or more processors configured to perform the actions of process 700. For example, the data processing device may be a computing device (e.g., as illustrated in FIG. 9 ). In some implementations, the computer-readable medium may include instructions that, when executed by a computing device (eg, a computer system), cause the device to perform the actions of processor 700 .

处理器700在接收一个或一个以上图像以用于处理时开始702。举例来说,可将一个或一个以上图像编码为数据图像元素(例如,像素、体元、射线或红、绿或蓝通道值)的二维、三维或四维阵列。Processor 700 begins 702 when one or more images are received for processing. For example, the one or more images may be encoded as a two-, three-, or four-dimensional array of data image elements (e.g., pixels, voxels, rays, or red, green, or blue channel values).

接着可基于一个或一个以上图像确定710一个或一个以上真实度度量。在此实例中,基于眼睛在多个图像中出现时眼睛的所检测的移动确定712行为度量。所述行为度量可为对所检测的移动和定时与所述眼睛的预期移动的偏差的测量。One or more realism metrics may then be determined 710 based on the one or more images. In this example, a behavior metric is determined 712 based on the detected movement of the eye as it appears in the multiple images. The behavior metric may be a measure of the deviation of the detected movement and timing from the expected movement of the eye.

在一些实施方案中,在俘获图像时向主体施加光刺激(例如,闪光脉冲、LCD显示器的改变亮度)。响应于这些光刺激,预期真人眼睛的瞳孔收缩以适应照明的改变。此外,预期瞳孔随时间流逝以特定方式收缩,其具有取决于用户反应时间的开始时间、达到新的稳态瞳孔直径所需要的收缩移动的持续时间、收缩的平均速度以及收缩运动的特定加速度曲线。通过检验在光刺激的开始之前及之后所俘获的图像序列,可确定所检测运动的一个或一个以上参数,且将其与所预期运动的一个或一个以上参数进行比较。响应于光刺激的与所预期运动的实质偏差可指示相机视图中的主体不是真人眼睛,且发生电子欺骗攻击。相对于图8A描述此实施方案的实例。In some implementations, light stimuli are applied to the subject while the image is being captured (e.g., a flashing light pulse, changing brightness of an LCD display). In response to these light stimuli, the pupil of a real eye is expected to constrict to adapt to the change in illumination. Furthermore, the pupil is expected to constrict in a specific manner over time, with a start time that depends on the user's reaction time, a duration of the constriction movement required to reach a new steady-state pupil diameter, an average velocity of the constriction, and a specific acceleration profile of the constriction motion. By examining a sequence of images captured before and after the onset of the light stimuli, one or more parameters of the detected motion can be determined and compared to one or more parameters of the expected motion. Substantial deviations from the expected motion in response to the light stimuli can indicate that the subject in the camera view is not a real eye and that a spoofing attack has occurred. An example of this implementation is described with respect to FIG8A.

在一些实施方案中,可通过在图像俘获期间向主体施加外部刺激(例如,指示用户定向其注视点的提示或展示用户以其眼睛跟随的移动对象的显示器)行为度量以及跟踪可能引起的注视点转变来确定712行为度量。响应于这些外部刺激,预期真人眼睛随着时间流逝以特定方式移动。所预期注视点转变运动的一些参数可包含取决于用户的反应时间的开始时间、达到新的稳态注视方向所需要的注视点转变移动的持续时间、平均速度和注视点转变运动的特定加速度曲线。通过检验在外部刺激的开始之前及之后所俘获的图像序列,可确定所检测运动的一个或一个以上参数,且将其与所预期运动的一个或一个以上参数进行比较。响应于外部刺激的与所预期运动的实质偏差可指示相机视图中的主体不是真人眼睛,且发生电子欺骗攻击。相对于图8B描述此实施方案的实例。In some implementations, behavioral metrics can be determined 712 by applying external stimuli to the subject during image capture (e.g., a cue instructing the user to direct their gaze or a display showing a moving object that the user follows with their eyes) and tracking the resulting gaze shifts. In response to these external stimuli, a real person's eyes are expected to move in a specific manner over time. Some parameters of the expected gaze shift motion may include a start time that depends on the user's reaction time, the duration of the gaze shift movement required to reach a new steady-state gaze direction, the average velocity, and a specific acceleration profile of the gaze shift motion. By examining a sequence of images captured before and after the onset of the external stimulus, one or more parameters of the detected motion can be determined and compared to one or more parameters of the expected motion. Substantial deviations from the expected motion in response to the external stimulus may indicate that the subject in the camera view is not a real person's eye and that a spoofing attack has occurred. An example of this implementation is described with respect to FIG. 8B .

在一些实施方案中,确定712行为度量可包含检测眼睛的眼白的脉管系统(例如,巩膜外层中的脉管系统)中的血流量。可分析图像的序列以检测眼睛的眼白中的静脉和血管的随时间流逝而发生的色调改变和可见宽度改变。预期真人眼睛的脉管系统展现血管宽度和色调的对应于用户脉冲的规则改变。与所预期血流模式的实质偏差可指示相机视图中的主体不是真人眼睛,且发生电子欺骗攻击。In some implementations, determining 712 the behavioral metric may include detecting blood flow in the vasculature of the white of the eye (e.g., vasculature in the episclera). The sequence of images may be analyzed to detect changes in hue and visible width of veins and blood vessels in the white of the eye over time. The vasculature of a real eye is expected to exhibit regular changes in vessel width and hue corresponding to the user's pulses. Substantial deviations from the expected blood flow pattern may indicate that the subject in the camera view is not a real eye and that a spoofing attack has occurred.

举例来说,考虑两个分支点或锐弯管之间的脉管系统的区段。彼血管的管状体在心通过其来泵送血液时改变形状和色彩。在一些实施方案中,可在10秒周期内俘获300个帧或图像。可一个俘获例子接一个俘获例子地注册图像区。接着可通过比较随时间流逝沿血管的兴趣点的物理维度(2d或3d)以及随时间流逝那些血管的色彩来测量血流量。以此方式,可检测与脉冲一致的改变。举例来说,测量“脉冲”信号是否类似于将不与自然循环系统一致的方波。如果测量“脉冲”信号由在人类用户(可能甚至特定用户)的正常范围内随时间流逝在规则时间间隔处的尖峰信号(血管扩张和适当色彩改变两者)组成,那么输入可能对应于真实脉冲。可确定测量脉冲信号与所预期脉冲信号之间的距离以评估主体是真人眼睛而非电子欺骗攻击的可能性。For example, consider a section of vasculature between two branch points or sharp bends. The tubular body of that vessel changes shape and color as the heart pumps blood through it. In some implementations, 300 frames or images may be captured over a 10-second period. The image region may be registered, capture instance by capture instance. Blood flow can then be measured by comparing the physical dimensions (2D or 3D) of points of interest along the vessels over time, as well as the color of those vessels over time. In this way, changes consistent with a pulse can be detected. For example, a "pulse" signal is measured to see if it resembles a square wave, which would not be consistent with a natural circulatory system. If the measured "pulse" signal consists of spikes (both vessel dilation and appropriate color change) at regular intervals over time, within the normal range for a human user (perhaps even a specific user), then the input likely corresponds to a true pulse. The distance between the measured pulse signal and the expected pulse signal can be determined to assess the likelihood that the subject is a real person's eye, rather than a spoofing attack.

在一些实施方案中,所预期运动参数特定于特定用户,且在登记会话期间确定且作为特定用户的参考记录的部分进行存储。在一些实施方案中,针对基于用户数据或离线研究的大量收集的人口来确定所预期运动参数。In some embodiments, the expected motion parameters are specific to a particular user and are determined during a registration session and stored as part of a reference record for the particular user. In some embodiments, the expected motion parameters are determined for a large population based on user data or offline research.

举例来说,可由验证模块或应用程序(例如,验证模块440)来确定712行为度量。For example, the behavioral metrics may be determined 712 by a verification module or application (eg, verification module 440).

