[go: up one dir, main page]

HK1003031B - Condensed pyrimidine derivatives and their use as angiotensine ii antagonists - Google Patents

Condensed pyrimidine derivatives and their use as angiotensine ii antagonists Download PDF

Info

Publication number
HK1003031B
HK1003031B HK98102075.7A HK98102075A HK1003031B HK 1003031 B HK1003031 B HK 1003031B HK 98102075 A HK98102075 A HK 98102075A HK 1003031 B HK1003031 B HK 1003031B
Authority
HK
Hong Kong
Prior art keywords
compound
formula
methyl
pyrimidin
pharmaceutically acceptable
Prior art date
Application number
HK98102075.7A
Other languages
German (de)
French (fr)
Chinese (zh)
Other versions
HK1003031A1 (en
Inventor
Watson Ellingboe John
Nikaido Madelene
Franroz Bagli Jehan
Original Assignee
Wyeth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/782,025 external-priority patent/US5149699A/en
Priority claimed from GB9207560A external-priority patent/GB2265899A/en
Priority claimed from US07/901,485 external-priority patent/US5256654A/en
Application filed by Wyeth filed Critical Wyeth
Publication of HK1003031B publication Critical patent/HK1003031B/en
Publication of HK1003031A1 publication Critical patent/HK1003031A1/en

