[go: up one dir, main page]

HK1025565B - Intermediates for making camptothecin and camptothecin analogs - Google Patents

Intermediates for making camptothecin and camptothecin analogs Download PDF

Info

Publication number
HK1025565B
HK1025565B HK00103380.2A HK00103380A HK1025565B HK 1025565 B HK1025565 B HK 1025565B HK 00103380 A HK00103380 A HK 00103380A HK 1025565 B HK1025565 B HK 1025565B
Authority
HK
Hong Kong
Prior art keywords
camptothecin
formula
compound
reaction
compounds
Prior art date
Application number
HK00103380.2A
Other languages
German (de)
French (fr)
Chinese (zh)
Other versions
HK1025565A1 (en
Inventor
L. Comins Daniel
Baevsky Merriam
Original Assignee
North Carolina State University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/632,970 external-priority patent/US5162532A/en
Application filed by North Carolina State University filed Critical North Carolina State University
Publication of HK1025565A1 publication Critical patent/HK1025565A1/en
Publication of HK1025565B publication Critical patent/HK1025565B/en

Links

Description

Field of the Invention
The present invention provides a 7-oxopyrido[5,4-c]-2-oxo-3-lower alkyl-3-hydroxy-3,6-dihydropyran enantiomer of formula (III) herein which is useful in the parallel synthesis of camptothecin and camptothecin analogs via novel intermediates at high yields. The synthesis is disclosed in parent application EP 92 903 792-7.
Background of the Invention
Camptothecin (Chem. Abstracts Registry No. 7689-03-4) is a naturally occuring compound found in Camptotheca acuminata (Nyssaceae) which has antileukemic and antitumor properties. Numerous camptothecin analogs having like properties are known, examples being those described in U.S. Patent No. 4,894,456 to Wall et al. and European Patent Application No. 0 325 247 of Yaegashi et al.
A number of syntheses for camptothecin are known. Several routes are reviewed in Natural Products Chemistry, Vol. 2, 358-361 (K. Nakanishi, T. Goto, S.
Itô, S. Natori and S. Nozoe eds.) and in J. Cai and C. Hutchinson, Camptothecin, in The Alkaloids, Vol. XXI, 101-137 (Academic Press 1983). The biosynthesis of camptothecin is described in Natural Products Chemistry, Vol. 3, 573-574 (K. Nakanishi et al. eds.). A recent synthetic route is described in U.S. Patent No. 4,894,456 to Wall et al. (see also references cited therein).
A problem with prior methods of synthesizing camptothecin is that they are largely linear syntheses. Such syntheses provide low yields of the final product because of the sequential loss in product during each step of the total synthesis. Parallel syntheses (i.e., a strategy in which two synthetic paths are followed separately and the products thereof combined to form the final product) provide higher yields, but few such syntheses have been available for camptothecin. Accordingly, an object of the present invention is to provide a parallel synthetic method for making camptothecin and analogs thereof.
Summary of the Invention
The present invention provides a compound according to claim 1. The compounds of the invention may be used in a method of making compounds of Formula I below: wherein:
  • R may be loweralkyl, preferably ethyl.
  • R1 may be H, loweralkyl, loweralkoxy, or halo (e.g., chloro). Preferably R, is H.
  • R2, R3, R4, and R5 may each independently be H, amino, hydroxy, loweralkyl, loweralkoxy, loweralkylthio, di(loweralkyl)amino, cyano, methylenedioxy, formyl, nitro, halo, trifluoromethyl, aminomethyl, azido, amido, hydrazino, or any of the twenty standard amino acids bonded to the A ring via the amino-nitrogen atom (numbering in Formula I is by the Le Men-Taylor numbering system and rings are lettered in the conventional manner. See J. Cai and C. Hutchinson, supra at 102).
At least two of R2, R3, R4, and R5 may be H, and in a preferred embodiment R2, R4, and R5 are H.
Preferably: R2 is H or amino; R3 is H or hydroxy; R4 is H; and R5 is H.
A compound of Formula I may be produced according to scheme A below, where Y is H, R1 through R5 are as given in connection with Formula I above, X is halogen, preferably bromo or iodo; and W is halogen, preferably chloro.
As used herein, the term "loweralkyl" means a linear or branched alkyl group with 1-8, preferably 1-4, carbon atoms, such as methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, hexyl, and octyl. This definition also applies to a loweralkyl moiety in the loweralkoxy, loweralkylthio, and di(loweralkyl)amino groups. Thus, examples of loweralkoxy groups are methoxy, ethoxy, propoxy, sec-butoxy, and isohexoxy; examples of loweralkylthio groups are methylthio, ethylthio, tert-butylthio, and hexylthio; and examples of di(loweralkyl)amino groups are dimethylamino, diethylamino, diisopropylamino, di(n-butyl)amino, and dipentylamino.