在此实例中,基于从传感器到各自具有不同相应焦距的多个图像中出现的界标的距离来确定714空间度量。焦距为从传感器到其视野中完美聚焦的点的距离。出于某些原因,可通过调整传感器的聚焦配置设置来针对不同图像调整焦距。举例来说,可识别界标(例如,虹膜、眼角、鼻子、耳朵或背景对象),且其位于具有不同焦距的多个图像中。特定图像中的界标表示具有聚焦程度,所述聚焦程度取决于对应于界标的对象距离传感器的视野中的焦点有多远。聚焦程度为对界标的图像被光传感器中的光学效应模糊的程度的测量(例如,归因于因孔隙形状的衍射和卷积)。特定图像中的界标的聚焦程度可通过确定界标附近的图像信号的高频率分量来估计。当界标聚焦时,预期其附近有较多高频率分量。当界标的聚焦程度低时,预期较小的高频率分量。通过比较图像中的界标的聚焦程度与不同焦距,可估计从传感器到界标的距离。在一些实施方案中,估计多个界标距传感器(例如,相机)的距离以形成传感器视图中的主体的拓扑图(由一组三维界标位置组成)。由相机检视的空间中的这些界标的位置可通过确定反映与模型的偏差的空间度量(例如,一个或一个以上界标的所检测位置与一个或一个以上界标的对应模型化位置之间的均方差)来与模型进行比较。In this example, a spatial metric is determined 714 based on the distance from the sensor to a landmark appearing in multiple images, each having a different corresponding focal length. Focal length is the distance from the sensor to a perfectly focused point in its field of view. For certain reasons, the focal length can be adjusted for different images by adjusting the sensor's focus configuration settings. For example, a landmark (e.g., the iris, the corner of the eye, the nose, the ear, or a background object) can be identified and located in multiple images with different focal lengths. The landmark in a particular image is represented as having a degree of focus that depends on how far the object corresponding to the landmark is from the focal point in the sensor's field of view. The degree of focus is a measure of the degree to which the image of the landmark is blurred by optical effects in the optical sensor (e.g., due to diffraction and convolution due to the aperture shape). The degree of focus of a landmark in a particular image can be estimated by determining the high-frequency components of the image signal near the landmark. When the landmark is in focus, a higher high-frequency component is expected near it. When the landmark is out of focus, a lower high-frequency component is expected. By comparing the degree of focus of the landmark in the image at different focal lengths, the distance from the sensor to the landmark can be estimated. In some implementations, the distances of multiple landmarks from a sensor (e.g., a camera) are estimated to form a topological map of the subject in the sensor's view (consisting of a set of three-dimensional landmark positions). The positions of these landmarks in the space viewed by the camera can be compared to the model by determining a spatial metric reflecting the deviation from the model (e.g., the mean square error between the detected positions of one or more landmarks and the corresponding modeled positions of the one or more landmarks).

在一些实施方案中,空间度量为对主体与二维平面的偏差的测量。一个可能的电子欺骗策略为将经注册用户的眼睛的二维图像(例如,照片)呈现给传感器。然而,不同于真实眼睛中和周围的界标,二维图像中界标(例如,眼睛、鼻子、嘴和耳朵)的位置将在二维平面中出现。举例来说,多个界标的位置可拟合于最近二维平面,且界标与此拟合平面的平均距离可确定为空间度量。此空间度量的高值可指示三维主体和主体是真人眼睛的较高可能性,而低值可指示主体是二维电子欺骗攻击的较高可能性。In some embodiments, the spatial metric is a measure of the deviation of a subject from a two-dimensional plane. One possible spoofing strategy is to present a two-dimensional image (e.g., a photograph) of the eyes of a registered user to the sensor. However, unlike the landmarks in and around a real eye, the locations of the landmarks in the two-dimensional image (e.g., eyes, nose, mouth, and ears) will appear in a two-dimensional plane. For example, the locations of multiple landmarks can be fitted to the closest two-dimensional plane, and the average distance of the landmarks from this fitted plane can be determined as the spatial metric. A high value of this spatial metric can indicate a three-dimensional subject and a high probability that the subject is a real eye, while a low value can indicate a high probability that the subject is a two-dimensional spoofing attack.

在一些实施方案中,空间度量为对主体与预期三维形状的偏差的测量。包含对应于包含用户的真人眼睛的主体的所预期形状的界标的位置的三维模型可用于与所检测界标位置进行比较。在一些实施方案中,特定用户的脸上的界标的相对位置可在登记会话期间确定,且用以产生作为参考记录的部分存储的三维模型。在一些实施方案中,用户人口的三维模型可基于许多人的测量或研究的集合来确定。各种类型的度量可用作空间度量以比较所检测界标位置与所预期形状(例如,欧几里德距离、相关系数、改进豪斯多夫距离、马氏距离、布雷格曼发散、库尔贝克-莱布勒距离和延森-香农发散)。In some embodiments, a spatial metric is a measure of a subject's deviation from an expected three-dimensional shape. A three-dimensional model containing the positions of landmarks corresponding to the expected shape of a subject including a user's real eyes can be used to compare the detected landmark positions. In some embodiments, the relative positions of landmarks on a particular user's face can be determined during an enrollment session and used to generate a three-dimensional model that is stored as part of a reference record. In some embodiments, a three-dimensional model of a user population can be determined based on a collection of measurements or studies of many people. Various types of metrics can be used as spatial metrics to compare the detected landmark positions to the expected shape (e.g., Euclidean distance, correlation coefficient, modified Hausdorff distance, Mahalanobis distance, Bregman divergence, Kullback-Leibler distance, and Jensen-Shannon divergence).

在一些实施方案中,确定714所述空间度量包括确定多个图像中出现的两个或两个以上界标的视差。视差为归因于观察者的位置的改变的所观察对象的明显移位。从主体上的不同角度截取的多个图像可导致图像内的界标看起来移动不同量,这是因为其与传感器的距离的差异。可测量此视差效应且将其用作反映传感器视图中的主体的三维性质的空间度量。如果图像中的所有界标经历由传感器的相对运动引起的相同明显移位,即,界标的视差效应的差异小,那么由相机检视的主体具有为二维电子欺骗攻击的较高可能性。在一些实施方案中,传感器在图像俘获期间围绕主体移动以从相对于主体的不同定向收集图像数据。举例来说,单一相机可轻微旋转或滑动,或不同位置处的多个相机可用于图像俘获。在一些实施方案中,提示用户移动以便改变主体和传感器的相对定向。在一些实施方案中,假定传感器将相对于主体自然地移动。举例来说,在传感器为手持式用户装置(例如,智能手机或平板计算机)中的相机的情况下,传感器可归因于无意识的触觉运动而相对于用户的脸自然地移动。In some implementations, determining 714 the spatial metric includes determining the parallax of two or more landmarks appearing in the multiple images. Parallax is the apparent displacement of an observed object due to a change in the observer's position. Multiple images captured from different angles on a subject may cause landmarks within the images to appear to move by different amounts due to differences in their distances from the sensor. This parallax effect can be measured and used as a spatial metric reflecting the three-dimensional nature of the subject in the sensor's view. If all landmarks in an image experience the same apparent displacement due to relative motion of the sensor—that is, if the differences in the landmarks' parallax effects are small—then the subject viewed by the camera has a higher probability of being a two-dimensional spoofing attack. In some implementations, the sensor moves around the subject during image capture to collect image data from different orientations relative to the subject. For example, a single camera may rotate or slide slightly, or multiple cameras at different locations may be used for image capture. In some implementations, the user is prompted to move in order to change the relative orientation of the subject and sensor. In some implementations, it is assumed that the sensor will naturally move relative to the subject. For example, where the sensor is a camera in a handheld user device (eg, a smartphone or tablet), the sensor may move naturally relative to the user's face due to involuntary tactile motion.

举例来说,可由验证模块或应用程序(例如,验证模块440)来确定714空间度量。For example, the spatial metrics may be determined 714 by a verification module or application (eg, verification module 440).

在此实例中,基于眼睛在多个图像中出现时眼睛的表面上的表面眩光或镜面反射模式的所检测的改变来确定716反射度量。反射度量可为对眼睛的表面上的眩光或镜面反射膜片的改变的测量。在传感器的视图中的眼睛的照明改变时,归因于眼睛和光源的相对运动或归因于动态光源(例如,闪光灯、LCD屏或其它照明元件),眼睛上可见的眩光和镜面反射模式通过出现、消失、生长、收缩或移动而预期改变。在一些实施方案中,在图像俘获期间由光刺激(例如,闪光脉冲)或外部刺激(例如,指示用户改变注视方向的提示)引起照明改变。举例来说,可由取对比度增强图像的阈值来检测眩光(包含其边界)以找到最白点。通过确定716测量所检测的改变与所预期改变的偏差的反射度量,图像中的眼睛上的眩光或镜面反射模式的所检测的改变可与这些模式中的所预期改变进行比较。In this example, a reflectance metric is determined 716 based on detected changes in surface glare or specular reflection patterns on the surface of the eye as the eye appears in multiple images. The reflectance metric can be a measurement of changes in the glare or specular reflection patch on the surface of the eye. When the illumination of the eye in the sensor's view changes, due to the relative motion of the eye and the light source or due to a dynamic light source (e.g., a flash, LCD screen, or other lighting element), the glare and specular reflection patterns visible on the eye are expected to change by appearing, disappearing, growing, shrinking, or moving. In some implementations, the illumination change is caused by a light stimulus (e.g., a flash pulse) or an external stimulus (e.g., a prompt instructing the user to change the direction of gaze) during image capture. For example, glare (including its boundaries) can be detected by thresholding a contrast-enhanced image to find the whitest point. By determining 716 a reflectance metric that measures the deviation of the detected change from the expected change, the detected change in the glare or specular reflection pattern on the eye in the image can be compared with the expected change in these patterns.

寻找此眩光的区域和形状的改变。还可查看眩光膜片的周长对面积的比率。Look for changes in the area and shape of this glare. Also look at the perimeter to area ratio of the glare patch.