Links

Description

This invention relates to substituted pyrimidines which are useful for the treatment of hypertension. They achieve this by antagonizing the effects of angiotensin II; he active component of he renin angiotensin system.
Angiotensinogen is converted to angiotensin I by the action of the enzyme renin. Angiotensin II (A II) is formed by angiotensin converting enzyme (ACE) acting on angiotensin I. A II is a powerful vasocontrictor and is implicated as the cause of high blood pressure in a number of species including man. A II elicits these vasopressor responses by acting at specific receptor sites. The compounds described in this invention compete with A II for these receptor sites, thus antagonizing the vasopressor effects of A II.
Prior Art
E. E. Allen et al. disclose N-substituted oxopyrimidines in EP 0419048 A.
E. E. Allen et al. describe 4-oxo-quinazolines in EP 0411766 A.
D. A. Roberts et al. describe quinoline ethers in EP 0412848 A.
D. J. Carini et al. describe N-substituted benzimidazoles in U.S. patent 4,880,804. P. Chakravarty et al. disclose similar imidazole structures in EP 0401030 A where the phenyl aromatic ring is replaced by a seven membered heterocycle. Azabenzimidazoles are described by P. Herold et al. in EP 0415886 A.
D. J. Carini et al. disclose N-substituted imidazoles in EP 0253310, EP 0324377, and U.S. patent 4,916,129.
D. J. Carini et al. disclose in EP 0323841 N-substituted pyrazoles, pyrroles and triazoles. Similar pyrazole derivatives are disclosed by T. Naka et al. in EP 0411507 A and additional triazoles are described by L. L. Chang et al. in EP 0412594 A.
All of he above are claimed as A II antagonists.
The compounds of this invention differ from the above mentioned prior art in that they contain a pyrimidine ring fused to a pyrrolone, pyridinone, azepinone, or azocinone ring. Except for the first reference (E. E. Allen et al. EP 0419048 A), the non-peptidic A II antagonists disclosed in the above mentioned prior art are all nitrogenous 5-membered rings, either isolated or fused to phenyl rings, or nitrogenous 6-membered rings fused to phenyl rings. The compounds in EP 0419048 A are pyrimidin-4-ones.
R. F. Shuman et al. disclose in U.S. patent 5,039,814 a process for the synthesis of 2-substituted 1-(tetrazol-5-yl)benzenes which comprises the directed ortholithiation of 1-(tetrazol-5-yl)benzenes and subsequent reaction of the lithiated intermediate with an electrophile. The triphenylmethyl group is used as a protecting group on the tetrazole.
One process of the present invention differs in that a 2-bromo-1-(tetrazol-5-yl )aryl protected with a tert-butyl group is converted to a 2-(tetrazol-5-yl)arylboronic acid directly by he addition of Mg and a trialkylborate concurrently.
Description of the Invention
This invention relates to substituted pyrimidines of formula I: wherein R1, R2, R3, and R4 are independently H, lower alkyl containing 1 to carbon atoms, or perfluoroalkyl containing 1 to 6 carbon atoms; R5 is H or when n is 1 R5 taken together with R3 comprises a double bond; n is 0 to 1; p is 0 to 2; m is 0 to 3; Ar1 is wherein W is H, lower alkyl containing 1 to 6 carbon atoms, halogen, hydroxy, or lower alkoxy containing 1 to 6 carbon atoms; Ar2 is wherein X is    CO2H, CN, or wherein R6 is H, tert-butyl, tri-n-butylstannyl, or triphenylmethyl; and the pharmaceutically acceptable salts thereof; and the N-oxides thereof
A more preferred aspect of the present invention as represented by general formula II: wherein R1, R2, R3, and R4 are independently H, lower alkyl containing 1 to 6 carbon atoms, or perfluoroalkyl containing 1 to 6 carbon atoms; R5 is H or when n is 1 R5 taken together with R3 comprises a double bond; n is 0 to 1; Ar1 is Ar2 is wherein X is    CO2H, CN, or wherein R6 is H, tert-butyl, tri-n-butylstannyl, or triphenylmethyl; and the pharmaceutically acceptable salts thereof.
A still more preferred aspect of the present invention is represented by the general formula III: wherein R1, R2, R3, and R4 are independently H, methyl, trifluoromethyl; R5 is H or when n is 1 R5 taken together with R3 comprises a double bond; n is 0 to 1; Ar1 is and the pharmaceutically acceptable salts thereof.
The most preferred aspects of the present invention are:
  • 2,4-dimethyl-5,7-dihydro-7-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl ]methyl]-6H-pyrrolo[2,3-d]pyrimidin-6-one and the pharmaceutically acceptable salts thereof;
  • 5,7-dihydro-2-methyl-7-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]-methyl]-4-(trifluoromethyl)-6H-pyrrolo[2,3-d]pyrimidin-6-one and the pharmaceutically acceptable salts thereof;
  • 2,4-dimethyl-5,6,8-trihydro-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one and the pharmaceutically acceptable salts thereof;
  • 2-methyl-4-trifluoromethyl-5,6,8-trihydro-8-[[2'-(1H-tetrazol-5-yl)-[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one and the pharmaceutically acceptable salts thereof;
  • 2,4-dimethyl-5,6,8-trihydro-8-[[6-[2-(1H-tetrazol-5-yl)phenyl]-3-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one and the pharmaceutically acceptable salts thereof;
  • 2-methyl-4-trifluoromethyl-5,6,8-trihydro-8-[[6-[2-(1H-tetrazol-5-yl)phenyl]-3-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one and the pharmaceutically acceptable salts thereof;
  • 2,4-dimethyl-5,6,8-trihydro-8-[[5-[2-(1H-tetrazol-5-yl)phenyl]-2-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one and the pharmaceutically acceptable salts thereof;
  • 2,4,6-trimethyl-5,6,8-trihydro-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido(2,3-d]pyrimidin-7-one and the pharmaceutically acceptable salts thereof;
  • 2,4-dimethyl-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl)methyl]-7H-pyrido[2,3-d]pyrimidin-7-one and the pharmaceutically acceptable salts thereof.
The compounds of the invention may be prepared by a process which comprises
  • (a) condensing, eg in the presence of an inorganic or organic base, a pyrimidine of formula wherein R1, R2, R3, R4, R5, n and p are as defined above, Z1 is a leaving group such as halogen (eg chlorine), a methanesulphonyloxy group or a p-toluenesulphonyloxy group and R7 is a lower alkyl group with an amine of formula         H2N-(CH2)m-Ar1-Ar2 where m, Ar1 and Ar2 are as defined above or
  • (b) reacting a bicyclic compound of formula where R1, R2, R3, R4, R5, n, m, p and Ar1 are as defined above and Y is a para-bromo or para-iodo group with an aryl boronic acid [such as a compound of formula Ar2B(OH)2 where Ar2 is as defined above] or an arylstannane in the presence of a palladium catalyst or
  • (c) condensing, eg in the presence of a base such as NaH, a bicyclic compound of formula where R1, R2, R3, R4, R5, n, and p are as defined above with a biaryl compound of formula         Z1-(CH2)m-Ar1-Ar2 where m, Ar1 and Ar2 are as defined above and Z1 is a leaving group such as halogen, a methanesulphonyloxy group or a p-toluenesulphonyloxy group or
  • (d) removing the protecting group from a compound of formula I wherein X is where R6 is tert.butyl, tri-n-butylstannyl or triphenylmethyl, eg by acidic or basic hydrolysis or by catalytic hydrogenation, to give a compound where R6 is hydrogen or
  • (e) reacting a compound of formula I wherein X is -CN with an azide reagent, for example a trialkyltin azide, or hydrazoic acid (sodium azide/ammonium chloride), to give a compound of formula I wherein X is or
  • (f) forming a salt of the compound of formula I with an inorganic or organic acid or base or
  • (g) converting a compound of formula I or a salt thereof to an N-oxide thereof by means of a peroxidising agent.
These processes and the preparation of representative starting materials for use in the processes are described below with reference to the various schemes. Starting materials not exemplified are known in the art or may be prepared by analogous methods from known starting materials wherein R1, R2, R3, R4, R5, n, m, p, Ar1 and Ar2 are as defined above.
In Scheme I a β-keto ester 1 may be condensed with art amidine 2 in the presence of a base such as sodium ethoxide in an alcoholic solvent such as ethanol at temperatures ranging from ambient to reflux to yield a pyrimidone 3. Treatment of a pyrimidone 3 with phosphorus oxychloride under reflux gives a chloropyrimidine 4. The reaction of 4 with the amine 5 in the presence of an organic base such as triethylamine or an inorganic base such as potassium carbonate in a polar solvent such as ethanol, butanol, or dimethylsulfoxide at temperatures ranging from ambient to reflux yields the target pyrimidines 1. The amine 5 may be prepared by the palladium catalyzed cross-coupling of an arylstannane or an arylboronic acid with an aryl bromide or an aryl iodide, and subsequent functionalization to an amine. wherein R1, R2, R3, R4, R5, n, m, p, Ar1 and Ar2 are as defined above, and Y is a para-bromo or para-iodo group.
In Scheme II the chloropyrimidine 4 may be treated with an amine 7 in the presence of an inorganic base such as sodium bicarbonate in an alcoholic solvent such as ethanol or n-butanol eg at temperatures ranging from 80°C to 150°C to give the bicyclic compound 8. The reaction of 8 with the arylboronic acid 9 in the presence of a palladium catalyst for example in a solvent such as DMF or toluene yields the target pyrimidines I. In the case where the substituent on Ar2 is a nitrile, it can be converted to a tetrazole under standard conditions utilizing an azide reagent.
The arylboronic acid 9 may be prepared as shown below: wherein Ar2 is as defined above and R7 is a lower alkyl group containing 1 to 6 carbon atoms.
Thus the aryl bromide 10 may be treated with Mg and a trialkyl borate in an aprotic solvent such as THF eg at temperatures from -20°C to 80°C. Acidic or basic hydrolysis gives the boronic acid 9. wherein R1, R2, R3, R4, n, m, Ar1 and Ar2 are as defined above, and Z is a halogen.
In Scheme III the chloropyrimidine 4 may be converted to the bicyclic compound 11 by treatment with ammonia in an alcoholic solvent such as ethanol at temperatures ranging from 100°C to 150°C. Alkylation of 11 by the biaryl compound 12 may be achieved for example in the presence of a base such as NaH in a solvent such as DMF or THF to give the pyrimidines I. In the case where the substituent on Ar2 is a nitrile, it can be converted to a tetrazole by standard conditions utilizing an azide reagent. The biaryl compound 12 may be prepared by the palladium catalyzed cross-coupling of an arylstannane or an arylboronic acid with an aryl bromide or an aryl iodide.
When X above is tetrazole, the preferred protecting groups for said tetrazole are those where R6 is tert-butyl, tri-n-butystannyl, or triphenylmethyl. The above groups may be optimally removed by acidic or basic hydrolysis, or catalytic hydrogenation as described by T Greene, Protective Groups in Organic Synthesis, Wiley-Interscience (1980).
