HK1207539B - Electronic cigarette - Google Patents
Electronic cigarette Download PDFInfo
- Publication number
- HK1207539B HK1207539B HK15108163.7A HK15108163A HK1207539B HK 1207539 B HK1207539 B HK 1207539B HK 15108163 A HK15108163 A HK 15108163A HK 1207539 B HK1207539 B HK 1207539B
- Authority
- HK
- Hong Kong
- Prior art keywords
- heater
- mesh element
- liquid
- electronic cigarette
- liquid storage
- Prior art date
Links
Description
Electronic cigarettes are increasingly used by smokers as a substitute for real tobacco cigarettes. In general, electronic cigarettes use a wire coil heater to vaporize liquid nicotine, or other liquid substances. The user's inhalation on a mouthpiece may be detected by a sensor, causing an electronic circuit to supply electrical current from a battery to the heater. The liquid contacts the wire coil heater, which creates the vapor or mist. The user's inhalation typically also draws ambient air into one or more inlets in the electronic cigarette housing. The vapor is entrained in the air flow moving through the housing and is inhaled by the user.
Electronic cigarettes have many advantages over real tobacco cigarettes. Initially, the risks of lung cancer associated with real tobacco cigarettes is largely avoided, as the tar and other chemicals in tobacco linked to lung cancer are simply not present in an electronic cigarette. Electronic cigarettes generate vapor or mist, and not smoke. Consequently, there is no comparable second-hand smoke problem with use of electronic cigarettes. In addition, since there is no burning material in electronic cigarettes, the risk of fire is eliminated.
Many electronic cigarette designs have been proposed and used, with varying degrees of success. Existing designs though have various disadvantages, including short life, poor atomization, nonuniform vapor caused by different sizes of liquid drops, and overheated vapor. For instance, CN 101228969 A discloses a liquid guide means in contact with a liquid storage component such that liquid sprays into an atomization chamber onto a heater for atomization. Both US 8 851 068 B2 and EP 2 404 515 A1 disclose a liquid permeating means to guide liquid directly to a heater. Accordingly, there is a need for an improved electronic cigarette.
An electronic cigarette according to the present invention provides significant improvements over existing designs. In this electronic cigarette, as defined in claim 1, a mesh element is in contact with the liquid storage. A heater is spaced apart from the mesh element and positioned such that liquid does not come into direct contact with the heater and air which flows through the mesh element is heated. The heated air vaporizes the liquid in or on the mesh. The vapor is inhaled by the user.
In another aspect, the heater may be positioned within a heater housing having an air passageway aligned with a central opening extending through the liquid storage. Alternatively, an annular flow path around the outside of the liquid storage may be used.
The electronic cigarette may include a battery in the housing electrically connected to a flow sensor, a circuit board and the heater. A flow path through the housing may be formed via one or more inlets in the housing, a passageway containing the heater, and a central opening extending through the liquid storage to an outlet.
In a separate aspect, a method of vaporizing a liquid in an electronic cigarette includes conducting liquid from a liquid storage to a mesh element. Electric current is supplied to a heater, optionally in response to sensing inhalation on the outlet or mouthpiece of the electronic cigarette. The heater heats air and the heated air is conducted through the mesh element, with the heated air vaporizing liquid on or in the mesh element. The vaporized liquid is entrained with the heated air and may then flow through or around the liquid storage to the mouthpiece.
Other and further objects and advantages will become apparent from the following detailed description which is provide by way of example.
In the drawings, the same reference number indicates the same element in each of the views.
- Fig. 1 is a section view of an electronic cigarette according to a first embodiment of the invention.
- Fig. 2 is an enlarged detail view of components of the electronic cigarette shown in Fig. 1.
- Fig. 3 is a schematic section view of an alternative embodiment.
- Fig. 4 is a perspective view of a component of the design shown in Fig. 3.
Turning now in detail to the drawings, as shown in Figs. 1 and 2 , and electronic cigarette has a housing 10 which optionally may be provided with a front section 12 attached to a back section 14 via screw threads or other attachment. A battery 16 and a circuit board 24 may be contained within the front section, with the circuit board electrically connected to a flow sensor 20 and to a heater coil 40. A liquid storage 34 is contained within the back section 14 of the housing 10. The liquid storage 34 may be a fiber material, provided loose in bulk directly into the back section 14 of the housing, or it may be provided in or as part of a separate component or cartridge. The liquid storage may contain liquid nicotine, or another liquid for vaporization and inhalation. Other materials such as foam or porous metals or ceramics may optionally be used as the liquid storage 34.
The heater coil 40 may be positioned within a passageway 38 extending through a heater support 28. The heater housing, for example, a ceramic material, is fixed in place within the housing. An optional collector 30 may be attached to the back end of the heater support 28, with the passageway also extending centrally through the collector 30. The collector 30, if used, may be made of Silastic® silicone elastomers, or other high temperature inert silicon elastomers or plastic materials.