在一些实施方案中,可在俘获图像中的一者或一者以上时以脉冲形式发出闪光,从而照亮主体。可在眼睛在图像中出现时在眼睛上检测到来自闪光的眩光。闪光的脉动可与图像俘获同步,使得可测量以脉冲形式发出闪光的时间与对应眩光在图像中出现的时间之间的时间差。反射度量可基于此时间差。与闪光脉冲与对应眩光或镜面反射的开始的所预期同步或时间锁定的大偏差可指示电子欺骗攻击。举例来说,重放攻击使用俘获情形的预先记录的视频。预先记录的视频的眩光改变不可能在当前会话期间与实时闪光事件时间锁定。另一实例为将眼睛的印记图像呈现给传感器,在此情况下,眩光可以不自然均匀的方式散布在印记图像上,或可归因于所检视表面上的湿气的缺乏而不可察觉地改变。如果未检测到对应眩光或镜面反射,那么反射度量可确定为对应于闪光与所检测的眩光或镜面反射之间的不良同步或时间锁定缺乏的任意大数目。In some implementations, a flash may be pulsed while capturing one or more of the images, illuminating the subject. Glare from the flash can be detected on the eye as it appears in the image. The pulsation of the flash can be synchronized with image capture, allowing the time difference between the time the flash is pulsed and the time the corresponding glare appears in the image to be measured. A reflectance metric can be based on this time difference. Large deviations from the expected synchronization or time lock between the flash pulse and the onset of the corresponding glare or specular reflection can indicate a spoofing attack. For example, a replay attack uses pre-recorded video of the captured scene. Changes in glare from the pre-recorded video are unlikely to be time-locked to the real-time flash event during the current session. Another example is presenting a print image of the eye to the sensor. In this case, the glare may be spread across the print image in an unnaturally uniform manner or may change imperceptibly due to the lack of moisture on the viewed surface. If no corresponding glare or specular reflection is detected, the reflectance metric can be determined as an arbitrarily large number corresponding to poor synchronization or lack of time lock between the flash and the detected glare or specular reflection.

在一些实施方案中,可在随着照明的强度增加而揭示由眼睛的眼白的较大量的精细三维纹理引起的眩光模式的均匀性改变时检测照明改变。举例来说,可在俘获图像中的一者或一者以上时以脉冲形式发出闪光,从而以较高强度照亮主体。眼睛的眼白的精细三维纹理可通过测量闪光脉冲开始之前和之后图像中的眼睛上的眩光的模式的均匀性来检测。举例来说,镜面反射模式的眩光的均匀性可测量为眩光的周长对面积的比率。此数目比2/R大得越多,眩光就越不成圆形且越不均匀(R是眩光膜片的估计的半径)。在一些实施方案中,训练函数近似器(例如,神经网络)以使用具有照明元件(例如,闪光灯)的传感器在从真人眼球记录的镜面反射模式与合成眼球(例如,3D印记眼球)之间进行区分。In some implementations, a change in illumination can be detected when the uniformity of the glare pattern changes as the intensity of the illumination increases, revealing a change in the uniformity of the glare pattern caused by a greater amount of fine three-dimensional texture in the white of the eye. For example, a flash may be emitted in pulses during one or more of the captured images, thereby illuminating the subject with a higher intensity. The fine three-dimensional texture of the white of the eye can be detected by measuring the uniformity of the pattern of glare on the eye in images before and after the start of the flash pulse. For example, the uniformity of the glare of the specular reflection pattern can be measured as the ratio of the perimeter to the area of the glare. The greater this number is than 2/R, the less circular and less uniform the glare is (R is the estimated radius of the glare diaphragm). In some implementations, a function approximator (e.g., a neural network) is trained to distinguish between specular reflection patterns recorded from real human eyes and synthetic eyes (e.g., 3D imprinted eyes) using a sensor with an illumination element (e.g., a flash).

举例来说,可由验证模块或应用程序(例如,验证模块440)来确定716反射度量。For example, the reflectance metric may be determined 716 by a verification module or application (eg, verification module 440).

在一些实施方案(未图示)中,可确定710额外真实度度量。举例来说,可确定反映传感器视图中的眼睛的扫视运动的程度的度量。眼睛的虹膜可在图像序列中划出界标,使得可跟踪其位置或定向。可分析位置或定向的此序列以通过对与正常扫视运动相关联的特定频率下的运动进行过滤来确定扫视运动的程度。In some embodiments (not shown), additional truthiness metrics may be determined 710. For example, a metric may be determined that reflects the extent of saccadic motion of an eye in the sensor's view. The iris of the eye may be a landmark in the image sequence, allowing its position or orientation to be tracked. This sequence of positions or orientations may be analyzed to determine the extent of saccadic motion by filtering for motion at specific frequencies associated with normal saccadic motion.

在一些实施方案中,可确定710反映所俘获图像中半色调的程度的真实度度量。半色调为可用于电子欺骗攻击中的数字印记图像的假象,且因此其存在可指示电子欺骗攻击的高可能性。举例来说,可使用传感器(例如,相机)的减少的动态范围来俘获一个或一个以上图像,使得在所检测的光的强度上的较精细分辨率在其在所俘获图像中出现的范围中得以实现。以此方式,可放大强度或色标以揭示所检测的图像信号的电平的更细微改变。如果所俘获图像为真人眼睛,那么预期所检测的色彩或强度值的范围将继续连续地变化。相对比地,电子欺骗图像(例如,呈现给传感器的数码照片)可展现对应于半色调的大的不连续跳跃。可以各种方式测量图像中半色调的程度(例如,作为图像区中所评估的海森矩阵的平均或最大特征值,或作为图像信号的高频率分量)。在一些实施方案中,拒绝具有高于阈值的半色调度量的图像。在一些实施方案中,产生图像中的灰影的直方图,且测量灰度级区间(例如,256个区间)之间的分布的均匀性。In some implementations, a authenticity metric reflecting the degree of halftoning in a captured image may be determined 710. Halftoning is an artifact of digitally imprinted images that can be used in spoofing attacks, and therefore its presence may indicate a high likelihood of a spoofing attack. For example, one or more images may be captured using a reduced dynamic range of a sensor (e.g., a camera), enabling finer resolution of the intensity of detected light across the range of light intensity present in the captured image. In this way, intensity or color scales may be amplified to reveal more subtle changes in the level of the detected image signal. If the captured image were of a real human eye, the range of detected color or intensity values would be expected to vary continuously. In contrast, a spoofed image (e.g., a digital photograph presented to a sensor) may exhibit large, discontinuous jumps corresponding to halftoning. The degree of halftoning in an image can be measured in various ways (e.g., as the average or largest eigenvalue of a Hessian matrix evaluated in an image region, or as a high-frequency component of the image signal). In some implementations, images with a halftoning metric above a threshold are rejected. In some implementations, a histogram of gray shades in an image is generated, and the uniformity of the distribution between gray level bins (eg, 256 bins) is measured.

在一些实施方案中,并列地确定710真实度度量。在一些实施方案中,连续地确定710真实度度量。In some embodiments, the truthfulness measure is determined 710 in parallel. In some embodiments, the truthfulness measure is determined 710 continuously.

接着可基于一个或一个以上真实度度量来确定730真实度分数。在一些实施方案中,通过将一个或一个以上真实度度量输入到受训练函数近似器中来确定真实度分数。A realism score can then be determined 730 based on the one or more realism metrics.In some implementations, the realism score is determined by inputting the one or more realism metrics into a trained function approximator.

可使用对应于真人眼睛和已被正确地标记以提供所要输出信号的各种电子欺骗攻击的训练图像的数据来训练函数近似器。所述函数近似器用一组模型参数对从输入数据(即,训练图像真实度度量)到输出数据(即,真实度分数)的映射进行建模。使用应用于训练数据的训练算法来选择模型参数值。举例来说,函数近似器可基于以下模型:线性回归、沃尔泰拉级数、维纳级数、径向基核函数、核方法、多项式方法、分段线性模型、贝叶斯分类器、k最邻近分类器、神经网络、支持向量机,或混沌函数近似器。在一些实施方案中,真实度分数可为二进制的。A function approximator can be trained using data corresponding to training images of real eyes and various spoofing attacks that have been correctly labeled to provide the desired output signal. The function approximator models the mapping from input data (i.e., training image realism metrics) to output data (i.e., realism scores) using a set of model parameters. The model parameter values are selected using a training algorithm applied to the training data. For example, the function approximator can be based on linear regression, Volterra series, Wiener series, radial basis kernel functions, kernel methods, polynomial methods, piecewise linear models, Bayesian classifiers, k-nearest neighbor classifiers, neural networks, support vector machines, or chaotic function approximators. In some implementations, the realism score can be binary.

举例来说,可基于一个或一个以上真实度度量由验证模块或应用程序(例如,验证模块440)来确定730真实度分数。For example, a authenticity score can be determined 730 by an authentication module or application (eg, authentication module 440 ) based on one or more authenticity metrics.

所得真实度分数接着可被返回740,且可以多种方式由验证系统(例如,验证系统400)使用。举例来说,真实度分数可用以接受或拒绝一个或一个以上图像。The resulting authenticity score may then be returned 740 and may be used in a variety of ways by a verification system, such as verification system 400. For example, the authenticity score may be used to accept or reject one or more images.