The compounds of this invention may also form salts with inorganic or organic acids and bases. Any pharmaceutically acceptable salts of these compounds are within the scope of this invention. These salts may be, but are not limited to, ammonium salts, alkali metal salts such as sodium and potassium, alkaline earth metal salts such as calcium, dicyclohexylamine salts, TRIS salts, and salts of amino acids. Salts with inorganic or organic acids such as HCl, HBr, maleic acid, fumaric acid may also be formed. The compounds of this invention may also be converted to N-oxides by treatment with a peroxidising agent, eg hydrogen peroxide, by conventional means.
The present invention also provides a pharmaceutical composition which comprises a compound of this invention and a pharmaceutically acceptable carrier. In particular, the present invention provides an anti-hypertensive pharmaceutical composition which comprises an antihypertensive effective amount of a compound of this invention and a pharmaceutically acceptable carrier.
The compositions are preferably adapted for oral administration. However, they may be adapted for other modes of administration, for example parenteral administration for patients suffering from heart failure.
In order to obtain consistency of administration, it is preferred that a composition of the invention is in the form of a unit dose. Suitable unit dose forms include tablets, capsules and powders in sachets or vials. Such unit dose forms may contain from 0.1 to 100 mg of a compound of the invention and preferably from 1 to 50 mg. The compounds of the present invention can be administered orally at a dose range of about 0.01 to 100 mg/kg or preferably at a dose range of 0.1 to 10 mg/kg. Such compositions may be administered from 1 to 6 times a day, more usually from 1 to 4 times a day. The compounds may also be administered in a parenteral dosing form.
The compositions of the invention may be formulated with conventional excipients, such as a filler, a disintegrating agent, a binder, a lubricant, a flavoring agent and the like. They are formulated in conventional manner, for example, in a manner similar to that used for known antihypertensive agents, diuretics, β-blocking agents or ACE inhibitors.
The present invention further provides a compound of the invention for use as an active therapeutic substance. Compounds described in this invention are of particular use in the treatment of hypertension.
The present invention further provides a method of treating hypertension in mammals including man, which comprises administering to the aflicted mammal an antihypertensive effective amount of a compound or a pharmaceutical composition of the invention.
The compounds which are used in the pharmaceutical compositions, therapeutic uses and methods of treatment of the invention are preferably those in which X is CO2H, CN or
The high affinity of the compounds for the angiotensin II receptor was established using a rat adrenal receptor binding assay, measuring the displacement of radiolabeled angiotensin II from the receptor, described as follows: Membrane preparation: 1. Anesthetize male Sprague-Dawley rats, 300-400 g body weight, with CO2 and sacrifice by cervical dislocation. 2. Dissect adrenal glands and keep in ice-cold sucrose buffer (0.2 M sucrose, 1mM EDTA, 10mM Trizma base, pH=7.2). 3. Remove medulla by squashing. Mince the cortex, rinse and homogenize in a chilled ground glass tissue grinder with 15 mL sucrose buffer. 4. Centrifuge at 3000 x g for 10 min. (Sorvall RCSC centrifuge, SS34 rotor 6200 rpm). Decant supernatant through gauze. 5. Centrifuge combined supernatants at 12000 x g for 13 min. (Beckman ultracentrifuge, 80Ti rotor, 13000 rpm). 6. Centrifuge the supernatant from step 5 at 102000 x g for 60 min. (Beckman ultracentrifuge, 80Ti rotor, 38200 rpm). All steps are carried out at 4°C. 7. Resuspend the pellet in 0.5 mL assay buffer (50 mM Tris HCI, 5 mM MgCl2, 0.2% BSA (protease-free), pH = 7.4, 25°C). 8. Store on ice. 9. Determine membrane protein by Lowry or Bradford assay with BSA as standard. Binding assay: (The assay is performed in triplicate, in 12x75 mm plastic test tubes or in a 96-well plate (final volume of 0.25 mL). 1. Add 140 µL assay buffer. 2. Add 10 µL cold A II (to give final concentrations of 10-10-10-7 M for standard curve and 10-4 M for nonspecific binding), compounds (e.g., for final concentrations of 25 and 100 µM or 1 µM, 10 nM and 100 nM) in 50% DMSO, or 50% DMSO as a control. 3. Add 50 µL membrane suspension (e.g., 10 µg protein). 4. Preincubate for 30 min at 25°C. 5. Add 50 µL 125I-A II which has been prepared as shown below (final concentration= 1 nM). 6. Incubate for 35 min at 25°C. 7. Stop the incubation by adding 1 mL ice-cold buffer (assay buffer without BSA). Filter with GF/C filters on cell harvester (filters are presoaked in the assay buffer containing 1% polyethyleneimine). 9. Rinse assay tubes 3X with 5 mL cold buffer (assay buffer without BSA). 10. Cut and deposit the filter discs into test tubes and count on gamma counter for 1 min. Preparation of 125 I-A II: Adjust the specific activity of 125I-A II purchased from New England Nuclear to 500 µCi/nmole by adding cold A II in water. 1. Calculate the quantities of hot A II and the cold A II needed and make the dilution. Aliquot, seal tight, and store frozen until needed. 2. Calculate the concentration of the total A II (hot + cold) after dilution. 3. On the day of assay, thaw the frozen aliquot and adjust the volume to give a concentration of 5 pmole/mL (or 0.25 pmole/50 µL) with assay buffer (+ protease-free BSA). For final concentration of 1 nM 125I-A II in the assay, add 50 µL (or 0.25 pmole) per test tube to a final volume of 250 µL. The results of these binding assays are reported as the inhibitory concentration of the test compound necessary to achieve fifty percent displacement of radiolabeled A II from its receptor (IC50), or the percent displacement of binding of A II at its receptor at 10-8M concentration of test compound (% I). All the examples cited in this invention displayed significant inhibition of A II binding in this assay. Typically these compounds displayed an IC50 in this assay of less than or equal to 50µM.
In accordance with their ability to antagonize angiotensin II, the compounds of this invention show antihypertensive action in the following A II-infused rat model. Procedure: Rats are anesthetized with Dial-Urethane (0.60 mL/kg, ip) and the trachea cannulated with PR 240. Either one femoral artery and both femoral veins or the carotid artery and the corresponding jugular vein are cannulated with PE 50. If the jugular vein is cannulated, two cannulas are placed in the one vein. The initial portion of the duodenum (just distal to the stomach) is cannulated with PE 50 via a small midline incision. Arterial pressure and heart rate are measured from the arterial cannula. Ten to 15 min are allowed following surgery for stabilization of arterial pressure. Ganglion blockade is then produced by intravenous administration of mecamylamine at 3 mg/kg (1 mL/kg of a 3 mg/mL solution). Ganglion blockade causes a fall in arterial pressure of about 50 mmHg. Mecamylamine is given every 90 min throughout the remainder of the experiment. An A II infusion is then begun into the other venous cannula at 0.25 µg/kg min (at 9.6 µL/min). The A II infusion returns arterial pressure to or slightly above the control level. Once arterial pressure has stabilized with the A II infusion, baseline values for mean arterial pressure (MAP) and heart rate are taken. The test compound, suspended in methyl cellulose, is then administered via the duodenal cannula at 0.1, 3, or, 30 mg/kg in a volume of 1 mL/kg. Mean arterial pressure and heart rate values are tabulated at 15, 30, 60, 90, 120, 150, 180, 210, and 240 min after administration of the test compound. For example, the product of Example 1 administered at 3 mg/kg id lowered the A II dependent blood pressure by an average of 41% four hours post-administration.
As illustrated above the compounds of this invention are effective A II antagonists and therefore are useful for treating hypertension. They are also of value in the management of acute and chronic congestive heart failure, primary and secondary pulmonary hyperaldosteronism, secondary hyperaldosteronism, primary and secondary pulmonary hypertension, hypertension associated with oral contraceptive use, vascular disorders such as migraine, Raynaud's disease, luminal hyperplasia and the atherosclerotic process, renal diseases or renal complications of other diseases or therapies such as proteinuria, glomerulonephritis, glomerular sclerosis, sclerododerma, diabetic nephropathy, end stage renal disease, renal transplant therapy and others. These compounds will also be useful in the treatment of left ventricular dysfunction, diabetic retinopathy, Alzheimers disease, in the enhancement of cognition, in treatment of elevated intraoccular pressure, and in the enhancement of retinal blood flow. These compounds will also be useful as antidepressants and anxiolytics and in the prevention or treatment of restenosis following angioplasty. The application of the compounds of this invention for these and similar disorders will be apparent to those skilled in the art.
Specific procedures are described in the following experimental examples. These examples are given to illustrate the invention and should not be construed as limiting the invention set forth in the appended claims.
The 1H-NMR data given in the following examples are in ppm.
Examples Example 1 2,4-Dimethyl-5,7-dihydro-7-[[2'-(1H-tetrazol-5-yl)[1,1-bi-phenyl]-4-yl]methyl]-6H-pyrrolo[2,3-d]pyrimidin-6-one Step 1) Ethyl (2,6-Dimethyl-3H-pyrimidin-4-on-5-yl)acetate
A mixture of NaOEt (0.060 mol) in EtOH (prepared from 1.6g of Na in 100 mL of EtOH), acetamidine hydrochloride (6.5 g, 0.069 mol), and diethyl 2-acetylsuccinate (15.0 g, 0.060 mol) was heated under reflux for 16 h. The mixture was concentrated, taken up in water (50 mL), and acidified with 2N HCl (12 mL). The aqueous mixture was extracted with CH2Cl2, and the extracts were dried (MgSO4) and concentrated. Trituration with ether gave 3.9 g (27%) of product as a white solid, mp 175-177°C. 1H NMR (DMSO-d6): δ1.10 (t,3H), 2.15 (s, 3H), 2.25 (s, 3H),3.20 (s.2H), 4.05 (q. 2H), 12.20 (br s, 1H). Anal.calcd for C10H14N2O3: C,57.13;H.6.71; N,13.32    Found: C.57.10; H, 6.63; N,13.25
Step 2) Ethyl (4-Chloro-2,6-dimethylpyrimidin-5-yl)acetate
A mixture of ethyl (2,6-dimethyl-3H-pyrimidin-4-on-5-yl) acetate (1.13 g, 5.4 mmol), phosphorus oxychloride (10 mL), and N,N-dimethylaniline (1.3 mL, 10.3 mmol) was heated under reflux for 3.5 h. The reaction mixture was concentrated, poured onto ice, and the resulting mixture was extracted with ether. The combined extracts were washed with water, dried (MgSO4), and concentrated to give 1.2g (98%) of product as a yellow oil. 1H NMR (DMSO-d6): δ 1.20 (t,3H), 2.20 (s, 3H), 2.60 (s, 3H), 3.80 (s, 2H), 4.10 (q, 2H).
Step 3) 2,4-Dimethyl-5,7-dihydro-7-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-6H-pyrrolo[2,3-d]pyrimidin-6-one