The terms "halo" and "halogen" as used herein refers to a substituent which may be fluoro, chloro, bromo, or iodo.
Substituents on the "A" ring of the compounds disclosed herein may be joined together to form a bifunctional substituent such as the methylendioxy group. Methylenedioxy substituents may be bonded to any two consecutive positions in the A ring, for example, the 9,10, the 10,11, or the 11,12 positions.
Substituents which are standard amino acids may be any of the twenty amino acids commonly found in naturally occuring proteins, and are well known in the art. These provide a substituent of the formula -NHCHRCOOH, with R being the side chain of any of the twenty standard amino acids. The amino acids may be of any configuration, but preferably have an (L) configuration.
A compound of Formula I is produced in accordance with Scheme A below by alkyating a pyridone of Formula III with a chloromethylquinoline of Formula II to produce a compound of Formula IV, and then cyclizing the compound of Formula IV to yield the compound of Formula I. In Scheme A: Y is H; R and R1 through R5 are as given in connection with Formula I above; X is halogen, preferably bromo or iodo; and W is halogen, preferably chloro.
The starting materials of Scheme A, the compounds of Formula II and III, are prepared in accordance with Schemes B and C below.
The pyridone of Formula III may be alkylated with a halomethylquinoline of Formula II in a suitable solvent, such as a polar protic solvent (e.g., isopropyl alcohol, ethanol, methanol), an aprotic solvent (e.g., 1,2-dimethoxyethan, tetrahydrofuran, toluene, acetonitrile, or dimethylformamide) or alternatively in an aqueous solution in the presence of a phase transfer catalyst. The reaction is preferably carried out under mildly basic conditions, to minimize attack on the pyridone ring oxygen. The reaction may be carried out as a single step, or may conveniently be carried out in two stages by, first, forming the anion of of the pyridone by addition of an alkali earth salt (e.g., potassium tert-butoxide) at about room temperature, and then adding the halomethylquinoline to the reaction solution and heating the solution between about 60° to about 100° Centigrade for 4-24 hours.
The compound of Formula IV may be cyclized to yield the compound of Formula I by an intramolecular Heck reaction. The reaction is carried out in the presence of a palladium catalyst (e.g., palladium acatate) under basic conditions in a polar aprotic solvent such as acetonitrile or dimethylformamide. A phase transfer catalyst such as a tetraalkylammonium halide salt is preferably included. The reaction should be carried out in an inert atmosphere, such as under argon. The reaction mixture may be heated to a temperature between about 50° to about 100° C for about 1 to 24 hours. Variations on these conditions will be aparent from the literature on the Heck reaction. See, e.g., R. Grigg et al. Tetrahedron 46, 4003-4008 (1990).
The compounds of Formula II may be prepared in accordance with Scheme B below, where R1 through R5 are as given in connection with Formula I above, and X is Bromo or Iodo, preferably Iodo.
The starting materials in Scheme B, the compounds of Formula V, are made by known techniques, such as by chlorination of a quinoline. See, e.g., Progress in Heterocyclic Chemistry 2, 180 (H. Suschitzky and E. Scriven eds. 1990). In the alternative, compounds of Formula V may be made from the substituted acetanilide as described by O. Meth-Cohn et al., J. Chem. Soc. Perkin Trans. I 1981, 1520.
The halo group on the carboxaldehyde of Formula V is exchanged with an Iodo or Bromo (preferably Iodo) to produce the carboxaldehyde of Formula VI. The exchange reaction may be carried out in acetonitrile in the presence of a catalytic amount of a strong acid, such as HCl, by heating the reaction mixture to between about 70° to about 90° C for at least about 4 hours.
The carboxaldehyde of Formula VI is then reduced to produce the hydroxymethylquinoline of Formula VII. The reaction is carried out with a mild reducing agent to avoid reducing the quinoline ring, at a temperature of from about 0° to about 25° C, in an alcohol solvent. An alternative route for producing a compound of Formula VII is disclosed in N. Narasimham et al., J. Chem. Soc., Chem. Commun., 1985, 1368-1369.
A compound of Formula II is produced from the hydroxymethylquinoline of Formula VII in accordance with conventional procedures in a solvent in which the reactants are soluble, such as dimethylformamide. The reaction is preferably carried out at lower temperatures to provide a higher yield.