图8A是用于基于瞳孔响应于光刺激的收缩来确定行为度量的实例过程800的流程图。向由传感器(例如,光传感器420)检视的场景施加810一个或一个以上光刺激。举例来说,光刺激可包含闪光脉冲或显示器(例如,LCD显示器)亮度的改变。由传感器在光刺激开始之前和之后俘获812图像序列。举例来说,可在包含光刺激开始的时间间隔(例如,2、5或10秒)内以规则间隔的时间(例如,10、30或60Hz)俘获图像序列。FIG8A is a flow diagram of an example process 800 for determining a behavioral metric based on pupil constriction in response to a light stimulus. One or more light stimuli are applied 810 to a scene viewed by a sensor (e.g., light sensor 420). For example, the light stimulus may include a flashing light pulse or a change in the brightness of a display (e.g., an LCD display). A sequence of images is captured 812 by the sensor before and after the onset of the light stimulus. For example, the image sequence may be captured at regularly spaced times (e.g., 10, 30, or 60 Hz) within a time interval (e.g., 2, 5, or 10 seconds) that includes the onset of the light stimulus.

在一些实施方案中,在每一所俘获图像中确定814在所俘获图像中的每一者中划出界标的瞳孔和瞳孔的直径。可确定814相对于在光刺激的开始之前俘获的一个或一个以上图像中测量的瞳孔的开始直径的直径。In some implementations, the pupil and the diameter of the pupil, which are landmarked in each of the captured images, are determined 814 in each captured image. The diameter may be determined 814 relative to a starting diameter of the pupil measured in one or more images captured prior to the start of light stimulation.

可分析响应于光刺激而测量的瞳孔直径的所得序列以确定816响应于光刺激的瞳孔收缩的一个或一个以上运动参数。在一些实施方案中,瞳孔收缩的运动参数可包含相对于光刺激的开始的收缩运动的开始时间。开始为光刺激的开始与收缩运动的开始之间的时间延迟。在一些实施方案中,瞳孔收缩的运动参数可包含收缩运动的持续时间。持续时间为当瞳孔直径达到新的稳态值(例如,在此之后直径在最小时间间隔内不改变)时收缩运动的开始与收缩运动的结束之间的时间长度。在一些实施方案中,瞳孔收缩的运动参数可包含瞳孔收缩的速度。举例来说,速度可确定为由其间的时间间隔的长度划分的两个时间点之间的瞳孔直径的差异。在一些实施方案中,瞳孔收缩的运动参数可包含收缩周期的不同时间片段中的瞳孔收缩的加速度。举例来说,加速度可确定为两个时间间隔之间的速度的差异。The resulting sequence of pupil diameters measured in response to light stimulation may be analyzed to determine 816 one or more motion parameters of pupil constriction in response to the light stimulation. In some implementations, the motion parameters of pupil constriction may include the start time of the constriction motion relative to the start of the light stimulation. The start is the time delay between the start of the light stimulation and the start of the constriction motion. In some implementations, the motion parameters of pupil constriction may include the duration of the constriction motion. The duration is the length of time between the start of the constriction motion and the end of the constriction motion, when the pupil diameter reaches a new steady-state value (e.g., after which the diameter does not change within a minimum time interval). In some implementations, the motion parameters of pupil constriction may include the velocity of the pupil constriction. For example, the velocity may be determined as the difference in pupil diameter between two time points divided by the length of the time interval therebetween. In some implementations, the motion parameters of pupil constriction may include the acceleration of the pupil constriction in different time segments of the constriction cycle. For example, the acceleration may be determined as the difference in velocity between two time intervals.

行为度量可确定818为一个或一个以上所确定运动参数与一个或一个以上所预期运动参数之间的距离。举例来说,行为度量可包含真人眼睛的所检测开始时间与所预期开始时间之间的差异。举例来说,行为度量可包含真人眼睛的瞳孔收缩的所检测持续时间与所预期持续时间之间的差异。在一些实施方案中,瞳孔直径的序列与瞳孔直径的所预期序列通过确定两个序列之间的距离(例如,欧几里德距离、相关系数、改进豪斯多夫距离、马氏距离、布雷格曼发散、库尔贝克-莱布勒距离和延森-香农发散)来进行比较。在一些实施方案中,收缩运动的瞳孔收缩速度的序列与瞳孔收缩速度的所预期序列通过确定速度的两个序列之间的距离来进行比较。在一些实施方案中,收缩运动的瞳孔收缩加速度的序列与瞳孔收缩加速度的所预期序列通过确定加速度的两个序列之间的距离来进行比较。A behavioral metric may be determined 818 as a distance between one or more determined motion parameters and one or more expected motion parameters. For example, the behavioral metric may include the difference between a detected start time and an expected start time of a real person's eye. For example, the behavioral metric may include the difference between a detected duration and an expected duration of pupil constriction of a real person's eye. In some implementations, a sequence of pupil diameters is compared to an expected sequence of pupil diameters by determining a distance between the two sequences (e.g., Euclidean distance, correlation coefficient, modified Hausdorff distance, Mahalanobis distance, Bregman divergence, Kulbeck-Leibler distance, and Jensen-Shannon divergence). In some implementations, a sequence of pupil constriction velocities of constriction motion is compared to an expected sequence of pupil constriction velocities by determining a distance between the two sequences of velocities. In some implementations, a sequence of pupil constriction accelerations of constriction motion is compared to an expected sequence of pupil constriction accelerations by determining a distance between the two sequences of accelerations.

举例来说,过程800可由控制光传感器(例如,光传感器420)和照明元件的验证模块或应用程序(例如,验证模块440)来实施。For example, process 800 may be implemented by an authentication module or application (eg, authentication module 440 ) that controls a light sensor (eg, light sensor 420 ) and a lighting element.

图8B是用于基于响应于外部刺激的虹膜的注视点转变来确定行为度量的实例过程820的流程图。向由传感器(例如,光传感器420)检视的用户施加830一个或一个以上外部刺激。举例来说,外部刺激可包含在图像俘获期间指示用户定向其注视点(例如,向右看、向左看、向上看、向下看、向前看)的提示。提示可为视觉的、听觉的和/或触觉的。在一些实施方案中,外部刺激可包含在显示器内移动的用户眼睛所跟随的对象。FIG8B is a flow diagram of an example process 820 for determining a behavioral metric based on a shift in the gaze of the iris in response to an external stimulus. One or more external stimuli are applied 830 to a user viewed by a sensor (e.g., light sensor 420). For example, the external stimulus may include a cue instructing the user to direct their gaze during image capture (e.g., look right, look left, look up, look down, look forward). The cue may be visual, auditory, and/or tactile. In some implementations, the external stimulus may include an object that the user's eyes follow as it moves within a display.

由传感器在外部刺激开始之前和之后俘获832图像序列。举例来说,可在包含外部刺激开始的时间间隔(例如,2、5或10秒)内以规则间隔的时间(例如,10、30或60Hz)俘获图像序列。A sequence of images is captured 832 by the sensor before and after the onset of the external stimulus. For example, the sequence of images may be captured at regularly spaced times (eg, 10, 30, or 60 Hz) within a time interval (eg, 2, 5, or 10 seconds) that includes the onset of the external stimulus.

在一些实施方案中,在每一所俘获图像中确定在所俘获图像中的每一者中划出界标的虹膜和虹膜的位置或定向834。可确定834相对于在外部刺激的开始之前俘获的一个或一个以上图像中测量的虹膜的开始位置的位置。In some implementations, the iris and the position or orientation of the iris that are landmarked in each of the captured images are determined in each captured image 834. The position may be determined 834 relative to a starting position of the iris measured in one or more images captured prior to the start of the external stimulus.

可分析响应于外部刺激而测量的虹膜位置的所得序列以确定836响应于外部刺激的注视点转变的一个或一个以上运动参数。在一些实施方案中,注视点转变的运动参数可包含相对于外部刺激的开始的注视点转变运动的开始时间。开始为外部刺激的开始与注视点转变运动的开始之间的时间延迟。在一些实施方案中,注视点转变的运动参数可包含注视点转变运动的持续时间。持续时间为当虹膜达到新的稳态位置(例如,在此之后虹膜在最小时间间隔内不移动)时注视点转变运动的开始与注视点转变运动的结束之间的时间长度。在一些实施方案中,注视点转变的运动参数可包含注视点转变的速度。举例来说,速度可确定为由其间的时间间隔的长度划分的两个时间点之间的虹膜位置的差异。在一些实施方案中,注视点转变的运动参数可包含注视点转变的加速度。举例来说,加速度可确定为两个时间间隔之间的速度的差异。The resulting sequence of iris positions measured in response to the external stimulus may be analyzed to determine 836 one or more motion parameters of a gaze transition in response to the external stimulus. In some implementations, the motion parameters of the gaze transition may include a start time of the gaze transition motion relative to the start of the external stimulus. The start is the time delay between the start of the external stimulus and the start of the gaze transition motion. In some implementations, the motion parameters of the gaze transition may include a duration of the gaze transition motion. The duration is the length of time between the start of the gaze transition motion and the end of the gaze transition motion when the iris reaches a new steady-state position (e.g., after which the iris does not move for a minimum time interval). In some implementations, the motion parameters of the gaze transition may include a velocity of the gaze transition. For example, the velocity may be determined as the difference in iris position between two time points divided by the length of the time interval therebetween. In some implementations, the motion parameters of the gaze transition may include an acceleration of the gaze transition. For example, the acceleration may be determined as the difference in velocity between two time intervals.