A mesh element or screen 32 on the front end of the liquid storage 34 is spaced slightly apart from the back end of the collector 30, by a dimension BB ranging from about 0.5 to 2 or 4 mm, and typically about 1 mm. The mesh 32 may be fiberglass, or other porous material, which the liquid in the liquid storage, such as liquid nicotine, can wick onto or through. The mesh 32 may have a thickness or dimension AA in Fig. 2 ranging from about 0.1 to 2 mm, 0.2 to 1mm, or 0.3 to 0.6 mm, with a 4 mm thickness typical.
An opening 36 extends from the mesh 32 centrally through the liquid storage 34 to an outlet 42 at the back end of the housing 10. A flow path may be formed through the housing 10 via one or more inlets 18, a through opening in the sensor 20, the flow tube 22, the passageway 38 and the opening 36 leading to the outlet 42. Except as specified, the positions of the elements shown in the drawings is not critical, and the elements may be rearranged as needed or desired.
Referring still to Figs. 1 and 2 , in an example of use, the user inhales on the outlet 42. The sensor 20 detects the inhalation and supplies electrical current to the heater coil 40. Air is drawn into the flow path in the housing through the inlets 18. The flowing air passes through the passageway 38 and is heated by the heater coil 40. The amount of heating may vary by design. Air temperatures of 200 to 300 °C at the exit of the passageway, as one example, may be used by adjusting the power of the heater and the air flow characteristics through or past the heater. The collector 30, if used, may help to collect and direct the heated air to the mesh 32. The collector 30 may also be used to space the heater coil 40 and the heater support 28 apart from the mesh 32. The collector may optionally be made part of the heater support 28.
The mesh 32 is provided as a thin sheet or layer, and has a sufficiently open structure, so that the heated air can pass through without excessive flow resistance. The mesh 32 may be a sheet or layer of loose fiberglass, fiberglass fabric or similar material that can wick and hold liquid on the surface of the fibers, and/or in the gaps between the fibers, and also allow air to flow through. A heat resistant foam material may alternatively be used in place of the mesh.
The heated air flows through the mesh 32. This heats liquid in or on the mesh, which atomizes or vaporizes the liquid. The vapor is entrained in the heated air, which continues flowing from the mesh 32 through the opening 36 and the outlet 42, with the mixture of air and vapor inhaled by the user. The heated air may cool considerably as it passes through the mesh 32 and the opening 36, so that the user inhales air from the outlet at a comfortable temperature of e.g., 25 to 50 °C.
In the designs described above the liquid does not come into direct contact with the heater coil. This avoids the loss of heating efficiency resulting from deposits and liquid residue collecting on the heater coil 40. It also allows for longer heater coil life, as thermal shock to heater coil, and corrosion are reduced. Vaporization is also improved because the liquid is vaporized at lower temperatures. The heater coil itself may operate at temperatures in the range of 500 °C. This can cause chemical changes in the liquid as it is vaporized. By avoiding contact between the heater coil and the liquid, and by vaporizing the liquid using heated air, chemical changes occurring during vaporization may be reduced.
In addition, since the heater coil 40 does not come into contact with the liquid, the heater coil may be plated with corrosion resistant materials, such as silver or nickel-chromium. Use of these types of materials, which would be degraded if contacted by the liquid, prolongs the life of the heater coil. Since the life of the heater coil can be much longer, the heater coil can be made as a reusable component, rather than be a disposable item as is common with existing designs. This allows for reduced costs.
With existing known electronic cigarettes, the heating device or coil must heat the nicotine liquid first, before the liquid can be vaporized. The electronic cigarette according to the present invention omits this initial step, as the heater coil 40 heats air, and not liquid. Consequently, the new designs described here also achieve faster vaporization in comparison to known designs.
Thus, designs according to the invention have been shown and described. Various changes and substitutions may of course be made without departing from the scope of the invention, as defined by the appended claims.
Claims (17)
- An electronic cigarette comprising:a housing (10) having one or more inlets (18) and an outlet (42);a liquid storage (34, 54) within the housing (10);a mesh element (32, 52) in contact with the liquid storage (34, 54); anda heater (40) spaced apart from the mesh element (32, 52) and positioned to heat air which flows through the mesh element (32, 52);wherein the mesh element (32, 52) is positioned between the heater (40) and the liquid storage (34, 54) within a flowpath formed, in use, in the housing (10); characterized in thatthe flowpath is formed, in use, through the housing (10) via the one or more inlets (18), a passageway comprising the heater (40), and an opening (36, 56) leading to the outlet (42);the mesh element is made of a porous material, the porous material being configured to wick liquid stored in the liquid storage (34, 54), when in use; andwherein the mesh element (32, 52) is further configured to allow, in use, liquid being wicked on or in the mesh element (32, 52) to be vaporized by heated air conducted through the mesh element (32, 52).