The compounds of Formula III above are preferably prepared in accordance with Scheme C below, wherein R is as given in connection with Formula I above, R6 and R7 are loweralkyl, preferably methyl, R8 is loweralkyl, preferably ethyl, Y is Cl or H, and Z is halo, preferably bromo or iodo.
The starting materials for Scheme C, the compounds of Formula VIII, may be prepared in accordance with known techniques. For example, the synthesis of 2-methoxy-3-pyridinecarboxaldehyde is disclosed in D. Comins and M. Killpack, J. Org. Chem. 55, 69-73 (1990).
In Scheme C, the carboxaldehyde of Formula VIII is halogenated to produce the 4-halo-3-pyridinecarboxaldehyde of Formula IX. Halogenation at the 4- position may be carried out by reacting the carboxaldehyde of Formula VIII with a lithiated diamine, such as lithiated N,N,N'-trimethylethylenediamine, in dimethoxyethane or tetrahydrofuran to protect the aldehyde and direct subsequent C-4 lithiation, and by then lithiating the C-4 position of the pyridine with a suitable lithiating reagent, such as n-butyllithium. See D. Comins and M. Killpack, supra. The C-4 lithiated pyridine intermediate is preferably halogenated by adding the intermediate to a solution of iodine or bromine in a polar or nonpolar organic solvent, preferably at a temperature of at least as low as about -70°C.
The compound of Formula IX is reduced in an alcoholic acidic media in the presence of a trialkylsilane to yield the alkoxymethylpyridine of Formula X. The acid should be a strong acid, such as sulfuric or trifluoroacetic acid. At least about 2 molar equivalents of a suitable alcohol (e.g., methanol, ethanol, tert-butanol) should be included to convert the aldehyde to the ether. Reference may be made to the literature on the silane reduction of aldehydes for conditions and variations on this reaction. See, e.g., M. Doyle et al., J. Am. Chem. Soc. 94:10, 3659-3661 (1972).
The compound of Formula X is lithiated at the C-4 position with a lithiating agent such as n-butyllithium, and then reacted with a compound of Formula XI such as an alkyl α-ketobutyrate (e.g., methyl α-ketobutyrate, ethyl α-ketobutyrate, tert-butyl α-ketobutyrate) to produce the compound of Formula XII in essentially the manner described by R. Lyle et al., J. Org. Chem. 38, 3268-3271 (1973). The reaction may be carried out in a tetrahydrofuran or ether solvent at a temperature of at least as low as about -50°C, with the alkyl α-ketobutyrate being added to the reaction solution as a single aliquot.
The compound of Formula XII is then cyclized to yield the compound of Formula III. Cyclization may be carried out by reacting the compound of Formula XII with bromo- or iodotrimethylsilane (preferably iodotrimethylsilane) in a neutral or polar aprotic solvent such as acetonitrile, followed by reaction with a strong acid solution to cleave the ethers and yield the compound of Formula III (the ring forming spontaneously upon cleavage of the ethers). The bromo- or iodotrimethylsilane is preferably generated in situ in accordance with known techniques, such as by the reaction of chlorotrimethylsilane with a halogen salt or elemental halogen. See A. Schmidt, Aldrichimica Acta 14, 31-38 (1981).
When Y is halo in the compound of Formula III, the compound may be hydrogenated by any suitable technique, preferably by catalytic hydrogenation in the presence of a palladium catalyst in a hydrogen atmosphere under pressure (e.g., at least three atmospheres). See generally J. March, Advanced Organic Chemistry, 510-511 (3d. Ed. 1985).
As alternatives to Scheme C, a compound of Formula III, where Y is H, may be prepared in the manner described in D. Comins, Ph.D. Thesis, University of New Hampshire, Durham, NH, at 25-29 (1977), and as described in Lyle et al., J. Org. Chem. 38, 3268-3271 (1973).
The discussion herein is, for simplicity, given without reference to sterioisomerism. However, the compounds of Formula I have an asymmetric carbon atom at the C-20 position. Thus, the present invention is concerned with the synthesis of enantiomeric forms of the compound of Formula I, particularly the 20-(S) form. The resolution of racemates of the compounds of Formula III into enantiomeric forms can be done by known procedures. For example, the racemate may be converted with an optically active reagent into a diasteriomeric pair, and the diasteriomeric pair subsequently separated into the enantiomeric forms.