行为度量可确定为一个或一个以上所确定运动参数与一个或一个以上所预期运动参数之间的距离838。举例来说,行为度量可包含真人眼睛的所检测开始时间与所预期开始时间之间的差异。举例来说,行为度量可包含真人眼睛的瞳孔收缩的所检测持续时间与所预期持续时间之间的差异。在一些实施方案中,虹膜位置的序列与虹膜位置的所预期序列通过确定两个序列之间的距离(例如,欧几里德距离、相关系数、改进豪斯多夫距离、马氏距离、布雷格曼发散、库尔贝克-莱布勒距离和延森-香农发散)来进行比较。在一些实施方案中,注视点转变运动的转变速度的序列与转变速度的所预期序列通过确定速度的两个序列之间的距离来进行比较。在一些实施方案中,收缩运动的注视点转变加速度的序列与注视点转变加速度的所预期序列通过确定加速度的两个序列之间的距离来进行比较。The behavior metric may be determined as a distance 838 between one or more determined motion parameters and one or more expected motion parameters. For example, the behavior metric may include the difference between a detected start time and an expected start time of a real person's eye. For example, the behavior metric may include the difference between a detected duration and an expected duration of pupil constriction of a real person's eye. In some implementations, the sequence of iris positions is compared to the expected sequence of iris positions by determining a distance between the two sequences (e.g., Euclidean distance, correlation coefficient, modified Hausdorff distance, Mahalanobis distance, Bregman divergence, Kulbeck-Leibler distance, and Jensen-Shannon divergence). In some implementations, the sequence of transition velocities of a gaze transition motion is compared to the expected sequence of transition velocities by determining a distance between the two sequences of velocities. In some implementations, the sequence of gaze transition accelerations of a constriction motion is compared to the expected sequence of gaze transition accelerations by determining a distance between the two sequences of accelerations.

举例来说,过程820可由控制光传感器(例如,光传感器420)和提示装置(例如,显示器、扬声器或触觉反馈装置)的验证模块或应用程序(例如,验证模块440)来实施。For example, process 820 may be implemented by an authentication module or application (eg, authentication module 440 ) that controls a light sensor (eg, light sensor 420 ) and a prompting device (eg, a display, a speaker, or a tactile feedback device).

图9展示通用计算机装置900和通用移动计算装置950的实例,其可与此处所描述的技术一起使用。意欲计算装置900表示各种形式的数字计算机,例如膝上型计算机、桌上型计算机、工作站、个人数字助理、服务器、刀片服务器、大型机和其它适当计算机。意欲计算装置950表示各种形式的移动装置,例如个人数字助理、蜂窝式电话、智能手机和其它类似计算装置。此处所展示的组件、其连接及关系以及其功能意谓仅示范性的,且不意谓限制本文件中所描述和/或主张的本发明的实施方案。FIG9 shows an example of a general-purpose computer device 900 and a general-purpose mobile computing device 950 that can be used with the techniques described herein. Computing device 900 is intended to represent various forms of digital computers, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframes, and other suitable computers. Computing device 950 is intended to represent various forms of mobile devices, such as personal digital assistants, cellular phones, smartphones, and other similar computing devices. The components shown here, their connections and relationships, and their functions are meant to be exemplary only and are not meant to limit the implementation of the present invention described and/or claimed in this document.

计算装置900包含处理器902、存储器904、存储装置906、连接到存储器904和高速扩展端口910的高速接口908以及连接到低速总线914和存储装置906的低速接口912。组件902、904、906、908、910和912中的每一者使用各种总线互连,且可安装在共同母板上或以其它适当方式安装。处理器902可处理计算装置900内的用于执行的指令,包含存储于存储器904中或存储于存储装置906上的指令以将GUI的图形信息显示在外部输入/输出装置(例如耦合到高速接口908的显示器916)上。在其它实施方案中,可在适当时与多个存储器和存储器类型一起使用多个处理器和/或多个总线。而且,可连接多个计算装置900,其中每一装置提供必要操作的部分(例如,作为服务器组、一群刀片服务器或多处理器系统)。Computing device 900 includes a processor 902, memory 904, storage device 906, a high-speed interface 908 connected to memory 904 and a high-speed expansion port 910, and a low-speed interface 912 connected to a low-speed bus 914 and storage device 906. Each of components 902, 904, 906, 908, 910, and 912 is interconnected using various buses and can be mounted on a common motherboard or other suitable means. Processor 902 can process instructions for execution within computing device 900, including instructions stored in memory 904 or on storage device 906 to display graphical information of a GUI on an external input/output device (e.g., display 916 coupled to high-speed interface 908). In other embodiments, multiple processors and/or multiple buses can be used, along with multiple memories and memory types, as appropriate. Furthermore, multiple computing devices 900 can be connected, with each device providing a portion of the necessary operations (e.g., as a server bank, a cluster of blade servers, or a multi-processor system).

存储器904将信息存储在计算装置900内。在一个实施方案中,存储器904为一个或一个以上易失性存储器单元。在另一实施方案中,存储器904为一个或一个以上非易失性存储器单元。存储器904还可为另一形式的计算机可读媒体,例如磁盘或光盘。The memory 904 stores information within the computing device 900. In one embodiment, the memory 904 is one or more volatile memory units. In another embodiment, the memory 904 is one or more non-volatile memory units. The memory 904 may also be another form of computer-readable media, such as a magnetic or optical disk.

存储装置906能够提供用于计算装置900的大量存储。在一个实施方案中,存储装置906可为或含有计算机可读媒体,例如软盘装置、硬盘装置、光盘装置或磁带装置、闪存存储器或其它类似固态存储器装置,或包含存储区域网络中的装置或其它配置的装置阵列。计算机程序产品可有形地体现于信息载体中。计算机程序产品还可含有指令,所述指令在执行时执行一个或一个以上方法,例如上文所描述的方法。举例来说,信息载体为计算机或机器可读媒体,例如存储器904、存储装置906或处理器902上的存储器。Storage device 906 can provide mass storage for computing device 900. In one embodiment, storage device 906 can be or contain a computer-readable medium, such as a floppy disk drive, a hard disk drive, an optical disk drive, or a magnetic tape drive, a flash memory or other similar solid-state memory device, or an array of devices including devices in a storage area network or other configuration. A computer program product can be tangibly embodied in an information carrier. A computer program product can also contain instructions that, when executed, perform one or more methods, such as those described above. For example, the information carrier is a computer- or machine-readable medium, such as memory 904, storage device 906, or memory on processor 902.

高速控制器908管理计算装置900的宽带密集操作,而低速控制器912管理较低宽带密集操作。功能的此分配仅为示范性的。在一个实施方案中,高速控制器908耦合到存储器904、显示器916(例如,通过图形处理器或加速器),耦合到高速扩展端口910,其可接受各种扩展卡(未图示)。在实施方案中,低速控制器912耦合到存储装置906和低速扩展端口914。可包含各种通信端口(例如,USB、蓝牙、以太网、无线以太网)的低速扩展端口可(例如)通过网络适配器,耦合到一个或一个以上输入/输出装置,例如键盘、定位装置、扫描仪或网络连接装置,例如交换器或路由器。High-speed controller 908 manages bandwidth-intensive operations of computing device 900, while low-speed controller 912 manages less bandwidth-intensive operations. This allocation of functionality is exemplary only. In one embodiment, high-speed controller 908 is coupled to memory 904, display 916 (e.g., via a graphics processor or accelerator), and to high-speed expansion ports 910, which can accept various expansion cards (not shown). In one embodiment, low-speed controller 912 is coupled to storage device 906 and low-speed expansion ports 914. The low-speed expansion ports, which may include various communication ports (e.g., USB, Bluetooth, Ethernet, wireless Ethernet), can be coupled to one or more input/output devices, such as a keyboard, pointing device, scanner, or network connection device, such as a switch or router, for example, via a network adapter.

如图中所展示,计算装置900可以多种不同形式实施。举例来说,计算装置900可实施为标准服务器920或多次实施于一群此等服务器中。计算装置900还可实施为机架式服务器系统924的部分。另外,计算装置900可实施于例如膝上型计算机922等个人计算机中。或者,来自计算装置900的组件可与移动装置(未图示)中的其它组件(例如,装置950)组合。此等装置中的每一者可含有计算装置900、950中的一者或一者以上,且整个系统可由彼此通信的多个计算装置900、950组成。As shown in the figure, computing device 900 can be implemented in a variety of different forms. For example, computing device 900 can be implemented as a standard server 920 or multiple times in a cluster of such servers. Computing device 900 can also be implemented as part of a rack-mounted server system 924. In addition, computing device 900 can be implemented in a personal computer such as laptop computer 922. Alternatively, components from computing device 900 can be combined with other components in a mobile device (not shown), such as device 950. Each of these devices can contain one or more of computing devices 900, 950, and the entire system can be composed of multiple computing devices 900, 950 communicating with each other.

计算装置950包含处理器952、存储器964、例如显示器954、通信接口966和收发器968等输入/输出装置以及其它组件。装置950还可具备例如微型硬盘或其它装置等存储装置以提供额外存储。组件950、952、964、954、966和968中的每一者使用各种总线互连,且组件中的若干者可安装在共同母板上或以其它适当方式安装。Computing device 950 includes a processor 952, a memory 964, input/output devices such as a display 954, a communication interface 966, and a transceiver 968, among other components. Device 950 may also be provided with a storage device such as a micro drive or other device to provide additional storage. Each of components 950, 952, 964, 954, 966, and 968 are interconnected using various buses, and several of the components may be mounted on a common motherboard or in other suitable manners.

