GB2620172B - Identifying one or more quantisation parameters for quantising values to be processed by a neural network - Google Patents
Identifying one or more quantisation parameters for quantising values to be processed by a neural network Download PDFInfo
- Publication number
- GB2620172B GB2620172B GB2209612.7A GB202209612A GB2620172B GB 2620172 B GB2620172 B GB 2620172B GB 202209612 A GB202209612 A GB 202209612A GB 2620172 B GB2620172 B GB 2620172B
- Authority
- GB
- United Kingdom
- Prior art keywords
- quantising
- identifying
- processed
- values
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0495—Quantised networks; Sparse networks; Compressed networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Neurology (AREA)
- Probability & Statistics with Applications (AREA)
- Error Detection And Correction (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB2402394.7A GB2624564B (en) | 2022-06-30 | 2022-06-30 | Identifying one or more quantisation parameters for quantising values to be processed by a neural network |
| GB2209612.7A GB2620172B (en) | 2022-06-30 | 2022-06-30 | Identifying one or more quantisation parameters for quantising values to be processed by a neural network |
| EP23182503.5A EP4310730A1 (en) | 2022-06-30 | 2023-06-29 | Processing data using a neural network "nn" implemented in hardware |
| EP23182504.3A EP4303770A1 (en) | 2022-06-30 | 2023-06-29 | Identifying one or more quantisation parameters for quantising values to be processed by a neural network |
| US18/216,383 US20240135153A1 (en) | 2022-06-30 | 2023-06-29 | Processing data using a neural network implemented in hardware |
| US18/216,461 US20240143985A1 (en) | 2022-06-30 | 2023-06-29 | Identifying one or more quantisation parameters for quantising values to be processed by a neural network |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB2209612.7A GB2620172B (en) | 2022-06-30 | 2022-06-30 | Identifying one or more quantisation parameters for quantising values to be processed by a neural network |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| GB202209612D0 GB202209612D0 (en) | 2022-08-17 |
| GB2620172A GB2620172A (en) | 2024-01-03 |
| GB2620172B true GB2620172B (en) | 2024-05-29 |
Family
ID=82802604
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| GB2209612.7A Active GB2620172B (en) | 2022-06-30 | 2022-06-30 | Identifying one or more quantisation parameters for quantising values to be processed by a neural network |
| GB2402394.7A Active GB2624564B (en) | 2022-06-30 | 2022-06-30 | Identifying one or more quantisation parameters for quantising values to be processed by a neural network |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| GB2402394.7A Active GB2624564B (en) | 2022-06-30 | 2022-06-30 | Identifying one or more quantisation parameters for quantising values to be processed by a neural network |
Country Status (1)
| Country | Link |
|---|---|
| GB (2) | GB2620172B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119312851B (en) * | 2024-11-25 | 2025-10-24 | 四川大学 | A low-bitwidth adaptive quantization method for convolutional neural networks for image classification |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170270408A1 (en) * | 2016-03-16 | 2017-09-21 | Hong Kong Applied Science and Technology Research Institute Company, Limited | Method and System for Bit-Depth Reduction in Artificial Neural Networks |
| GB2580171A (en) * | 2018-12-21 | 2020-07-15 | Imagination Tech Ltd | Methods and systems for selecting quantisation parameters for deep neural networks using back-propagation |
-
2022
- 2022-06-30 GB GB2209612.7A patent/GB2620172B/en active Active
- 2022-06-30 GB GB2402394.7A patent/GB2624564B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170270408A1 (en) * | 2016-03-16 | 2017-09-21 | Hong Kong Applied Science and Technology Research Institute Company, Limited | Method and System for Bit-Depth Reduction in Artificial Neural Networks |
| GB2580171A (en) * | 2018-12-21 | 2020-07-15 | Imagination Tech Ltd | Methods and systems for selecting quantisation parameters for deep neural networks using back-propagation |
Non-Patent Citations (3)
| Title |
|---|
| CHOI et al, December 2021, "DANCE: Differentiable Accelerator/Network Co-Exploration", ACM/IEEE Design Automation Conference, pp. 337-342, IEEE. * |
| UHLICH et al., 22 May 2020, "Mixed Precision DNNs: All You Need is a Good Parameterization", arxiv.org [online], available from https://arxiv.org/abs/1905.11452 [accessed 18 January 2023]. * |
| WANG et al, August 2020, "Differentiable Joint Pruning and Quantization for Hardware Efficiency", 16th European Conference on Computer Vision, Lecture Notes in Computer Science, Springer. * |
Also Published As
| Publication number | Publication date |
|---|---|
| GB2624564B (en) | 2025-01-01 |
| GB2624564A (en) | 2024-05-22 |
| GB2620172A (en) | 2024-01-03 |
| GB202209612D0 (en) | 2022-08-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| GB202209080D0 (en) | Pretraining framework for neural networks | |
| GB2580171B (en) | Methods and systems for selecting quantisation parameters for deep neural networks using back-propagation | |
| GB2624564B (en) | Identifying one or more quantisation parameters for quantising values to be processed by a neural network | |
| GB2603230B (en) | Techniques for pruning neural networks | |
| GB2606794B (en) | Techniques for optimizing neural networks | |
| GB2596637B (en) | Content management using one or more neural networks | |
| EP3912106A4 (en) | Apparatus and a method for neural network compression | |
| EP4172862A4 (en) | Object recognition neural network for amodal center prediction | |
| GB202002426D0 (en) | Resin composition, inorganic filler, direct-current power cable, and method for manufacturing direct-current power cable | |
| EP4166967C0 (en) | SYSTEM FOR CABLE MONITORING IN A CABLE GUIDE FACILITY, PARTICULARLY IN A POWER GUIDE CHAIN | |
| PL4177011T3 (en) | Axe and a method for manufacturing an axe | |
| IL288021B1 (en) | Cluster-connected neural network | |
| GB202404313D0 (en) | Neural network architecture | |
| LT3784036T (en) | Method for influencing arthropods | |
| MX2017003649A (en) | Component which is at least partly made of a layer structure, and method for producing same. | |
| PH12017501407A1 (en) | A method for treating effluent produced from palm oil milling process | |
| GB202216948D0 (en) | Identifying onr ot more quantising values to be processed by a nerual network | |
| EP3810329A4 (en) | METHOD, APPARATUS AND SYSTEM FOR USING A MILL TO SEPARATE METALS FROM A FIBROUS FEEDER | |
| GB202306770D0 (en) | Action pruning by logical neural network | |
| GB2614237B (en) | Method of analysing a spectral peak using a neural network | |
| GB202002279D0 (en) | Multiple Spectra imput Neural Network for Prosthesis | |
| GB202310908D0 (en) | Weight processing for a neural network | |
| GB201916615D0 (en) | Integration platform/process management using a chatbot | |
| GB202003347D0 (en) | Neural network | |
| GB202319019D0 (en) | Component design using neural networks |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 732E | Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977) |
Free format text: REGISTERED BETWEEN 20240822 AND 20240828 |