Specific examples of compounds which may be prepared include 9-methoxy-camptothecin, 9-hydroxy-camptothecin, 9-nitro-camptothecin, 9-amino-camptothecin, 10-hydroxy-camptothecin, 10-nitro-camptothecin, 10-amino-camptothecin, 10-chloro-camptothecin, 10-methyl-camptothecin, 11-methoxy-camptothecin, 11-hydroxy-camptothecin, 11-nitro-camptothecin, 11-amino-camptothecin, 11-formyl-camptothecin, 11-cyano-camptothecin, 12-methoxy-camptothecin, 12-hydroxy-camptothecin, 12-nitro-camptothecin, 10,11-dihydroxy-camptothecin, 10,11-dimethoxy-camptothecin, 7-methyl-10-fluoro-camptothecin, 7-methyl-10-chloro-camptothecin, 7-methyl-9,12-dimethoxy-camptothecin, 9,10,11-trimethoxy-camptothecin, 10,11-methylenedioxy-camptothecin and 9,10,11,12-tetramethyl-camptothecin.
Compounds of Formula I have antitumor and antileukemic activity. Additionally, compounds of Formula I wherein R, is halo are useful as intermediates for, among other things, making compounds of Formula I wherein R1 is loweralkyl.
In the Examples which follow, "mg" means milligrams, "M" means Molar, mL means milliliter(s), "mmol" means millimole(s), "Bu" means butyl, "THF" means tetrahydrofuran, "h" means hours, "min" means minutes, "C" means Centigrade, "p.s.i." means pounds per square inch, "DMF" means dimethylformamide, "TLC" means thin layer chromatography, and "PLC" means preparative thin layer chromatography.
The Examples disclose the production of a racemic mixture of a compound of the present invention. They are illustrative only.
EXAMPLE 1 Ethyl 2-Hydroxy-2-(6'-chloro-2'-methoxy-3'-methoxymethyl-4'-pyridyl)butyrate
To a solution of 2-chloro-4-iodo-6-methoxy-5-(methoxymethyl)pyridine (2.28 g, 7.30 mmol) in 50 mL of THF at -90°C was added n-BuLi (3.46 mL, 8.03 mmol) over 5 min and the resulting solution was stirred at -90°C for 30 min. Ethyl α-ketobutyrate (1.25 mL, 9.45 mmol) was added, the reaction mixture was stirred at -90°C for 30 min, then allowed to warm at ambient for 20 min, and quenched with saturated NH4Cl. After removal of most of the solvent under reduced pressure, the residue was taken up in 40 mL of ether, washed with dilute NaHCO3 (15 mL) and brine (15 mL), and was dried over MgSO4. Evaporation of the solvent in vacuo and purification of the residue by radial PLC (10% acetone/hexanes) afforded ethyl 2-hydroxy-2-(6'-chloro-2'-methoxy-3'-methoxymethyl-4'-pyridyl)butyrate (1.53 g, 66%) as a light yellow, viscous oil. 1H NMR (300 MHz, CDCl3) δ 7.07 (s, 1H), 4.75 (d, 1H, J = 12 Hz), 4.47 (d, 1H, J = 12 Hz), 4.24 (q, 1H, J = 6 Hz), 4.17 (q, 1H, J = 6 Hz), 3.96 (s, 3H), 3.37 (s, 3H), 2.16 (m, 2H), 1.24 (t, 3H, J = 6 Hz); IR (film) 3400, 1735, 1580, 1555, 1305, 1235, 1130, 1090, 1020, 905, 830, 730 cm-1.
EXAMPLE 2 9-Chloro-7-oxopyrido[5,4-c]-2-oxo-3-ethyl-3-hydroxy-3,6-dihydropyran
To a stirred mixture of the hydroxy ester prepared in Example 1 above (1.53 g, 4.82 mmol) and sodium iodide (2.89 g, 19.3 mmol) in dry CH3CN (35 mL) at 25°C was added dropwise chlorotrimethylsilane (2.45 mL, 19.3 mmol). The resulting solution was heated at reflux for 4 h, the solvent was removed under reduced pressure, and 100 mL of 6N HCl was added to the residue. After heating at a gentle reflux for 4 h, the mixture was stirred at 25°C overnight, then extracted with six 30-mL portions of CHCl3 containing 5% CH3OH. The combined organic extracts were washed with 40 mL of half-saturated Nacl containing Na2S2O3, followed by 40 mL of saturated NaCl. After drying over Na2SO4, the solvent was removed under reduced pressure and the residue was purified by radial PLC (silica gel, 5% CH3OH/CHCl3) to give 9-chloro-7-oxopyrido[5,4-c]-2-oxo-3-ethyl-3-hydroxy-3,6-dihydropyran (743 mg, 63%) as an off-white solid: mp 205-207°C. Recrystallization from CHCl3/CH3OH gave an analytically pure sample as a white solid: mp 207-208°C. 1H NMR (300 MHz, CDCl3 DMSO-d6) δ 6.79 (s, 1H), 5.49 (d, 1H, J = 15 Hz), 5.13 (d, 1H, J = 15 Hz), 1.78 (q, 2H, J = 6 Hz), 0.93 (t, 3H, J = 9 Hz), IR (nujol) 3450, 1740, 1640, 1600, 1560, 1320, 1225, 1140, 1035, 995, 940 cm-1.
EXAMPLE 3 7-Oxopyrido[5,4-c]-2-oxo-3-ethyl-3-hydroxy-3,6-dihydropyran
A mixture of the chloropyridone prepared in Example 2 above (400 mg, 1.64 mmol) and sodium acetate (400 mg, 4.86 mmol) in 25 mL of ethanol was hydrogenated over 10% Pd/C (100 mg) at 42 psi for 4 h. The mixture was filtered through celite and the solids were washed with CH3OH. The filtrate was concentrated and the residue was purified by radial PLC (silica gel, 5% CH3OH/CHCl3) to give the pure product (256 mg, 75%) as a white solid: mp 230-232°C (dec.). Recrystallization from CHCl3/CH3OH afforded an analytical sample: mp 232°C (dec.). 1H NMR (300 MHz, CHCl3/DMSO-d6) δ 7.30 (d, 1H, J = 6 Hz), 6.49 (d, 1H, J = 6 Hz), 5.42 (d, 1H, J = 18 Hz), 5.12 (d, 1H, J = 18 Hz), 1.79 (m, 2H), 0.91 (t, 3H, J = 6 Hz); IR (nujol) 3300, 1750, 1640, 1620, 1555, 1065, 1030, 995, 805, cm-1.