A mixture of ethyl (4-chloro-2,6-dimethylpyrimidin-5-yl)acetate )acetate (0.55 g, 2.4 mmol), 5-[(4'-aminomethyl)[1,1-biphen-2-yl]]-1H-tetrazole hydrochloride (0.69 g, 2.4 mmol), triethylamine (0.73 g, 7.2 mmol), sodium acetate (0.60 g, 7.2 mmol), and EtOH (14 mL) was heated under reflux for 5 days. The mixture was concentrated. taken up in water, and extracted with CHCl3. The extracts were dried (MgSO4), concentrated, and the crude product was purified by flash chromatography (10% MeOH/CHCl3) to give a yellow solid. Trituration with 10%EtOH/Et2O and recrystallization form EtOH afforded 0.17 g (17%) of product as a white solid, mp 228-229°C. 1H NMR (DMSO-d6): δ 2.29 (s, 3H), 2.47 (s, 3H), 3.67 (s, 2H), 4.83 (s, 2H), 7.05 (d, J=8.1 Hz, 2H), 7.24 (d, J=8.1 Hz, 2H), 7.57 (m, 2H), 7.63 (m, 2H).
C, 66.48; H, 4.82; N, 24.67
Found: C, 66.09; H, 4.84; N, not determined.
Example 2 5,7-Dihydro-2-methyl-7-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-4-(trifluoromethyl)-6H-pyrrolo[2,3-d]pyrimidin-6-one Step 1) Ethyl(2-Methyl-6-trifluoromethyl-3H-pyrimidin-4-on-5-yl)acetate
A mixture of NaOEt (0.074 mol) in EtOH (prepared from 1.7 g of Na and 75 mL of EtOH), acetamidine hydrochloride (3.5 g, 0.037 mol), and diethyl 2-trifluoroacetylsuccinate (10.0 g, 0.037 mol) was heated under reflux for 20 h. The mixture was concentrated, taken up in water, acidified to pH 4 with conc. HCl, and extracted with EtOAc. Tlie extracts were washed with brine, dried (MgSO4), and concentrated to give an oily solid. Trituration with ether/hexane gave 2.63 g (27%) of product as a white solid. An analytical sample was recrystallized from ether/hexane, mp 108-110°C. 1H NMR (DMSO-d6): δ 1.25 (t, J=7.2 Hz, 3H), 2.51 (s, 3H), 3.72 (s, 2H), 4.17 (q, J=7.2 Hz, 2H), 13.25 (br s, 1H).
C, 45.46; H, 4.20; N, 10.60
Found: C, 45.43; H, 4.18; N, 10.53.
Step 2) Ethyl (4-Chloro-2-methyl-6-trifluoromethylpyrimidin-5-yl)acetate
A solution of ethyl (2-methyl-6-trifluoromethyl-3H-pyrimidin-4-on-5-yl)acetate (2.50 g, 9.46 mmol), N,N-dimethylaniline (3 drops), and phosphorus oxychloride (35 mL) was heated under reflux for 4.5 h. The mixture was concentrated, cooled, and ice water was added. Solid KOH was added to neutralize the mixture and it was extracted with ether. The combined extracts were washed with brine, dried (MgSO4), and concentrated to give 2.61 g (98%) of product as a yellow oil. 1H NMR (DMSO-d6): δ 1.24 (t, J=7.0 Hz, 3H), 2.77 (s, 3H), 3.93 (s. 2H), 4.19 (q, J=7.0 Hz, 2H).
Step 3) 5,7-Dihydro-2-methyl-7-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-4-(trifluoromethyl)-6H-pyrrolo[2,3-d]pyrimidin-6-one
A mixture of ethyl (4-chloro-2-methyl-6-trifluoromethylpyrimidin-5-yl)acetate (848 mg, 3.00 mmol), 5-[(4'-aminomethyl)[1,1-biphen-2-yl]]-1H-tetrazole hydrochloride (863 mg, 3.00 mmol), triethylamine (1.25 mL, 9.00 mmol), sodium acetate (738 mg, 9.00 mmol), and EtOH (10 mL) was heated under reflux for 16 h. The mixture was concentrated, taken up in 1N NaOH, and extracted with ether. The aqueous phase was acidified to pH 3 with conc. HCl and the dark brown precipitate was collected by filtration. Purification by flash chromatography (twice; 5-10% MeOH/CH2Cl2) gave a brown foam. Crystallization from ether/hexane gave 109 mg (8%) of product as a white solid, mp 195-197°C. 1H NMR (DMSO-d6): δ 2.59 (s, 3H), 3.92 (s, 2H), 4.90 (s, 2H), 7.05 (d, J=8.1 Hz, 2H), 7.28 (d, J=8.1 Hz, 2H), 7.52 (d, J=6.2 Hz, 1 H), 7.57 (d, J=7.4 Hz, 1H), 7. 66 (m, 2H). IR (KBr, cm-1): 1750 (C=O).
C, 58.54; H, 3.57; N, 21.72
Found: C, 58.58; H, 3.71; N, 21.44.
Example 3 2,4-Dimethyl-5,6,8-trihydro-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one Step I) Ethyl 3-(2,6-Dimethyl-3H-pyrimidin-4-on-5-yl)propionate
A mixture of NaOEt (0.069 mol) in EtOH (prepared from 1.6 g of Na and 35 mL of EtOH), acetamidine hydrochloride (3.3 g, 0.035 mol), and diethyl acetylglutarate (8.0 g, 0.035 mol) was heated under reflux for 22 h. The mixture was concentrated, taken up in water, acidified to pH 4 with conc. HCl, and extracted with EtOAc. The extracts were washed with brine, dried (MgSO4), and concentrated. Trituration with hexane gave 4.0 g (51%) of product as a white solid. An analytical sample was crystallized from ether/hexane, mp 114-116°C. 1H NMR (DMSO-d6): δ 1.22 (t, J=7.2 Hz, 3H), 2.33 (s, 3H), 2.40 (s, 3H), 2.54 (t, J=8.0 Hz. 2H), 2.81 (t, J=8.0 Hz, 2H), 4.10 (q, J=7.2 Hz, 2H).
C, 58.91; H, 7.19; N, 12.49
Found: C, 59.18; H, 7.25; N, 12.20.
Step 2) Ethyl 3-(4-Chloro-2,6-dimethylpyrimidin-5-yl)propionate
A mixture of ethyl 3-(2,6-dimethyl-3H-pyrimidin-4-on-5-yl)propionate (3.87 g, 0.017 mol), phosphorus oxychloride (40 mL), and N,N-dimethylaniline (10 drops) was heated under reflux for 2 h. The mixture was concentrated, cooled, and ice water was added. Solid KOH was added to bring the pH to 6 and the mixture was extracted with ether. The extracts were dried (MgSO4) and concentrated to give 2.95 g (72%) of product as a brown oil. 1H NMR (DMSO-d6): δ 1.24 (t, J=7.2 Hz, 3H), 2.54 (s, 3H), 2.56 (t, J=8.1 Hz, 2H), 2.81 (s, 3H), 3.04 (t, J=8.1 Hz, 2H), 4.14 (q, J=7.2 Hz, 2H).
Step 3) 2,4-Dimethyl-5,6,8-trihydro-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one
A mixture of ethyl 3-(4-chloro-2,6-dimethylpyrimidin-5-yl)propionate (1.27 g, 5.21 mmol), 5-[(4'-aminomethyl)[1,1-biphen-2-yl]]-1H-tetrazole hydrochloride (1.50 g, 5.21 mmol), triethylamine (2.2 mL, 15.64 mmol), sodium acetate (1.28 g, 15.64 mmol), and EtOH (20 mL) was heated under reflux for 5 days. The mixture was cooled and filtered to remove insoluble material. The filtrate was acidified to pH 4 with methanolic HCl and concentrated. Purification by flash chromatography (10% MeOH/CH2Cl2) and crystallization from EtOH/ether gave 91 mg of product as a white solid, mp 197-199°C. 1H NMR (DMSO-d6): δ 2.35 (s, 3H), 2.42 (s, 3H), 2.72 (t, J=7.2 Hz, 2H), 2.87 (t, J=7.2 Hz, 2H), 5.17 (s, 2H), 6.99 (d, J=8.2 Hz, 2H), 7.18 (d, J=8.2 Hz, 2H), 7.54 (m, 2H), 7.65 (m, 2H). IR (KBr, cm-1): 1710 (C=O).
C, 67.14; H, 5.14; N, 23.83
Found: C, 67.38; H, 5.39; N, 24.19.
The compound 2,4-dimethyl-5,6,8-trihydro-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one may also be prepared by the following alternate process, set forth in Scheme II.
Step 1) 2,4-Dimethyl-5,6,8-trihydro-8-[(4-bromophenyl)methyl]-7H-pyrido[2,3-d]pyrimidin-7-one
A mixture of ethyl 3-(4-chloro-2,6-dimethylpyrimidin-5-yl)propionate (8.4 g, 0.035 mol), 4-bromobenzylamine hydrochloride (8.5 g, 0.038 mol), NaHCO3 (5.8 g, 0.070 mol), and nBuOH (75 mL) was heated under reflux for 48 h. The mixture was diluted with EtOAc (30 mL) and washed with water (100 mL), 10% aqueous HOAc (50 mL), water (100 mL), saturated aqueous NaHCO3 (2 x 100 mL), dried (MgSO4), and concentrated to give a yellow solid. Trituration with hexane (50 mL) gave 8.3 g (69%) of product as an off-white solid, mp 123-124°C. 1H NMR (DMSO-d6): δ 2.34 (s, 3H), 2.42 (s, 3H), 2.71 (t, J=7.9 Hz, 2H), 2.86 (t, J=7.9 Hz, 2H), 5.13 (s, 2H), 7.22 (d, J=8.3 Hz, 2H), 7.44 (d, J=8.3 Hz, 2H).
Step 2) 5-(2-Bromophenyl)-1H-tetrazole
A mixture of 2-bromobenzonitrile (10.0 g, 0.055 mol), sodium azide (3.9 g, 0.060 mol), ammonium chloride (3.2 g, 0.060 mol), and DMF (90 mL) was heated at 100°C for 18 h. The mixture was concentrated, taken up in water, and made basic (pH 9) with 1N KOH. The aqueous mixture was extracted with ether (discarded) and acidified with 2N HCl. The precipitate was collected by filtration to give 9.1 g (73%) of product as an off-white solid, mp 179-181°C. 1H NMR (DMSO-d6): δ 7.56 (m, 2H), 7.69 (dd, J=7.0 Hz, 2.1 Hz, 1H), 7.86 (dd. J=7.6 Hz, 1.3 Hz, 1H).
Step 3) 1-tert-Butyl-5-(2-bromophenyl)-1H-tetrazole
To a solution of 5-(2-bromophenyl)-1H-tetrazole (7.9 g, 0.035 mol) in trifluoroacetic acid (35 mL) was added tBuOH (5.2 g, 0.070 mol) and H2SO4 (1.0 mL, 0.0175 mol). After 18 h, the solution was concentrated and the residue was taken up in EtOAc. The mixture was washed with water, 2.5N NaOH, water, dried (MgSO4), and concentrated. Purification by flash chromatography (20% EtOAc/hexane) gave 6.6 g (67%) of product as a pale yellow oil. 1H NMR (DMSO-d6): δ 1.74 (s, 9H), 7.55 (m, 2H), 8.06 (m, 2H).
Step 4) 2-[(1-tert-Butyl)-1H-tetrazol-5-yl]phenylboronic acid
To dry Mg turnings (76 mg, 3.13 mmol) in THF (1 mL) was added a solution of 1-tert-butyl-5-(2-bromophenyl)-1H-tetrazole (733 mg, 2.61 mmol) in THF (1.5 mL). 1,2-Dibromoethane (20 µL) was added and the mixture was warmed slightly with a heat gun. After 5 min, triisopropyl borate (564 mg, 3.00 mmol) was added and the mixture was stirred at room temperature for 23 h. Ice and 0.5N HCl (7 mL) were added and the mixture was stirred for 5 min. The mixture was extracted with ether, and the combined extracts were extracted with 1N KOH (10 mL). The aqueous extracts were filtered and acidified to pH 3 with 2N HCl. The precipitate was collected by filtration to give 306 mg (48%) of product as an off-white solid, mp 112-115°C. 1H NMR (DMSO-d6): δ 1.72 (s, 9H), 7.46 (m, 2H), 7.90 (m, 2H).
Step 5) 2,4-Dimethyl-5,6,8-trihydro-8-[[2'-(1-tert-butyl-1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one
A mixture of 2,4-dimethyl-5,6,8-trihydro-8-[(4-bromophenyl)methyl]-7H-pyrido[2,3-d]pyrimidin-7-one (1.08 g, 3.43 mmol), 2-[(1-tert-butyl)-1H-tetrazol-5-yl]phenylboronic acid (844 mg, 3.12 mmol), triethylamine (1.30 mL, 9.36 mmol), tetrakis(triphenylphosphine)palladium (108 mg, 0.094 mmol), and DMF (15 mL) was heated at 100°C for 22 h. The mixture was concentrated, taken up in CHCl3, and washed with brine. The organic phase was dried (MgSO4) and concentrated. Purification by flash chromatography (60% EtOAc/hexane) gave 1.05 g (66%) of product as a yellow foam. 1H NMR (DMSO-d6): δ 2.35 (s, 3H), 2.43 (s, 3H), 2.71 (t, J=7.1 Hz, 2H), 2.85 (t, J=7.1 Hz, 2H), 5.18 (s, 2H), 6.97 (d, J=8.2 Hz, 2H), 7.18 (d, J=8.2 Hz, 2H), 7.44 (dd, J=7.3 Hz, 1.3 Hz, 1H), 7.55 (m, 2H), 7.76 (dd, J=7.5 Hz, 1.3 Hz, 1H).
Step 6) 2,4-Dimethyl-5,6,8-trihydro-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one
A mixture of 2,4-dimethyl-5,6,8-trihydro-8-[[2'-(1-tert-butyl-1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one (200 mg, 0.428 mmol), methanesulfonic acid (280 µL, 4.28 mmol), and toluene (4 mL) was heated under reflux for 18 h. The mixture was concentrated, and water (2 mL) and 1N KOH (4.5 mL) were added to give a solution of pH 8. The mixture was extracted with EtOAc to remove unreacted starting material, and the aqueous phase was acidified to pH 5 with 1N HCl to give a gummy precipitate. The precipitate was extracted into EtOAc, and the solution was dried (MgSO4) and concentrated to give a colorless oil. Trituration with acetone/ether gave 70 mg (40%) of product as a white solid, mp 197-198°C. 1H NMR (DMSO-d6): δ 2.35 (s, 3H), 2.42 (s, 3H), 2.72 (t, J=7.2 Hz, 2H), 2.87 (t, J=7.2 Hz, 2H), 5.17 (s, 2H), 6.99 (d, J=8.2 Hz, 2H), 7.18 (d, J=8.2 Hz, 2H), 7.54 (m, 2H), 7.65 (m, 2H). IR (KBr, cm-1): 1710 (C=O).
Example 4 2-Methyl-4-trifluoromethyl-5,6,8-trihydro-8-[[2'-(1H-tetrazol-5-yl)[1,1-bipheny]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one Step 1) Diethyl Trifluoroacetylglutarate
