[go: up one dir, main page]

HK1169065B - Cassette with infusion set containing anti-freeflow ball valve for peristaltic infusion pump - Google Patents

Cassette with infusion set containing anti-freeflow ball valve for peristaltic infusion pump Download PDF

Info

Publication number
HK1169065B
HK1169065B HK12109981.8A HK12109981A HK1169065B HK 1169065 B HK1169065 B HK 1169065B HK 12109981 A HK12109981 A HK 12109981A HK 1169065 B HK1169065 B HK 1169065B
Authority
HK
Hong Kong
Prior art keywords
cassette
flexible tube
constrictor
ball
pumping device
Prior art date
Application number
HK12109981.8A
Other languages
German (de)
French (fr)
Chinese (zh)
Other versions
HK1169065A1 (en
Inventor
David Woodruff West
James Allen Higgins
Seralaathan Hariharesan
Alan P. Halbert
Original Assignee
Nestec S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nestec S.A. filed Critical Nestec S.A.
Priority claimed from PCT/US2010/041312 external-priority patent/WO2011008619A1/en
Publication of HK1169065A1 publication Critical patent/HK1169065A1/en
Publication of HK1169065B publication Critical patent/HK1169065B/en

Links

Description

BACKGROUND
The present disclosure generally relates to health and nutrition. More specifically, the present disclosure relates to flow control devices and methods of using the flow control devices.
The delivery of nutritional compositions to mammals, such as human patients, that cannot orally ingest food or other forms of nutrition is often of critical importance. For example, enteral bottles and containers having feeding tubes that deposit food directly into the gastrointestinal tract at a point below the mouth are often used to sustain life while a patient is unable, or refuses, to take food orally. Bottles and containers, feeding tubes and other artificial delivery systems and routes can be used temporarily during the treatment of acute medical conditions. For chronic medical conditions, such systems and routes can be used as part of a treatment regimen that lasts for the remainder of a patient's life. No matter the duration of use, these devices often provide the only means for feeding the patient.
The use of enteral feeding pumps, in conjunction with an enteral feeding tube set as part of an enteral feeding system, for the administering of medical fluids is also well known in the medical arts. The enteral feeding tube set will typically include several long sections of tubing, connected to a centralized, shorter section of tubing. One common concern with the enteral feeding tube set is that fluid flow from a nutritional source through the enteral feeding tube set may begin before the feeding tube set is connected to an enteral administration pump. As a result, the nutritional fluid may spill out of the tube set or be administered to a patient before the desired time.
Document US-A-2002/0151838 discloses a feeding pump with cassette comprising a tube with a ball valve.
SUMMARY
The present disclosure relates to flow control devices according to claim 1. In a general embodiment, the present disclosure provides a cassette including a housing having a constrictor, a tube attached to the housing and positioned through the constrictor, and a ball located or positioned inside the tube. The constrictor and ball combination can form an "anti-free flow mechanism" in the cassette.
In an embodiment, the tube includes a first end attached to an inlet port and a second end attached to an outlet port. The inlet port can be sized to prevent the ball from entering the inlet port. Any suitable portion of the tube can be flexible. In this regard, the cassette can be part of an enteral feeding tube set that includes tubing connected to the nutritional composition and to a person receiving the nutritional composition along with sensor ports for monitoring fluid flow through the feeding tube set. The cassette is designed to prevent free flow of fluid through the feeding tube set when the feeding tube set is not installed in a pumping device.
In an embodiment, the constrictor is constructed and arranged to prevent the ball from moving through the tube at the location proximate the constrictor. The ball can prevent fluid flow in one position and be dislodged to allow fluid flow when the cassette is positioned inside a pumping device. As a result, the anti-free flow mechanism can be disengaged (e.g. allow fluid flow) for manual priming of the tube set and disengaged when the feeding tube set is installed into a pumping device.
In another embodiment, the present disclosure provides a flow control system including a pumping device having a dislodging mechanism and a cassette removably attached to the pumping device. The cassette includes a housing having a constrictor constructed and arranged to align with the dislodging mechanism when the cassette is positioned within the pumping device. A flexible tube is attached to the housing and positioned through the constrictor, and a ball is positioned inside the flexible tube. The constrictor is constructed and arranged to prevent the ball from moving through the flexible tube at the location proximate the constrictor. The flexible tube can include a first end attached to an inlet port and a second end attached to an outlet port.
In an alternative embodiment, the present disclosure provides a flow control system including a pumping device and a cassette removably attached to the pumping device. The cassette includes a housing having a constrictor and a dislodging mechanism attached at or near the constrictor. A flexible tube is attached to the housing and positioned through the constrictor, and a ball is positioned inside the flexible tube. The constrictor is constructed and arranged to prevent the ball from moving through the flexible tube at the location proximate the constrictor. The flexible tube includes a first end attached to an inlet port and a second end attached to an outlet port.
In yet another embodiment, the present disclosure provides a method of controlling fluid flow in a tube. The method comprises providing a cassette including 1) a housing having a constrictor, 2) a tube attached to the housing and positioned through the constrictor, and 3) a ball positioned inside the tube. Fluid flow is occluded through the tube by positioning the ball within the tube at a location proximate the constrictor. The method further comprises passing fluid through the tube by dislodging the ball within the tube.