Claims (3)

  1. The 4-(S) enantiomeric form of the compound of Formula III: wherein R is a linear or branched alkyl group with 1-8 carbon atoms and Y is H.
  2. The compound of claim 1 wherein R is selected from the group consisting of methyl, ethyl, propyl, n-butyl and tert-butyl.
  3. The compound of claim 1 or 2, wherein R is ethyl.
HK00103380.2A 1990-12-20 2000-06-02 Intermediates for making camptothecin and camptothecin analogs HK1025565B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/632,970 US5162532A (en) 1990-12-20 1990-12-20 Intermediates and method of making camptothecin and camptothecin analogs
US632970 1990-12-20

Publications (2)

Publication Number Publication Date
HK1025565A1 HK1025565A1 (en) 2000-11-17
HK1025565B true HK1025565B (en) 2005-11-25

Family

ID=

Similar Documents

Publication Publication Date Title
EP0963988B1 (en) Intermediates for making camptothecin and camptothecin analogs
US5191082A (en) Camptothecin intermediate and method of making camptothecin intermediates
US5247089A (en) Method of making intermediates useful for the manufacture of camptothecin and camptothecin analogs
EP1254908B1 (en) Preparation of a camptothecin derivative by intramolecular cyclisation
US5200524A (en) Camptothecin intermediates and method of making same
US5243050A (en) Alkylpyridone DE ring intermediates useful for the manufacture of camptothecin and camptothecin analogs
EP0646117B1 (en) Methods and intermediates for the asymmetric synthesis of camptothecin and camptothecin analogs
US5475108A (en) Camptothecin intermediates and method of making camptothecin and comptothecin analogs
US5459269A (en) 14-halo-camptothecins
US5254690A (en) Alkoxymethylpyridine d-ring intermediates useful for the synthesis of camptpthecin and camptothecin analogs
US5258516A (en) Optically pure D,E ring intermediates useful for the synthesis of camptothecin and camptothecin analogs
US5315007A (en) Process for making DE ring intermediates for the synthesis of camptothecin and camptothecin analogs
HK1025565B (en) Intermediates for making camptothecin and camptothecin analogs
US5264579A (en) D ring intermediates for the synthesis of camptothecin and camptothecin analogs
US5428166A (en) Method of making asymmetric de ring intermediates for the synthesis of camptothecin and camptothecin analogs
US6559309B2 (en) Preparation of a camptothecin derivative by intramolecular cyclisation
HK1052687B (en) Preparation of a camptothecin derivative by intramolecular cyclisation