处理器952可执行计算装置950内的指令,包含存储于存储器964中的指令。处理器可实施为包含单独和多个模拟和数字处理器的芯片的芯片组。举例来说,处理器可提供装置950的其它组件的协调,例如用户接口的控制、由装置950执行的应用程序以及由装置950进行的无线通信。Processor 952 can execute instructions within computing device 950, including instructions stored in memory 964. The processor can be implemented as a chipset including a single or multiple analog and digital processors. For example, the processor can provide coordination of other components of device 950, such as control of a user interface, applications executed by device 950, and wireless communications performed by device 950.

处理器952可与用户通过控制接口958和耦合到显示器954的显示器接口956通信。举例来说,显示器954可为TFT LCD(薄膜晶体管液晶显示器)或OLED(有机发光二级管)显示器或其它适当显示技术。显示器接口956可包括用于驱动显示器954将图形和其它信息呈现给用户的适当电路。控制接口958可从用户接收命令,且对其进行转换以提交到处理器952。另外,可提供与处理器952通信的外部接口962,以便使得装置950能够与其它装置进行附近区域通信。举例来说,外部接口962在一些实施方案中可提供有线通信,或在其它实施方案中提供无线通信,且还可使用多个接口。The processor 952 can communicate with the user through a control interface 958 and a display interface 956 coupled to a display 954. For example, the display 954 can be a TFT LCD (thin film transistor liquid crystal display) or an OLED (organic light emitting diode) display or other appropriate display technology. The display interface 956 may include appropriate circuits for driving the display 954 to present graphics and other information to the user. The control interface 958 can receive commands from the user and convert them for submission to the processor 952. In addition, an external interface 962 in communication with the processor 952 can be provided to enable the device 950 to communicate with other devices in the vicinity. For example, the external interface 962 can provide wired communication in some embodiments, or wireless communication in other embodiments, and multiple interfaces can also be used.

存储器964将信息存储在计算装置950内。存储器964可实施为一个或一个以上计算机可读媒体、一个或一个以上易失性存储器单元或一个或一个以上非易失性存储器单元中的一者或一者以上。还可提供扩展存储器974,且其通过扩展接口972连接到装置950,扩展接口972可包含(例如)SIMM(单列直插式存储器模块)卡接口。此扩展存储器974可提供用于装置950的额外存储空间,或还可存储用于装置950的应用程序或其它信息。具体来说,扩展存储器974可包含进行或补充上文所描述的过程的指令,且还可包含安全信息。因此,(例如)可提供扩展存储器974作为装置950的安全模块,且可用准许安全使用装置950的指令来编程。另外,可通过SIMM卡来提供安全应用程序以及额外信息,例如以不可控方式将识别信息置放在SIMM卡上。Memory 964 stores information within computing device 950. Memory 964 may be implemented as one or more of one or more computer-readable media, one or more volatile memory units, or one or more non-volatile memory units. Expansion memory 974 may also be provided and connected to device 950 via expansion interface 972, which may include, for example, a SIMM (Single In-line Memory Module) card interface. This expansion memory 974 may provide additional storage space for device 950 or may also store applications or other information for device 950. Specifically, expansion memory 974 may include instructions for performing or supplementing the processes described above and may also include security information. Thus, for example, expansion memory 974 may be provided as a security module for device 950 and may be programmed with instructions that permit secure use of device 950. Furthermore, secure applications and additional information may be provided via a SIMM card, such as placing identification information on the SIMM card in an uncontrolled manner.

举例来说,存储器可包含闪存存储器和/或NVRAM存储器,如下文所论述。在一个实施方案中,计算机程序产品有形地体现于信息载体中。计算机程序产品含有指令,所述指令在执行时执行一个或一个以上方法,例如上文所描述的方法。信息载体为计算机或机器可读媒体,例如存储器964、扩展存储器974、处理器952上的存储器或可(例如)经由收发器968或外部接口962接收的传播信号。For example, the memory may include flash memory and/or NVRAM memory, as discussed below. In one embodiment, a computer program product is tangibly embodied in an information carrier. The computer program product contains instructions that, when executed, perform one or more methods, such as those described above. The information carrier is a computer or machine-readable medium, such as the memory 964, the expansion memory 974, memory on the processor 952, or a propagated signal that can be received, for example, via the transceiver 968 or the external interface 962.

装置950可经由通信接口966进行无线通信,通信接口966在必要时可包含数字信号处理电路。通信接口966可提供在各种模式或协议(例如,GSM语音呼叫、SMS、EMS或MMS消息接发、CDMA、TDMA、PDC、WCDMA、CDMA2000或GPRS以及其它协议)下的通信。此通信可(例如)经由无线电频率收发器968而发生。另外,可例如使用蓝牙、WiFi或其它此种收发器(未图示)来发生短程通信。另外,GPS(全球定位系统)接收器模块970可将额外导航和位置相关无线数据提供到装置950,所述无线数据可在适当时由运行于装置950上的应用程序使用。Device 950 can communicate wirelessly via communication interface 966, which may include digital signal processing circuitry, if necessary. Communication interface 966 can provide communication in various modes or protocols, such as GSM voice calls, SMS, EMS, or MMS messaging, CDMA, TDMA, PDC, WCDMA, CDMA2000, or GPRS, among other protocols. This communication can occur, for example, via radio frequency transceiver 968. Additionally, short-range communication can occur, for example, using Bluetooth, WiFi, or other such transceivers (not shown). Additionally, a GPS (Global Positioning System) receiver module 970 can provide additional navigational and location-related wireless data to device 950, which can be used, as appropriate, by applications running on device 950.

装置950还可使用音频编解码器960以听觉方式通信,音频编解码器960可从用户接收口头信息,且将其转换成可用的数字信息。音频编解码器960同样可(例如,通过(例如)装置950的手持机中的扬声器)产生用户的可听到的声音。此声音可包含来自语音电话呼叫的声音,可包含记录的声音(例如,语音消息、音乐文件等),且还可包含由操作于装置950上的应用程序产生的声音。Device 950 may also communicate auditorily using audio codec 960, which may receive verbal information from a user and convert it into usable digital information. Audio codec 960 may also produce audible sound for the user (e.g., via a speaker in a handset of device 950, for example). This sound may include sound from a voice phone call, recorded sound (e.g., voice messages, music files, etc.), and sound generated by applications operating on device 950.

如图中所展示,计算装置950可以多种不同形式实施。举例来说,计算装置950可实施为蜂窝式电话980。计算装置950还可实施为智能手机982、个人数字助理或其它类似移动装置的部分。As shown in the figure, computing device 950 can be implemented in a variety of different forms. For example, computing device 950 can be implemented as a cellular telephone 980. Computing device 950 can also be implemented as part of a smartphone 982, a personal digital assistant, or other similar mobile device.

此处所描述的系统和技术的各种实施方案可在数字电子电路、集成电路、特别设计的ASIC(专用集成电路)、计算机硬件、固件、软件和/或其组合中实现。这些各种实施方案可包含可编程系统上可执行和/或可解释的一个或一个以上计算机程序中的实施方案,所述可编程系统包含至少一可编程处理器,所述可编程处理器可出于专用或通用目的经耦合以从存储系统、至少一个输入装置和至少一个输出装置接收数据和指令,且将数据和指令传输到存储系统、至少一个输入装置和至少一个输出装置。Various implementations of the systems and techniques described herein can be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various implementations can include implementations in one or more computer programs executable and/or interpretable on a programmable system comprising at least one programmable processor coupled to receive data and instructions from and transmit data and instructions to a storage system, at least one input device, and at least one output device for special or general purposes.

这些计算机程序(也被称作程序、软件、软件应用程序或代码)包含用于可编程处理器的机器指令,且可以高阶程序和/或面向对象编程语言和/或以汇编/机器语言来实施。如本文中所使用,术语“机器可读媒体”和“计算机可读媒体”指代用以将机器指令和/或数据提供到可编程处理器的任何计算机程序产品、设备和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包含接收机器指令作为机器可读信号的机器可读媒体。术语“机器可读信号”指代用以将机器指令和/或数据提供到可编程处理器的任何信号。These computer programs (also referred to as programs, software, software applications, or code) contain machine instructions for a programmable processor and can be implemented in high-level procedural and/or object-oriented programming languages and/or in assembly/machine language. As used herein, the terms "machine-readable medium" and "computer-readable medium" refer to any computer program product, apparatus, and/or device (e.g., a magnetic disk, an optical disk, a memory, a programmable logic device (PLD)) that provides machine instructions and/or data to a programmable processor, including machine-readable media that receives machine instructions as machine-readable signals. The term "machine-readable signal" refers to any signal that provides machine instructions and/or data to a programmable processor.

为了提供与用户的交互,此处所描述的系统和技术可实施于计算机上,所述计算机具有用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或LCD(液晶显示器)监视器)以及用户可将输入提供到计算机的键盘及定位装置(例如,鼠标或跟踪球)。也可使用其它种类的装置来提供与用户的交互,例如,提供到用户的反馈可为任何形式的感觉反馈(例如,视觉反馈、听觉反馈,或触觉反馈);且来自用户的输入可以任何形式接收,包含声学输入、话音或触觉输入。To provide interaction with a user, the systems and techniques described herein can be implemented on a computer having a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user and a keyboard and pointing device (e.g., a mouse or trackball) through which the user can provide input to the computer. Other types of devices can also be used to provide interaction with the user. For example, feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and input from the user can be received in any form, including acoustic input, voice, or tactile input.