In an embodiment, the ball is dislodged when the cassette is positioned inside a pumping device. For example, a dislodging mechanism can be attached to the cassette and constructed and arranged to dislodge the ball when the cassette is positioned inside a pumping device. Alternatively, a dislodging mechanism can be attached within a pumping device and constructed and arranged to dislodge the ball when the cassette is positioned inside a pumping device.
An advantage of the present disclosure is to provide an improved flow control device.
Another advantage of the present disclosure is to provide an improved enteral feeding cassette having an anti-free flow mechanism.
Yet another advantage of the present disclosure is to provide an improved method of preventing fluid flow through an enteral feeding cassette when the cassette is not attached to a pumping device.
Still another advantage of the present disclosure is to provide an improved method of controlling flow during enteral feeding.
Additional features and advantages are described herein, and will be apparent from the following Detailed Description and the figures.
BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows a pumping device and a cassette having an anti-free flow mechanism in an embodiment of the present disclosure.
  • FIG. 2 shows a cassette having an anti-free flow mechanism in an embodiment of the present disclosure.
  • FIG. 3 shows a cross-section view III-III of the anti-free flow mechanism shown in FIG. 2.
  • FIG. 4 shows a partial side view of the anti-free flow mechanism shown in FIG. 2.
  • FIG. 5 shows a cross-section view V-V of the anti-free flow mechanism shown in FIG. 4.
  • FIG. 6 shows a cassette having an anti-free flow mechanism in another embodiment of the present disclosure.
DETAILED DESCRIPTION
The present disclosure relates to flow control devices and methods of using the flow control devices. In a general embodiment, the present disclosure provides a cassette including a housing having a constrictor, a tube attached to the housing and positioned through the constrictor, and a ball positioned inside the tube. In this configuration, the ball and constrictor combination form the anti-free flow mechanism. The ball restricts fluid flow through the tube when the cassette is not in use. The cassette can be part of an enteral administration device or system that administers nutritional compositions to a person or patient in need of same.
The cassette that houses the anti-free flow mechanism provides the user an elegant way to install the anti-free flow mechanism and feeding tube set into a pumping device via features built into a housing of the cassette and also provides other built in functionality (sensor ports, etc.) for successful delivery of the nutritional composition to a person or patient. The anti-free flow mechanism prevents leakage/flow of the nutritional composition in the enteral feeding tube set, for example, in the following instances: 1) before and after the feeding tube set is primed with the feeding fluid, 2) during the loading and unloading of the feeding tube set into and out of the pumping device and 3) after the feeding tube set has been removed from the pumping device.
As used herein, the term "nutritional composition" includes, but is not limited to, complete nutritional compositions, partial or incomplete nutritional compositions, and disease or condition specific nutritional compositions. A complete nutritional composition (i.e. those which contain all the essential macro and micro nutrients) can be used as a sole source of nutrition for the patient. Patients can receive 100% of their nutritional requirements from such complete nutritional composition. A partial or incomplete nutritional composition does not contain all the essential macro and micro nutrients and cannot be used as a sole source of nutrition for the patient. Partial or incomplete nutritional compositions can be used as nutritional supplements.
In an embodiment illustrated in FIGS. 1-2, the present disclosure provides a flow control system 10 including a pumping device 20 having a dislodging mechanism 22. Flow control system 10 further includes a cassette 30 removably attached to pumping device 20. The design of cassette 30 can help in loading an enteral feeding tube set (not shown) into pumping device 20 without having to route/guide the tubes or stretch the tubes from the tube set over a rotor (e.g. part of a peristaltic pump).
Pumping device 20 can be an enteral feeding pump. Non-limiting examples of pumping devices are described in U.S. Patent No. 6,659,976 , which is incorporated herein by reference. Pumping device 20 can include a monitor/information screen 21 and a control pad 24 for operating pumping device 20.
Cassette 30 can have any suitable shape such as the one shown in FIGS. 1-2 and is design to be positioned within pumping device 20. Non-limiting examples of alternative cassette configurations are described in U.S. Patent Nos. D504,506 , D505,199 , D455,489 , D501,924 and D507,647 , which are incorporated herein by reference. Cassette 30 can be made from any suitable rigid, semi-rigid or flexible material. Cassette 30 can also be "keyed/poka yoked" such that it can be inserted into pumping device 20 only one way.
As illustrated in FIGS. 1-2, cassette 30 includes a housing 32 having a constrictor 34 constructed and arranged to align with dislodging mechanism 22 of pumping device 20 when cassette 30 is positioned within pumping device 20. A flexible tube 36 is attached to housing 32 and positioned through constrictor 34. Flexible tube 36 can be made of any suitable materials such as silicone. It should be appreciated that any suitable portion of flexible tube 36 can be flexible while the remaining portion is rigid or semi-rigid.
A ball 38 is located or positioned inside flexible tube 36. Constrictor 34 is constructed and arranged to prevent ball 38 from moving through flexible tube 36 at the location proximate constrictor 34. For example, constrictor 34 can define a hole or passage that is slightly smaller than the outside diameter ("OD") of flexible tube 36 that is assembled in cassette 30 as seen in FIG. 3. It should be appreciated that ball 38 can have any suitable shape (e.g. spherical, cube, polygonal) to match the inner diameter ("ID") shape of the passageway of flexible tube 36.
Flexible tube 36 can include a first end 40 attached to an inlet port 42 and a second end 50 attached to an outlet port 52. As a result, fluid can flow through flexible tube 36 in the direction from first end 40 to second end 50. Inlet port 42 can be attached to a tube connected to a nutritional composition source. Outlet port 52 can be attached to a tube connected to the person receiving the nutrition composition.