To a solution of NaOEt (0.217 mol) in EtOH (prepared from 5.0 g of Na and 220 mL of EtOH) was added ethyl triflouroacetoacetate (40.0 g, 0.217 mol). After 10 min, ethyl 3-bromopropionate (35.0 g, 0.194 mol) was added and the mixture was heated under reflux for 24 h. The reaction mixture was concentrated, taken up in ether, and washed with water. The ether layers were dried (MgSO4) and concentrated to give 50 g of a yellow oil. Distillation (100-110°C/25 mm) gave 14.0 g (23%) of product as a colorless oil. 1H NMR (DMSO-d6): δ 1.20 (m, 6H), 2.93 (t, J=6.4 Hz, 2H), 3.62 (t, J=6.4 Hz. 2H), 4.13 (m, 5H).
Step 2) Ethyl 3-(2-Methyl-6-trifluoromethyl-3H-pyrimidin-4-on-5-yl)propionate
To a solution of NaOEt (0.026 mol) in EtOH (prepared from 0.60 g of Na and 30 mL of EtOH) was added diethyl trifluoroacetylglutarate (3.70 g, 0.013 mol) and acetamidine hydrochloride (1.23 g, 0.013 mol). The reaction mixture was heated under reflux for 18 h, concentrated, and taken up in water. The mixture was acidified to pH 4 with 2N HCl and extracted with CH2Cl2. The extracts were dried (MgSO4) and concentrated to give a yellow solid. Trituration with hexane gave 0.87 g of product as a white solid. 1H NMR (DMSO-d6): δ 1.16 (t, J=7.0 Hz, 3H), 2.35 (s, 3H), 2.45 (t, J=6.4 Hz, 2H), 2.70 (t, J=6.4 Hz, 2H), 4.06 (q, J=7.0 Hz, 2H).
Step 3) Ethyl 3-(4-Chloro-2-methyl-6-trifluoromethylpyrimidin-5-yl)propionate
A mixture of ethyl 3-(2-methyl-6-trifluoromethyl-3H-pyrimidin-4-on-5-yl yl)propionate (0.61 g, 2.20 mmol), N,N-diethylaniline (0.33g, 2.2 mmol), and POCl3 (8 mL) was heated under reflux for 2 h. The mixture was concentrated, poured onto ice, and extracted with ether. The combined extracts were dried (MgSO4) and concentrated to give 0.65 g of product as a brown oil. 1H NMR (DMSO-d6): δ 1.18 (t, J=7.0 Hz, 3H), 2.56 (t, J=8.5 Hz, 2H), 2.67 (s, 3H), 3.06 (t, J=8.5 Hz, 2H), 4.10 (m, 2H).
Step 4) 2-Methyl-4-trifluoromethyl-5,6,8-trihydro-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one
A mixture of ethyl 3-(4-chloro-2-methyl-6-trifluoromethylpyrimidin-5-yl)propionate (1.30 g, 4.40 mmol), 5-[(4-'aminomethyl)[1,1-biphen-2-yl]]-1H-tetrazole hydrochloride (1.26 g, 4.40 mmol), sodium acetate (1.08 g, 13.20 mmol), and triethylamine (1.33 g, 13.20 mmol) in nBuOH (25 mL) was heated under reflux for 24 h. The mixture was concentrated and partitioned between CHCl3 and water. The layers were separated and the organic phase was washed with water, dried (MgSO4), and concentrated to give a yellow oil. Purification by flash chromatography (7% MeOH/CH2Cl2) and recrystallization from acetone/ether (twice) gave 0.07 g of product as a white solid, mp 219-220°C. 1H NMR (DMSO-d6): δ 2.53 (s, 3H), 2.81 (t, J=7.1 Hz, 2H), 3.07 (t, J=7.1 Hz, 2H), 5.2 (s, 2H), 7.00 (d, J=8.1 Hz, 2H), 7.22 (d, J=8.1 Hz, 2H), 7.56 (m, 2H), 7.65 (m, 2H).
C, 59.35; H, 3.90; N, 21.07
Found: C, 59.12; H, 3.85; N, 21.29.
Example 5 2,4-Dimethyl-5,6,8-trihydro-8-[[6-[2-(1H-tetrazol-5-yl)phenyl]-3-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one Step 1) 2,4-Dimethyl-5,6,8-trihydro-7H-pyrido[2,3-d]pyrimidin-7-one
To a cooled (-78°C) solution of ethyl 3-(4-chloro-2,6-dimethylpyrimidin-5-yl yl)propionate (27.1 g, 0.111 mol), prepared as described in Step 2 of Example 3, in EtOH (110 mL) was added liquid NH3 (20 mL). The mixture was heated at 150°C in a pressure vessel for 12 h and concentrated. Water (20 mL) was added and the mixture was extracted with CH2Cl2. The extracts were dried (MgSO4) and concentrated to give a brown solid. Purification by flash chromatography (2% MeOH/CH2Cl2) and trituration with ether/hexane gave 14.9 g (76%) of product as off-white crystals, mp 167-168°C. 1H NMR (DMSO-d6): δ 2.30 (s, 3H), 2.40 (s, 3H), 2.52 (t, J=7.7 Hz, 2H), 2.80 (t, J=7.7 Hz, 2H), 10.64 (s, 1H). IR (KBr, cm-1): 1690.
C, 61.00; H, 6.26; N, 23.71
Found: C, 61.04; H, 6.07; N, 24.10.
Step 2) 2-Bromo-5-hydroxymethylpyridine
To a cooled (0°C), stirred suspension of 6-bromonicotinic acid (13.8 g, 0.068 mol), prepared according to Campbell, et al. Aust. J. Chem. 1971, 24, 277, in THF (20 mL) was added 1.0M BH3 in THF (204 mL, 0.204 mol). The mixture was stirred at room temperature for 3 h, recolled to 0°C, and saturated aqueous K2CO3 and water were added. The mixture was extracted with EtOAc, and the combined extracts were washed with water, dried (MgSO4), and concentrated to give a yellow oil. Purification by flash chromatography (2% MeO/CH2Cl2) gave 7.5 g (59%) of a yellow solid, mp 49-51°C. 1H NMR (DMSO-d6): δ 4.50 (d, J=5.7 Hz, 2H), 5.40 (t, J=5.7 Hz, 1H), 7.57 (d, J=8.3 Hz, 1H), 7.70 (dd, J=8.3 Hz, 1.5 Hz, 1H), 8.35 (d, J=1.5 hz, 1H).
Step 3) 2-Bromo-5-(tert-butyldimethylsilyloxy)methylpyridine
To a stirred mixture of 2-bromo-5-hydroxymethylpyridine (4.7 g, 0.023 mol) and triethylamine (3.4 mL, 0.024 mol) in DMF (30 mL) was added tert-butyldimethylsilyl chloride. After 1 h, the mixture was diluted with ether and washed with water. The ether phase was dried (MgSO4) and concentrated to give 6.8 g (97%) of product as a colorless oil. 1H NMR (DMSO-d6): δ 0.10 (s, 6H), 0.90 (s, 3H), 4.73 (s, 2H), 7.65 (m, 2H), 8.35 (d, J=1.5 Hz, 1H).
Step 4) [5-(tert-Butyldimethylsilyloxymethyl)pyridin-2-yl]tri-n-butylstannane
To a cooled (-78°C), stirred solution of 2-bromo-5-(tert-butyldimethylsilyloxy)methylpyridine (6.8 g, 0.022 mol) in THF (60 mL) was added 1.6 M nBuLi in hexanes (14.1 mL, 0.022 mol). After 1 h, tri-n-butyltin chloride (6.1 mL, 0.022 mol) was added and stirring was continued for 3 h. Water was added, and the mixture was warmed to room temperature and extracted with ether. The combined extracts were dried (MgSO4) and concentrated to give 11.5 g (100%) of product as a brown oil. 1H NMR (DMSO-d6): δ 0.10 (s, 6H), 0.80 (m, 18H), 1.10 (m, 6H), 1.25 (m, 6H), 1.50 (m, 6H), 4.73 (s, 2H), 7.55 (m, 2H), 8.61 (d, J=2.2 Hz, 1H).
Step 5) 2-[5-(tert-Butyldimethylsilyloxymethyl)pyridin-2-yl]benzonitrile
A mixture of [5-(tert-butyldimethylsilyloxymethyl)pyridin-2-yl] tri-n-butylstannane (11.5 g, 0.022 mol), 2-iodobenzonitrile (5.1 g, 0.022 mol), CuI (0.43 g, 0.002 mol), and bis(triphenylphosphine)palladium(II) chloride (0.80 g, 0.001 mol) in THF (40 mL) was heated under reflux for 48 h. The mixture was diluted with ether and washed with saturated aqueous NH4Cl, aqueous NH4OH, water, and brine, dried (MgSO4), and concentrated to give 4.9 g (67%) of product as a brown oil. 1H NMR (DMSO-d6): δ 0.10 (s, 6H), 0.90 (s, 9H), 4.73 (s, 2H), 7.45 (m, 1H), 7.60 (m, 4H), 7.75 (dd, J=7.9 Hz, 2.2 Hz, 1H), 8.50 (d, J=2.2 Hz, 1H).
Step 6) 2-[5-Hydroxymethyl)pyridin-2-yl]benzonitrile
A mixture of 2-[5-(tert-butyldimethylsilyloxymethyl)pyridin-2-yl]benzonitrile (4.9 g, 0.021 mol) and nBu4NF hydrate (8.1 g, 0.031 mol) in THF (60 mL) was stirred at room temperature for 18 h. The mixture was diluted with EtOAc, washed with water and brine, dried (MgSO4), and concentrated to give 3.5 g (80%) of product as a brown solid, mp 152-153°C. 1H NMR (DMSO-d6): δ 4.61 (d, J=5.6 Hz, 2H), 5.42 (t, J=5.6 Hz, 1H), 7.57 (dd, J=7.3 Hz, 1.5 Hz, 1H), 7.65 (m, 4H), 7.80 (dd, J=7.9 Hz, 2.2 Hz, 1H), 8.52 (d, J=2.2 Hz, 1 H).
Step 7) 2-[5-(Chloromethyl)pyridin-2-yl]benzonitrile
To a cooled (0°C), stirred solution of 2-[5-(hydroxymethyl)pyridin-2-yl]benzonitrile (4.3 g, 0.020 mol) and ZnCl2 (0.09 g, 0.61 mmol) in p-dioxane (40 mL) was added SOCl2 (1.50 mL, 0.020 mol) dropwise. The mixture was stirred at room temperature for 18 h, diluted with ether, washed with water and brine, dried MgSO4), and concentrated to give 4.30 g (92%) of product as a brown solid, mp 97-98°C. 1H NMR (DMSO-d6): δ 4.90 (s, 2H), 7.63 (dd, J=7.7 Hz, 1.3 Hz, 1H), 7.80 (m, 1H), 7.85 (m, 2H), 7.95 (d, J=7.7 Hz, 1H), 8.01 (dd, J=8.0 Hz, 2.2 Hz, 1H), 8.80 (d, J=2.2 Hz, 1H).
Step 8) 2,4-Dimethyl-5,6,8-trihydro-8-[[6-(2-cyanophenyl)-3-pyridinyl]methyl]-7H-pyrido [2,3-d]pyrimidin-7-one
To a stirred suspension of NaH (60% dispersion in mineral oil; 0.42 g, 9.18 mmol) in DMF (20 mL) was added 2,4-dimethyl-5,6,8-trihydro-7H-pyrido[2,3-d]pyrimidin-7-one (1.55 g, 8.75 mmol). After 1 h, 2-[5-(chloromethyl)pyridin-2-yl]benzonitrile (2.00 g, 8.75 mmol) was added in several portions. Stirring was continued for 4 h and the mixture was concentrated. Water was added and the mixture was extracted with CH2Cl2. The combined extracts were dried (MgSO4) and concentrated to give 3.20 g (100%) of product as a brown solid, mp 161-162°C. 1H NMR (DMSO-d6): δ 2.36 (s, 3H), 2.45 (s, 3H), 2.78 (t, J=7.8 Hz, 2H), 2.87 (t, J=7.8 Hz, 2H), 5.27 (s, 2H), 7.61 (m, 1H), 7.80 (m, 4H), 7.93 (dd, J=7.7 Hz, 1.3 Hz, 1H), 8.70 (d, J=1.3 Hz, 1H).
Step 9) 2,4-Dimethyl-5,6,8-trihydro-8-[[6-[2-(1H-tetrazol-5-yl)phenyl]-3-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one
A mixture of 2,4-dimethyl-5,6,8-trihydro-8-[[6-(2-cyanophenyl)-3-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one (4.0 g, 10.8 mmol), NaN3 (0.8 g, 11.9 mmol), and tri-n-butyltin chloride (3.9 g, 11.9 mmol) in xylenes (100 mL) was heated under reflux for 24 h. Another 1.5 equiv. of NaN3 and tri-n-butyltin chloride were added and heating was continued for 24 h. The reaction mixture was concentrated and 2 N HCI was added. The mixture was extracted with ether (discarded) and adjusted to pH 5 with 50% NaOH. The aqueous phase was extracted with CH2Cl2, and the extracts were washed with water, dried (MgSO4), and concentrated. Purification by flash chromatography (5% MeOH/CH2Cl2) and recrystallization from EtOH/water gave 2.8 g (63%) of product as a white solid, mp 217-218°C. 1H NMR (DMSO-d6): δ 2.35 (s, 3H), 2.44 (s, 3H), 2.73 (t, J=7.8 Hz, 2H), 2.85 (t, J=7.8 Hz, 2H), 5.18 (s, 2H), 7.33 (d, J=8.3 Hz, 1H), 7.65 (m, 5H), 8.36 (s, 1H). IR (KBr, cm-1): 1690.
C, 64.07; H, 4.89; N, 27.17
Found: C, 63.87; H, 4.81; N, 27.56.
Example 6 2-Methyl-4-trifluoromethyl-5,6,8-trihydro-8-[[6-(2-(1H-tetrazol-5-yl)phenyl]-3-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one Step 1) 2-Methyl-4-trifluoromethyl-5,6,8-trihydro-7H-pyrido[2,3-d]pyrimidin-7-one
A solution of ethyl 3-(4-chloro-2-methyl-6-trifluoromethylpyrimidin-5-yl)propionate (0.50 g, 1.70 mmol), prepared as described in Step 3 of Example 4, in saturated ethanolic ammonia (15 mL) was heated in a sealed tube at 110°C for 18 h. The mixture was concentrated, taken up in CH2Cl2, and washed with water. The organic layer was dried (MgSO4) and concentrated to give 0.33 g (84%) of product as a white solid, mp 147-150°C. 1H NMR (DMSO-d6): δ 2.53 (s, 3H), 2.61 (t, J=7.3 Hz, 2H), 3.01 (t, J=7.3 Hz, 2H), 11.30 (s, 1H).
Step 2) 2-Methyl-4-trifluoromethyl-5,6,8-trihydro-8-[[6-(2-cyanophenyl)-3-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one
To a suspension of NaH (60% dispersion in mineral oil; 33 mg, 1.40 mmol) in DMF was added 2-methyl-4-trifluoromethyl-5,6,8-trihydro-7H-pyrido[2,3-d]pyrimidin-7-one (0.32 g, 1.40 mmol) at room temperature. After 30 min, 2-[5-(chloromethyl)pyridin-2-yl]benzonitrile (0.32 g, 1.40 mmol), prepared as described in Step 7 of Example 5, was added. The mixture was stirred for 42 h, diluted with water, and extracted with CH2Cl2. The combined extracts were dried (MgSO4) and concentrated to give 0.51 g (86%) of product as a yellow foam. 1H NMR (DMSO-d6): δ 2.58 (s, 3H), 2.86 (t, J=7.6 Hz, 2H), 3.11 (t, J=7.6 Hz, 2H), 5.31 (s, 2H), 7.62 (m, 1H), 7.85 (m, 5H), 8.75 (s, 1H).