此处所描述的系统和技术可实施于计算系统中,所述计算系统包含后端组件(例如,作为数据服务器),或包含中间件组件(例如,应用程序服务器),或包含前端组件(例如,具有图像用户接口的客户端计算机或用户可借以与此处描述的系统和技术的实施交互的网页浏览器),或此后端组件、中间件组件或前端组件之任何组合。可通过任何形式的数字数据通信或任何数字数据通信媒体(例如,通信网络)来互连系统的组件。通信网络的实例包含局域网(“LAN”)、广域网(“WAN”)和因特网。The systems and techniques described herein can be implemented in a computing system that includes a back-end component (e.g., as a data server), or includes a middleware component (e.g., an application server), or includes a front-end component (e.g., a client computer with a graphical user interface or a web browser through which a user can interact with an implementation of the systems and techniques described herein), or any combination of such back-end components, middleware components, or front-end components. The components of the system can be interconnected by any form of digital data communication or any digital data communication medium (e.g., a communication network). Examples of communication networks include a local area network ("LAN"), a wide area network ("WAN"), and the Internet.

计算系统可包含客户端和服务器。客户端与服务器通常在彼此远端,且通常经由通信网络交互。客户端与服务器的关系藉助于在相应计算机上运行且彼此具有客户端-服务器关系的计算机程序而发生。A computing system may include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The client-server relationship arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.

已描述了若干实施例。然而,应理解,可在不脱离本发明的精神和范围的情况下进行各种修改。Several embodiments have been described, however, it will be understood that various modifications can be made without departing from the spirit and scope of the invention.

另外,图中所描绘的逻辑流程并不需要所展示的特定次序或循序次序来实现所要结果。另外,可提供其它步骤,或可从所描述流程消除多个步骤,且可将其它组件添加到所描述系统,或从所描述系统移除其它组件。因此,其它实施例属于所附权利要求书的范围内。Additionally, the logic flows depicted in the figures do not require the particular order or sequential sequence shown to achieve the desired results. Additionally, other steps can be provided, or steps can be eliminated from the described flows, and other components can be added to, or removed from, the described systems. Accordingly, other embodiments are within the scope of the following claims.

Claims (28)