In alternative embodiments, inlet port 42 and outlet port 52 can include upstream and downstream occlusion detection sensors (not shown), respectively. The term "upstream" refers to the section of the tube between a nutritional composition source (e.g. feed bag) and a pump rotor (e.g peristaltic pump) used to provide fluid flow. The term "downstream" refers to the section of the tube between the pump rotor and a distal end connector to a person receiving the nutritional composition.
Cassette 20 can include sensor ports and sensor windows built-in. For example, the shape and size of the ports and windows can work uniquely with the sensors in the pumping device to detect upstream and downstream occlusion and/or to detect air in the fluid flow line or tubing. In addition, any portion of cassette 30 can incorporate other features to prevent cassette 30 from being incorrectly inserted into pumping device 20.
During operation, when flexible tube 36 is inserted into constrictor 34, flexible tube's 36 OD will conform to the size of the hole of constrictor 34 and proportionally reduce the ID of flexible tube 36. Ball 38 is placed inside flexible tube 36 of cassette 30, directly in the flow path of the fluid and in the upstream side of the constrictor 34 (see FIG. 3). Ball 38 is sized such that, it is larger than the reduced ID of flexible tube 36 at the location proximate constrictor 34.
When a fluid in flexible tube 36 is under pressure, ball 38 will be pushed towards and against constrictor 34 (see FIG. 3). Because ball 38 is larger than the reduced ID of flexible tube 36 at constrictor 34, ball 38 will squeeze flexible tube 36 against the surface of constrictor 34. As a result, the tube material between ball 38 and constrictor 34 acts as a gasket or o-ring to prevent ball 38 from passing through constrictor 34.
The fluid pressure acting on ball 38 forces ball 38 against the gasket formed and occludes the fluid flow path through flexible tube 36. With increasing pressure, the sealing force on ball 38 increases proportionally thereby creating a much better seal to prevent fluid flow.
To un-occlude or allow fluid flow through flexible tube 36, ball 38 is mechanically dislodged by dislodging mechanism 22, which can be incorporated in pumping device 20 as shown in FIGS 1 and 3-5. As seen in FIGS. 3-5, dislodging mechanism 22 will push on the outer surface of flexible tube 36 and dislocate ball 38 by moving ball 38 out of its seated/sealing position. Once ball 38 is dislocated/dislodged, the flow path is open and fluid will flow through flexible tube 36 through newly formed voids 60 due to the distortion of the ID of flexible tube 36.
On removal of dislodging mechanism 22 (e.g. by removing cassette 30 from pumping device 20), ball 38 will reseat itself (due to the elasticity of flexible tube 38 and the fluid pressure that acts on it) in constrictor 34 and seal the flow path once again (see FIG. 3). As a result, the anti-free flow mechanism can be unlocked and deactivated by pump 20 when cassette 30 is inserted and reactivated when it is removed from pump 20. Unlike conventional anti-free flow devices in existing enteral feeding tube sets, cassette 30 is not deactivated by closing a door, by pressure, or a roller clamp. Instead, it will be deactivated by physically dislodging ball 38 via a feature in pumping device 20.
In sum, the anti-free flow mechanism inside cassette 30 can be activated by pressure and deactivated via mechanically displacing ball 38. No spring is required in the system to activate the anti-free flow mechanism. Pressure acting on ball 38 will seal the flow path thereby preventing flow through flexible tube 36. This anti-free flow mechanism prevents any static pressure loss during pumping. When cassette 30 is inside pumping device 20, the flow can be prevented/controlled by pump rollers (e.g. peristaltic pumps) within pumping device 20.
In an alternative embodiment illustrated in FIG. 6, the present disclosure provides a cassette 130 including a housing 132 having a constrictor 134 and a dislodging mechanism 122 movably attached at nor near constrictor 134. A flexible tube 136 is attached to housing 132 and positioned through constrictor 134. A ball 138 is positioned inside flexible tube 136. Constrictor 134 is constructed and arranged to prevent ball 138 from moving through flexible tube 136 at the location proximate constrictor 134. Flexible tube 136 can include a first end 140 attached to an inlet port 142 and a second end 150 attached to an outlet port 152. Cassette 130 can be removably attached to any suitable pumping device.
A pumping device compatible with cassette 130 does not need to include any dislodging mechanism. In this regard, when cassette 130 is inserted into the pumping device, a surface of the pumping device can push down on dislodging member 122 into flexible tube 136 and cause dislodging member 122 to dislodge or move ball 138 from its position at or near constrictor 134. As a result of the distortion of flexible tube 136, fluid can flow past ball 138. When cassette 130 is removed from the pumping device, flexible tube 136 can reform to its original shape thereby allowing ball 138 to be re-positioned at or near constrictor 134 and block flow in flexible tube 136.
In yet another embodiment, the present disclosure provides a method of controlling fluid flow in a tube. The method includes providing a cassette including 1) a housing having a constrictor, 2) a tube attached to the housing and positioned through the constrictor, and 3) a ball positioned inside the tube. Fluid flow is occluded through the tube by positioning the ball within the tube at a location proximate the constrictor. The method further includes passing fluid through the tube by dislodging the ball within the tube.
In an embodiment, the ball is dislodged when the cassette is positioned inside a pumping device. For example, a dislodging mechanism can be attached to the cassette and constructed and arranged to dislodge the ball when the cassette is positioned inside a pumping device. Alternatively, a dislodging mechanism can be attached within a pumping device and constructed and arranged to dislodge the ball when the cassette is positioned inside a pumping device.
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made within the scope of the appended claims.