Step 3) 2-Methyl-4-trifluoromethyl-5,6,8-trihydro-8-[[6-[2-(1H-tetrazol-5-yl)phenyl]-3-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one
A mixture of 2-methyl-4-trifluoromethyl-5,6,8-trihydro-8-[[6-(2-cyanophenyl)-3-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one (0.50 g, 1.23 mmol), NaN3 (0.08 g, 1.23 mmol), and tri-n-butyltin chloride (0.40 g, 1.23 mmol) in xylenes (9 mL) was heated under reflux for 48 h. 1N HCl (12 mL) was added and the mixture was diluted with CH2Cl2, washed with water, dried (MgSO4), and concentrated. Purification by flash chromatography (5% MeOH/CH2Cl2) gave a foam. Trituration with 10% EtOAc/ether gave 0.145 g (25%) of product as an off-white solid, mp 189-191°C. 1H NMR (DMSO-d6) δ 2.55 (s, 3H), 2.82 (t, J=7.0 Hz, 2H), 3.07 (t, J=7.0 Hz, 2H), 5.20 (s. 2H), 7.31 (d, J=8.0 Hz, 1H), 7.65 (m, 5H), 8.39 (s, 1H).
C, 56.65; H, 3.67; N, 24.03
Found: C, 56.22; H, 4.11; N, 23.44.
Example 7 2,4-Dimethyl-5,6,8-trihydro-8-[[5-[2-(1H-tetrazol-5-yl)phenyl]-2-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one Step 1) (6-Methylpyridin-3-yl)trifluoromethanesulfonate
To a stirred, cooled (0°C) solution of 3-hydroxy-6-methylpyndine (14.0 g, 0.128 mol) in pyridine (70 mL) was added trifluoromethanesulfonic anhydride (39.8 g, 0.141 mol) dropwise. The mixture was stirred at room temperature for 5 h. Water was added and the mixture was extracted with ether. The extracts were washed with brine, dried (MgSO4), and concentrated to give 27.3 g (88%) of product as a brown oil. 1H NMR (DMSO-d6): δ 2.50 (s, 3H), 7.45 (d, J=9.2 Hz, 1H), 7.90 (dd, J=9.2 Hz, 2.3 Hz, 1H), 8.60 (d, J=2.3 Hz, 1H).
Step 2) (6-Methylpyridin-3-yl)trifluoromethanesulfonate N-Oxide
To a stirred solution of (6-methylpyridin-3-yl)trifluoromethanesulfonate (27.3 g, 0.113 mol) in CH2Cl2 (140 mL) was added mCPBA (21.5 g, 0.124 mol) in portions. After 16 h, the precipitate was removed by filtration and the filtrate was concentrated. Purification by flash chromatography (2% MeOH/CH2Cl2) gave 25.0 g (86%) of product as colorless crystals, mp 47-48°C. 1H NMR (DMSO-d6): δ 2.36 (s, 3H), 7.56 (dd, J=8.9 Hz, 2.3 Hz, 1H), 7.69 (d, J=8.9 Hz, 1H), 8.84 (d, J=2.3 Hz, 1H).
Step 3) (6-Hydroxymethylpyridin-3-yl)trifluoromethanesulfonate
To stirred, cooled (0°C) (6-methylpyridin-3-yl)trifluoromethanesulfonate N-oxide (25.0 g, 0.097 mol) was added trifluoroacetic anhydride (69.0 mL, 0.487 mol) dropwise. The mixture was stirred at room temperature for 30 min then heated under reflux for 1 h. The mixture was cooled to room temperature and 10% aqueous NaHCO3 (400 mL) was added. The resulting mixture was extracted with CH2Cl2 and the extracts were washed with brine, dried (MgSO4), and concentrated. Purification by flash chromatography (2% MeOH/CH2Cl2) gave 10.0 g (40%) of product as a colorless oil. 1H NMR (DMSO-d6): δ 4.60 (s, 1H), 5.60 (s, 1H), 7.64 (d, J=8.8 Hz, 1H), 8.03 (dd, J=8.8 Hz, 2.8 Hz, 1H), 8.67 (d, J=2.8 Hz, 1H).
Step 4) 2-(2-tert-Butyl-1H-tetrazol-5-yl)phenyltri-n-butylstannane
To a cooled (-78°C) solution of 1-tert-butyl-5-(2-bromophenyl)-1H-tetrazole (12.3 g, 0.043 mol), prepared as described in Step 3 of the Example 3 alternative synthesis, in THF (80 mL) was added 1.6M nBuLi in hexanes (32.7 mL, 0.052 mol). After 1 h, tri-n-butyltin chloride (17.1 g, 0.052 mol) was added and stirring was continued for 3 h at -78°C. The mixture was warmed to room temperature and stirred for 18 h. Water was added and the mixture was extracted with ether. The combined extracts were washed with water, brine, dried (MgSO4), and concentrated to give a brown oil. Excess tri-n-butyltin chloride and remaining starting material were removed by distillation under high vacuum to give 9.6 g (45%) of product as a brown oil. 1H NMR (DMSO-d6): δ 0.78 (t, J=7.3 Hz, 9H), 0.93 (t, J=8.3 Hz, 6H), 1.21 (m, 6H), 1.43 (m, 6H), 7.43 (d, J=8.9 Hz, 1H), 7.45 (d, J=8.5 Hz, 1H), 7.60 (dd, J=8.9 Hz, 2.3 Hz, 1H), 8.0 (dd, J=8.5 Hz, 2.3 Hz, 1H).
Step 5) 2-tert-Butyl-5-[2-[(2-hydroxymethyl)pyridin-5-yl]phenyl]tetrazole
A mixture of (6-hydroxymethylpyridin-3-yl)trifluoromethanesulfonate (5.0 g, 0.019 mol), 2-(2-tert-butyl-1H-tetrazol-5-yl)phenyltri-n-butylstannane (9.5 g, 0.019 mol), bis(triphenylphosphine)palladium chloride (0.70 g, 0.97 mmol), Cul (0.37 g, 1.9 mmol), and DMF (30 mL) was heated at 100°C for 18 h. 20% Aqueous KF was added and the mixture was stirred at room temperature for 30 min. The precipitate was removed by filtration and the filtrate was extracted with ether. The extracts were washed with NH4OH, saturated aqueous NH4Cl, water, brine, dried (MgSO4), and concentrated. Purification by flash chromatography (5% EtOAc/hexane) gave 0.5 g (8%) of product as a yellow oil. 1H NMR (DMSO-d6): δ 1.55 (s, 9H), 4.56 (d, J=6.0 Hz, 2H), 5.40 (t, J=6.0 Hz, 1H), 7.38 (d, J=8.8 Hz, 1H), 7.60 (m, 4H), 7.90 (dd, J=8.8 Hz, 2.3 Hz, 1H), 8.20 (d, J=2.3 Hz, 1 H).
Step 6) 2-tert-Butyl-5-[2-[(2-bromomethyl)pyridin-5-yl]phenyl]tetrazole
A mixture of 2-tert-butyl-5-[2-[(2-hydroxymethyl)pyridin-5-yl]phenyl]tetrazole (0.50 g, 1.62 mmol), triphenylphosphine (0.51 g, 1.94 mmol), and CBr4 (0.64 g, 1.94 mmol) in THF (30 mL) was stirred at room temperature for 16 h. The mixture was concentrated and purification by flash chromatography (20% EtOAc/hexane) gave 0.40 g (66%) of product as a colorless oil. 'H NMR (DMSO-d6): δ 1.56 (s, 9H), 4.70 (s, 2H), 7.60 (m, 5H), 7.95 (dd, J=8.8 Hz, 1.6 Hz, 1H), 8.28 (d, J=1.6 Hz, 1H).
Step 7) 2,4-Dimethyl-5,6,8-trihydro-8-[[5-[2-(1H-tetrazol-5-yl)phenyl]-2-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one
To a stirred suspension of NaH (60% dispersion in mineral oil; 41 mg, 1.03 mmol) in DMF (1 mL) was added 2,4-dimethyl-5,6,8-trihydro-7H-pyrido[2,3-d]pyrimidin-7-one (170 mg, 0.94 mmol), prepared as described in Step 1 of Example 5. After 30 min, a solution of 2-tert-butyl-5-[2-[(2-bromomethyl)pyridin-5-yl]phenyl]tetrazole (350 mg, 0.94 mmol) in DMF (5 mL) was added and the mixture was stirred for 3 h. The mixture was concentrated, taken up in EtOAc, and washed with water. The organic phase was dried (MgSO4), concentrated, and purified by flash chromatography (3% MeOH/CH2Cl2) to give a yellow foam. The foam was heated in 6N HCl (2 mL) for 16 h, cooled, and the pH was adjusted to 4 with 50% NaOH. The mixture was extracted with CHCl3, and the combined extracts were dried (MgSO4), and concentrated. Trituration with EtOH/ether gave 40 mg (10%) of product as a white solid, mp 208.209°C. 1H NMR (DMSO-d6): δ 2.35 (s, 3H), 2.37 (s, 3H), 2.77 (t, J=7.9 Hz, 2H), 2.90 (t, J=7.9 Hz, 2H), 5.30 (s, 2H), 7.10 (d, J=8.8 Hz, 1H), 7.36 (dd, J=8.8 Hz, 1.6 Hz, 1H), 7.60 (m, 4H), 8.23 (d, J=1.6 Hz, 1H). IR (KBr, cm-1): 1690.
C, 64.07; H, 4.89; N, 27.17
Found: C, 63.87; H, 5.16; N, 27.22.
Example 8 2,4,6-Trimethyl-5,6,8-trihydro-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one Step 1) 2,4-Dimethyl-5,6,8-trihydro-8-[[2'-cyano[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one
To a stirred suspension of NaH (60% dispersion in mineral oil; 0.115 g, 4.80 mmol) in DMF (5 mL) was added 2,4-dimethyl-5,6,8-trihydro-7H-pyrido[2,3-d]pyrimidin-7-one (0.85 g, 4.80 mmol), prepared as described in Step 1 of Example 5. After 45 min, 2-[4-(bromomethyl)phenyl]benzonitrile (1.00 g, 3.7 mmol) in DMF (4 mL) was added and the mixture was stirred at room temperature for 18 h. Water was added and the mixture was extracted with CH2Cl2. The extracts were concentrated and the crude product was purified by flash chromatography (2% MeOH/CH2Cl2). Trituration with ether gave 0.80 g (60%) of product as a yellow solid, mp 133-137°C. 1H NMR (DMSO-d6): δ 2.37 (s, 2H), 2.45 (s, 3H), 2.76 (t, J=7.9 Hz, 2H), 2.88 (t, J=7.9 Hz, 2H), 5.27 (s, 2H), 7.42 (d, J=8.2 Hz, 2H), 7.50 (d, J=8.2 Hz, 2H), 7.58 (m, 2H), 7.77 (m, 1H), 7.93 (d, J=7.6 Hz, 1H).
Step 2) 2,4,6-Trimethyl-5,6,8-trihydro-8-[[2'-cyano(1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one
To a cooled (-78°C) solution of 2,4-dimethyl-5,6,8-trihydro-8-[[2'-cyano[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one (0.40 g, 1.10 mmol) in THF (2.0 mL) was added LDA (2M; 0.55 mL, 1.10 mmol). After 45 min, MeI (0.16 g, 1.15 mmol) was added and the mixture was allowed to warm to room temperature and stirred for 18 h. The mixture was concentrated and partitioned between water and CH2Cl2. The organic phase was dried (MgSO4) and concentrated to give an orange oil. Purification by flash chromatography (60% EtOAC/hexane) gave 0.15 g (36%) of product as a yellow solid, mp 153-156°C. 1H NMR (DMSO-d6): δ 1.21 (d, J=6.3 Hz, 3H), 2.37 (s, 3H), 2.44 (s, 3H), 2.60 (m, 1H), 2.80 (m, 1H), 3.05 (dd. J=9.6, 6.0 Hz, 1H), 5.21 (d, J=15.1 Hz, 1H), 7.39 (d, J=8.3 Hz, 2H), 7.49 (d, J=8.3 Hz, 2H), 7.58 (m, 2H), 7.80 (m, 1H), 7.91 (dd, J=6.9, 0.9 Hz, 1H).
Step 3) 2,4,6-Trimethyl-5,6,8-trihydro-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one
A mixture of 2,4,6-trimethyl-5,6,8-trihydro-8-[[2'-cyano[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one (0.57 g, 1.50 mmol), NaN3 (0.13 g, 1.90 mmol), and tri-n-butyltin chloride (0.62 g, 1.90 mmol) in xylenes (5 mL) was heated under reflux for 48 h. The mixture was cooled and IN HCl (2 mL) was added. CHCl3 and water were added, and the organic phase was dried (MgSO4) and concentrated. Recrystallization from EtOAc gave 0.25 g (39%) of product as a white solid, mp 161-163°C. 1H NMR (DMSO-d6): δ 1.19 (d, J=6.7 Hz), 2.37 (s, 3H), 2.43 (s, 3H), 2.59 (m, 1H), 2.80 (m, 1H), 3.02 (dd, J=15.7, 7.0 Hz, 1H), 5.12 (d, J=15.0 Hz, 1H), 5.22 (d, J=15.0 Hz, 1H), 7.00 (d, J=8.0 Hz, 2H), 7.18 (d, J=8.0 Hz, 2H), 7.57 (m, 2H), 7.63 (m, 2H).
Example 9 2,4-Dimethyl-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one Step 1) 2,4-Dimethyl-8-[[2'-cyano[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one
Using the same procedure as described in Step 1 of Example 8, to a stirred suspension of NaH (60% dispersion in mineral oil) in DMF add 2,4-dimethyl-7H-pyrido[2,3-d]pyrimidin-7-one, prepared according to T. Sakamoto, et al. Chem. Pharm. Bull., 1982, 30, 2410. After 45 min, add 2-[4-(bromomethyl)phenyl]benzonitrile in DMF and stir the mixture at room temperature for 18 h. Add water and extract the mixture with CH2Cl2. Concentrate the extracts and purify the crude product by flash chromatography (2% MeOH/CH2Cl2). Trituration with ether gives the product.
Step 2) 2,4-Dimethyl-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one
Using the same procedure as described in Step 3 of Example 8, heat a mixture of 2,4-dimethyl-8-[[2'-cyano[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one, NaN3, and tri-n-butyltin chloride in xylenes under reflux for 48 h. Cool the mixture and add 1N HCl (2 mL). Add CHCl3 and water, and dry (MgSO4) and concentrate the organic phase. Recrystallization from EtOAc gives the product.