- The electronic cigarette of claim 1 with the heater (40) within a heater support (28) having an air passageway (38) aligned with a central opening (36) extending through the liquid storage (34).
- The electronic cigarette of claim 2 further including a collector (30) on the heater support (28), with the collector spaced apart from the mesh element (32) by less than 4 mm.
- The electronic cigarette of claim 2 with the heater support (28) having tubular front end contacting the mesh element (32).
- The electronic cigarette of claim 1 further comprising an annular flow path (56) around the outside of the liquid storage (54).
- The electronic cigarette of claim 1 with the mesh element (32, 52) comprising a fiber material having a thickness less than 2 mm.
- The electronic cigarette of claim 1 further comprising a battery (16) in the housing (10) electrically connected to a flow sensor (20), a circuit board (24) and the heater coil (40).
- The electronic cigarette of claim 1, wherein the opening is a central opening (36)extending through the liquid storage (34) to an outlet (42).
- An electronic cigarette according to claim 1, further comprising:a battery (16) electrically connected to a flow sensor (120) and an electronic circuit in the housing (10);wherein the heater (40) is a heater coil on a heater support (28) spaced apart from the mesh screen (32), with the heater coil electrically connected to the electronic circuit; andwherein the air flow path in the housing (10) comprises a passageway (38) in the heater support (28) and the opening is a central opening (36) extending through the liquid storage section (34) to the outlet (42).
- The electronic cigarette of claim 9 with the air flow path further comprising one or more inlets in the housing (10) and an opening in the flow sensor (120).
- A method of vaporizing a liquid in an electronic cigarette, the electronic cigarette comprising a mesh element (32, 52) made of a porous material, the porous material being configured to wick liquid stored in a liquid storage (34, 54), the mesh element (32, 52) being positioned between a heater (40) and the liquid storage (34, 54), and the heater (40) being spaced apart from the mesh element (32, 52), and the electronic cigarette further comprising an opening (36, 56) leading to an outlet (42); the method comprising:conducting liquid from the liquid storage (34, 54) to the mesh element (32, 52); sensing inhalation;providing electric current to the heater (40) in response to sensing inhalation;heating air via the heater (40); conducting the heated air through the mesh element (32, 52);vaporizing, by the heated air conducted through the mesh element (32, 52), liquid being wicked on or in the mesh element (32, 52); andconducting the vaporized liquid through the opening (36, 56) leading to the outlet (42).
- The method of claim 11 further comprising entraining the vaporized liquid into the heated air to form a mixture of vaporized liquid and heated air, and flowing the mixture through a central opening (36) in the liquid storage (34) to an outlet (42).
- The method of claim 12 further including positioning the heater (40) within a passageway in a heater housing, and drawing ambient air into the housing (10) via an inlet in the housing (10), with the air passing through the passageway.
- The method of claim 12 further including a passageway (38) in the heater support (28), with the central opening (36) in the liquid storage (34) having a length at least five times greater than the length of the passageway (38) in the heater support (28).
- The method of claim 11 with the air heated to 200 to 300 °C as it is conducted through the mesh element (32, 52).
- The method of claim 11 further comprising conducting the heated air through an annular passage (56) surrounding the liquid storage (34), after the heated air passes through the mesh element (52).
- The electronic cigarette of claim 9 with the liquid storage section (34) including a separate component or cartridge containing a liquid.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2012/000530 WO2013155645A1 (en) | 2012-04-18 | 2012-04-18 | Electronic cigarette |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| HK1207539A1 HK1207539A1 (en) | 2016-02-05 |
| HK1207539B true HK1207539B (en) | 2020-12-31 |
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10772359B2 (en) | Electronic cigarette | |
| TWI568370B (en) | Electronic cigarette and method of vaporizing a liquid in an electronic cigarette | |
| US20250204591A1 (en) | Electronic cigarette with woven fiber tube atomizer | |
| EP3545998B1 (en) | Aerosol delivery device | |
| KR102899454B1 (en) | Cartridge with aerosol generating system and leak protection | |
| KR102015681B1 (en) | An aerosol generating device with adjustable airflow | |
| KR102579501B1 (en) | Aerosol generating system with external cartridge | |
| KR20180128853A (en) | Evaporator unit for an inhaler and method for controlling an evaporator unit | |
| CN107105780A (en) | The continuous mode heater sub-assembly of system is generated for aerosol | |
| JP6592488B2 (en) | Electronic cigarette | |
| EP3681320B1 (en) | Heater for aerosol generating device and device | |
| CN112437615A (en) | Smoking substitute device having a liquid permeable filter between a mouthpiece and a liquid cartridge | |
| HK1207539B (en) | Electronic cigarette | |
| EP4156999B1 (en) | Heating elements for an aerosol generating device | |
| KR102871067B1 (en) | Heating device of aerosol generator | |
| EP4408206B1 (en) | Aerosol delivery component | |
| HK1235020A1 (en) | Device |