1.一种用于欺骗检测的方法,其包括:1. A method for spoofing detection, comprising: 使用光传感器来俘获主体的两个或更多图像,在此同时,在不同的时间和根据多个配置设置改变所述光传感器的焦距使得所述多个图像具有不同相应焦距,所述主体的两个或更多图像包含所述主体的眼睛的视图;A light sensor is used to capture two or more images of a subject, while the focal length of the light sensor is changed at different times and according to multiple configuration settings so that the multiple images have different corresponding focal lengths, and the two or more images of the subject contain a view of the subject's eyes; 检测所述多个图像中的每一者中的界标的相应聚焦程度;Detect the corresponding focus level of the landmarks in each of the plurality of images; 通过比较所检测的相应聚焦程度与所述相应焦距来计算第一度量;The first metric is calculated by comparing the detected degree of focus with the corresponding focal length. 基于所述多个图像中界标的相应聚焦程度来为两个或更多界标中的每一者计算所述界标至所述传感器的相应距离;The distance from the landmark to the sensor is calculated for each of two or more landmarks based on the corresponding focus of the landmarks in the plurality of images; 基于根据所述相应距离而对所述界标是否位于单一平面中的确定来计算第二度量;以及A second metric is calculated based on the determination of whether the landmark lies in a single plane according to the corresponding distance; and 至少基于所述第一度量和所述第二度量拒绝或接受所述图像。The image may be rejected or accepted based at least on the first metric and the second metric. 2.根据权利要求1所述的方法,其中特定焦距是从所述传感器至所述传感器的视域中的被聚焦的点的距离。2. The method of claim 1, wherein the specific focal length is the distance from the sensor to the focused point in the field of view of the sensor. 3.根据权利要求1所述的方法,其中检测所述图像的所述相应聚焦程度包括测量所述图像中的界标被模糊的程度。3. The method of claim 1, wherein detecting the corresponding focus of the image includes measuring the degree to which landmarks in the image are blurred. 4.根据权利要求3所述的方法,其中测量所述图像中的所述界标被模糊的程度包括识别所述界标附近的图像的高频率分量的量。4. The method of claim 3, wherein measuring the degree to which the landmark in the image is blurred includes identifying the amount of high-frequency components of the image near the landmark. 5.根据权利要求1所述的方法,其中所述界标是虹膜、眼角、鼻子和耳朵中的一者。5. The method of claim 1, wherein the landmark is one of the iris, the corner of the eye, the nose, and the ear. 6.根据权利要求1所述的方法,包括在所述俘获期间在不同时间和根据第二多个配置设置改变所述光传感器的白平衡或曝光时间,使得所述多个图像具有不同相应白平衡或不同相应曝光时间。6. The method of claim 1, further comprising changing the white balance or exposure time of the light sensor at different times and according to a second plurality of configuration settings during the capture period, such that the plurality of images have different corresponding white balances or different corresponding exposure times. 7.根据权利要求6所述的方法,其中至少基于所述第一度量拒绝或接受所述图像包括:检测所述多个图像中的每一者的相应白平衡或相应曝光时间;基于所检测的相应白平衡或相应曝光时间是否对应于所述第二多个配置设置的确定计算第二度量;以及基于所述第一度量和所述第二度量拒绝或接受所述图像。7. The method of claim 6, wherein rejecting or accepting the image based at least on the first metric comprises: detecting a corresponding white balance or a corresponding exposure time for each of the plurality of images; calculating a second metric based on whether the detected corresponding white balance or corresponding exposure time corresponds to a determination of the second plurality of configuration settings; and rejecting or accepting the image based on the first metric and the second metric. 8.根据权利要求1所述的方法,其中至少基于所述第一度量拒绝或接受所述图像包括:为受训练函数近似器提供所述第一度量和一个或多个所述第二度量,使用受训练图像和应用到所述受训练图像的所述第一度量和所述第二度量来训练所述受训练函数近似器;以及基于所述函数近似器的输出拒绝或接受所述图像。8. The method of claim 1, wherein rejecting or accepting the image based at least on the first metric comprises: providing the first metric and one or more second metrics to a trained function approximator; training the trained function approximator using a trained image and the first metric and the second metric applied to the trained image; and rejecting or accepting the image based on the output of the function approximator. 9.根据权利要求8所述的方法,其中特定第二度量基于以下中的一者:当所述眼睛出现在所述多个图像中时,所述眼睛的所检测的运动与所述眼睛的所期望的运动之间的偏差的测量;以及当所述眼睛出现在所述多个图像中时在所述眼睛的平面上的眩光或镜面反射模式中的改变。9. The method of claim 8, wherein the particular second metric is based on one of: a measurement of the deviation between a detected motion of the eye and a desired motion of the eye when the eye appears in the plurality of images; and a change in glare or specular reflection patterns on the plane of the eye when the eye appears in the plurality of images. 10.根据权利要求9所述的方法,其中所述眼睛的所检测的运动是扫视运动的测量。10. The method of claim 9, wherein the detected movement of the eye is a measurement of saccadic movements. 11.根据权利要求9所述的方法,其中所述眼睛的所检测的运动是注视点转变的开始、持续时间或加速度的测量。11. The method of claim 9, wherein the detected motion of the eye is a measurement of the initiation, duration, or acceleration of a gaze shift. 12.根据权利要求1所述的方法,包括在所述俘获期间在不同时间和根据第二多个配置设置改变所述主体的照明使得所述多个图像具有不同相应照明。12. The method of claim 1, further comprising changing the illumination of the subject at different times and according to a second plurality of configuration settings during the capture such that the plurality of images have different corresponding illuminations. 13.根据权利要求12所述的方法,其中至少基于所述第一度量拒绝或接受所述图像包括:检测所述多个图像中的每一者的对应照明的改变;基于所检测的照明的改变是否对应于所述第二多个配置设置的确定来计算第二度量;以及基于所述第一度量和所述第二度量拒绝或接受所述图像。13. The method of claim 12, wherein rejecting or accepting the image based at least on the first metric comprises: detecting a change in corresponding illumination for each of the plurality of images; calculating a second metric based on whether the detected change in illumination corresponds to a determination of a second plurality of configuration settings; and rejecting or accepting the image based on the first metric and the second metric. 14.一种用于欺骗检测的系统,其包括编程为执行操作的数据处理装置,所述操作包括:14. A system for spoofing detection, comprising a data processing means programmed to perform operations including: 使用光传感器来俘获主体的两个或更多图像,在此同时,在不同的时间和根据多个配置设置改变所述光传感器的焦距使得所述多个图像具有不同相应焦距,所述主体的两个或更多图像包含所述主体的眼睛的视图;A light sensor is used to capture two or more images of a subject, while the focal length of the light sensor is changed at different times and according to multiple configuration settings so that the multiple images have different corresponding focal lengths, and the two or more images of the subject contain a view of the subject's eyes; 检测所述多个图像中的每一者中的界标的相应聚焦程度;Detect the corresponding focus level of the landmarks in each of the plurality of images; 通过比较所检测的相应聚焦程度与所述相应焦距来计算第一度量;The first metric is calculated by comparing the detected degree of focus with the corresponding focal length. 基于所述多个图像中界标的相应聚焦程度来为两个或更多界标中的每一者计算所述界标至所述传感器的相应距离;The distance from the landmark to the sensor is calculated for each of two or more landmarks based on the corresponding focus of the landmarks in the plurality of images; 基于根据所述相应距离而对所述界标是否位于单一平面中的确定来计算第二度量;以及A second metric is calculated based on the determination of whether the landmark lies in a single plane according to the corresponding distance; and 至少基于所述第一度量和所述第二度量拒绝或接受所述图像。The image may be rejected or accepted based at least on the first metric and the second metric. 15.根据权利要求14所述的系统,其中特定焦距是从所述传感器至所述传感器的视域中的被聚焦的点的距离。15. The system of claim 14, wherein the specific focal length is the distance from the sensor to the focused point in the field of view of the sensor. 16.根据权利要求14所述的系统,其中检测所述图像的所述相应聚焦程度包括测量所述图像中的界标被模糊的程度。16. The system of claim 14, wherein detecting the corresponding focus of the image includes measuring the degree to which landmarks in the image are blurred. 17.根据权利要求16所述的系统,其中测量所述图像中的所述界标被模糊的程度包括识别所述界标附近的图像的高频率分量的量。17. The system of claim 16, wherein measuring the degree to which the landmark in the image is blurred includes identifying the amount of high-frequency components of the image near the landmark. 18.根据权利要求14所述的系统,其中所述界标是虹膜、眼角、鼻子和耳朵中的一者。18. The system of claim 14, wherein the landmark is one of the iris, the corner of the eye, the nose, and the ear. 19.根据权利要求14所述的系统,包括在所述俘获期间在不同时间和根据第二多个配置设置改变所述光传感器的白平衡或曝光时间,使得所述多个图像具有不同相应白平衡或不同相应曝光时间。19. The system of claim 14, further comprising changing the white balance or exposure time of the light sensor at different times and according to a second plurality of configuration settings during the capture period, such that the plurality of images have different corresponding white balances or different corresponding exposure times. 20.根据权利要求19所述的系统,其中至少基于所述第一度量拒绝或接受所述图像包括:检测所述多个图像中的每一者的相应白平衡或相应曝光时间;基于所检测的相应白平衡或相应曝光时间是否对应于所述第二多个配置设置的确定计算第二度量;以及基于所述第一度量和所述第二度量拒绝或接受所述图像。20. The system of claim 19, wherein rejecting or accepting the image based at least on the first metric comprises: detecting a corresponding white balance or corresponding exposure time for each of the plurality of images; calculating a second metric based on whether the detected corresponding white balance or corresponding exposure time corresponds to a second plurality of configuration settings; and rejecting or accepting the image based on the first metric and the second metric. 21.根据权利要求14所述的系统,其中至少基于所述第一度量拒绝或接受所述图像包括:为受训练函数近似器提供所述第一度量和一个或多个所述第二度量,使用受训练图像和应用到所述受训练图像的所述第一度量和所述第二度量来训练所述受训练函数近似器;以及基于所述函数近似器的输出拒绝或接受所述图像。21. The system of claim 14, wherein rejecting or accepting the image based at least on the first metric comprises: providing the first metric and one or more second metrics to a trained function approximator; training the trained function approximator using a trained image and the first metric and the second metric applied to the trained image; and rejecting or accepting the image based on the output of the function approximator. 22.根据权利要求21所述的系统,其中特定第二度量基于以下中的一者:当所述眼睛出现在所述多个图像中时,所述眼睛的所检测的运动与所述眼睛的所期望的运动之间的偏差的测量;以及当所述眼睛出现在所述多个图像中时在所述眼睛的平面上的眩光或镜面反射模式中的改变。22. The system of claim 21, wherein a particular second metric is based on one of: a measurement of the deviation between a detected motion of the eye and a desired motion of the eye when the eye appears in the plurality of images; and a change in glare or specular reflection patterns on the plane of the eye when the eye appears in the plurality of images. 23.根据权利要求22所述的系统,其中所述眼睛的所检测的运动是扫视运动的测量。23. The system of claim 22, wherein the detected movement of the eye is a measurement of saccadic movements. 24.根据权利要求22所述的系统,其中所述眼睛的所检测的运动是注视点转变的开始、持续时间或加速度的测量。24. The system of claim 22, wherein the detected motion of the eye is a measurement of the initiation, duration, or acceleration of a gaze shift. 25.根据权利要求14所述的系统,包括在所述俘获期间在不同时间和根据第二多个配置设置改变所述主体的照明使得所述多个图像具有不同相应照明。25. The system of claim 14, further comprising changing the illumination of the subject at different times and according to a second plurality of configuration settings during the capture such that the plurality of images have different corresponding illuminations. 26.根据权利要求25所述的系统,其中至少基于所述第一度量拒绝或接受所述图像包括:检测所述多个图像中的每一者的对应照明的改变;基于所检测的照明的改变是否对应于所述第二多个配置设置的确定来计算第二度量;以及基于所述第一度量和所述第二度量拒绝或接受所述图像。26. The system of claim 25, wherein rejecting or accepting the image based at least on the first metric comprises: detecting a change in corresponding illumination for each of the plurality of images; calculating a second metric based on whether the detected change in illumination corresponds to a determination of a second plurality of configuration settings; and rejecting or accepting the image based on the first metric and the second metric. 27.一种非易失计算机可读存储媒体,其存储计算机程序,当所述计算机程序由数据处理装置执行时使得所述数据处理装置执行操作,所述操作包括:27. A non-volatile computer-readable storage medium storing a computer program that, when executed by a data processing apparatus, causes the data processing apparatus to perform operations, the operations including: 使用光传感器来俘获主体的两个或更多图像,在此同时,在不同的时间和根据多个配置设置改变所述光传感器的焦距使得所述多个图像具有不同相应焦距,所述主体的两个或更多图像包含所述主体的眼睛的视图;A light sensor is used to capture two or more images of a subject, while the focal length of the light sensor is changed at different times and according to multiple configuration settings so that the multiple images have different corresponding focal lengths, and the two or more images of the subject contain a view of the subject's eyes; 检测所述多个图像中的每一者中的界标的相应聚焦程度;Detect the corresponding focus level of the landmarks in each of the plurality of images; 通过比较所检测的相应聚焦程度与所述相应焦距来计算第一度量;The first metric is calculated by comparing the detected degree of focus with the corresponding focal length. 基于所述多个图像中界标的相应聚焦程度来为两个或更多界标中的每一者计算所述界标至所述传感器的相应距离;The distance from the landmark to the sensor is calculated for each of two or more landmarks based on the corresponding focus of the landmarks in the plurality of images; 基于根据所述相应距离而对所述界标是否位于单一平面中的确定来计算第二度量;以及A second metric is calculated based on the determination of whether the landmark lies in a single plane according to the corresponding distance; and 至少基于所述第一度量和所述第二度量拒绝或接受所述图像。The image may be rejected or accepted based at least on the first metric and the second metric. 28.根据权利要求27所述的计算机可读存储媒体,其中特定焦距是从所述传感器至所述传感器的视域中的被聚焦的点的距离。28. The computer-readable storage medium of claim 27, wherein the specific focal length is the distance from the sensor to the focused point in the field of view of the sensor.
HK15110727.2A 2012-08-10 2014-03-18 Methods and systems for spoof detection for biometric authentication HK1211721B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/572,097 US8437513B1 (en) 2012-08-10 2012-08-10 Spoof detection for biometric authentication
US13/572,097 2012-08-10

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
HK14102694.9A Addition HK1189673B (en) 2012-08-10 2014-03-18 Methods and systems for spoof detection for biometric authentication

Related Child Applications (1)

Application Number Title Priority Date Filing Date
HK14102694.9A Division HK1189673B (en) 2012-08-10 2014-03-18 Methods and systems for spoof detection for biometric authentication

Publications (2)

Publication Number Publication Date
HK1211721A1 HK1211721A1 (en) 2016-05-27
HK1211721B true HK1211721B (en) 2020-04-09

Family

ID=

Similar Documents

Publication Publication Date Title
US9971920B2 (en) Spoof detection for biometric authentication
KR101309889B1 (en) Texture features for biometric authentication
KR101495430B1 (en) Quality metrics for biometric authentication
HK1211721B (en) Methods and systems for spoof detection for biometric authentication
HK1189673B (en) Methods and systems for spoof detection for biometric authentication
HK1211716B (en) Methods and systems for spoof detection for biometric authentication
HK1238756B (en) Methods and systems for quality metrics for biometric authentication
HK1238756A1 (en) Methods and systems for quality metrics for biometric authentication
HK1189685B (en) Methods and systems for texture features for biometric authentication
HK1227139A1 (en) Methods and systems for biometric authentication
HK1189977A (en) Methods and systems for quality metrics for biometric authentication
HK1189977B (en) Methods and systems for quality metrics for biometric authentication
HK1227139B (en) Methods and systems for biometric authentication