Claims (15)

  1. A compound of formula I wherein R1, R2, R3 and R4 are independently H, lower alkyl containing 1 to 6 carbon atoms, or perfluoroalkyl containing 1 to 6 carbon atoms; R5 is H or when n is 1 R5 taken together with R3 comprises a double bond, n is 0 to 1, p is 0 to 2, m is 0 to 3; Ar1 is wherein W is H, lower alkyl containing 1 to 6 carbon atoms, halogen, hydroxy, or lower alkoxy containing 1 to 6 carbon atoms; Ar2 is wherein X is    CO2H, CN, or wherein R6 is H, tert-butyl, tri-n-butylstannyl, or triphenylmethyl; or a pharmaceutically acceptable salt thereof; or an N-oxide thereof.
  2. A compound as claimed in claim 1 which has the formula II wherein R1, R2, R3 and R4 are independently H, lower alkyl containing 1 to 6 carbon atoms, or perfluoroalkyl containing 1 to 6 carbon atoms; R5 is H or when n is 1 R5 taken together with R3 comprises a double bond; n is 0 to 1; Ar1 is Ar2 is wherein X is    CO2H, CN, or wherein R6 is H, tert-butyl, tri-n-butylstannyl, or triphenylmethyl; or a pharmaceutically acceptable salt thereof.
  3. A compound as claimed in claim 1 or 2 wherein X is CO2H, CN or
  4. A compound as claimed in claim 3 which has the formula III wherein R1, R2, R3 and R4 are independently H, methyl, trifluoromethyl; R5 is H or when n is 1 R5 taken together with R3 comprises a double bond; n is 0 to 1; Ar1 is or a pharmaceutically acceptable salt thereof.
  5. A compound as claimed in claim 4 which is 2,4-dimethyl-5,6,8-trihydro-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one or a pharmaceutically acceptable salt thereof.
  6. A compound as claimed in claim 4 which is
    2,4-dimethyl-5,7-dihydro-7-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-6H-pyrrolo[2,3-d]pyrimidin-6-one or a pharmaceutically acceptable salt thereof, or
    5,7-dihydro-2-methyl-7-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-4-(trifluoromethyl)-6H-pyrrolo[2,3-d]pyrimidin-6-one or a pharmaceutically acceptable salt thereof, or
    2-methyl-4-trifluoromethyl-5,6,8-trihydro-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]-7H-pyrido[2,3-d]pyrimidin-7-one or a pharmaceutically acceptable salt thereof, or
    2,4-dimethyl-5,6,8-trihydro-8-[[6-[2-(1H-tetrazol-5-yl) phenyl]-3-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one or a pharmaceutically acceptable salt thereof, or
    2-methyl-4-trifluoromethyl-5,6,8-trihydro-8-[[6-[2-(1H-tetrazol-5-yl)phenyl]-3-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one or a pharmaceutically acceptable salt thereof, or
    2,4-dimethyl-5,6,8-trihydro-8-[[5-[2-(1H-tetrazol-5-yl) phenyl]-2-pyridinyl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one or a pharmaceutically acceptable salt thereof, or
    2,4,6-trimethyl-5-6,8-trihydro-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one or a pharmaceutically acceptable salt thereof, or
    2,4-dimethyl-8-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-7H-pyrido[2,3-d]pyrimidin-7-one or a pharmaceutically acceptable salt thereof.
  7. A process for preparing    a compound of formula I wherein R1, R2, R3 and R4 are independently H, lower alkyl containing 1 to 6 carbon atoms, or perfluoroalkyl containing 1 to 6 carbon atoms; R5 is H or when n is 1 R5 taken together with R3 comprises a double bond, n is 0 to 1, p is 0 to 2, m is 0 to 3; Ar1 is wherein W is H, lower alkyl containing 1 to 6 carbon atoms, halogen, hydroxy, or lower alkoxy containing 1 to 6 carbon atoms; Ar2 is wherein X is    CO2H, CN, or wherein R6 is H, tert-butyl, tri-n-butylstannyl, or triphenylmethyl; or a pharmaceutically acceptable salt thereof; or an N-oxide thereof; which process comprises
    (a) condensing a pyrimidine of formula wherein R1, R2, R3, R4, R5, n and p are as defined in formula I, Z1 is a leaving group and R7 is a lower alkyl group, with an amine of formula         H2N-(CH2)m-Ar1-Ar2 where m, Ar1 and Ar2 are as defined in formula I or
    (b) reacting a bicyclic compound of formula where R1, R2, R3, R4, R5, n, m, p and Ar1 are as defined in formula I and Y is a para-bromo or para-iodo group with an aryl boronic acid or an arylstannane in the presence of a palladium catalyst or
    (c) condensing, a bicyclic compound of formula where R1, R2, R3, R4, R5, n, and p are as defined in formula I with a biaryl compound of formula         Z1-(CH2)m-Ar1-Ar2 where m, Ar1 and Ar2 are as defined above and Z1 is a leaving group or
    (d) removing the protecting group from a compound of formula I wherein X is where R6 is tert.butyl, tri-n-butylstannyl or triphenylmethyl, to give a compound where R6 is hydrogen or
    (e) reacting a compound of formula I wherein X is -CN with an azide reagent to give a compound of formula I wherein X is or
    (f) forming a salt of the compound of formula I with an inorganic or organic acid or base or
    (g) converting a compound of formula I or a salt thereof to an N-oxide thereof by means of a peroxidising agent.
  8. A process for preparing a compound of formula I as defined in claim 7 in which X is    CO2H, CN or wherein R6 is H or tert-butyl; which comprises a) reacting a compound of formula 1 wherein R1, R2, R3, R4, R5, n and p are as defined above, with an amine of formula 2 wherein m and Ar1 are as defined above, and Y is a para-bromo or para-iodo group, to produce the compound of formula 3 wherein R1, R2, R3, R4, R5, n, m, p, Ar1, and Y are as defined above; and reacting the compound of formula 3 with an arylboronic acid of formula 4 wherein Ar2 is as defined above, in the presence of a palladium catalyst, and optionally when R6 is a tert-butyl group removing the protecting group by acidic hydrolysis, to yield the compound of formula I wherein R1, R2, R3, R4, R5, n, m, p, Ar1, and Ar2 are as defined above.
  9. A process as claimed in claim 8 in which the compound of formula 4 wherein Ar2 is wherein X is wherein R6 is tert-butyl; is prepared by a process which comprises treating the compound of formula 5         Ar2-Br     5 wherein Ar2 is as defined above, with Mg and a trialkyl borate, B(OR7) 3, wherein R7 is lower alkyl containing 1 to 6 carbons, in an aprotic solvent to yield after acidic or basic workup the arylboronic acid of formula 4 wherein Ar2 is as defined above.
  10. A pharmaceutical composition comprising a compound claimed in any one of claims 3 to 6 and a pharmaceutically acceptable carrier.
  11. A compound as claimed in any one of claims 3 to 6 for use as a pharmaceutical.
  12. A compound as claimed in any one of claims 3 to 6 for use in treating hypertension or congestive heart failure.
  13. A compound as claimed in any one of claims 3 to 6 for use in preventing or-treating restenosis following angioplasty in a mammal.
  14. The use of a compound as claimed in any one of claims 3 to 6 in the manufacture of a medicament for the prevention or treatment of hypertension or congestive heart failure or for the prevention or treatment of restenosis following angioplasty.
  15. A process as claimed in any one of claims 7 to 9 wherein the final product is 2,4-dimethyl-5,7-dihydro-7-[[2'-(1H-tetrazol-5-yl)[1,1-biphenyl]-4-yl]methyl]-6H-pyrrolo[2,3-d]pyrimidin-6-one or a pharmaceutically acceptable salt thereof.
HK98102075A 1991-10-24 1998-03-12 Condensed pyrimidine derivatives and their use as angiotensine ii antagonists HK1003031A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US07/782,025 US5149699A (en) 1991-10-24 1991-10-24 Substituted pyridopyrimidines useful as antgiotensin II antagonists
GB9207560 1992-04-07
GB9207560A GB2265899A (en) 1992-04-07 1992-04-07 Substituted pyrimidines
US901485 1992-06-25
US782025 1992-06-25
US07/901,485 US5256654A (en) 1991-10-24 1992-06-25 Substituted pyrrolopyrimidines, azepinopyrimidines and pyridopyrimidines useful as angiotensin II antagonists