Claims (14)

  1. A cassette (30) for being connected to a pumping device (20) comprising:
    a housing (32) comprising a constrictor (34),
    a flexible tube (36) attached to the housing (32) and positioned through the constrictor (34) such that an inner diameter (ID) of the flexible tube (36) is reduced, and a ball (38) positioned inside the tube (36) at an upstream side of the constrictor (34), the ball (38) being sized such that it is larger than the reduced inner diameter (ID) of the flexible tube (36) at the constrictor (34) and such that the ball (38) is able to occlude the fluid flow path through the flexible tube (36) when a fluid in the flexible tube (36) is under pressure.
  2. The cassette according to claim 1, wherein the ball (38) is designed to prevent fluid flow in one position and designed to be dislodged to allow fluid flow when the cassette (30) is positioned inside a pumping device (20).
  3. The cassette according to claim 1 or 2, wherein the constrictor (34) is so constructed and arranged to prevent the ball (38) from moving through the flexible tube (36) at the constrictor (34).
  4. The cassette according to any of the preceding claims, wherein the flexible tube (36) comprises a first end (40) attached to an inlet port (42) and a second end (50) attached to an outlet port (52), wherein the inlet port (42) is sized to prevent the ball (38) from entering the inlet port (42).
  5. The cassette according to any of the preceding claims, wherein the constrictor (34) defines a hole or passage that is slightly smaller than the outside diameter (OD) of the flexible tube (36) that is assembled in the cassette (30).
  6. The cassette according to claim 5, wherein the outside diameter (OD) of the flexible tube (36) when inserted into constrictor (34) conforms to the size of the hole of the constrictor (34) such that the inner diameter (ID) of the flexible tube (36) is proportionally reduced.
  7. The cassette according to any of the preceding claims, wherein the ball (38) has a suitable shape such as spherical, cube or polygonal, to match the inner diameter (ID) shape of the passageway of the flexible tube (36).
  8. The cassette according to any of the preceding claims, wherein the tube material between the ball (38) and the constrictor (34) is designed to act as a gasket or o-ring to prevent the ball (38) from passing through the constrictor (34).
  9. The cassette according to any of the preceding claims, the cassette (130) further comprising a dislodging mechanism (122) movably attached at or near the constrictor (134), the dislodging mechanism (122) being designed to dislodge or move the ball (138) from its position at or near the constrictor (134) such that due to a distortion of the inner diameter (ID) of the flexible tube (136), the flow path through the flexible tube (136) is open.
  10. A flow control system (10) comprising a pumping device (20) and a cassette (30) according to any of claims 1 to 8 removably attached to the pumping device (20), the pumping device (20) comprising a dislodging mechanism (22), wherein the constrictor (34) of the cassette (30) is so constructed and arranged to align with the dislodging mechanism (22) when the cassette is positioned within the pumping device (20).
  11. The flow control system (10) according to claim 10, wherein the dislodging mechanism (22) is designed to mechanically dislodge the ball (38) such as to un-occlude or allow fluid flow through the flexible tube (36).
  12. The flow control system (10) according to claim 10 or 11, wherein the dislodging mechanism (22) is designed to push on an outer surface of the flexible tube (36) and dislocate ball (38) by moving ball (38) out of its seated or sealing position.
  13. The flow control system (10) according to any of claims 10 to 12, wherein upon connection of the dislodging mechanism (22) with the flexible tube (36), the flow path is open and fluid will flow through the flexible tube (36) through newly formed voids (60) due to the distortion of the inner diameter (ID) of the flexible tube (36).
  14. A flow control system (10), comprising a pumping device (20) and a a cassette (30) according to claim 9 removably attached to the pumping device (20), the pumping device (20) comprising a surface designed to push down on the dislodging member (122) into the flexible tube (36) and cause the dislodging member (122) to dislodge or move the ball (38) from its position at or near the constrictor (34) of the cassette (30).
HK12109981.8A 2009-07-13 2010-07-08 Cassette with infusion set containing anti-freeflow ball valve for peristaltic infusion pump HK1169065B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22516109P 2009-07-13 2009-07-13
US61/225,161 2009-07-13
PCT/US2010/041312 WO2011008619A1 (en) 2009-07-13 2010-07-08 Cassette with infusion set containing anti-freeflow ball valve for peristaltic infusion pump

Publications (2)

Publication Number Publication Date
HK1169065A1 HK1169065A1 (en) 2013-01-18
HK1169065B true HK1169065B (en) 2018-01-05

Family

ID=

Similar Documents

Publication Publication Date Title
EP2453949B1 (en) Cassette with infusion set containing anti-freeflow ball valve for peristaltic infusion pump
EP2473217B1 (en) Cassette with infusion set containing spring-biased anti-freeflow mechanism for peristaltic infusion pump
US12171721B2 (en) Connectors for infusion pump feeding sets
CN102292117B (en) Infusion pump cassette with anti-free-flow valve mechanism
CN102292118B (en) There is the infusion pump casket box of anti-free-pouring valve system
CN2910250Y (en) Medical doser
US6460540B1 (en) Endotracheal tube sump
US9010322B2 (en) Gastric insertion confirmation device and related methods therefor
EP1278566B1 (en) Drip chamber anti free flow device
EP1925330A2 (en) Suction apparatus and connectors
AU2014287212B2 (en) Check valve system
JP2012516208A5 (en)
JPH11509744A (en) Injector pinch clip occluder
AU2001253883A1 (en) Drip chamber anti free flow device
JP2003532499A (en) Apparatus and method for preventing free flow in an infusion line
HK1169065B (en) Cassette with infusion set containing anti-freeflow ball valve for peristaltic infusion pump
US20040249350A1 (en) Device for fluid delivery system
TW201620561A (en) Drug administration mechanism, method of using the same, and pump unit for the same