Publications (2)

Publication Number Publication Date
HK1003031B true HK1003031B (en) 1998-09-30
HK1003031A1 HK1003031A1 (en) 1998-09-30

Family

ID=27266132

Family Applications (1)

Application Number Title Priority Date Filing Date
HK98102075A HK1003031A1 (en) 1991-10-24 1998-03-12 Condensed pyrimidine derivatives and their use as angiotensine ii antagonists

Country Status (21)

Country Link
EP (1) EP0539086B1 (en)
JP (1) JP3240192B2 (en)
KR (1) KR100286624B1 (en)
CN (2) CN1039324C (en)
AT (1) ATE161537T1 (en)
AU (1) AU653635B2 (en)
CA (1) CA2080705C (en)
DE (1) DE69223734T2 (en)
DK (1) DK0539086T3 (en)
ES (1) ES2111617T3 (en)
FI (1) FI103971B (en)
GR (1) GR3025926T3 (en)
HK (1) HK1003031A1 (en)
HU (2) HU218786B (en)
IL (1) IL103436A (en)
LV (1) LV12047B (en)
NO (1) NO301275B1 (en)
SG (1) SG47626A1 (en)
SK (1) SK280292B6 (en)
TW (1) TW226375B (en)
UA (1) UA27748C2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69233208T2 (en) * 1991-11-18 2004-07-08 E.I. Du Pont De Nemours And Co., Wilmington TETRAZOLYLPHENYLBORIC ACID INTERMEDIATES FOR THE SYNTHESIS OF AII RECEPTOR ANTAGONISTS
EP0618207B1 (en) * 1993-03-24 1999-01-07 American Home Products Corporation Substituted pyridopyrimidines as antihypertensives
DK0782996T3 (en) * 1994-09-20 1999-09-20 Wakunaga Seiyaku Kk Process for the preparation of N-biphenylmethylthiadiazoline derivative or salt thereof and intermediate for the preparation of
IT1292437B1 (en) * 1997-06-30 1999-02-08 Zambon Spa ORTHO-METALLATION PROCESS USEFUL FOR THE SYNTHESIS OF 1 - TETRAZOL- 5-IL) 2-SUBSTITUTED BENZENES
US6638937B2 (en) 1998-07-06 2003-10-28 Bristol-Myers Squibb Co. Biphenyl sulfonamides as dual angiotensin endothelin receptor antagonists
AR033390A1 (en) 2000-08-22 2003-12-17 Novartis Ag A PHARMACEUTICAL COMPOSITION THAT INCLUDES AN ATTA RECEIVER ANTAGONIST AND A POTENTIATOR OF THE INSULIN SECRETION, THE USE OF SUCH COMPOSITION FOR THE MANUFACTURE OF A MEDICINAL PRODUCT AND A PARTS KIT
US8168616B1 (en) 2000-11-17 2012-05-01 Novartis Ag Combination comprising a renin inhibitor and an angiotensin receptor inhibitor for hypertension
US7732162B2 (en) 2003-05-05 2010-06-08 Probiodrug Ag Inhibitors of glutaminyl cyclase for treating neurodegenerative diseases
GB0327839D0 (en) 2003-12-01 2003-12-31 Novartis Ag Organic compounds
GB0402262D0 (en) 2004-02-02 2004-03-10 Novartis Ag Process for the manufacture of organic compounds
NZ586285A (en) 2004-03-17 2011-12-22 Novartis Ag Use of aliskiren in monotherapy for treating diabetes and metabolic disorder (syndrome X)
CN101102755B (en) 2004-10-08 2013-01-02 诺瓦提斯公司 Use of renin inhibitor in the preparation of medicines for preventing or treating diastolic dysfunction or diastolic heart failure
EP1749828A1 (en) 2005-08-04 2007-02-07 Farmaprojects S.L. Process for preparing an angiotensin II receptor antagonist
CN101668525A (en) 2007-03-01 2010-03-10 前体生物药物股份公司 New use of glutaminyl cyclase inhibitors
US9656991B2 (en) 2007-04-18 2017-05-23 Probiodrug Ag Inhibitors of glutaminyl cyclase
US8969514B2 (en) 2007-06-04 2015-03-03 Synergy Pharmaceuticals, Inc. Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia, atherosclerosis, coronary heart disease, gallstone, obesity and other cardiovascular diseases
US20100120694A1 (en) 2008-06-04 2010-05-13 Synergy Pharmaceuticals, Inc. Agonists of Guanylate Cyclase Useful for the Treatment of Gastrointestinal Disorders, Inflammation, Cancer and Other Disorders
JP5546451B2 (en) 2007-06-04 2014-07-09 シナジー ファーマシューティカルズ インコーポレイテッド Agonyl cyclase agonists useful in the treatment of gastrointestinal disorders, inflammation, cancer and other disorders
JP5579058B2 (en) * 2007-06-07 2014-08-27 シグマ−タウ・インドゥストリエ・ファルマチェウチケ・リウニテ・ソシエタ・ペル・アチオニ 5β, 14β-androstane derivatives useful for the treatment of diseases caused by restenosis and organ fibrosis after angioplasty or internal atherectomy
EP3241839B1 (en) 2008-07-16 2019-09-04 Bausch Health Ireland Limited Agonists of guanylate cyclase useful for the treatment of gastrointestinal, inflammation, cancer and other disorders
ES2548913T3 (en) 2009-09-11 2015-10-21 Probiodrug Ag Heterocyclic derivatives such as glutaminyl cyclase inhibitors
WO2011107530A2 (en) 2010-03-03 2011-09-09 Probiodrug Ag Novel inhibitors
CA2789440C (en) 2010-03-10 2020-03-24 Probiodrug Ag Heterocyclic inhibitors of glutaminyl cyclase (qc, ec 2.3.2.5)
JP5945532B2 (en) 2010-04-21 2016-07-05 プロビオドルグ エージー Benzimidazole derivatives as inhibitors of glutaminyl cyclase
US9616097B2 (en) 2010-09-15 2017-04-11 Synergy Pharmaceuticals, Inc. Formulations of guanylate cyclase C agonists and methods of use
US8530670B2 (en) 2011-03-16 2013-09-10 Probiodrug Ag Inhibitors
AP2014007766A0 (en) 2011-12-15 2014-07-31 Takeda Pharmaceuticals Usa Inc Combination os azilsartan and chlorthlidone for treating hypertension black patients
HK1220696A1 (en) 2013-03-15 2017-05-12 Bausch Health Ireland Limited Agonists of guanylate cyclase and their uses
AU2014235209B2 (en) 2013-03-15 2018-06-14 Bausch Health Ireland Limited Guanylate cyclase receptor agonists combined with other drugs
EP4424697A3 (en) 2013-06-05 2024-12-25 Bausch Health Ireland Limited Ultra-pure agonists of guanylate cyclase c, method of making and using same
EP3461819B1 (en) 2017-09-29 2020-05-27 Probiodrug AG Inhibitors of glutaminyl cyclase

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407342A3 (en) * 1989-07-06 1991-07-10 Ciba-Geigy Ag Pyrimidine derivatives
US5100897A (en) * 1989-08-28 1992-03-31 Merck & Co., Inc. Substituted pyrimidinones as angiotensin ii antagonists
EP0415886A3 (en) * 1989-08-30 1991-10-23 Ciba-Geigy Ag Aza compounds
CA2075627A1 (en) * 1990-02-13 1991-08-14 William J. Greenlee Angiotensin ii antagonists incorporating a substituted benzyl element
IL100917A0 (en) 1991-02-16 1992-11-15 Fisons Plc Pyridinone and pyrimidinone derivatives,their preparation and pharmaceutical compositions containing them
US5149699A (en) * 1991-10-24 1992-09-22 American Home Products Corporation Substituted pyridopyrimidines useful as antgiotensin II antagonists

Similar Documents

Publication Publication Date Title
EP0539086B1 (en) Condensed pyrimidine derivatives and their use as angiotensine II antagonists
US5149699A (en) Substituted pyridopyrimidines useful as antgiotensin II antagonists
HK1003031B (en) Condensed pyrimidine derivatives and their use as angiotensine ii antagonists
US5225414A (en) Substituted azoles, a process for their preparation, and their use
EP0611368B1 (en) Substituted aminopyrimidines as angiotensin ii antagonists
JP3260415B2 (en) Heterocyclic compounds having angiotensin II antagonistic action
EP0445811B1 (en) Nitrogen-containing heterocyclic compounds, their production and use
US5466692A (en) Substituted pyridopyrimidines and antihypertensives
WO1993008170A1 (en) Substituted heterocycles as angiotensin ii antagonists
US5330989A (en) Heterocycles substituted with biphenyl-3-cyclobutene-1,2-dione derivatives
US5283242A (en) Substituted benzimidazoles and quinazolines as antihypertensives
US5256654A (en) Substituted pyrrolopyrimidines, azepinopyrimidines and pyridopyrimidines useful as angiotensin II antagonists
US4596799A (en) 9H-pyrrolo[2,1-c]-1,2,4-triazolo[4,3-a][1,4]benzodiazepines
EP0618207B1 (en) Substituted pyridopyrimidines as antihypertensives
GB2265899A (en) Substituted pyrimidines
US6096754A (en) N-3 substituted pyrimidin-4-ones with AII antagonistic activity
HK1011358B (en) Substituted pyridopyrimidines as antihypertensives